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Abstract

Human noroviruses (NoVs) are the leading cause of foodborne illness in the
United States, and they exact a considerable human and economic burden
worldwide. In fact, the many challenging aspects of human NoV have caused
some to call it the nearly perfect foodborne pathogen. In this review, a brief
overview of NoVs and their genetic structure is provided. Additionally, the
challenges and recent developments related to human NoVs regarding viral
evolution, transmission, epidemiology, outbreak identification, cultivation,
animal and human models, and detection are presented.
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1. INTRODUCTION

Human noroviruses (NoVs) are the most common cause of acute gastroenteritis and are respon-
sible for substantial morbidity and mortality worldwide (Patel et al. 2008, Glass et al. 2009). One
important mode of NoV infection is via contaminated food, as these viruses are considered the
leading known foodborne agent in the United States, accounting for over 50% of foodborne ill-
nesses annually (Scallan et al. 2011b). However, foodborne disease of unknown etiology is esti-
mated to account for as much as 80% of all food-related illness, of which human NoVs are likely
a considerable portion (Scallan et al. 2011a).

NoVs are a member of the family Caliciviridae, which derives its name from the Greek word
for cup (calyx), in reference to cup-like depressions on the surface of the virus (Glass et al. 2009).
The Caliciviridae family contains six genera: Norovirus, Vesivirus, Lagovirus, Recovirus, Sapovirus,
and Becovirus. The Norovirus genus is the most common cause of disease in humans relative to
the other five. These viruses were previously referred to by other names, such as “small round
structured viruses” and “Norwalk-like viruses” (Lambden et al. 1993). They are typically 27–
37 nm in diameter, nonenveloped, and have a 7.5–7.7-kilobase positive-sense single-stranded
RNA genome that consists of three open reading frames (ORFs) (Glass et al. 2000, Jiang et al.
1993, Lambden et al. 1993). ORF1 codes for a nonstructural polyprotein that is believed to
self-cleave into six to seven proteins (NS1–NS7). Some of the nonstructural proteins include an
NTPase (Pfister & Wimmer 2001), a protease (Blakeney et al. 2003, Liu et al. 1996), an RNA-
dependent RNA polymerase (Fukushi et al. 2004, Rohayem et al. 2006), and a protein (VPg) that
is covalently linked to the 5′ end of the genome and is suspected to initiate translation and possibly
transcription (Subba-Reddy et al. 2011, Belliot et al. 2008, Daughenbaugh et al. 2003, Goodfellow
et al. 2005). For a more thorough discussion of NoV genomic structure and function, refer to
Thorne & Goodfellow (2014).

ORF2 and ORF3 encode major (VP1) and minor (VP2) capsid proteins, respectively (Glass
et al. 2000, Prasad et al. 1999). The VP1 protein contains internal N-terminal and shell (S) domains
as well as a protruding (P) domain comprised of a P2 subdomain that is the most exposed part of
the virus; the P1 subdomain lies below P2 (closer to the S domain). The viral capsid is a T = 3
icosahedron that contains 180 copies of VP1, which form dimers. When expressed in certain
models, the proteins self-assemble in empty capsids called virus-like particles (VLPs; Jiang et al.
1992). Human NoVs cannot be cultivated in vitro, and there is no known animal model for reliable
virus propagation outside of human beings.

Historically, NoVs have been classified based on the degree of difference between the amino
acid sequences of the VP1 major capsid protein (Zheng et al. 2006). One advantage of using this
protein is that it contains the highly variable P2 subdomain that is suspected to interact with specific
host cell targets such as the histo-blood group antigens (HBGAs) and possibly others (Huang et al.
2003, Murakami et al. 2013). For a more comprehensive review of putative NoV host cell receptors,
refer to Huang et al. (2005) and Donaldson et al. (2010). Historically, researchers have defined
genogroups as having 45–61% uncorrected pairwise difference in the VP1 region (Zheng et al.
2006). Accordingly, the Norovirus genus has been divided into six genogroups (GI–GVI), three
of which cause disease in humans (GI, GII, and GIV). The recent GVI and a new tentatively
proposed GVII genogroup consist of canine NoV (Martella et al. 2008, Tse et al. 2012). Further
subdivisions within genogroups, representing genetic clusters, constitute genotypes. Researchers
have defined genotypes as containing 14–44% VP1 amino acid difference, whereas strains have
0–14% difference (Zheng et al. 2006). To date, over 31 genotypes of human NoV have been
reported, of which 9 and 22 belong to GI and GII, respectively. At the time of this writing, this
constitutes over 150 strains, but genotypic and strain designations are evolving.
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GII/Hu/FR/2012/GII.4 Sydney2012/Paris12

GII/Hu/FR/2012/GII.4 Sydney2012/Paray le MonialE7332

GII/Hu/AU/2012/GII.4 Sydney2012/Melbourne3

GII/Hu/AU/2009/GII.4 New Orleans2009/Turramurra

GII/Hu/US/2006/GII.4 Minerva2006/Newark

GII/Hu/NL/1995/GII.4/Tiel001

GII/Hu/NL/2004/GII.4/Tilburg59

GII/Hu/CN/1978/GII.3/Hong Kong71

GII/Hu/US/1976/GII.3/CDHC32

GII/Hu/US/1976/GII.2 Snow Mountain1976/Snow Mountain1

GII/Hu/US/1971/GII.1 Hawaii/7EK

GII/Hu/US/2010/GII.12/HS207

GII/Hu/TW/2010/GII.12/CGMH42

GI/Hu/US/1968/GI.1 Norwalk1968/Norwalk1

Figure 1
Phylogenetic tree of selected GII strains. The tree was constructed based on only full-length VP1 sequences
and contains the prototype GI.1 Norwalk virus ( green) as an example of GI. Interested readers are referred
to Kroneman et al. (2013) and Vinjé (2015) for more comprehensive coverage of norovirus phylogeny and
genotyping. Abbreviations: GI, genogroup I; GII, genogroup II; VP1, viral protein 1 (the major capsid
protein).

Traditional nomenclature has been based on genogroup-genotype combination (e.g., GII/4
or GII.4). With the discovery that recombination can occur in the ORF1-ORF2 junction and
other areas, and with identification of more genotypes and strains, researchers have proposed
an alternative international standard for strain classification. This assignment is a dual typ-
ing system based on specific difference cutoffs of the partial RdRp (ORF1, 1,300 nucleotides)
and complete VP1 (ORF2) sequences. The new nomenclature of an identified isolate would
be written as norovirus Genogroup/Host/Country/Isolation Year/Partial ORF1_ORF2_Strain
Name and Index Year/Isolate City Name (possibly with a unique isolate number). For example,
an isolate of genogroup II found in Houston, Texas (United States), that has a GII.P4 par-
tial ORF1 grouping with a GII.4 Hunter ORF2 sequence would be designated as norovirus
GII/Hu/US/2005/GII.P4_GII.4_Hunter2004/Houston23. If only ORF2 is known, then it would
be norovirus GII/Hu/US/2005/GII.4_Hunter2004/Houston23 (Kroneman et al. 2013). An ex-
ample phylogenetic tree of some GII human NoV strains is provided in Figure 1.

Several features of NoVs make them highly transmissible. First, the infectious dose is low;
estimates range from 20 to several thousand particles, depending on the study and corresponding
modeling assumptions (Teunis et al. 2008, Atmar et al. 2013). Also, these viruses are antigenically
and genetically diverse, resulting in many different strains with limited immunological cross-
protection between strains. Although still debatable, evidence suggests that immunity to any
one strain may be as short as a few months to two years (Parrino et al. 1977). Human NoVs
persist in the environment, lasting weeks to years, depending on environmental conditions such as
temperature and relative humidity. They are also resistant to nearly all of the active ingredients in
cleaning products, sanitizers, and disinfectants commonly used in food production and processing,
including quaternary ammonium compounds, detergents, alcohols, and even chlorine at regulated
concentrations. The same can be said about food processing and preservation methods such as
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heat, ionizing radiation, organic acids, preservatives, and manipulation of pH or water activity.
These issues are discussed in multiple reviews (Hirneisen et al. 2010, Hoelzer et al. 2013, Li et al.
2012b). Some call human NoVs the near-perfect foodborne pathogen, except for the fact that it
cannot multiply (but does persist) in foods and the environment.

Many unknowns remain for this important foodborne pathogen, and food virology is an area of
active research. In this review, we discuss efforts to address several recalcitrant issues associated with
the study and understanding of NoVs, with a particular focus on the foodborne transmission route.
These topics include efforts in human NoV cultivation, recent epidemiological findings, strain
evolution, and key detection conundrums. The reader will come away with a better understanding
of why this foodborne pathogen is so difficult to study and control and how scientists are working
to address these issues.

2. IN VITRO AND IN VIVO CULTIVATION

2.1. In Vitro Cultivation of Human Norovirus

The single most important limitation on the ability to study human NoV is the lack of an in vitro
cultivation method, despite almost 50 years of attempts. Cultivation using many mammalian cell
lines and human NoV strains has been attempted. For example, Duizer et al. (2004) tested A549,
AGS, Caco-2, CCD-18, CRFK, CR-PEC, Detroit 551, Detroit 562, FRhK-4, HCT-8, HEC,
HeLa, HEp-2, Ht-29, HuTu-80, I-407, IEC-6, IEC-18, Kato-3, L20B, MA104, MDBK, MDCK,
RD, TMK, Vero, and 293 cell lines, along with about 33 different human NoV strains, all leading
to no significant findings. Contrary to the case for murine NoV (GV), human macrophages and
dendritic cells were unable to support infection by human NoV strains (Lay et al. 2010). Guix et al.
(2007) transfected Norwalk virus (the representative GI.1 strain) RNA in the tumorigenic human
liver Huh-7 cells, achieving viral replication through one cycle but nothing thereafter, suggesting
cultivation issues occur in the attachment and uncoating stages of replication. Overexpression of
the gene responsible for producing an HBGA (the H antigen) in Huh-7 cells resulted in enhanced
binding of Norwalk virus but failed to produce viral infection. Furthermore, mutant Huh-7.5.1
cells with an inactive RIG-I (a host protein that combats alien RNA in cells) supported viral
replication through only one cycle as well. Based on these findings, in vitro cultivation issues
appear to be at the attachment and uncoating stages of infection. This study implicated the viral
VPg as necessary for viral replication (Guix et al. 2007). Some initial success was observed when
challenging adult duodenal tissues in ex vivo culture. However, when using the in vitro human
glandular epithelial cell line HIEC-6, only low (2 log10 or less) viral RNA production was observed,
as was the absence of a cytopathic effect (Leung et al. 2010).

A three-dimensional (3-D) cell culture model was reported almost a decade ago for human NoV
cultivation. Human small intestinal cells were grown on collagen I–coated porous microcarrier
beads in a rotating wall vessel incubator (Straub et al. 2007). This mimics the fluid-shear environ-
ment of the intestine and thus allows the intestinal epithelium to grow and differentiate in three
dimensions. Straub et al. (2007) showed replication of two GII and one GI human NoV strains in
five passages using this model. The same group used the 3-D cell culture method in Caco-2 cells
and seemed to have some limited success (Straub et al. 2011). However, coordinated international
efforts have failed to replicate these findings (Herbst-Kralovetz et al. 2013, Papafragkou et al.
2013, Takanashi et al. 2014). More recent efforts focus on the use of human intestinal enteroids
or organoids, derived from human intestinal epithelial stem cells that are created ex vivo into 3-D
small intestinal epithelial functional units. These are composed of the entire villus-crypt axis and
epithelial cell types normally present in the small intestine (Kovbasnjuk et al. 2013). A report by
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Jones et al. (2014), recent at the time of this writing, describes the successful replication of a GII.4
human NoV strain in human B cells. The data suggest that enteric bacteria containing HBGA-like
molecules are cofactors for infection, but additional work is needed to validate these findings. For
additional information on in vitro human NoV propagation, several review articles are available
(Karst et al. 2014, Li et al. 2012b, Richards 2012, Vashist et al. 2009).

2.2. Animal Models for Human Norovirus

Several animal models have been proposed for human NoV propagation. One of these is gno-
tobiotic pigs, which, when challenged with a GII.4 strain, appear to exhibit mild diarrhea, shed
virus, support some degree of viral replication, and exhibit a specific immune response profile
(Cheetham et al. 2006). Additionally, the binding patterns of different human NoV VLPs to
HBGA-expressing gnotobiotic pig buccal and duodenal tissues have been observed (Cheetham
et al. 2007). Gnotobiotic calves have also been reported to host human NoV GII.4 infection (Souza
et al. 2008).

The presence of GI and GII human NoV antibodies has been reported in several nonhuman
primate species ( Jiang et al. 2004). Rockx et al. (2005) found some evidence that rhesus macaques
had the potential to serve as a model when inoculated with Norwalk virus (GI.1). Chimpanzees
were also shown to host infection, harbor viral antigen production, and shed virus when injected
intravenously with filtered Norwalk virus (Bok et al. 2011).

A recent study reported that some strains of BALB/c mice that had been “humanized” (grafted
with certain human stem cells) and BALB/c mice that had not been humanized were able to host
replication of a human NoV GII.4 strain (Taube et al. 2013). This report is significant because
it presents the possibility of a smaller, less cumbersome animal model for human NoV research.
However, in this case, viral introduction was interperotineal, not oral; the immunocompromised
state of the mice eliminates applicability to immunological studies; and the animals shedding
virus were asymptomatic. Further support for, replication of, and improvement of this model are
needed. Suffice it to say that no animal model yet produces a response to challenge with human
NoV that is similar to that of humans.

2.3. Human Challenge Studies

In the absence of cell culture or animal models, scientists have resorted to human challenge
studies. Perhaps the first example of a human NoV challenge study occurred shortly after the
original 1968 Norwalk virus outbreak; in this study, fecal specimens derived from secondary cases
were diluted and fed to volunteers (Dolin et al. 1972). Some important fundamental questions
about human NoV infection have been addressed using human feeding studies. For instance,
the aforementioned information on NoV infectious dose was derived from human challenge data
(Atmar et al. 2013, Teunis et al. 2008). Other information was also elucidated from these studies, as
Atmar et al. (2013) found that the incubation period of the virus ranged from 20 to 50 h, with some
association of a shorter incubation period for higher inoculation doses. Furthermore, symptom
duration ranged from 8 to 60 h; however, viral shedding of infected patients ranged from 6 to
55 days. Viral shedding in vomitus was also reported, with a median of 41,000 genomic equivalents
of NoV per mL of vomitus. This is compared to medians of 160 billion and 10 billion genomic
equivalents per mL in the stool of people who exhibited gastroenteritis symptoms and those who
did not, respectively (Atmar et al. 2013).

Human feeding has also been used as a way to measure disinfection efficacy in high-pressure
processing of oysters (Leon et al. 2011) and virus carriage on the hands of infected individuals
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(Liu et al. 2013), both important issues in the realm of food safety. In a recent study, serum
samples from volunteers previously challenged with the Snow Mountain virus (GII.2) were used
to characterize human NoV strain evolution and antigenic and immune response characteristics
(Lindesmith et al. 2005, Swanstrom et al. 2014). Although the data obtained by human challenge
studies are incredibly valuable, these studies are expensive, time consuming, and require rigorous
regulatory approvals. They must therefore be carefully designed to optimize data collection but
are, nonetheless, only rarely done.

2.4. Cultivable Human Norovirus Surrogates

In the absence of a cultivable human NoV strain, cultivable surrogate viruses have been widely
used. These include feline calicivirus (FCV; Doultree et al. 1999), murine NoV (MNV; Wobus
et al. 2006), Tulane virus (TV; Farkas et al. 2008), rabbit hemorrhagic disease virus (Meyers et al.
1991), porcine enteric calicivirus (Flynn & Saif 1988), poliovirus, hepatitis A virus, and MS2 bacte-
riophage (Bae & Schwab 2008, Shin & Sobsey 2003). To date, FCV propagated in Crandell-Reese
feline kidney cells and MNV propagated in mouse macrophage RAW 264.7 cells are the most
widely used surrogates. FCV is a member of the Vesivirus genus in the Caliciviridae family and
causes a respiratory disease in cats but is considered appropriate because it is a member of the
same family as Norovirus and is of similar genomic structure, at least by the standards of the late
1990s, when it was first used. FCV is still considered the gold standard by the US Environmental
Protection Agency for products seeking to make antinoroviral claims. MNV was reported by Karst
et al. (2003) about a decade ago and was rapidly adopted because it is a member of the Norovirus
genus (categorized as a GV NoV) and hence has more similar genetic and structural character-
istics to human NoV than other surrogates. However, it causes gastroenteritis and meningitis in
immunodeficient mice only (Kahan et al. 2011).

Many studies have evaluated the environmental behavior of human NoVs based on that of the
cultivable surrogate viruses. Almost all these studies have used one or a few surrogates and failed to
make direct comparisons between the behavior of the surrogates to human NoVs, in part because
the latter cannot be cultivated in vitro. A full accounting of these studies is available elsewhere
(Baert et al. 2009a, Hirneisen et al. 2010, Hoelzer et al. 2013). Differences in susceptibility of the
surrogates to environmental conditions and inactivation treatments are now well documented.
Richards (2012) provides a critical review of these issues. Many of the surrogates differ in terms of
resistance to elevated temperature, extremes of pH, and susceptibility to organic solvents as well
as various chemical sanitizers and disinfectants. Generally, FCV appears to be more susceptible
to pH and chlorine than MNV, whereas MNV is more susceptible to alcohols (Cannon et al.
2006, Park et al. 2010, Tung et al. 2013). A recent systematic review and meta-analysis of studies
using two or more surrogates concluded that MNV, hepatitis A virus, and bacteriophage MS2
were generally more stable than FCV to chemical disinfectants, but by an average of ≤1.5 log10

plaque-forming units (Hoelzer et al. 2013).
TV is a newer surrogate, first reported by Farkas et al. (2008). TV was isolated from the stool of

captive rhesus macaques and was phylogenetically classified into a new Caliciviridae genus called
Recovirus. The TV genome has a general genetic similarity to Norovirus, and the capsid has a
similar size (∼36 nm) and buoyant density as other members of the Caliciviridae family (Farkas
et al. 2008). Unlike MNV and FCV, TV has been reported to bind HBGA types A and B (Farkas
et al. 2010). This is significant in that these HBGAs are the same putative host receptor/cofactor
as human NoVs, suggesting that TV may be a more relevant surrogate in cases in which capsid
functionality and behavior (disinfection studies) are being assessed. TV is readily cultured in the
LLC-MK2 monkey kidney cell line.
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Recent studies have sought to characterize the susceptibility of TV to different inactivation
strategies. One such study compared TV and MNV sensitivity to pH, chlorine, heat, and survival in
tap water at room and refrigeration temperatures. MNV was found to be more stable in refrigerated
tap water and at various pH values compared to TV. However, MNV and TV behaved similarly in
20◦C tap water, under different heat treatments (50–75◦C for 2 min), and at most concentrations of
chlorine (0.2, 20, 200, and 2,000 ppm) (Hirneisen & Kniel 2013a). In another study, MNV and TV
showed inactivation profiles similar to human NoV [assessed by reverse transcriptase quantitative
polymerase chain reaction (RT-qPCR)] when inoculated on spinach for up to a week (Hirneisen &
Kniel 2013b). Similarly, Wang et al. (2013) observed no statistically significant differences in the
survival of MNV, TV, and hepatitis A virus on alfalfa seeds and sprouts held at 22◦C for 20 days.
Certainly, further work must be done to identify the appropriate, most conservative (e.g., resistant)
surrogate to be used for a given condition or treatment. The choice of an appropriate surrogate
will likely be a function of the experimental question being posed. Comparative studies in which
the behavior of surrogates is compared to that of human NoV (using RT-qPCR) are also needed.
The lack of a universally applicable cultivable surrogate for which there is a clear relationship to the
behavior of human NoVs under a variety of circumstances has hindered progress in understanding
the efficacy of inactivation strategies.

3. UNDERSTANDING THE EPIDEMIOLOGY OF NOROVIRUS DISEASE

3.1. Recent Estimates of Human Norovirus Disease Burden

NoVs are the leading cause of acute viral gastroenteritis and of foodborne disease in most—if not
all—of the world. But food is only one means by which the virus is spread, and person-to-person
transmission remains the most common route. Recently, person-to-person transmission was re-
ported to account for 62–84% of all reported outbreaks (Vega et al. 2011, 2014). The overall
burden of disease from all transmission routes combined is staggering. A compilation of different
studies of incidence and outcome rates produced estimates that NoVs are responsible for 19–
21 million illnesses, 1.7–1.9 million outpatient visits, 400,000 emergency department visits,
56,000–71,000 hospitalizations, and 570–800 deaths annually in the United States alone. When
disease rates are applied to a US resident who lives to the age of 79 years, he or she would expe-
rience five incidents of human NoV disease in a lifetime, have a 1 in 2 chance of a disease-related
outpatient visit, a 1 in 50–70 chance of hospitalization, and a 1 in 5,000–7,000 chance of death due
to NoV infection (Hall et al. 2013, Scallan et al. 2011b). Long-term care facilities are particularly
important in transmission, constituting 62.5% (2,475/3,960) of NoV cases reported to the United
States Centers for Disease Control and Prevention (CDC) from 2009 to 2013 (although most
NoV cases are not reported to the CDC) (Vega et al. 2014). European statistics are generally
similar to those from the United States (Phillips et al. 2010, Baert et al. 2009b, Tam et al. 2012).

In outbreak settings, GII infections outnumber GI infections, as GII strains have been found
to occur in 80% or more of outbreaks. The epidemic strains belonging to GII.4 are responsible
for the vast majority of cases, particularly those associated with person-to-person transmission
(Matthews et al. 2012, Vega et al. 2014). For example, 72% of long-term care facility outbreaks
reported from 2009 to 2013 were caused by GII.4 strains, but non-GII.4 strains also caused
considerable morbidity, especially in association with restaurant and food-related settings (Vega
et al. 2014). Human NoV disease incidence appears to have increased of late in multiple countries,
probably because of the emergence of a new GII.4 strain (the Sydney strain, which appeared first
in 2012) (van Beek et al. 2013). In fact, human NoV mortality can spike by as much as 50% during
seasons in which an emergent epidemic (GII.4) strain is circulating (Hall et al. 2012a).
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3.2. The Burden of Foodborne Norovirus Disease

Limited statistics are available relative to the amount of NoV disease attributable to foods.
Obtaining these estimates is extremely challenging because multiple factors must be considered
and assumptions made to generate population-level estimates of the burden of foodborne illness.
For laboratory-confirmed surveillance, for example, the infected patient must seek medical
attention, a clinical sample must be obtained, a laboratory must identify the pathogen, and
the illness must be correctly reported up the chain of health authorities (Scallan et al. 2011b).
Unfortunately, disease associated with human NoVs is widespread, frequently goes undiagnosed,
is not normally life threatening, and is not commonly reported to public health authorities.
Consequently, foodborne disease incidence estimates for NoV are largely determined based on
population-level data and mathematical modeling. The most commonly cited US statistic is that
of Scallan et al. (2011b), who estimated that viruses account for 59% of these foodborne diseases
and that NoV account for 99% (5.5 million) of all viral foodborne illness incidents per year.
Although the illness is usually self-limiting with infrequent death, the sheer numbers result in
about 15,000 hospitalizations (26%, second in foodborne hospitalizations) and 150 deaths (11%,
fourth in foodborne deaths) annually (Scallan et al. 2011b). In Canada, NoV is also considered the
leading cause of foodborne illness, accounting for 65% of known illnesses (Thomas et al. 2013).

However, estimates of the comparative importance of food relative to other transmission routes
vary widely. In a study of outbreak data published from 1983 to 2011, Matthews et al. (2012)
suggested that the majority of NoV infections were transmitted by foodborne routes (54%), with
person-to-person ranking second (26%). However, this was a meta-analysis of published outbreaks
and not necessarily based on population-based surveillance data. Using US CaliciNet surveillance
system data from 2009 to 2013, Vega et al. (2014) concluded that 83.7% of NoV outbreaks
were person-to-person, whereas only 16.1% were foodborne. In another study focused only on
foodborne outbreaks, 46% (3,000) of approximately 6,300 outbreaks of known cause reported to
the CDC between 2001 and 2008 were attributed to NoV (Hall et al. 2012b).

3.3. Identifying and Tracing Norovirus Outbreaks

Human NoV outbreaks are difficult to identify and even more difficult to trace back to a common
food source. In addition to the general problems described above, most foodborne NoV out-
breaks are small and associated with a retail setting (and hence investigated locally or regionally),
and secondary person-to-person spread (propagated outbreaks) is very common. Even when a
foodborne source is identified, many factors hinder detection of the virus in the food (discussed
below).

Investigators have recently applied some novel approaches to human NoV outbreak identifi-
cation. Verhoef et al. (2011) used sequence analysis of NoV genetic clusters, in conjunction with
epidemiological data, to retrospectively identify common source outbreaks occurring in Europe
from 1999 to 2008. They found a notable increase in common source and international outbreaks
compared to the numbers identified originally by the Foodborne Viruses in Europe network
(Verhoef et al. 2011). In a later study, the same team analyzed 500 publicly available, full-length
NoV capsid sequences for outbreak identification. Not surprisingly, a region containing most
of the P2 subdomain (nucleotide positions 900–1,400) was found to be the best for assigning
genotypes, recognizing variants, and identifying outbreak events. Within this region, a minimum
fragment of 950 to 1,350 nucleotides of the capsid gene could be used to identify more than 80% of
outbreak events (Verhoef et al. 2012). A similar approach has been taken in tracing and identifying
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nosocomial infections (Sukhrie et al. 2011). With a distinctly foodborne focus, Verhoef et al. (2010)
used genotype frequency distributions from NoVs isolated from European bivalve mollusks, in
conjunction with genotype frequency derived from human illness surveillance, to differentiate
outbreaks caused by contamination early in the food chain (i.e., during production or processing)
versus those occurring later (i.e., food-handler-associated). In a completely different approach,
Rha et al. (2013) used BioSense, a national, electronic, US health-care surveillance system, to
statistically correlate emergency department chief complaint data to seasonal increases of human
NoV disease, proposing this method as a means of detecting the beginning of the NoV outbreak
season (Rha et al. 2013). Clearly, the combination of classic epidemiological outbreak investiga-
tion with nucleic acid sequence analysis, health-care surveillance, or both increases the resolution
of investigations.

3.4. Food Attribution and Transmission Estimates for Norovirus

Another epidemiological challenge related to NoVs—as well as other foodborne pathogens—is
attribution of cases or outbreaks to specific food commodities. Because surveillance data are so
sparse, many attribution studies are based largely on outbreak data. Over the past several years, the
CDC has embarked on more comprehensive human NoV food attribution studies. Using data from
1998 to 2008 obtained from the Foodborne Disease Outbreak Surveillance System, they have made
some general conclusions. First, the majority of food-associated NoV outbreaks in their database
could not be attributed to one or more specific foods. Foods to which outbreaks could be attributed
could be subdivided into multicomponent or complex foods and single component or simple foods
(Painter et al. 2013). Human NoV outbreaks were more often caused by complex foods relative
to simple foods. Further breakdown of the simple foods suggested that fresh vegetables were
responsible for about 30–40% of simple food outbreaks, followed by fruits and nuts (10–20%),
mollusks (10–15%), and dairy (5–15%) (Gould et al. 2013; Hall et al. 2012b, 2014; Painter et al.
2013). Very similar results were obtained using 2009–2012 data (Hall et al. 2014) and by others
not affiliated with the CDC (Batz et al. 2012, Greig & Ravel 2009).

Of the NoV outbreaks that could be attributed to a single location, restaurants and delicatessens
were the most common (63–64%), followed by catering and banquet halls (11–17%) and private
homes (4–6%) (Hall et al. 2012b, 2014). Postharvest contamination by food handlers during
preparation of foods was suspected as a possible source in as much as 90% of foodborne NoV
outbreaks (Hall et al. 2014) and was specifically implicated as the source of contamination in 53%
of outbreaks (Hall et al. 2012b). However, in many instances, the source (pre- or postharvest)
could not be resolved. Not unexpectedly, the only food for which preharvest contamination con-
stituted a notable proportion of overall contamination was mollusks (Hall et al. 2012b). Of the 528
foodborne NoV outbreaks reported during 2009–2012 for which specific contamination factors
were identified, infectious workers were responsible for 70% of these outbreaks, and bare-hand
contact with ready-to-eat foods was identified in 54% of them (Hall et al. 2014). Clearly, the food
handler appears to be responsible for the majority of foodborne outbreaks.

In conclusion, the majority of NoV outbreaks appear to be transmitted between individu-
als, although foodborne transmission is also significant. Estimates of the relative proportion of
food-associated transmission vary widely, and more refined data are needed. Complex, prepared,
ready-to-eat foods are overrepresented in outbreaks, and the most common setting for these is
restaurants, delicatessens, and catering facilities, implicating food handling as the likely contami-
nation source. In the case of simple foods, vegetables, fruits, and nuts are the most likely culprits,
but it is difficult to discern how important preharvest contamination is in these products. Even
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in the absence of comprehensive data, targeting the food preparation sector appears to be an
efficacious way to address the foodborne NoV problem.

4. NOROVIRUS EVOLUTION AND EPIDEMIC STRAIN EMERGENCE

In the past two decades, the GII.4 genotype has emerged as the cause of the majority of human
NoV cases (Lindesmith et al. 2008). For example, a recent survey of the CaliciNet program from
2009 to 2013 found that GII.4 was implicated in 72% of nearly 4,000 reported NoV outbreaks
in the United States (Vega et al. 2014). This genotype has been found to circulate and evolve
rapidly after periods of stasis (a phenomenon called epochal evolution) such that different pan-
demic and epidemic strains emerge every few years. These have included Camberwell (1994),
US 95/96 (1995–1996), Farmington Hills (2002), GII.4b (2002), Hunter (2004), Sakai (2006),
Minerva (2006), New Orleans (2009), and Sydney (2012). Interested readers are referred to White
et al. (2014) and Vinjé (2015) for additional discussion of this subject.

Multiple mechanisms contribute to the rapid evolution of GII.4 NoVs. First, RNA viruses
have very high mutation rates because of a lack of proofreading mechanisms during their repli-
cation, and GII.4 appears to have higher replication and mutation rates relative to other human
NoVs (Bull et al. 2010). Because GII.4 strains cause acute symptoms but rarely death, and be-
cause they affect such a large proportion of the population, the viruses may be under selective
pressure from widespread host immune responses. As a result, human NoV GII.4 strains change
their receptor binding and antigenic profiles over time (Debbink et al. 2012; Lindesmith et al.
2008, 2012, 2013) in an effort to escape herd immunity. This results in a change in capsid struc-
ture that affects host cell binding profiles (HBGA-mediated and perhaps others) and antigenic
sites, leading to a new pool of susceptible individuals. This concept of viral capsid mutation to
evade host immune response is termed antigenic drift and is supported by studies noting chang-
ing antigenic profiles of the recently circulating GII.4 New Orleans (Lindesmith et al. 2013)
and Sydney (Debbink et al. 2013) strains. Such changes in antigenic profiles pose challenges
for the creation of vaccines and the development of detection assays with universal recognition
ligands.

Another aspect of human NoV evolution is the occurrence of recombinant strains, as these
viruses have been found to undergo spontaneous recombination at different genome locations
including ORF1 (Waters et al. 2007), the ORF1/2 junction (Bull et al. 2005, Eden et al. 2013),
the ORF2/3 junction (Eden et al. 2013), and ORF2 (Eden et al. 2013, Rohayem et al. 2005).
Investigators have recently reported novel recombinants of multiple genotypes. For example, an
emerging GII.12 strain is a likely recombinant (with a GII.g ORF1 and GII.12 ORF2) (Giammanco
et al. 2012, Takanashi et al. 2011) that interestingly did not bind synthetic HBGAs yet infected
humans (Takanashi et al. 2011). This same strain had a rate of evolution comparable to a previously
reported rate for GII.4 (Giammanco et al. 2012).

Researchers have recently used patients with chronic human NoV infections as models to
observe intrahost evolution of the viruses. Bull et al. (2012) performed pyrosequencing on stool
samples obtained from a chronically infected infant, finding notable heterogeneity over time to
the extent that the virus in fecal samples after 288 days had become genetically distinct from the
initial sampling points. Another study on chronically infected patients found multiple instances
in which antigenic site mutations occurred during the infection (Siebenga et al. 2008). In short,
human NoV GII.4 evolution occurs by multiple means and results in the emergence of new
strains with new host susceptibility patterns, allowing the virus to continue to maintain itself even
in the face of widespread population immunity (Bull et al. 2010, Donaldson et al. 2008, White
2014).
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5. DETECTION OF HUMAN NOROVIRUS IN ENVIRONMENTAL
AND FOOD SAMPLES

5.1. General Overview

Despite extensive efforts, development of robust methods to detect viral contamination in foods
and environmental samples remains challenging. Because the numbers of virus particles present in
contaminated foods are usually low and no universal or rapid culture-based methods are available,
enrichment is not possible. Consequently, the viruses must be concentrated and purified from
complex sample matrices prior to detection, with molecular amplification (reverse transcription
qPCR or RT-qPCR) being the detection method of choice. Sequence-based determination of
amplicon identity is ideal for amplicon confirmation. The major steps required for the detection
of viruses in foods can be designated as follows: (a) virus concentration and purification, (b) nucleic
acid extraction, (c) detection, and (d ) confirmation. A full description of these methods is well
beyond the scope of this review. Recent efforts at international standardization are summarized
in Figure 2, although there are many other methods reported in the literature (ISO 2013). The
interested reader is referred to more comprehensive reviews (Bosch et al. 2008, Butot et al. 2014,
Knight et al. 2013, Maurer 2011, Vinjé 2015). Here we discuss two recalcitrant problems associated
with the detection of NoV in complex sample matrices: (a) interpretation of presumptively positive
samples and (b) the infectivity dilemma.

5.2. Detection and Confirmation—The Interpretation Dilemma?

Owing to their very low detection limits (theoretically, a single genome copy per RT-qPCR
reaction), molecular amplification approaches are the methods of choice for detecting human
NoV in food and environmental samples in which the concentration of viruses is usually quite
low. Until the mid-2000s, sample concentrates were processed for viral RNA isolation, followed
by detection by RT-PCR and confirmation of amplicon identity using nucleic acid hybridization.
In the middle of the last decade, RT-PCR was replaced almost exclusively by RT-qPCR, a method
that incorporates a fluorescently labeled probe or specifically intercalating fluorescent dye in the
reaction mix, theoretically allowing one to bypass time-consuming DNA hybridization steps. This
method currently remains the gold standard.

Incorporation of a hybridization step during amplification can be problematic when low tem-
plate concentrations are present. First, matrix-associated inhibition persists in many food and
environmental samples and can impact the efficiency of nucleic acid extraction and RT-qPCR
(Rutjes et al. 2006, Schrader et al. 2012). Such inhibition is usually identified using internal ampli-
fication controls, but these can interfere with the efficiency of amplification of the target (Hoorfar
et al. 2004). When inhibition occurs, the usual solution is sample dilution. Unfortunately, this
then reduces the analytical sensitivity of the assay.

Another issue is interpretation of results from samples producing high cycle threshold (Ct)
values by RT-qPCR. Numerous studies have employed RT-qPCR to detect viruses in various
types of naturally contaminated sample matrices, and a snapshot of these studies is provided
in Table 1. In most cases, some sort of amplicon confirmation step was used, ranging from
cloning and sequencing to double amplifications to hybridization. The most reliable of these is
DNA sequencing, but rarely is enough amplicon obtained from naturally contaminated samples
to successfully acquire sequences, especially when Ct values exceed 35. Unfortunately, low levels
of viral contamination (and associated high Ct values) are the rule rather than the exception for
these sample types.
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Using a swab 
premoistened 
with PBS, swab 
surface (up to 

100 cm2) into 500 
mL final volume 

of lysis buffer.

Add 25 g of sample to 40 mL 
TGBE buffer (with 30 U A. niger 
pectinase for soft fruit), elute 
viruses by shaking and filter 
eluate. Precipitate using 5× 

PEG/NaCl, resuspend pellet in 
500 μL volume PBS. For soft 
fruit, further clarify using 1:1 

chloroform and butanol 
mixture, centrifugation 
performed at 10,000 g.

Filter concentrate 0.3 L 
to 5 L onto a positively 

charged membrane, 
elute in TGBE buffer, 

adjust to pH 7 using 0.1 
mol/L HCl, concentrate 

to 500 μL using 
centrifugal filter device 

with 100 kDa cutoff, 
centrifuge at 4,000 g.

Chop 2.0 g of excised 
digestive gland, add an 

equal volume of 
proteinase K solution 

(30 U/mg). Incubate at 
37°C and 60°C then 

clarify by centrifugation 
at 3,000 g.

Hard surfaces
Salad vegetables

and soft fruit
Bottled water

Extract nucleic acid from 500 μL sample using lysis buffer with guanidine 
isothiocyanate and silica binding matrix. Elute RNA in 100 μL volume.

One-step real-time RT-PCR. RNA (undiluted and diluted in water) assayed for each target 
(HAV and norovirus GI and GII). Controls for extraction efficiency (process control virus assay), 

amplification efficiency, and standard curves for quantification included.

Bivalve molluscan
shellfish

Virus extraction
Process control virus

added at the first
possible point in the

extraction

RNA extraction

Real-time RT-PCR

Interpret results

Figure 2
Diagram of the International Organization for Standardization (ISO) method for the determination of HAV and norovirus in food and
water samples. Image adapted from ISO/TS 15216-1, Annex A (figure A.1). Abbreviations: A. niger, Aspergillus niger; HAV, hepatitis A
virus; PBS, phosphate-buffered saline; PEG, polyethylene glycol; TGBE, tris/glycine/beef extract.

Thus, in many cases, definitive confirmation of amplicon identity may not be possible. This
means that the analyst is faced with the conundrum of wrongly interpreting sample positivity,
leading to false positive or false negative reporting. At this point in time, it is probably prudent to
interpret such samples as presumptively positive but to also keep in mind that sample negativity
is impacted by residual RT-qPCR inhibition (and potential sample dilution), competition with
internal amplification controls, and sampling methodology. Even a negative result does not assure
the analyst of the absence of viral contamination. Unfortunately, these interpretation dilemmas
remain unaddressed. As more food and environmental samples are screened, it is increasingly
important for researchers to come to a consensus on these data interpretation issues; otherwise,
they have the chance of under- or overestimating the prevalence of virus contamination, wrongly
predicting its risk, or both.
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Table 1 Studies highlighting issues in positive RT-qPCR interpretation

Sample type
Controls and
confirmation Issues Reference

Leafy greens Second PCR targeting
a different region and
attempted sequencing
of amplicon

Of 275 samples total, 148 (54%) were positive for
HuNoV by RT-qPCR. Only 40 samples (15%)
produced a band of expected size for the second
amplification. Of these, only 16 (6%) could be
sequenced to confirm HuNoV RNA.

Mattison et al. 2010

Raspberries, cherry
tomatoes, strawberries,
and fruit salad

IAC included;
attempted sequencing
of amplicon

Positive Ct values were >37. Not a single positive
could be confirmed by sequencing.

Stals et al. 2011

Environmental
(catering kitchens and
restrooms)

Nested PCR;
attempted sequencing
amplicon

Samples with Cts >40 could not always be
confirmed by sequencing.

Boxman et al. 2011

Raw and treated sewage
water

Southern
hybridization

Positive RT-qPCR and hybridization results were
not always correlated.

van den Berg et al. 2005

Shellfish Dilution,
hybridization, and
attempted sequencing
of amplicon

Sequencing was not possible. Sensitivities differed
for hybridization compared to RT-qPCR
between GI and GII genogroups of NoV.
Inhibition was seen in 27% of positive samples.

Loisy et al. 2005

Shellfish IAC and sequencing Most positive virus samples had Cts >45 (of 50
cycles). Of 15 positive samples, only 5 could be
sequenced.

DePaola et al. 2010

NA NA This broad review focuses on molecular methods
in food microbiology.

Ceuppens et al. 2014

Abbreviations: Ct, cycle threshold; HuNoV, human norovirus; IAC, internal amplification control; NA, not applicable; NoV, norovirus; PCR, polymerase
chain reaction; RT-qPCR, real-time quantitative PCR.

5.3. The Infectivity Dilemma

Methods designed to detect viral nucleic acids are unable to distinguish between infectious and
noninfectious viruses, the latter of which might consist of defective virus particles and mutated or
degraded viral RNA. This is because RT-qPCR relies on the amplification and detection of small
nucleic acid sequences (approximately 100–200 nucleotides) that can originate from the complete
infectious viral genome, defective virus particles containing intact or partially intact genomes,
and/or degraded RNA derived from inactivated particles. Furthermore, the scientific community
has unequivocally demonstrated that the RNA associated with inactivated viruses remains de-
tectable by nucleic acid amplification long after viral infectivity has been lost (Richards 1999). In
short, in the absence of a culture method or a suitable marker for infectivity, it is impossible to
confirm that the detection of human NoVs by RT-qPCR is indicative of infectious virus, as RT-
qPCR tends to overestimate the actual amount of infectious virus. There are two major reasons why
food scientists need reliable means to discriminate human NoVs infectivity status: (a) to identify
products that actually pose a risk to human health and (b) to support studies of virus inactivation,
including characterization of the efficacy of both traditional and novel control measures.

Researchers have investigated alternative methods for predicting virus infectivity based on
molecular amplification approaches. These methods fall into two major classifications: (a) those
based on examining the stability of the virus genome and (b) those based on examining capsid
integrity. Examples of these approaches are provided in Table 2. The latter approach is the most
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popular, and one commonly used method is to precede RT-qPCR with enzymatic (RNase with
or without prior proteinase K) treatment. Sometimes called virolysis, the idea is that destruction
of the viral capsid will result in release of viral RNA, which will be degraded by RNase. If the
capsid is only partially degraded, then a prior proteinase K digestion should finish the process,
releasing the viral RNA so that it is susceptible to RNase. A second major approach is the so-called
integrated method, in that it is designed to measure the affinity of virus particles to receptors
involved in cellular attachment or to other virus-binding ligands. Commonly used ligands are
antibodies, carbohydrates (HBGAs), or negatively charged (cationic) magnetic particles. In these
cases, infectivity discrimination assumes that if the viral capsid is not intact or denatured, it will
not be able to bind to the receptors.

Some inactivation methods target the viral nucleic acid. In these cases, detection of small
genomic target fragments using RT-qPCR may not indicate the presence of infectious virus for
two reasons. First, naked viral RNA can persist long after a viral capsid has been destroyed. Second,
even though a single strand break occurring anywhere in the viral genome will render a virus
particle noninfectious, the same break cannot be detected by RT-qPCR if the target region for
amplification remains intact. To account for this problem, some researchers have suggested that
measurement of the overall integrity of genomic RNA could provide a useful marker for infective
particles. This has been accomplished by techniques using multiple amplifications (Pecson et al.
2011), amplification of near-full-length genomes (Kostela et al. 2008), or a combination in which
long-range reverse transcription is followed by more efficient small-fragment RT-qPCR (Wolf
et al. 2009).

One method that accounts for both capsid and genome integrity is the use of nucleic acid
intercalating agents such as propidium monoazide (Escudero-Abarca et al. 2014, Kim & Ko 2012,
Parshionikar et al. 2010). Theoretically, these compounds cannot penetrate intact capsids but can
penetrate damaged or destroyed capsids. Once penetrated, the photoinducible azide group on
these molecules covalently cross-links the RNA, producing stable monoadducts that cannot be
amplified by PCR.

Each of the methods proposed to discriminate the infectivity status of human NoVs using
nucleic acid amplification has its own advantages and disadvantages, and the reader is referred to
the comprehensive review of Knight et al. (2013) for more details. There is great debate among
scientists working in this field as to which is the best method. When looking at the data col-
lectively as applied to surrogate viruses for which infectivity and nucleic acid amplification are
compared, preceding RT-qPCR with enzymatic pretreatments or ligand binding (capsid integrity
methods) provides better, but still not complete, agreement with virus infectivity. Methods to
assess genome integrity and the use of nucleic acid intercalating agents are difficult to optimize
and frequently inefficient. Also, data on method performance frequently differ as a function of
inactivation strategy. To date, no one method has been demonstrated to accurately discern in-
fectious from noninfectious viral particles in the absence of an in vitro human NoV cultivation
method.

6. CONCLUSIONS

In all, human NoVs remain a significant challenge. Elements of the basic biology and replication
mechanism of human NoVs remain to be elucidated. Although many in vitro and in vivo cultivation
methods have been attempted, humans remain the only host for virus propagation. As such,
researchers have been forced to rely on data produced using cultivable surrogates, but each of
these has its own advantages and disadvantages. Human challenge studies can also be conducted,
but they are expensive, time consuming, and infrequent. Rapid strain divergence and antigenic drift
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of the GII.4 genotype presents an additional set of challenges, particularly in vaccine development
and detection of emerging strains. Although our understanding of disease burden and attribution
is improving, outbreaks are still vastly underreported, and adequately addressing the important
role of the food handler remains a recalcitrant issue. In the absence of reliable detection methods
for viruses in foods, it is difficult to attribute specific foods to outbreaks or to better understand
the prevalence of naturally occurring contamination. In addition to its existing features as a near-
perfect foodborne pathogen, we now need to add another: our inability to really understand human
NoVs because they are so difficult to study.
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Boxman ILA, Verhoef L, Dijkman R, Hägele G, te Loeke NAJM, Koopmans M. 2011. Year-round preva-
lence of norovirus in the environment of catering companies without a recently reported outbreak of
gastroenteritis. Appl. Environ. Microbiol. 77(9):2968–74

Bull RA, Eden J-S, Luciani F, McElroy K, Rawlinson WD, White PA. 2012. Contribution of intra- and
interhost dynamics to norovirus evolution. J. Virol. 86(6):3219–29

426 Moore · Goulter · Jaykus



FO06CH18-Jaykus ARI 19 March 2015 13:28

Bull RA, Eden J-S, Rawlinson WD, White PA. 2010. Rapid evolution of pandemic noroviruses of the GII.4
lineage. PLOS Pathog. 6(3):e1000831

Bull RA, Hansman GS, Clancy LE, Tanaka MM, Rawlinson WD, White PA. 2005. Norovirus recombination
in orf1/orf2 overlap. Emerg. Infect. Dis. 11(7):1079–85

Butot S, Zuber S, Baert L. 2014. Sample preparation prior to molecular amplification: complexities and
opportunities. Curr. Opin. Virol. 4:66–70

Cannon JL, Papafragkou E, Park GW, Osborne J, Jaykus L-A, Vinjé J. 2006. Surrogates for the study of
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norovirus outbreaks in the United States, 2009–2013. J. Clin. Microbiol. 52(1):147–55

Vega E, Barclay L, Gregoricus N, Williams K, Lee D, Vinjé J. 2011. Novel surveillance network for norovirus
gastroenteritis outbreaks, United States. Emerg. Infect. Dis. 17(8):1389–95

Verhoef L, Kouyos RD, Vennema H, Kroneman A, Siebenga J, et al. 2011. An integrated approach to iden-
tifying international foodborne norovirus outbreaks. Emerg. Infect. Dis. 17(3):412–18

Verhoef L, Vennema H, van Pelt W, Lees D, Boshuizen H, et al. 2010. Use of norovirus genotype profiles to
differentiate origins of foodborne outbreaks. Emerg. Infect. Dis. 16(4):617–24

Verhoef L, Williams KP, Kroneman A, Sobral B, van Pelt W, Koopmans M. 2012. Selection of a phyloge-
netically informative region of the norovirus genome for outbreak linkage. Virus Genes 44(1):8–18
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