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This paper presents new algorithms for the 

parallel evaluation of certain polynomial expres- 

sions. In particular, for the parallel evaluation 

n 
of x , we introduce an algorithm which takes two 

steps of parallel division and [log2n ] steps of 

parallel addition, while the usual algorithm takes 

[log2n] steps of parallel multiplication. Hence 

our algorithm is faster than the usual algorithm 

when multiplication takes more time than addition. 

Similar algorithms for the evaluation of other 

polynomial expressions are also introduced. Lower 

bounds on the time needed for the parallel evaluation 

of rational expressions are given. All the algor- 

ithms presented in the paper are shown to be asymp- 

totically optimal. Moreover, we prove that by using 

parallelism the evaluation of any first order ra- 

= ~(x.~--), and any tional recurrence, e.g., xi+ ] z i x. 
i 

non-linear polynomial recurrence can be sped up at 

most by a constant factor, no matter how many pro- 

cessors are used. 

]. INTRODUCTION 

In this paper we consider the parallel evalua- 

tion of certain rational expressions. We assume 
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that several processors which can perform four 

arithmetic operations, +, -, X, /, are available, 

and that the time required for accessing data and 

communicating between processors can be ignored. 

This problem has been studied by many people. 

(See the surveys written by Brent [73] and Kuck 

[73].) Almost all papers in this field assume that 

every arithmetic operation takes the same time. 

However, this assumption is false for two reasons. 

For many processors, floating number multiplication 

takes more time than addition. Furthermore, if we 

deal with expressions involving, for example, ma- 

trices or multiple-precision numbers then multi- 

plication is of course more expensive than addi- 

tion. (Here we interpret arithmetic operations as 

matrix or multiple-precision number operations.) 

In this paper 2 we assume that multiplication takes 

more time than addition 

Hence, to get better algorithms, we should 

avoid using multiplications. We derive new algor- 

n 
ithms for the parallel evaluations of x , 

n n 
3 

[x2,x .... ,xn], ~(x+a.), ~ aixi , etc., where the a. 
] l l 

are scalars. Each of the algorithms minimizes the 

time needed for the multiplications to within a 

constant and can be shown to be faster than the 

best previously known algorithm for large n. More- 

over, all the algorithms, except the one associated 
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with Theorem 3.4, have the following two character- 

istics: 

I) To run the algorithms each processor is 

either masked or performing the same opera- 

tion at any time. Hence the algorithm can 

be run on single-instruction stream-mul- 

tiple-data stream (SISM) machines (Flynn 

[66]), which include ILLIAC IV, CDC STAR- 

100, Texas Instruments ASC, etc. 

2) The algorithms require a very simple inter- 

connection pattern. All we need is a bi- 

nary tree network between processors. 

Hence, for most machine organizations, we 

should not expect any significant delay 

caused by communication between processors. 

We also prove lower bounds on the time needed 

for the parallel evaluation of certain rational 

expressions, under the assumption that all proces- 

sors can perform different operations at any time. 

This assumption corresponds to multiple-instruction 

stream-multiple-data stream (MIMD) machines (Flynn 

[66]) such as C.mmp, the multi-mini-processor sys- 

tem currently under construction at Carnegie- 

Mellon University (Wulf and Bell [72]). It is 

clear that optimal algorithms with respect to MIMD 

machines must be also optimal with respect to SIMD 

machines. The lower bounds obtained in the paper 

imply that the algorithms presented in the paper 

are asymptotically optimal with respect to MIMD 

machines, although most of these algorithms can be 

run on SIMD machines, as noted above. Furthermore, 

these lower bounds imply that, by using parallelism, 

the evaluation of an expression defined by any first 

order rational recurrence or any non-linear poly- 

nomial recurrence can be sped up at most by a 

¢Qnstant factor, no matter how many processors are 

used. Consider, for example, the evaluation of the 

y defined by the recurrence, 
n 

] a 

Yi+] = ~(Yi+~i)' i=0,I,2,...,n-I, 

which is the well-known recurrence for approximat- 

ing ~/a. We show that for evaluating Yn any paral- 

lel algorithm using any number of processors can- 

not be essentially faster than the obvious sequen- 

tial algorithm. Thus the theory for non-linear 

recurrence is completely different from the theory 

for linear recurrences, where good speed-ups have 

been obtained (for example, Heller [73], Kogge [72], 

Kogge and Stone [72], Maruyama [73], Munro and 

Paterson [73] and Stone [73a])o 

Suppose that we have a problem for which mul- 

tiplication is much more expensive than addition. 

We want to minimize the number of non-scalar mul- 

tiplications and divisions. Lower bounds on the 

time needed for the multiplications and divisions 

are also derived. 

In the next section, we give basic defini- 

tions and an abstract formulation of our problem. 

In Section 3 we derive algorithms for the parallel 

evaluation of various expressions. Lower bound 

results are given in Section 4. The final section 

deals with results on non-linear recurrences. 

2. ABSTRACT FORMULATION AND DEFINITIONS 

Let F be a commutative and algebraically 

closed field, Cog., F is the field ~ of complex 

numbers. Let F[x] and F(x) be the ring of poly- 

nomials and the field of rational expressions in x 

over F, respectively. Our task is to evaluate a 

set of polynomials in F[x],[f](x),f2(x) ,fm(X) ~, 

under the following assumptions: 
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I) 

2) 

By evaluating [f](x) ..... fm(X)] we mean 

computing the values of f](x),...,fm(X) 

from FU[x}, inside the field F(x). The 

four binary operations, +, -, X, /, 

associated with the field F(x) are the 

ones we are allowed to use. 

The elements in F are called scalars. A 

multiplication of two elements in F(x) is 

called a scalar multiplication if one of 

the two elements is a scalar; otherwise it 

is called a non-scalar multiplication. 

Scalar or non-scalar addition (subtraction) 

is similarly defined. A division whose 

dividend is a non-scalar is called a non- 

scalar division. Let M, Ms, A, A s denote 

the time needed for one non-scalar multi- 

plication, scalar multiplication, non- 

scalar addition (subtraa~o,~ ~r~1~ aa- 

dition (subtraction), respectively. Let 

D,D s denote the time needed for a divi- 

sion whose dividend is a non-scalar, 

scalar, respectively. Assume that M > A. 

3) At any given time, up to k operations may 

be performed. This means that there are k 

processors which can perform the opera- 

tions, +, -, X, /, at any time but some 

processors may be idle. If in a given 

time interval all processors, except the 

ones masked, perform the same operation, 

say, addition, then we refer to that time 

interval as a parallel step of addition. 

If the positive integer k in 3) is greater 

than one, we say [f](x) ..... fm(X)] is to be evalu- 

ated in parallel, while if k is equal to one, we 

say [f](x) ..... fm(X)] is to be evaluated 

sequentially. We define Tk(f] (x) ,. .. ,fm(X)) to be 

the minimum time needed to evaluate 

{f](x) .... ,fm(X)] with k processors. 

To illustrate our notation given in 2), we 

consider an example. Let F = ~ and let x be a 

~×% matrix A whose entries are in ~.. Suppose that 

we use an 0(% 3 ) algorithm for matrix multiplication 

and inversion. (Here we interpret division as ma- 

trix inversion.) Then M = 0(% 3 ), M = 0(%2), 
S 

A = 0(%2). A = 0(%), D = 0(%3), D = 0(%3). 
S S 

3. NEW ALGORITHMS WHICH USE DIVISIONS FOR THE 
PARALLEL EVALUATION OF x n,  ~xZ,x j ,  . . .  , xn} ,  
n n 
[~(x+ai) , 0 ~ aixi , etc. 
I 

We first consider a well known problem, that 

of evaluating x n. Knuth [69, § 4.6.3] gives a 

rather detailed survey of the sequential algorithms 

for this problem. It is known that there exists a 

sequential algorithm which takes time 

[ O( 10$ n ~} log n + \log log M. (In this paper all log- 

arithms are taken to base 2.) However, it is easy 

to show the following (see, for instance, Borodin 

and Munro [72]): 

Fact 3. ]. 

If division is not used I [log n]M is a lower 

bound on the time for the parallel evaluation of 

n 
x , no matter how many processors are used. 

Hence, if division is not used, any parallel al- 

gorithm cannot be essentially faster than the 

sequential algorithm. In the proof of the follow- 

ing theorem we give an algorithm for the parallel 

evaluation of x n which uses divisions and which 

takes time less than [log n] when n is large. 
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Theorem 3.]. 

n 
If k a njx can be evaluated in two steps of 

parallel division and [log n] + 2 steps of paral- 

lel addition. More precisely, 

(3.1) T (x n) ~ [log n]A + 2(A +D ). 
n s s 

Proof 

We establish the theorem by exhibiting an 

algorithm. 

Al~orithm 3.]. [An algorithm for the parallel 

evaluation of x n.] 

]) Compute A.I = x-ri' i=],...,n, in parallel, 

where the r. are in F and are the n dis- 
I 

tinct zeros of xn-r for any non-zero ele- 

ment r in F; 

2) Compute B i = si/Ai, i=],...,n, in paral- 

= [ ~ (r.-r.)]-]; lel, where s i j~i l j 

n 
3) Compute C = Z B. in parallel; 

] l 

4) Compute D = I/C; 

5) Compute E = D+r. 

It is easy to check that E = x n. Hence Algorithm 

n 
3.] indeed evaluates x . Suppose that the number 

of processors k ~ n. Then clearly steps ], 2, 3, 

4, 5 can be done in time As, Ds, [log n]A,%, As, 

respectively. Therefore Algorithm 3.1 takes time 

[log n]A + 2(As+Ds). • 

Note that [log n]A + 2(As+Ds)< [log n]M when 

[log n] > 2(As+D~/(M-A). In fact, 

lira [log n]M/[[log n]A + 2(As+D~] = M/A. 

Hence we have sped up the evaluation of x n by a 

factor M/A for large n. 

Remarks on Algorithm 3.]. 

]) The choice of r in step ] depends on the ap- 

plication of the algorithm. For instance, if 

the algorithm is used to compute A n for a real 

matrix A then the number r should be chosen 

such that A - ril is non-singular for all i; 

otherwise the algorithm would break down at 

step 2, where we have to compute si(A-ril) -] 

for all i. (Note that for matrix computation, 

in the algorithm divisions should be interpret- 

ed as matrix inversions, and scalars ri, r 

should be interpreted as ril , rl, respectively, 

where I is the identity matrix°) 

2) The algorithm raises x to the nth power with- 

out using any multiplications but with two 

divisions. This may be surprising to those 

who are dealing only with sequential algor- 

ithms. This again demonstrates the intrinsic 

difference between sequential computation and 

parallel computation (Stone [73b]). 

Using these same ideas, we can immediately 

obtain the following 

Theorem 3.2. 

Let a ] , . . . , a  be n d i s t i n c t  e l e m e n t s  i n  F. 
n 

n 
If k ~ n, then ~(x+ai) can be evaluated in two 

] 

steps of parallel division and [log nj + 2 steps 

of parallel addition. More precisely, 

n 
(3.2) T (~(x+a.)) ~ [log n]A + 2(As+Ds). 

n] l 

Proof 

We establish the lemma by exhibiting an al- 

gorithm. 

Algorithm 3.2. [An algorithm for the parallel 
n 

evaluation of ~(x+a i).] 
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1) Compute A.l = x + ai, i=1,...,n, in paral- 

2) 

3) 

4) 

lel; 

~orollary 3.1. 

Compute B i = bi/Ai, i=1,...,n, in paral- 

lel, where b i = [ ~ (a.+ai)]-I 
j~i J 

n 
Compute C = ~ B i i n  p a r a l l e l ;  

1 

Compute D = I/C; 

If P<x) is the nth degree Chebyshev polynomial 

with respect to some interval~ then 

(3.3) Tn(P(x)) ~ [log n]A + 2(As+ Ds). 

Proof 

Since the zeros of P(x) are distinct and are 

known analytically, the corollary follows from 

Theorem 3,2. a 

It is clear that after some obvious modifica- 

tions of Algorithm 3.2, Theorem 3.2 can be extend- 
n m. 

ed to cover the general expression ~(x+ai) i where 
1 

the a are distinct and the m. are positive inte- 
i l 

gers. Since it is straightforward, we will not 

give the details here. 

There are several potential applications of 

Algorithms 3.1 and 3.2. For example, by using 

Algorithms 3.1 and 3.2 we can compute A n and P(A), 

respectively, where A is a matrix and P(x) is 

some Chebyshev polynomial° A n and P(A) n can then 

be used to approximate the dominant eigenvectors 

of A. (See, for instance, Wilkinson [65, Chapter 

9].) However, these applications do not fit the 

topic of this paper. They will be reported in 

another paper. 

Lemma 3.1. 

1 
If k ~ ~n(n+1) - 1, then the set 

{x 2 3 .x ..... xn] can be evaluated in two steps of 

parallel division and~og n] + 2 steps of parallel 

addition. More precisely, 

Tk(X 2 3 n (3.4) ,x ,...,x ) ~ [log n]A + 2(As+Ds) 

1 
provided k ~ ~n(n+1) - ]. 

Proof 

We establish the lemma by exhibiting an al- 

gorithm 

Algorithm 3.3. [An algorithm for the parallel 

evaluation of {x 2 n ,...,x } by using at least 

2]-n(n+1) - I processors.] 

I) Assign i processors for the evaluation of 

x i for each i=2,...,n. Use Algorithm 3.1 

to evaluate x i for each i. Since 

] 2 
k ~ ~n(n+]) - ], x ,...,x n can be evalu- 

ated simultaneously. 

2) Step 4 of Algorithm 3.1 will not be per- 

2 n-] 
formed for the evaluation of x ,...,x 

until the time when step 4 of Algorithm 

3.] is ready to be performed for the 

n 
evaluation of x . 

Clearly, the lemma follows from Algorithm 3.3. • 

Theorem 3.3. 

If k > n~ then the set Ix 2 ,x ,...,xn~ can be 3 

evaluated in five steps of parallel non-scalar 

multiplication or division and [log n] + 4 steps 

of parallel addition. More precisely, 

Tn (x 2 3 (3.5) ,x ..... x n) < [log n]A + 4(As+D ~ + M. 

Proof 

We establish the theorem for the case n ~ 9 
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by exhibiting an algorithm. Using the same ideas 

of the algorithm, the theorem can be easily proven 

for n ~ 8. 

Algorithm 3.4. [An algorithm for the parallel evalu- 

3 
ation of [x2,x , .... xn~ by using n processors.] 

I) Compute A. = x l, i=2,...,m by Algorithm 
l 

3.3, where m = [~/n]; 

2) Compute B i = A i m' i=2,...,m by Algorithm 

3.3; 

= Bi.Aj, 3) Compute Ci, j i,j=],...,m-], in 

parallel, where A] = x and B I = A m . 

= x im+j and that It is easily seen that Ci, j 

{x 2 ..... x n] C {Bm] U {Ci,jli,j=] ..... m-I]. Hence 

Algorithm 3.4 indeed evaluates {x 2,...,xn}. Note 

] 
that since ~m(m+]) - ] ~ n for n ~ 9, there are 

enough processors to perform Algorithm 3.3 at 

steps ] and 2 . The total time needed for steps 

] and 2 is 2[[log m]A + 2(As+Ds)]. Since 

(m-I) 2 g n, step 3 can be done in time M. There- 

fore Algorithm 3.4 takes time [log n]A + 4(As+D~M. 

Corollary 3.2. 

If k < n, then x n can be evaluated in 5%+] 

steps of parallel non-scalar multiplication or 

division and ([log k] + 4)~ steps of parallel 

addition, where Z = [log n] |log k I" More precisely, 

rk(xn) ~ ~[[log k]A + 4(As+Ds) + M] + M, 

for k < n. 

Proof 

We establish the corollary by exhibiting an 

algorithm. 

Algorithm 3.5. [An algorithm for the parallel 

evaluation of x n by using k processors, where k<n.] 

k i 
1) For i=0,...,%-1, let Yi = x and evaluate 

2) 

2 3 k 
[yi,Yi,...,yi} by Algorithm 3.4; 

a~_ I a~_ 2 a 0 
Compute A = Y~-I Y~-2 "''Y8 where the 

a. are non negative integers such that 
1 ~,-1 

0 < a~ < k and n = ~ a.k i. [Note that 
l 

0 
k % x n k and hence step 2 if n = then = Y~-I 

n 
need not be performed.] Clearly, A = x . 

Observe that in the time when step ] completes the 

a 0 
a 

task for i = j, Y0 "''YjJ-] can also be computed, 

j=1,...,~-I. • 

Corollary 3.3. 

If k ~ n, then a general nth degree polynomial 
n 

i 
a.x can be evaluated by one step of parallel 
i 

0 

scalar multiplication, five steps of parallel non- 

scalar multiplication or division and 2[log n] + 5 

steps of parallel addition. More precisely, 

n 

(3.6) Tn(0~aixl) ~ (2flog n]+I)A+4(As+Ds)+M+Ms. 

Proof 

The theorem is proven by an algorithm which 

computes Ix 2,...,xn~ in time [log n]A + 4(As+D~M 

by using Algorithm 3.4, then [a0,a]x,...,anxn ] in 

one step of scalar multiplication and finally com- 

bine these in a further [log n] + ] steps of paral- 

lel addition. • 

Note that the dominant term of the upper bound 

in (3.6) is 2[log n]A, while all other upper bounds 

we have derived so far have the dominant term 

[log n]A (see (3.1) ~ (3.5)). In the following 

theorem we show that the upper bound in (3.6) may 

be improved to have [log n]A as the dominant term 

by using 2n processors. 
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Theorem 3.4. 
n ] 

T2n( ~ aixi) ~ (log n)A + O((log n)Z)M. 

Proof 

We apply a recursive evaluation procedure due 

to Maruyama [73] and (independently) Munro and 

Paterson [73, Algorithm A]. The procedure will 

not be described here. However, we note that the 

2 i 
procedure requires x at time iA + constant, for 

i=],...,Llog nJ. We then assign n processors for 

the procedure and another n processors for the 

2 i 
evaluation of x for all i by using Algorithm 3.1 

2 i 
for each i. Hence at time iA + constant, x is 

always available. • 

4o LOWER BOUNDS 

In this section we shall assume the same nota- 

tion as in the previous sections, except that now 

x may also stand for a set of indeterminates 

[x],x2,...,Xr] over F. Also recall that we allow 

different processors perform different operations 

at any time. Let f(x) be a rational expression in 

F(x). Define the degree of f(x) to be 

deg f = max(deg g,deg h) 

where g(x), h(x) are two relatively prime poly- 

nomials in F[x] such that f = g/h. 

Lemma 4.1. 

Let f(x),g(x) E F(x) and h(x) = f(x) op g(x) 

where op ~ [+,-,X,/]. Then if op is a non-scalar 

addition, multiplication or division then 

deg h ~ (deg f)(deg g), otherwise de~ h = 

max(de~ f. de~ ~). 

Proof 

Trivial. • 

Theorem 4.1. 

Let f(x) E F(x) with ge m f(x) = n. Then 

Tk(f(x)) ~ [log n]U, Vk, 

where U = min(A,M,D). 

Proof 

The proof follows from a growth argument. 

Consider an arbitrary algorithm for the parallel 

evaluation of f(x) by using arbitrary number of 

processors. Let R. denote the set of rational ex- 
l 

pressions which can be created by the algorithms 

in time iU. It suffices to show by induction that 

elements in R. have degrees at most 2 i. Obviously, 
l 

the statement holds for i = I. Suppose that it 

holds for i ~ j. Let r] C Rj+]~ We want to prove 

deg r I ~ 2 j+1. If r] E Rj then deg r I ~ 2 j < 2 j+]. 

We are done. Suppose that r I ~ R°. Let us con- 
J 

sider how r I is computed from R. by the algorithm. 
J 

Since r] is created by the algorithm, r] is the re- 

suit of a binary operation op] of the algorithm 

with operands rl. I and r]. 2. Similarly, for 

i=1,2, if r], i ~ Rj, r], i is the result of another 

binary operation oP],i of the algorithm with oper- 

ands rl,i, ] and r],i, 2. Hence r I is associated 

with a binary tree whose nodes represent results of 

the binary operations and whose leaves represent 

the elements in R. which are used for computing r I. 
J 

By the construction of the tree, the rational ex- 

pressions associated with the nodes are not in R.. 
3 

(It is clear that the tree is finite, since there 

is a positive lower bound on the time needed for 

every operation.) We note that if the binary op- 

eration associated with a node is a non-scalar ad- 

dition, multiplication or division then the two 

successors of the node must be leaves. Hence along 

each path of the tree there is at most one node 

3 2  ° 



with which a non-scalar addition, multiplication 

or division is associated. Then by Lemma 4.1 and 

the induction hypothesis one can easily show that 

deg r I ~ 2 i+]. The induction is complete. I 

By Theorem 4.1 and the results obtained in 

Section 3, we have the following 

Corollary 4.1. 

If M > A and D > A~ then 

Tn(xn) ~ [log n]A + 2 (As+D s ) 

n 
T (~(x+a.)) ~ [log n]A + 2(A +D ) 
n ] z s s 

[log n]A ~ Tn(X 2 3 ,x ..... x n) ~ [log n]A+4(As+Ds)+M 

1 
n 

T2n(0~aixt)~(log n)A+O((log n)2)M~where 

a ~ 0. 
n 

Hence the algorithms corresponding to the upper 

bounds are asymptotically optimal as n ~ m. 

Suppose that we have a problem for which D>>A, 

M >> A and D >> A. Hence we want to minimize the 
s 

number of non-scalar multiplications and divisions. 

The following theorem gives a lower bound on the 

time needed for the non-scalar multiplications and 

divisions. 

Theorem 4.2. 

Suppose that we do not count the time needed 

for addition, subtraction and scalar multiplica- 

tion. Let f(x) E F(x) with deg f = n. Then~ if 

k ~ n, 

flogn 
T k ( f ( x ) )  ~ i l o g ( k + l  

where  V = min(D s ,D,M). 

Proof 

Consider an arbitrary algorithm for the 

parallel evaluation of f(x) by using k processors. 

Let R. be the set of rational expressions in F(x) 
z 

which can be evaluated in time iV by the algorithm. 

We shall show by induction that there exists a com- 

mon denominator D. for the elements in R. such that 
l l 

i 
deg D i ~ (k+]) and such that if r E R.z and 

r = ~/D i where r E F[x], then deg r ~ (k+]) i. The 

induction statement clearly holds for i = I. Assume 

that it holds for i ~ j. Let rl,...,r%, % ~ k, be 

the results immediately following from the non- 

scalar multiplications or divisions of the algor- 

ithm, which occur in the time interval (jv,(j+I)V]. 

Then 

(4.1) Rj+ 1 = {]~uir i + uriui,u E F and r E Rj~. 

Assume that r i = s i op i t i where si~t i E Rj and 

op i E [X,/]. By the induction hypotheses, 

s i = si/D i and t i = ti/D i where si,t i E F[x] and 

- - 2 

both have degree ~ (k+]) j. Hence ri=siti/D j when 

oPi = X and r i : si/~i when oPi = /. Without loss 

of generality, assume that oPi = / for i ~ h ~ 

and oPi = X for i > h. Define 

I~].O.~h Dj if h = Z, 

Dj+I = ] .~hD~ if h < Z. 

It is easy to see that Dj+ I is a common denominator 

for Rj+ I by (4.1), and that deg Dj+ I ~ (k+l) j+], 

since deg t ~ (k+l) j and deg D. ~ (k+l) j. Also, 
i 3 

it is easy to show that if r E Rj+ l and r = ~/Dj+ l 

with r E F[x] then deg r ~ (k+l) j+l. Therefore 

the induction is complete and hence we have proven 

the theorem. • 

Corollary 4.2. 

Suppose that we do not count the time needed 

%or addition, subtraction and scalar multiplica- 

tion. If k ~ n, then 

3 3 0  



[ Io5 n I V flog n~4D +M)+M, 
log(k+])J ~ rk(xn) ~ flog kl s 

where V = min(Ds,D,M). 

Proof 

The proof follows from Corollary 3.2 and 

Theorem 4.2• D 

5. RESULTS ON NON-LINEAR RECURRENCE PROBLEMS 

It frequently occurs in applied mathematics 

that the solution to some problem is given by a 

recurrence relation. Hence we often have to com- 

pute Yn from y0,Y_1,...,y_d where Yn is defined by 

Yi+1 = ~(Yi'''''Yi-d )f°r some function 

~x1,..,Xd+1). It is natural to try to use parallel 

computation to speed up the process of computing 

Yn" Karp, Miller and Winograd [67] studied some 

general aspects of parallelism and recurrence. 

Recent work in this area includes, for example, 

Heller [73], Kogge [72], Kogge and Stone [72], 

Maruyama [73], Munro and Paterson [73] and Stone 

[73a]. These works concentrate essentially on 

linear recurrence problems• In particular, Kogge 

[72] has given a unified treatment for general 

linear recurrence problems and has shown for a 

very general class of linear recurrence problems 

that we can have the n/log n speed-up ratio, 

which can be shown to be, in some sense, optimal. 

Therefore the linear recurrence problem is essen- 

tially settled• However, we do not know how to 

construct efficient parallel algorithms for even 

very simple non-linear recurrence problems. (Note 

that non-linear recurrence problems occur in prac- 

tice very often.) For example, it seems very dif- 

ficult to use parallelism for the following non- 

linear recurrence equations: 

I ( a__) 
(5.1) Yi+] = ~ Yi + ' 

Yi 

which is the well-known recurrence for approximat- 

ing ~. (The question of using parallelism for the 

recurrence problem (5.1) was asked by Professor 

H. S. Stone [73c].) In this section we shall show 

that any parallel algorithm using any number of 

processors cannot be essentially faster than the 

obvious sequential algorithm, for any first order 

rational recurrence problem like (2•I), and for any 

non-linear polynomial recurrence problem like 

2 
(5.2) Yi+1 = 2YiYi-1 + 3Yi-2" 

Lemma 5.1. 

If ~(x),*(x) £ F(x), then deE(~ • %) 

= (deg ~)o(deE %)° 

Proof 

Write m = ~i/~2 , where ~I' ~2 are two relative- 

ly prime polynomials in Fix]. Assume that the lead- 

ing coefficient of ~2 is unity• Then write 

m I m h 

~1(x) = a(x-al) ...(x-ah) and ~2(x) 
n I n% 

= (x-b]) ...(x-b%) where the a is in F, the a. 
' l 

are distinct elements in F, the b. are distinct 
i 

elements in F and the mi, n i are non negative inte- 

gers. Clearly, deg ~] = ~m i and deg ~2 = ~n.. 
l 

Since ~1 and ~2 are relatively prime, we have 

a i ~ bj, Vi,j. Let ~] and ~2 be two relatively 

prime polynomials such that ~ = ~]/92" Note that 

m] m h 
(,(x)-a]) ...(~(x)-ah) 

o ,(x) = a 
n I n~ 

(~(x)-bl) . .. (* (x)-b%) 

(5.3) 

m 1 
($1(x)-a1~2(x)) 

m h 
...(~1(x)-a ~2(x)) 

n] n~ 

(~1 (x)-bl ~2 (x)) • • • ($1 (x)-b%#2 (x)) 

Eni-~n i 
• 42 (x) 
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We claim that ~](x)-ai,2(x) and ,](x)-bj#2(x) are 

relatively prime for all i,j. We prove this by 

contradiction. Assume that there exists h(x)EF[x] 

with deg h ~ ] such that #]-ai# 2 = h]h and 

9]-bj# 2 = h2h where the h],h 2 E F[x]. These imply 

that ~2 = [h]-h2)/(bj-ai)]h and 

~1 = [h] + ai(h]-h2)/(bj-ai)]h. Hence h is a com- 

mon divisor for ~1 and '2" This is a contradic- 

tion. Similarly, we can prove that there are no 

non-trivial common divisors between ~2(x) and 

~1(x) - ai~2(x) and between ~2(x) and 

~](x) - bj~2(x). Therefore, from (5.3), one can 

easily check that deg(~o~) = (deg ~).(deg ~). • 

Theorem 5.1. 

Let Yn be defined by Yi+] = ~(Yi ) where 

~(x) E F(x) with deg ~ = d. Then 

Tk(Y n) ~ In log d]U, Vk 

where U = min(A~M,D). 

Proof 

Let Y0 = x. Then Yn = ~(x) where ~ is the n 

times self-composition of ~. Then by Lemma 5.1, 

deg ~ = (deg ~)n = d n. The theorem follows from 

Theorem 4~1. • 

Under the assumptions of Theorem 5.1, Yn 

clearly can be computed sequentially in time 

nT](~) . ~ is called a rational recurrence if 

d > I. In this case, we have 

T] (yn) T] (~) 
Tk(Yn-------~ g [log d]----------~ = constant, Vn,Vk. 

Hence, we have the following 

Corollary 5.1. 

By using parallelism the evaluation of an ex- 

pression defined by any first order rational recur- 

rence can be sped up at most by a constant factor. 

Consider, for example, the recurrence 

problem (5.1). Assume that we work with real num- 

bers and that every arithmetic operation takes the 

same time U. Then to evaluate Yn the obvious se- 

quential algorithm takes time 3nU, while by Theorem 

5.1 any parallel algorithm takes time at least nU. 

Hence by using parallelism the evaluation of Yn can 

be sped up at most by a factor of 3, for all n. 

This is completely different from the evaluation of 

linear recurrence where n/log n speed-ups can be 

obtained. 

Now we consider higher order recurrences, ioe. 

Yi+] = ~(Yi'Yi-1'''''Yi-m ) for m ~ 0o Suppose 

that ~ is a multivariate polynomial of degree ~ I. 

Let Y0 = Y-I = "'" = Y-m = x. Then yl,Y2,.o.,Yn 

are rational expressions in x. It is very easy to 

see that there exists a constant 9 ~ ] such that 

the degree of Yi in x is ~ 9 i for all i. For ex- 

ample, consider the third order recurrence (5.2). 

Let a.l be a lower bound on the degree of Yi in x. 

Then by (5.2) we have ai+ I ~ 2a i + ai_ I. By a 

standard technique on difference equations, we 

know a. can be chosen as 9 i where 92 = 29 + I and 
i 

hence 9 ~ I. 

Since the degree of Yn in x is ~ 9 n, by 

Theorem 5.1 we have 

Tk(Y n) ~ In log 9]U 

where U = min(A,M,D). Let TI(~) denote the time 

for evaluating ~(x1~x2~...~Xi+d+1) sequentially. 

Then Tl(Yn) ~ nT1(~) and hence 

T] (yn) TI (~) 
Tk(Yn-----~ ~ [log ~-------~U constant, Vn,Vk. 

Hence, we have the following 

Corollary 5.2. 

By using parallelism the evaluation of an ex- 

pression defined by any non-linear polynomial recur- 

rence can be sped up at most by a constant fact. 
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