1932

Abstract

The dog is our oldest domesticate and has experienced a wide variety of demographic histories, including a bottleneck associated with domestication and individual bottlenecks associated with the formation of modern breeds. Admixture with gray wolves, and among dog breeds and populations, has also occurred throughout its history. Likewise, the intensity and focus of selection have varied, from an initial focus on traits enhancing cohabitation with humans, to more directed selection on specific phenotypic characteristics and behaviors. In this review, we summarize and synthesize genetic findings from genome-wide and complete genome studies that document the genomic consequences of demography and selection, including the effects on adaptive and deleterious variation. Consistent with the evolutionary history of the dog, signals of natural and artificial selection are evident in the dog genome. However, conclusions from studies of positive selection are fraught with the problem of false positives given that demographic history is often not taken into account.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-121415-032155
2016-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/47/1/annurev-ecolsys-121415-032155.html?itemId=/content/journals/10.1146/annurev-ecolsys-121415-032155&mimeType=html&fmt=ahah

Literature Cited

  1. Akashi H, Osada N, Ohta T. 2012. Weak selection and protein evolution. Genetics 192:115–31 [Google Scholar]
  2. American Kennel Club 1992. The Complete Dog Book: The Photograph, History, and Official Standard of Every Breed Admitted to AKC Registration, and the Selection, Training, Breeding, Care, and Feeding of Pure-Bred Dogs. New York: Howell Book House [Google Scholar]
  3. Anderson TM, vonHoldt BM, Candille SI, Musiani M, Greco C. et al. 2009. Molecular and evolutionary history of melanism in North American gray wolves. Science 323:59191339–43 [Google Scholar]
  4. Axelsson E, Ratnakumar A, Arendt M-L, Maqbool K, Webster MT. et al. 2013. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 495:7441360–64 [Google Scholar]
  5. Barsh GS. 1996. The genetics of pigmentation: from fancy genes to complex traits. Trends Genet 12:8299–305 [Google Scholar]
  6. Barton NH. 1998. The effect of hitch-hiking on neutral genealogies. Genet. Res. 72:02123–33 [Google Scholar]
  7. Barton NH. 2000. Genetic hitchhiking. Philos. Trans. R. Soc. B 355:14031553–62 [Google Scholar]
  8. Björnerfeldt S, Webster MT, Vilà C. 2006. Relaxation of selective constraint on dog mitochondrial DNA following domestication. Genome Res 16:8990–94 [Google Scholar]
  9. Boyko AR, Quignon P, Li L, Schoenebeck JJ, Degenhardt JD. et al. 2010. A simple genetic architecture underlies morphological variation in dogs. PLOS Biol 8:8e1000451 [Google Scholar]
  10. Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD. et al. 2008. Assessing the evolutionary impact of amino acid mutations in the human genome. PLOS Genet 4:5e1000083 [Google Scholar]
  11. Cadieu E, Neff MW, Quignon P, Walsh K, Chase K. et al. 2009. Coat variation in the domestic dog is governed by variants in three genes. Science 326:5949150–53 [Google Scholar]
  12. Candille SI, Kaelin CB, Cattanach BM, Yu B, Thompson DA. et al. 2007. A β-defensin mutation causes black coat color in domestic dogs. Science 318:58551418–23 [Google Scholar]
  13. Caniglia R, Fabbri E, Greco C, Galaverni M, Manghi L. et al. 2013. Black coats in an admixed wolf × dog pack is melanism an indicator of hybridization in wolves. Eur. J. Wildl. Res. 59:543–55 [Google Scholar]
  14. Castellano S, Parra G, Sánchez-Quinto FA, Racimo F, Kuhlwilm M. et al. 2014. Patterns of coding variation in the complete exomes of three Neandertals. PNAS 111:6666–71 [Google Scholar]
  15. Charlesworth B. 2012. The effects of deleterious mutations on evolution at linked sites. Genetics 190:15–22 [Google Scholar]
  16. Charlesworth D, Charlesworth B. 1987. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Syst. 18:237–68 [Google Scholar]
  17. Charruau P, Johnston RA, Stahler DR, Lea A, Snyder-Mackler N. et al. 2016. Pervasive effects of aging on gene expression in wild wolves. Mol. Biol. Evol. 33(8):1967–78 [Google Scholar]
  18. Chun S, Fay JC. 2011. Evidence for hitchhiking of deleterious mutations within the human genome. PLOS Genet 7:8e1002240 [Google Scholar]
  19. Coulson T, MacNulty DR, Stahler DR, vonHoldt B, Wayne RK, Smith DW. 2011. Modeling effects of environmental change on wolf population dynamics, trait evolution, and life history. Science 334:60601275–78 [Google Scholar]
  20. Crisci JL, Poh Y-P, Mahajan S, Jensen JD. 2013. The impact of equilibrium assumptions on tests of selection. Front. Genet. 4:235 [Google Scholar]
  21. Cruz F, Vila C, Webster MT. 2008. The legacy of domestication: accumulation of deleterious mutations in the dog genome. Mol. Biol. Evol. 25:112331–36 [Google Scholar]
  22. Davis BW, Ostrander EA. 2014. Domestic dogs and cancer research: a breed-based genomics approach. ILAR J 55:159–68 [Google Scholar]
  23. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. 2010. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLOS Comput. Biol. 6:12e1001025 [Google Scholar]
  24. Do R, Balick D, Li H, Adzhubei I, Sunyaev S, Reich D. 2015. No evidence that selection has been less effective at removing deleterious mutations in Europeans than in Africans. Nat. Genet. 47:2126–31 [Google Scholar]
  25. Drake AG, Klingenberg CP, Heard AESB, McPeek EMA. 2010. Large-scale diversification of skull shape in domestic dogs: disparity and modularity. Am. Nat. 175:3289–301 [Google Scholar]
  26. Elyashiv E, Bullaughey K, Sattath S, Rinott Y, Przeworski M, Sella G. 2010. Shifts in the intensity of purifying selection: an analysis of genome-wide polymorphism data from two closely related yeast species. Genome Res 20:111558–73 [Google Scholar]
  27. Eyre-Walker A, Woolfit M, Phelps T. 2006. The distribution of fitness effects of new deleterious amino acid mutations in humans. Genetics 173:2891–900 [Google Scholar]
  28. Fan Z, Silva P, Gronau I, Wang S, Armero AS. et al. 2016. Worldwide patterns of genomic variation and admixture in gray wolves. Genome Res 26:2163–73 [Google Scholar]
  29. Fay JC, Wyckoff GJ, Wu CI. 2001. Positive and negative selection on the human genome. Genetics 158:31227–34 [Google Scholar]
  30. Frantz LAF, Mullin VE, Pionner-Capitan M, Lebrasseur O, Ollivier M. et al. 2016. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 352:1228–31 [Google Scholar]
  31. Freedman AH, Gronau I, Schweizer RM, Ortega-Del Vecchyo D, Han E. et al. 2014. Genome sequencing highlights the dynamic early history of dogs. PLOS Genet 10:1e1004016 [Google Scholar]
  32. Freedman AH, Schweizer RM, Ortega-Del Vecchyo D, Han E, Davis BW. et al. 2016. Demographically-based evaluation of genomic regions under selection in domestic dogs. PLOS Genet 12:3e1005851 [Google Scholar]
  33. Fu W, Gittelman RM, Bamshad MJ, Akey JM. 2014. Characteristics of neutral and deleterious protein-coding variation among individuals and populations. Am. J. Hum. Genet. 95:4421–36 [Google Scholar]
  34. Gazave E, Chang D, Clark AG, Keinan A. 2013. Population growth inflates the per-individual number of deleterious mutations and reduces their mean effect. Genetics 195:3969–78 [Google Scholar]
  35. Germonpré M, Lázničková-Galetová M, Sablin MV. 2012. Palaeolithic dog skulls at the Gravettian Předmostí site, the Czech Republic. J. Archaeol. Sci. 39:1184–202 [Google Scholar]
  36. Germonpré M, Sablin MV, Stevens RE, Hedges REM, Hofreiter M. et al. 2009. Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes. J. Archaeol. Sci. 36:2473–90 [Google Scholar]
  37. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. 2007. FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res 17:6877–85 [Google Scholar]
  38. Gravel S. 2016. When is selection effective. Genetics 203:1451–62 [Google Scholar]
  39. Gray MM, Granka JM, Bustamante CD, Sutter NB, Boyko AR. et al. 2009. Linkage disequilibrium and demographic history of wild and domestic canids. Genetics 181:41493–505 [Google Scholar]
  40. Grimm D. 2015. How the wolf became the dog. Science 348:6232277 [Google Scholar]
  41. Haldane JBS. 1937. The effect of variation on fitness. Am. Nat. 71:337–49 [Google Scholar]
  42. Halligan DL, Keightley PD. 2009. Spontaneous mutation accumulation studies in evolutionary genetics. Annu. Rev. Ecol. Evol. Syst. 40:151–72 [Google Scholar]
  43. Halligan DL, Kousathanas A, Ness RW, Harr B, Eory L. et al. 2013. Contributions of protein-coding and regulatory change to adaptive molecular evolution in murid rodents. PLOS Genet 9:12e1003995 [Google Scholar]
  44. Hare B, Tomasello M. 2005. Human-like social skills in dogs. Trends Cogn. Sci. 9:9439–44 [Google Scholar]
  45. Hartfield M, Otto SP. 2011. Recombination and hitchhiking of deleterious alleles. Evolution 65:92421–34 [Google Scholar]
  46. Hayward JJ, Castelhano MG, Oliveira KC, Corey E, Balkman C. et al. 2016. Complex disease and phenotype mapping in the domestic dog. Nat. Commun. 7:10460 [Google Scholar]
  47. Hedrick PW, Smith DW, Stahler DR. 2016. Negative-assortative mating for color in wolves. Evolution 70:757–66 [Google Scholar]
  48. Hedrick PW, Stahler DR, Dekker D. 2014. Heterozygote advantage in a finite population: black color in wolves. J. Hered. 105:4457–65 [Google Scholar]
  49. Henn BM, Botigué LR, Bustamante CD, Clark AG, Gravel S. 2015. Estimating the mutation load in human genomes. Nat. Rev. Genet. 16:6333–43 [Google Scholar]
  50. Henn BM, Botigué LR, Peischl S, Dupanloup I, Lipatov M. et al. 2016. Distance from sub-Saharan Africa predicts mutational load in diverse human genomes. PNAS 113:4E440–49 [Google Scholar]
  51. Hietpas RT, Jensen JD, Bolon DNA. 2011. Experimental illumination of a fitness landscape. PNAS 108:197896–901 [Google Scholar]
  52. Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP. 2006. A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313:5783101–4 [Google Scholar]
  53. Janowitz Koch I, Clark MM, Thompson MJ, Deere-Machemer KA, Wang J. et al. 2016. The concerted impact of domestication and transposon insertions on methylation patterns between dogs and grey wolves. Mol. Ecol. 25:81838–55 [Google Scholar]
  54. Jensen JD, Kim Y, DuMont VB, Aquadro CF, Bustamante CD. 2005. Distinguishing between selective sweeps and demography using DNA polymorphism data. Genetics 170:31401–10 [Google Scholar]
  55. Johnson DS, Mortazavi A, Myers RM, Wold B. 2007. Genome-wide mapping of in vivo protein-DNA interactions. Science 316:58301497–502 [Google Scholar]
  56. Karlsson EK, Lindblad-Toh K. 2008. Leader of the pack: gene mapping in dogs and other model organisms. Nat. Rev. Genet. 9:9713–25 [Google Scholar]
  57. Keightley PD, Eyre-Walker A. 2007. Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies. Genetics 177:42251–61 [Google Scholar]
  58. Kharchenko PV, Tolstorukov MY, Park PJ. 2008. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat. Biotechnol. 26:121351–59 [Google Scholar]
  59. Kimura M, Maruyama T, Crow JF. 1963. The mutation load in small populations. Genetics 48:1303–12 [Google Scholar]
  60. King MC, Wilson AC. 1975. Evolution at two levels in humans and chimpanzees. Science 188:4184107–16 [Google Scholar]
  61. Larson G, Fuller DQ. 2014. The evolution of animal domestication. Annu. Rev. Ecol. Evol. Syst. 45:115–36 [Google Scholar]
  62. Larson G, Karlsson EK, Perri A, Webster MT, Ho SYW. et al. 2012. Rethinking dog domestication by integrating genetics, archeology, and biogeography. PNAS 109:238878–83 [Google Scholar]
  63. Leonard JA, Wayne RK, Wheeler J, Valadez R, Guillen S, Vila C. 2002. Ancient DNA evidence for Old World origin of New World dogs. Science 298:55981613–16 [Google Scholar]
  64. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB. et al. 2005. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:7069803–19 [Google Scholar]
  65. Lohmueller KE. 2014. The distribution of deleterious genetic variation in human populations. Curr. Opin. Genet. Dev. 29:139–46 [Google Scholar]
  66. Lohmueller KE, Indap AR, Schmidt S, Boyko AR, Hernandez RD. et al. 2008. Proportionally more deleterious genetic variation in European than in African populations. Nature 451:7181994–97 [Google Scholar]
  67. Lu J, Tang T, Tang H, Huang J, Shi S, Wu C-I. 2006. The accumulation of deleterious mutations in rice genomes: a hypothesis on the cost of domestication. Trends Genet 22:3126–31 [Google Scholar]
  68. Ma X, Kelley JL, Eilertson K, Musharoff S, Degenhardt JD. et al. 2013. Population genomic analysis reveals a rich speciation and demographic history of orang-utans (Pongopygmaeus and Pongo abelii). PLOS ONE 8:10e77175 [Google Scholar]
  69. Marsden CD, Vecchyo DO-D, O'Brien DP, Taylor JF, Ramirez O. et al. 2016. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. PNAS 113:1152–57 [Google Scholar]
  70. McManus KF, Kelley JL, Song S, Veeramah KR, Woerner AE. et al. 2015. Inference of gorilla demographic and selective history from whole-genome sequence data. Mol. Biol. Evol. 32:3600–12 [Google Scholar]
  71. Meisler MH, Ting CN. 1993. The remarkable evolutionary history of the human amylase genes. Crit. Rev. Oral Biol. Med. 4:3–4503–9 [Google Scholar]
  72. Messer PW, Petrov DA. 2013a. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol. Evol. 28:11659–69 [Google Scholar]
  73. Messer PW, Petrov DA. 2013b. Frequent adaptation and the McDonald-Kreitman test. PNAS 110:218615–20 [Google Scholar]
  74. Meyer M, Kircher M, Gansauge M-T, Li H, Racimo F. et al. 2012. A high-coverage genome sequence from an archaic Denisovan individual. Science 338:6104222–26 [Google Scholar]
  75. Miklósi A. 2009. Dog Behaviour, Evolution, and Cognition. New York: Oxford Univ. Press [Google Scholar]
  76. Müller CA, Schmitt K, Barber ALA, Huber L. 2015. Dogs can discriminate emotional expressions of human faces. Curr. Biol. 25:5601–5 [Google Scholar]
  77. Nelson MR, Wegmann D, Ehm MG, Kessner D, St. Jean P. et al. 2012. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 337:6090100–4 [Google Scholar]
  78. Nielsen R, Hubisz MJ, Hellmann I, Torgerson D, Andres AM. et al. 2009. Darwinian and demographic forces affecting human protein coding genes. Genome Res 19:5838–49 [Google Scholar]
  79. Ohta T. 1976. Role of very slightly deleterious mutations in molecular evolution and polymorphism. Theor. Popul. Biol. 10:3254–75 [Google Scholar]
  80. Ostrander EA, Kruglyak L. 2000. Unleashing the canine genome. Genome Res 10:91271–74 [Google Scholar]
  81. Ovodov ND, Crockford SJ, Kuzmin YV, Higham TFG, Hodgins GWL, van der Plicht J. 2011. A 33,000-year-old incipient dog from the Altai Mountains of Siberia: evidence of the earliest domestication disrupted by the last glacial maximum. PLOS ONE 6:7e22821 [Google Scholar]
  82. Parker HG, Kim LV, Sutter NB, Carlson S, Lorentzen TD. et al. 2004. Genetic structure of the purebred domestic dog. Science 304:56741160–64 [Google Scholar]
  83. Parker HG, VonHoldt BM, Quignon P, Margulies EH, Shao S. et al. 2009. An expressed Fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs. Science 325:5943995–98 [Google Scholar]
  84. Piganeau G, Eyre-Walker A. 2009. Evidence for variation in the effective population size of animal mitochondrial DNA. PLOS ONE 4:2e4396 [Google Scholar]
  85. Pionnier-Capitan M, Bemilli C, Bodu P, Célérier G. Ferrié J-G. et al. 2011. New evidence for Upper Palaeolithic small domestic dogs in South-Western Europe. J. Archaeol. Sci. 38:92123–40 [Google Scholar]
  86. Pitulko VV, Tikhonov AN, Pavlova EY, Nikolskiy PA, Kuper KE, Polozov RN. 2016. Early human presence in the Arctic: evidence from 45,000-year-old mammoth remains. Science 351:6270260–63 [Google Scholar]
  87. Protas ME, Patel NH. 2008. Evolution of coloration patterns. Annu. Rev. Cell Dev. Biol. 24:425–46 [Google Scholar]
  88. Ramirez O, Olalde I, Berglund J, Lorente-Galdos B, Hernandez-Rodriguez J. et al. 2014. Analysis of structural diversity in wolf-like canids reveals post-domestication variants. BMC Genom 15:1465 [Google Scholar]
  89. Rimbault M, Ostrander EA. 2012. So many doggone traits: mapping genetics of multiple phenotypes in the domestic dog. Hum. Mol. Genet. 21:R1R52–57 [Google Scholar]
  90. Roy M, Kim N, Kim K, Chung W-H, Achawanantakun R. et al. 2013. Analysis of the canine brain transcriptome with an emphasis on the hypothalamus and cerebral cortex. Mamm. Genome 24:11484–99 [Google Scholar]
  91. Santiago E, Caballero A. 2005. Variation after a selective sweep in a subdivided population. Genetics 169:1475–83 [Google Scholar]
  92. Schlamp F, van der Made J, Stambler R, Chesebrough L, Boyko AR, Messer PW. 2016. Evaluating the performance of selection scans to detect selective sweeps in domestic dogs. Mol. Ecol. 25:1342–56 [Google Scholar]
  93. Schoenebeck JJ, Ostrander EA. 2014. Insights into morphology and disease from the dog genome project. Annu. Rev. Cell Dev. Biol. 30:535–60 [Google Scholar]
  94. Schubert M, Jónsson H, Chang D, Sarkissian CD, Ermini L. et al. 2014. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. PNAS 111:52E5661–69 [Google Scholar]
  95. Schweizer RM, vonHoldt BM, Harrigan R, Knowles JC, Musiani M. et al. 2016. Genetic subdivision and candidate genes under selection in North American grey wolves. Mol. Ecol. 25:1380–402 [Google Scholar]
  96. Shannon LM, Boyko RH, Castelhano M, Corey E, Hayward JJ. et al. 2015. Genetic structure in village dogs reveals a Central Asian domestication origin. PNAS 112:4413639–44 [Google Scholar]
  97. Shipman P. 2015a. How do you kill 86 mammoths? Taphonomic investigations of mammoth megasites. Quat. Int. 359–360:38–46 [Google Scholar]
  98. Shipman P. 2015b. The Invaders: How Humans and Their Dogs Drove Neanderthals to Extinction. Cambridge, MA: Belknap Press
  99. Simons YB, Turchin MC, Pritchard JK, Sella G. 2014. The deleterious mutation load is insensitive to recent population history. Nat. Genet. 46:3220–24 [Google Scholar]
  100. Simpson JW, Doxey DL, Brown R. 1984. Serum isoamylase values in normal dogs and dogs with exocrine pancreatic insufficiency. Vet. Res. Commun. 8:1303–8 [Google Scholar]
  101. Skoglund P, Ersmark E, Palkopoulou E, Dalén L. 2015. Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Curr. Biol. 25:111515–19 [Google Scholar]
  102. Slatkin M, Wiehe T. 1998. Genetic hitch-hiking in a subdivided population. Genet. Res. 71:02155–60 [Google Scholar]
  103. Smith JM, Haigh J. 1974. The hitch-hiking effect of a favourable gene. Genet. Res. 23:123–35 [Google Scholar]
  104. Steiner CC, Weber JN, Hoekstra HE. 2007. Adaptive variation in beach mice produced by two interacting pigmentation genes. PLOS Biol 5:9e219 [Google Scholar]
  105. Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao K. et al. 2007. A single IGF1 allele is a major determinant of small size in dogs. Science 316:5821112–15 [Google Scholar]
  106. Sutter NB, Eberle MA, Parker HG, Pullar BJ, Kirkness EF. et al. 2004. Extensive and breed-specific linkage disequilibrium in Canis familiaris. Genome Res. 14122388–96
  107. Tennessen JA, Bigham AW, O'Connor TD, Fu W, Kenny EE. et al. 2012. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337:609064–69 [Google Scholar]
  108. Teshima KM, Coop G, Przeworski M. 2006. How reliable are empirical genomic scans for selective sweeps. Genome Res 16:6702–12 [Google Scholar]
  109. Thalmann O, Shapiro B, Cui P, Schuenemann VJ, Sawyer SK. et al. 2013. Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science 342:6160871–74 [Google Scholar]
  110. Thomson KS. 1996. The fall and rise of the English bulldog. Am. Sci. 84:220–23 [Google Scholar]
  111. Thornton KR, Jensen JD. 2007. Controlling the false-positive rate in multilocus genome scans for selection. Genetics 175:2737–50 [Google Scholar]
  112. Vaysse A, Ratnakumar A, Derrien T, Axelsson E, Rosengren Pielberg G. et al. 2011. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLOS Genet 7:10e1002316 [Google Scholar]
  113. Vilà C, Savolainen P, Maldonado JE, Amorim IR, Rice JE. et al. 1997. Multiple and ancient origins of the domestic dog. Science 276:53191687–89 [Google Scholar]
  114. Vilà C, Seddon J, Ellegren H. 2005. Genes of domestic mammals augmented by backcrossing with wild ancestors. Trends Genet 21:4214–18 [Google Scholar]
  115. vonHoldt BM, Pollinger JP, Earl DA, Knowles JC, Boyko AR. et al. 2011. A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Res 21:81294–1305 [Google Scholar]
  116. vonHoldt BM, Pollinger JP, Lohmueller KE, Han E, Parker HG. et al. 2010. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 464:7290898–902 [Google Scholar]
  117. Wall JD, Yang MA, Jay F, Kim SK, Durand EY. et al. 2013. Higher levels of Neanderthal ancestry in East Asians than in Europeans. Genetics 194:199–209 [Google Scholar]
  118. Wang G-D, Zhai W, Yang H-C, Fan R-X, Cao X. et al. 2013. The genomics of selection in dogs and the parallel evolution between dogs and humans. Nat. Commun. 4:1860 [Google Scholar]
  119. Wang G-D, Zhai W, Yang H-C, Wang L, Zhong L. et al. 2016. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Res 26:121–33 [Google Scholar]
  120. Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:157–63 [Google Scholar]
  121. Wayne RK. 1986a. Cranial morphology of domestic and wild canids: the influence of development on morphological change. Evolution 40:2243–61 [Google Scholar]
  122. Wayne RK. 1986b. Limb morphology of domestic and wild canids: the influence of development on morphologic change. J. Morphol. 187:3301–19 [Google Scholar]
  123. Wayne RK, Shaffer HB. 2016. Hybridization and endangered species protection in the molecular era. Mol. Ecol. 25:112680–89 [Google Scholar]
  124. Wayne RK, vonHoldt BM. 2012. Evolutionary genomics of dog domestication. Mamm. Genome 23:13–18 [Google Scholar]
  125. Wood AR, Esko T, Yang J, Vedantam S, Pers TH. et al. 2014. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46:111173–86 [Google Scholar]
  126. Wright S. 1951. The genetical structure of populations. Ann. Eugen. 15:4323–54 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-121415-032155
Loading
/content/journals/10.1146/annurev-ecolsys-121415-032155
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error