
NEW ALGORITHMS AND LOWER BOUNDS FOR THE PARALLEL EVALUATION
OF CERTAIN RATIONAL EXPRESSIONS

H. T. Kung
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pennsylvania

This paper presents new algorithms for the

parallel evaluation of certain polynomial expres-

sions. In particular, for the parallel evaluation

n
of x , we introduce an algorithm which takes two

steps of parallel division and [log2n] steps of

parallel addition, while the usual algorithm takes

[log2n] steps of parallel multiplication. Hence

our algorithm is faster than the usual algorithm

when multiplication takes more time than addition.

Similar algorithms for the evaluation of other

polynomial expressions are also introduced. Lower

bounds on the time needed for the parallel evaluation

of rational expressions are given. All the algor-

ithms presented in the paper are shown to be asymp-

totically optimal. Moreover, we prove that by using

parallelism the evaluation of any first order ra-

= ~(x.~--), and any tional recurrence, e.g., xi+] z i x.
i

non-linear polynomial recurrence can be sped up at

most by a constant factor, no matter how many pro-

cessors are used.

]. INTRODUCTION

In this paper we consider the parallel evalua-

tion of certain rational expressions. We assume

This research was supported in part by the Nation-
al Science Foundation under Grant GJ32]]] and the
Office of Naval Research under Contract
N00014-67-A-0314-00]0, NR 044-422.

that several processors which can perform four

arithmetic operations, +, -, X, /, are available,

and that the time required for accessing data and

communicating between processors can be ignored.

This problem has been studied by many people.

(See the surveys written by Brent [73] and Kuck

[73].) Almost all papers in this field assume that

every arithmetic operation takes the same time.

However, this assumption is false for two reasons.

For many processors, floating number multiplication

takes more time than addition. Furthermore, if we

deal with expressions involving, for example, ma-

trices or multiple-precision numbers then multi-

plication is of course more expensive than addi-

tion. (Here we interpret arithmetic operations as

matrix or multiple-precision number operations.)

In this paper 2 we assume that multiplication takes

more time than addition

Hence, to get better algorithms, we should

avoid using multiplications. We derive new algor-

n
ithms for the parallel evaluations of x ,

n n
3

[x2,x ,xn], ~(x+a.), ~ aixi , etc., where the a.
] l l

are scalars. Each of the algorithms minimizes the

time needed for the multiplications to within a

constant and can be shown to be faster than the

best previously known algorithm for large n. More-

over, all the algorithms, except the one associated

323

with Theorem 3.4, have the following two character-

istics:

I) To run the algorithms each processor is

either masked or performing the same opera-

tion at any time. Hence the algorithm can

be run on single-instruction stream-mul-

tiple-data stream (SISM) machines (Flynn

[66]), which include ILLIAC IV, CDC STAR-

100, Texas Instruments ASC, etc.

2) The algorithms require a very simple inter-

connection pattern. All we need is a bi-

nary tree network between processors.

Hence, for most machine organizations, we

should not expect any significant delay

caused by communication between processors.

We also prove lower bounds on the time needed

for the parallel evaluation of certain rational

expressions, under the assumption that all proces-

sors can perform different operations at any time.

This assumption corresponds to multiple-instruction

stream-multiple-data stream (MIMD) machines (Flynn

[66]) such as C.mmp, the multi-mini-processor sys-

tem currently under construction at Carnegie-

Mellon University (Wulf and Bell [72]). It is

clear that optimal algorithms with respect to MIMD

machines must be also optimal with respect to SIMD

machines. The lower bounds obtained in the paper

imply that the algorithms presented in the paper

are asymptotically optimal with respect to MIMD

machines, although most of these algorithms can be

run on SIMD machines, as noted above. Furthermore,

these lower bounds imply that, by using parallelism,

the evaluation of an expression defined by any first

order rational recurrence or any non-linear poly-

nomial recurrence can be sped up at most by a

¢Qnstant factor, no matter how many processors are

used. Consider, for example, the evaluation of the

y defined by the recurrence,
n

] a

Yi+] = ~(Yi+~i)' i=0,I,2,...,n-I,

which is the well-known recurrence for approximat-

ing ~/a. We show that for evaluating Yn any paral-

lel algorithm using any number of processors can-

not be essentially faster than the obvious sequen-

tial algorithm. Thus the theory for non-linear

recurrence is completely different from the theory

for linear recurrences, where good speed-ups have

been obtained (for example, Heller [73], Kogge [72],

Kogge and Stone [72], Maruyama [73], Munro and

Paterson [73] and Stone [73a])o

Suppose that we have a problem for which mul-

tiplication is much more expensive than addition.

We want to minimize the number of non-scalar mul-

tiplications and divisions. Lower bounds on the

time needed for the multiplications and divisions

are also derived.

In the next section, we give basic defini-

tions and an abstract formulation of our problem.

In Section 3 we derive algorithms for the parallel

evaluation of various expressions. Lower bound

results are given in Section 4. The final section

deals with results on non-linear recurrences.

2. ABSTRACT FORMULATION AND DEFINITIONS

Let F be a commutative and algebraically

closed field, Cog., F is the field ~ of complex

numbers. Let F[x] and F(x) be the ring of poly-

nomials and the field of rational expressions in x

over F, respectively. Our task is to evaluate a

set of polynomials in F[x],[f](x),f2(x) ,fm(X) ~,

under the following assumptions:

324

I)

2)

By evaluating [f](x) fm(X)] we mean

computing the values of f](x),...,fm(X)

from FU[x}, inside the field F(x). The

four binary operations, +, -, X, /,

associated with the field F(x) are the

ones we are allowed to use.

The elements in F are called scalars. A

multiplication of two elements in F(x) is

called a scalar multiplication if one of

the two elements is a scalar; otherwise it

is called a non-scalar multiplication.

Scalar or non-scalar addition (subtraction)

is similarly defined. A division whose

dividend is a non-scalar is called a non-

scalar division. Let M, Ms, A, A s denote

the time needed for one non-scalar multi-

plication, scalar multiplication, non-

scalar addition (subtraa~o,~ ~r~1~ aa-

dition (subtraction), respectively. Let

D,D s denote the time needed for a divi-

sion whose dividend is a non-scalar,

scalar, respectively. Assume that M > A.

3) At any given time, up to k operations may

be performed. This means that there are k

processors which can perform the opera-

tions, +, -, X, /, at any time but some

processors may be idle. If in a given

time interval all processors, except the

ones masked, perform the same operation,

say, addition, then we refer to that time

interval as a parallel step of addition.

If the positive integer k in 3) is greater

than one, we say [f](x) fm(X)] is to be evalu-

ated in parallel, while if k is equal to one, we

say [f](x) fm(X)] is to be evaluated

sequentially. We define Tk(f] (x) ,. .. ,fm(X)) to be

the minimum time needed to evaluate

{f](x) ,fm(X)] with k processors.

To illustrate our notation given in 2), we

consider an example. Let F = ~ and let x be a

~×% matrix A whose entries are in ~.. Suppose that

we use an 0(% 3) algorithm for matrix multiplication

and inversion. (Here we interpret division as ma-

trix inversion.) Then M = 0(% 3), M = 0(%2),
S

A = 0(%2). A = 0(%), D = 0(%3), D = 0(%3).
S S

3. NEW ALGORITHMS WHICH USE DIVISIONS FOR THE
PARALLEL EVALUATION OF x n, ~xZ,x j , . . . , xn} ,
n n
[~(x+ai) , 0 ~ aixi , etc.
I

We first consider a well known problem, that

of evaluating x n. Knuth [69, § 4.6.3] gives a

rather detailed survey of the sequential algorithms

for this problem. It is known that there exists a

sequential algorithm which takes time

[O(10$ n ~} log n + \log log M. (In this paper all log-

arithms are taken to base 2.) However, it is easy

to show the following (see, for instance, Borodin

and Munro [72]):

Fact 3.].

If division is not used I [log n]M is a lower

bound on the time for the parallel evaluation of

n
x , no matter how many processors are used.

Hence, if division is not used, any parallel al-

gorithm cannot be essentially faster than the

sequential algorithm. In the proof of the follow-

ing theorem we give an algorithm for the parallel

evaluation of x n which uses divisions and which

takes time less than [log n] when n is large.

325

Theorem 3.].

n
If k a njx can be evaluated in two steps of

parallel division and [log n] + 2 steps of paral-

lel addition. More precisely,

(3.1) T (x n) ~ [log n]A + 2(A +D).
n s s

Proof

We establish the theorem by exhibiting an

algorithm.

Al~orithm 3.]. [An algorithm for the parallel

evaluation of x n.]

]) Compute A.I = x-ri' i=],...,n, in parallel,

where the r. are in F and are the n dis-
I

tinct zeros of xn-r for any non-zero ele-

ment r in F;

2) Compute B i = si/Ai, i=],...,n, in paral-

= [~ (r.-r.)]-]; lel, where s i j~i l j

n
3) Compute C = Z B. in parallel;

] l

4) Compute D = I/C;

5) Compute E = D+r.

It is easy to check that E = x n. Hence Algorithm

n
3.] indeed evaluates x . Suppose that the number

of processors k ~ n. Then clearly steps], 2, 3,

4, 5 can be done in time As, Ds, [log n]A,%, As,

respectively. Therefore Algorithm 3.1 takes time

[log n]A + 2(As+Ds). •

Note that [log n]A + 2(As+Ds)< [log n]M when

[log n] > 2(As+D~/(M-A). In fact,

lira [log n]M/[[log n]A + 2(As+D~] = M/A.

Hence we have sped up the evaluation of x n by a

factor M/A for large n.

Remarks on Algorithm 3.].

]) The choice of r in step] depends on the ap-

plication of the algorithm. For instance, if

the algorithm is used to compute A n for a real

matrix A then the number r should be chosen

such that A - ril is non-singular for all i;

otherwise the algorithm would break down at

step 2, where we have to compute si(A-ril) -]

for all i. (Note that for matrix computation,

in the algorithm divisions should be interpret-

ed as matrix inversions, and scalars ri, r

should be interpreted as ril , rl, respectively,

where I is the identity matrix°)

2) The algorithm raises x to the nth power with-

out using any multiplications but with two

divisions. This may be surprising to those

who are dealing only with sequential algor-

ithms. This again demonstrates the intrinsic

difference between sequential computation and

parallel computation (Stone [73b]).

Using these same ideas, we can immediately

obtain the following

Theorem 3.2.

Let a] , . . . , a be n d i s t i n c t e l e m e n t s i n F.
n

n
If k ~ n, then ~(x+ai) can be evaluated in two

]

steps of parallel division and [log nj + 2 steps

of parallel addition. More precisely,

n
(3.2) T (~(x+a.)) ~ [log n]A + 2(As+Ds).

n] l

Proof

We establish the lemma by exhibiting an al-

gorithm.

Algorithm 3.2. [An algorithm for the parallel
n

evaluation of ~(x+a i).]

326

1) Compute A.l = x + ai, i=1,...,n, in paral-

2)

3)

4)

lel;

~orollary 3.1.

Compute B i = bi/Ai, i=1,...,n, in paral-

lel, where b i = [~ (a.+ai)]-I
j~i J

n
Compute C = ~ B i i n p a r a l l e l ;

1

Compute D = I/C;

If P<x) is the nth degree Chebyshev polynomial

with respect to some interval~ then

(3.3) Tn(P(x)) ~ [log n]A + 2(As+ Ds).

Proof

Since the zeros of P(x) are distinct and are

known analytically, the corollary follows from

Theorem 3,2. a

It is clear that after some obvious modifica-

tions of Algorithm 3.2, Theorem 3.2 can be extend-
n m.

ed to cover the general expression ~(x+ai) i where
1

the a are distinct and the m. are positive inte-
i l

gers. Since it is straightforward, we will not

give the details here.

There are several potential applications of

Algorithms 3.1 and 3.2. For example, by using

Algorithms 3.1 and 3.2 we can compute A n and P(A),

respectively, where A is a matrix and P(x) is

some Chebyshev polynomial° A n and P(A) n can then

be used to approximate the dominant eigenvectors

of A. (See, for instance, Wilkinson [65, Chapter

9].) However, these applications do not fit the

topic of this paper. They will be reported in

another paper.

Lemma 3.1.

1
If k ~ ~n(n+1) - 1, then the set

{x 2 3 .x xn] can be evaluated in two steps of

parallel division and~og n] + 2 steps of parallel

addition. More precisely,

Tk(X 2 3 n (3.4) ,x ,...,x) ~ [log n]A + 2(As+Ds)

1
provided k ~ ~n(n+1) -].

Proof

We establish the lemma by exhibiting an al-

gorithm

Algorithm 3.3. [An algorithm for the parallel

evaluation of {x 2 n ,...,x } by using at least

2]-n(n+1) - I processors.]

I) Assign i processors for the evaluation of

x i for each i=2,...,n. Use Algorithm 3.1

to evaluate x i for each i. Since

] 2
k ~ ~n(n+]) -], x ,...,x n can be evalu-

ated simultaneously.

2) Step 4 of Algorithm 3.1 will not be per-

2 n-]
formed for the evaluation of x ,...,x

until the time when step 4 of Algorithm

3.] is ready to be performed for the

n
evaluation of x .

Clearly, the lemma follows from Algorithm 3.3. •

Theorem 3.3.

If k > n~ then the set Ix 2 ,x ,...,xn~ can be 3

evaluated in five steps of parallel non-scalar

multiplication or division and [log n] + 4 steps

of parallel addition. More precisely,

Tn (x 2 3 (3.5) ,x x n) < [log n]A + 4(As+D ~ + M.

Proof

We establish the theorem for the case n ~ 9

327

by exhibiting an algorithm. Using the same ideas

of the algorithm, the theorem can be easily proven

for n ~ 8.

Algorithm 3.4. [An algorithm for the parallel evalu-

3
ation of [x2,x , xn~ by using n processors.]

I) Compute A. = x l, i=2,...,m by Algorithm
l

3.3, where m = [~/n];

2) Compute B i = A i m' i=2,...,m by Algorithm

3.3;

= Bi.Aj, 3) Compute Ci, j i,j=],...,m-], in

parallel, where A] = x and B I = A m .

= x im+j and that It is easily seen that Ci, j

{x 2 x n] C {Bm] U {Ci,jli,j=] m-I]. Hence

Algorithm 3.4 indeed evaluates {x 2,...,xn}. Note

]
that since ~m(m+]) -] ~ n for n ~ 9, there are

enough processors to perform Algorithm 3.3 at

steps] and 2 . The total time needed for steps

] and 2 is 2[[log m]A + 2(As+Ds)]. Since

(m-I) 2 g n, step 3 can be done in time M. There-

fore Algorithm 3.4 takes time [log n]A + 4(As+D~M.

Corollary 3.2.

If k < n, then x n can be evaluated in 5%+]

steps of parallel non-scalar multiplication or

division and ([log k] + 4)~ steps of parallel

addition, where Z = [log n] |log k I" More precisely,

rk(xn) ~ ~[[log k]A + 4(As+Ds) + M] + M,

for k < n.

Proof

We establish the corollary by exhibiting an

algorithm.

Algorithm 3.5. [An algorithm for the parallel

evaluation of x n by using k processors, where k<n.]

k i
1) For i=0,...,%-1, let Yi = x and evaluate

2)

2 3 k
[yi,Yi,...,yi} by Algorithm 3.4;

a~_ I a~_ 2 a 0
Compute A = Y~-I Y~-2 "''Y8 where the

a. are non negative integers such that
1 ~,-1

0 < a~ < k and n = ~ a.k i. [Note that
l

0
k % x n k and hence step 2 if n = then = Y~-I

n
need not be performed.] Clearly, A = x .

Observe that in the time when step] completes the

a 0
a

task for i = j, Y0 "''YjJ-] can also be computed,

j=1,...,~-I. •

Corollary 3.3.

If k ~ n, then a general nth degree polynomial
n

i
a.x can be evaluated by one step of parallel
i

0

scalar multiplication, five steps of parallel non-

scalar multiplication or division and 2[log n] + 5

steps of parallel addition. More precisely,

n

(3.6) Tn(0~aixl) ~ (2flog n]+I)A+4(As+Ds)+M+Ms.

Proof

The theorem is proven by an algorithm which

computes Ix 2,...,xn~ in time [log n]A + 4(As+D~M

by using Algorithm 3.4, then [a0,a]x,...,anxn] in

one step of scalar multiplication and finally com-

bine these in a further [log n] +] steps of paral-

lel addition. •

Note that the dominant term of the upper bound

in (3.6) is 2[log n]A, while all other upper bounds

we have derived so far have the dominant term

[log n]A (see (3.1) ~ (3.5)). In the following

theorem we show that the upper bound in (3.6) may

be improved to have [log n]A as the dominant term

by using 2n processors.

328

Theorem 3.4.
n]

T2n(~ aixi) ~ (log n)A + O((log n)Z)M.

Proof

We apply a recursive evaluation procedure due

to Maruyama [73] and (independently) Munro and

Paterson [73, Algorithm A]. The procedure will

not be described here. However, we note that the

2 i
procedure requires x at time iA + constant, for

i=],...,Llog nJ. We then assign n processors for

the procedure and another n processors for the

2 i
evaluation of x for all i by using Algorithm 3.1

2 i
for each i. Hence at time iA + constant, x is

always available. •

4o LOWER BOUNDS

In this section we shall assume the same nota-

tion as in the previous sections, except that now

x may also stand for a set of indeterminates

[x],x2,...,Xr] over F. Also recall that we allow

different processors perform different operations

at any time. Let f(x) be a rational expression in

F(x). Define the degree of f(x) to be

deg f = max(deg g,deg h)

where g(x), h(x) are two relatively prime poly-

nomials in F[x] such that f = g/h.

Lemma 4.1.

Let f(x),g(x) E F(x) and h(x) = f(x) op g(x)

where op ~ [+,-,X,/]. Then if op is a non-scalar

addition, multiplication or division then

deg h ~ (deg f)(deg g), otherwise de~ h =

max(de~ f. de~ ~).

Proof

Trivial. •

Theorem 4.1.

Let f(x) E F(x) with ge m f(x) = n. Then

Tk(f(x)) ~ [log n]U, Vk,

where U = min(A,M,D).

Proof

The proof follows from a growth argument.

Consider an arbitrary algorithm for the parallel

evaluation of f(x) by using arbitrary number of

processors. Let R. denote the set of rational ex-
l

pressions which can be created by the algorithms

in time iU. It suffices to show by induction that

elements in R. have degrees at most 2 i. Obviously,
l

the statement holds for i = I. Suppose that it

holds for i ~ j. Let r] C Rj+]~ We want to prove

deg r I ~ 2 j+1. If r] E Rj then deg r I ~ 2 j < 2 j+].

We are done. Suppose that r I ~ R°. Let us con-
J

sider how r I is computed from R. by the algorithm.
J

Since r] is created by the algorithm, r] is the re-

suit of a binary operation op] of the algorithm

with operands rl. I and r]. 2. Similarly, for

i=1,2, if r], i ~ Rj, r], i is the result of another

binary operation oP],i of the algorithm with oper-

ands rl,i,] and r],i, 2. Hence r I is associated

with a binary tree whose nodes represent results of

the binary operations and whose leaves represent

the elements in R. which are used for computing r I.
J

By the construction of the tree, the rational ex-

pressions associated with the nodes are not in R..
3

(It is clear that the tree is finite, since there

is a positive lower bound on the time needed for

every operation.) We note that if the binary op-

eration associated with a node is a non-scalar ad-

dition, multiplication or division then the two

successors of the node must be leaves. Hence along

each path of the tree there is at most one node

3 2 °

with which a non-scalar addition, multiplication

or division is associated. Then by Lemma 4.1 and

the induction hypothesis one can easily show that

deg r I ~ 2 i+]. The induction is complete. I

By Theorem 4.1 and the results obtained in

Section 3, we have the following

Corollary 4.1.

If M > A and D > A~ then

Tn(xn) ~ [log n]A + 2 (As+D s)

n
T (~(x+a.)) ~ [log n]A + 2(A +D)
n] z s s

[log n]A ~ Tn(X 2 3 ,x x n) ~ [log n]A+4(As+Ds)+M

1
n

T2n(0~aixt)~(log n)A+O((log n)2)M~where

a ~ 0.
n

Hence the algorithms corresponding to the upper

bounds are asymptotically optimal as n ~ m.

Suppose that we have a problem for which D>>A,

M >> A and D >> A. Hence we want to minimize the
s

number of non-scalar multiplications and divisions.

The following theorem gives a lower bound on the

time needed for the non-scalar multiplications and

divisions.

Theorem 4.2.

Suppose that we do not count the time needed

for addition, subtraction and scalar multiplica-

tion. Let f(x) E F(x) with deg f = n. Then~ if

k ~ n,

flogn
T k (f (x)) ~ i l o g (k + l

where V = min(D s ,D,M).

Proof

Consider an arbitrary algorithm for the

parallel evaluation of f(x) by using k processors.

Let R. be the set of rational expressions in F(x)
z

which can be evaluated in time iV by the algorithm.

We shall show by induction that there exists a com-

mon denominator D. for the elements in R. such that
l l

i
deg D i ~ (k+]) and such that if r E R.z and

r = ~/D i where r E F[x], then deg r ~ (k+]) i. The

induction statement clearly holds for i = I. Assume

that it holds for i ~ j. Let rl,...,r%, % ~ k, be

the results immediately following from the non-

scalar multiplications or divisions of the algor-

ithm, which occur in the time interval (jv,(j+I)V].

Then

(4.1) Rj+ 1 = {]~uir i + uriui,u E F and r E Rj~.

Assume that r i = s i op i t i where si~t i E Rj and

op i E [X,/]. By the induction hypotheses,

s i = si/D i and t i = ti/D i where si,t i E F[x] and

- - 2

both have degree ~ (k+]) j. Hence ri=siti/D j when

oPi = X and r i : si/~i when oPi = /. Without loss

of generality, assume that oPi = / for i ~ h ~

and oPi = X for i > h. Define

I~].O.~h Dj if h = Z,

Dj+I =] .~hD~ if h < Z.

It is easy to see that Dj+ I is a common denominator

for Rj+ I by (4.1), and that deg Dj+ I ~ (k+l) j+],

since deg t ~ (k+l) j and deg D. ~ (k+l) j. Also,
i 3

it is easy to show that if r E Rj+ l and r = ~/Dj+ l

with r E F[x] then deg r ~ (k+l) j+l. Therefore

the induction is complete and hence we have proven

the theorem. •

Corollary 4.2.

Suppose that we do not count the time needed

%or addition, subtraction and scalar multiplica-

tion. If k ~ n, then

3 3 0

[Io5 n I V flog n~4D +M)+M,
log(k+])J ~ rk(xn) ~ flog kl s

where V = min(Ds,D,M).

Proof

The proof follows from Corollary 3.2 and

Theorem 4.2• D

5. RESULTS ON NON-LINEAR RECURRENCE PROBLEMS

It frequently occurs in applied mathematics

that the solution to some problem is given by a

recurrence relation. Hence we often have to com-

pute Yn from y0,Y_1,...,y_d where Yn is defined by

Yi+1 = ~(Yi'''''Yi-d)f°r some function

~x1,..,Xd+1). It is natural to try to use parallel

computation to speed up the process of computing

Yn" Karp, Miller and Winograd [67] studied some

general aspects of parallelism and recurrence.

Recent work in this area includes, for example,

Heller [73], Kogge [72], Kogge and Stone [72],

Maruyama [73], Munro and Paterson [73] and Stone

[73a]. These works concentrate essentially on

linear recurrence problems• In particular, Kogge

[72] has given a unified treatment for general

linear recurrence problems and has shown for a

very general class of linear recurrence problems

that we can have the n/log n speed-up ratio,

which can be shown to be, in some sense, optimal.

Therefore the linear recurrence problem is essen-

tially settled• However, we do not know how to

construct efficient parallel algorithms for even

very simple non-linear recurrence problems. (Note

that non-linear recurrence problems occur in prac-

tice very often.) For example, it seems very dif-

ficult to use parallelism for the following non-

linear recurrence equations:

I (a__)
(5.1) Yi+] = ~ Yi + '

Yi

which is the well-known recurrence for approximat-

ing ~. (The question of using parallelism for the

recurrence problem (5.1) was asked by Professor

H. S. Stone [73c].) In this section we shall show

that any parallel algorithm using any number of

processors cannot be essentially faster than the

obvious sequential algorithm, for any first order

rational recurrence problem like (2•I), and for any

non-linear polynomial recurrence problem like

2
(5.2) Yi+1 = 2YiYi-1 + 3Yi-2"

Lemma 5.1.

If ~(x),*(x) £ F(x), then deE(~ • %)

= (deg ~)o(deE %)°

Proof

Write m = ~i/~2 , where ~I' ~2 are two relative-

ly prime polynomials in Fix]. Assume that the lead-

ing coefficient of ~2 is unity• Then write

m I m h

~1(x) = a(x-al) ...(x-ah) and ~2(x)
n I n%

= (x-b]) ...(x-b%) where the a is in F, the a.
' l

are distinct elements in F, the b. are distinct
i

elements in F and the mi, n i are non negative inte-

gers. Clearly, deg ~] = ~m i and deg ~2 = ~n..
l

Since ~1 and ~2 are relatively prime, we have

a i ~ bj, Vi,j. Let ~] and ~2 be two relatively

prime polynomials such that ~ = ~]/92" Note that

m] m h
(,(x)-a]) ...(~(x)-ah)

o ,(x) = a
n I n~

(~(x)-bl) . .. (* (x)-b%)

(5.3)

m 1
($1(x)-a1~2(x))

m h
...(~1(x)-a ~2(x))

n] n~

(~1 (x)-bl ~2 (x)) • • • ($1 (x)-b%#2 (x))

Eni-~n i
• 42 (x)

331

We claim that ~](x)-ai,2(x) and ,](x)-bj#2(x) are

relatively prime for all i,j. We prove this by

contradiction. Assume that there exists h(x)EF[x]

with deg h ~] such that #]-ai# 2 = h]h and

9]-bj# 2 = h2h where the h],h 2 E F[x]. These imply

that ~2 = [h]-h2)/(bj-ai)]h and

~1 = [h] + ai(h]-h2)/(bj-ai)]h. Hence h is a com-

mon divisor for ~1 and '2" This is a contradic-

tion. Similarly, we can prove that there are no

non-trivial common divisors between ~2(x) and

~1(x) - ai~2(x) and between ~2(x) and

~](x) - bj~2(x). Therefore, from (5.3), one can

easily check that deg(~o~) = (deg ~).(deg ~). •

Theorem 5.1.

Let Yn be defined by Yi+] = ~(Yi) where

~(x) E F(x) with deg ~ = d. Then

Tk(Y n) ~ In log d]U, Vk

where U = min(A~M,D).

Proof

Let Y0 = x. Then Yn = ~(x) where ~ is the n

times self-composition of ~. Then by Lemma 5.1,

deg ~ = (deg ~)n = d n. The theorem follows from

Theorem 4~1. •

Under the assumptions of Theorem 5.1, Yn

clearly can be computed sequentially in time

nT](~) . ~ is called a rational recurrence if

d > I. In this case, we have

T] (yn) T] (~)
Tk(Yn-------~ g [log d]----------~ = constant, Vn,Vk.

Hence, we have the following

Corollary 5.1.

By using parallelism the evaluation of an ex-

pression defined by any first order rational recur-

rence can be sped up at most by a constant factor.

Consider, for example, the recurrence

problem (5.1). Assume that we work with real num-

bers and that every arithmetic operation takes the

same time U. Then to evaluate Yn the obvious se-

quential algorithm takes time 3nU, while by Theorem

5.1 any parallel algorithm takes time at least nU.

Hence by using parallelism the evaluation of Yn can

be sped up at most by a factor of 3, for all n.

This is completely different from the evaluation of

linear recurrence where n/log n speed-ups can be

obtained.

Now we consider higher order recurrences, ioe.

Yi+] = ~(Yi'Yi-1'''''Yi-m) for m ~ 0o Suppose

that ~ is a multivariate polynomial of degree ~ I.

Let Y0 = Y-I = "'" = Y-m = x. Then yl,Y2,.o.,Yn

are rational expressions in x. It is very easy to

see that there exists a constant 9 ~] such that

the degree of Yi in x is ~ 9 i for all i. For ex-

ample, consider the third order recurrence (5.2).

Let a.l be a lower bound on the degree of Yi in x.

Then by (5.2) we have ai+ I ~ 2a i + ai_ I. By a

standard technique on difference equations, we

know a. can be chosen as 9 i where 92 = 29 + I and
i

hence 9 ~ I.

Since the degree of Yn in x is ~ 9 n, by

Theorem 5.1 we have

Tk(Y n) ~ In log 9]U

where U = min(A,M,D). Let TI(~) denote the time

for evaluating ~(x1~x2~...~Xi+d+1) sequentially.

Then Tl(Yn) ~ nT1(~) and hence

T] (yn) TI (~)
Tk(Yn-----~ ~ [log ~-------~U constant, Vn,Vk.

Hence, we have the following

Corollary 5.2.

By using parallelism the evaluation of an ex-

pression defined by any non-linear polynomial recur-

rence can be sped up at most by a constant fact.

332

ACKNOWLEDGMENTS

I want to thank Professor J. F. Traub for

his helpful comments on this paper.

Problem. Oxford University Press (Clarendon),
London and New York.

Wulf, W. A. and Bell, C. G. [72]. C.mmp -- A Multi-
Mini-Processor, AFIPS Conference Proc., Vol. 41,
Part II, FJCC]972, pp. 765-777.

REFERENCES

Borodin, A. B. and Munro, I. [72]. Notes on Ef-
ficient and Optimal Algorithms, University of
Toronto and University of Waterloo.

Brent, R. P. [73]. The parallel evaluation of
arithmetic expressions in logarithmic time, in
Complexity of Sequential and Parallel Numerical
Algorithms (J. F. Traub ed.), pp. 83-]02.
Academic Press, New York.

Flynn, M. J. [66]. Very high-speed computing sys-
tems, Proc. IEEE, Vol. 54, pp. 1901-]909.

Heller, D. [73]. A determinant theorem with ap-
plications to parallel algorithms. To appear
in ~IAM J. Numer. Anal. (Also available as a
CMU Computer Science Department Report.)

Karp, R. Miller, R. and Winograd, S. [67]. The
organization of computations for uniform recur-
rence equations, JACM 14, pp. 563-590.

Kogge, P. M. [72]. Parallel algorithms for the
efficient solution of recurrence problem, Tech.
Report 43, Digital System Laboratory, Stanford
University.

Kogge, P. M. and Stone, H. S. [72]. A parallel al-
gorithm for the efficient solution of a general
class of recurrence equations, Tech. Report 25,
Digital System Laboratory, Stanford University.

Knuth, D. E. [69]. The Art of Computer Programmin$,
Vol. 2, Seminumerical Algorithms, Addison-Wesley,
Reading, Mass.

Kuck, D. J. [73]. Multioperation machine computa-
tional complexity, in Complexity of Sequential
and Parallel Numerical Algorithms (J. F. Traub
ed.), pp.]7-46. Academic Press, New York.

Maruyama, K. [73]. On the parallel evaluation of
polynomials, IEEE Trans. on Comp., C-22, pp. 2-5.

Munro, I. and Paterson, M. [73]. Optimal algorithms
for parallel polynomial evaluation, JCSS 7,
pp.]89-]98.

Stone, H. S. [73a]. An efficient parallel algor-
ithm for the solution of a tridiagonal system of
equations, JACM, 20, pp. 27-38.

Stone, H. S. [73b]. Problems of parallel computa-
tion, in Complexity of Sequential and Parallel
Numerical Algorithms (J. F. Traub ed.), pp.]-]6.
Academic Press, New York.

Stone, H. S. [73c]. Private Communication.

Wilkinson, J. H. [65]. The Algebraic Eigenvalue

333

