1932

Abstract

HIV protease inhibitors, as components of combination antiretroviral drug regimens, have substantially reduced the morbidity and mortality associated with HIV infection. They selectively block the action of the virus-encoded protease and stop the virus from replicating. In general, these drugs have poor systemic bioavailability and must be dosed with respect to meals for optimal absorption. Protease inhibitor–containing regimens require ingestion of a large number of capsules, are costly, and produce or are susceptible to metabolic drug interactions. Simultaneous administration of two protease inhibitors takes advantage of beneficial pharmacokinetic interactions and may circumvent many of the drugs’ undesirable pharmacologic properties. For example, ritonavir increases saquinavir concentrations at steady state by up to 30-fold, allowing reduction of saquinavir dose and dosing frequency. Ritonavir decreases the systemic clearance of indinavir and overcomes the deleterious effect of food on indinavir bioavailability. These benefits reflect inhibition of presystemic clearance and first-pass metabolism, as well as inhibition of systemic clearance mediated by hepatic cytochrome P450 3A4. Several dual protease inhibitor combination regimens have shown great promise in clinical trials and are now recommended as components of salvage therapy for HIV-infected patients.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.pharmtox.40.1.649
2000-04-01
2024-04-20
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.pharmtox.40.1.649
Loading
/content/journals/10.1146/annurev.pharmtox.40.1.649
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error