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Abstract  

This paper describes a dynamic voltage and frequency scaling (DVFS) technique for MPEG2 decoding to 
reduce the energy consumption while maintaining a quality of service (QoS) constraint. The 
computational workload for an incoming frame is predicted using a frame-based history so that the 
processor voltage and frequency can be scaled to provide the exact amount of computing power needed to 
decode the frame. More precisely, the required decoding time for each frame is separated into two parts: 
a frame-dependent (FD) part and a frame-independent (FI) part. The FD part varies greatly according to 
the type of the incoming frame whereas the FI part remains constant regardless of the frame type. In the 
DVFS scheme presented in this paper the FI part is used to compensate for the prediction error that may 
occur during the FD part such that a significant amount of energy can be saved while meeting the frame 
rate requirement. The proposed DVFS algorithm has been implemented on two platforms, a low 
performance StrongArm-1110 based evaluation board from Intel and a high performance XScale-based 
testbed designed at USC. Detailed current measurements in these two platforms demonstrate larger than 
50% and 80% CPU energy saving for the DVFS technique, respectively. 

1 Introduction 
Demand for portable computing and communication devices has been increasing rapidly. Because 
portable devices are battery-operated, a design objective is to minimize the energy dissipation (and thus 
maximize the battery service time) without any appreciable degradation in the QoS. DVFS is a highly 
effective method to achieve this design goal. This is because energy consumption in CMOS VLSI circuits 
is quadratically proportional to the supply voltage. Therefore, reducing the supply voltage results in a 
large energy saving. Reducing the voltage level, however, slows the circuit down. The key idea behind 
DVFS techniques is to perform dynamic voltage scaling so as to provide “just-enough” circuit speed to 
process the workload while meeting the total compute time and/or throughput constraints, and thereby, 
reduce the energy dissipation. 

DVFS techniques [2-6] can be divided into two categories, one for non real-time operation and the other 
for real-time operation. The most important step in implementing DVFS is prediction of the future 
workload, which allows one to choose the minimum required voltage/frequency levels while satisfying 
key constraints on energy and QoS. As proposed in [2] and [3], a simple interval-based scheduling 
algorithm can be used in non real-time operation. This is because there is no hard timing constraint. As a 
result, some performance degradation due to workload misprediction is allowed. The defining 
characteristic of the interval-based scheduling algorithm is that uniform-length intervals are used to 
monitor the system utilization in the previous intervals and thereby set the voltage level for the next 
interval by extrapolation. This algorithm is effective for applications with predictable computational 
workloads such as audio [12] or other digital signal processing intensive applications [4]. Although the 
interval-based scheduling algorithm is simple and easy to implement, it often predicts the future workload 



 

incorrectly when a task’s workload exhibits a large variability. One typical example of such a task is 
MPEG2 decoding. In MPEG2 decoding, because the computational workload varies greatly depending on 
each frame type, frequent mispredictions may result in a decrease in the frame rate, which in turn means a 
lower QoS in MPEG2.  

There are also many ways to apply DVFS in real-time application scenarios [5][6]. In general, some 
information is given by the application itself, and the OS can use this information to implement an 
effective DVFS technique. In [5], an intra-task voltage scheduling technique was proposed in which the 
application code is split into many segments and the worst-case execution time of each segment (which is 
obtained by static timing analysis) is used to find a suitable voltage for the next segment. A method using 
a software feedback loop was proposed in [6]. In this scheme, a deadline for each time slot is provided. 
Furthermore, the actual execution time of each slot is usually shorter than the given deadline, which 
means that a slack time exists. The authors calculated the operating frequency of the processor for the 
next time slot depending on the slack time generated in the current slot and the worst-case execution time 
of each slot.  

In both cases, real-time or non real-time, prediction of the future workload is quite important. This 
prediction is also the most difficult step in devising and implementing an effective DVFS technique, 
especially when the workload varies dramatically from one time instance to the next.  

In this paper, an effective DVFS algorithm for MPEG2 decoding is proposed in which the future 
workload is accurately predicted by using a frame-type-based workload-averaging scheme where the 
prediction error due to statistical variation in the workload of the frame dependent part of the decoder is 
effectively compensated for by using the frame independent part of the decoding time as a “buffer zone.” 
This allows us to obtain a significant energy saving without any notable QoS degradation. This algorithm 
has been implemented on two different platforms: an Intel-designed StrongARM-1110 based for low 
performance and a USC-designed XScale-based high performance platform and has resulted in the CPU 
energy reduction of more than 50% and 80%, respectively. 

Notice that when lowering the supply voltage to reduce energy consumption, the clock frequency should 
be decreased first to prevent timing failure due to the increased gate delay. Because a minimum voltage is 
assigned to each operating frequency value, in this paper, the term “voltage and frequency scaling” will be 
used rather then either “voltage scaling” or “frequency scaling.” 

The remainder of this paper is organized as follows. Related works on DVFS and MPEG2 are described 
in Section 2. In Section 3, a new DVFS algorithm is presented. Details of the implementation, including 
both hardware and software, are described in Section 4. Experimental results and conclusions are given in 
Sections 5 and 6, respectively.  

2 Background 
2.1 Fundamentals of DVFS 

Many kinds of application programs, which may require real-time or non real-time operations, are 
executed on a general-purpose processor. In general, DVFS techniques are very effective in reducing the 
energy dissipation while meeting a performance constraint in real-time applications such as video 
decoding. The energy consumption per task running on a CMOS VLSI circuit is given by the following 
well-known equation [1]: 

E = Cswitched V
2 fclk T 



 

where V is the supply voltage level, Cswitched is the switched capacitance per clock cycle, fclk is the clock 
frequency, and T is the total execution time of the task. 

Fig. 1 illustrates the basic concept of DVFS for real-time application scenarios. In this figure, T2 and T4 
denote deadlines for tasks W1 and W2, respectively (in practice, these deadlines are related to the QoS 
requirements.) W1 finishes at T1 if the CPU is operated with a supply voltage level of V1. The CPU will be 
idle during the remaining (slack) time, S1. To provide a precise quantitative example, let’s assume T2-
T0=T4-T2=∆T, and T1-T0=∆T/2; the CPU clock frequency at V1 is f1=n/∆T for some integer n; and that the 
CPU is powered down or put into standby with zero power dissipation during the slack time. The total 
energy consumption of the CPU is E1=CV1

2f1∆T/2=nCV1
2/2 where C is the effective switched capacitance 

of the CPU per clock cycle. Alternatively, W1 may be executed on the CPU by using a voltage level of 
V2=V1/2, and is thereby completed at T2. Assuming a first-order linear relationship between the supply 
voltage level and the CPU clock frequency, f2=f1/2. In the second case, the total energy consumed by the 
CPU is E2=CV2

2f2∆T=nCV1
2/8. Clearly, there is a 75% energy saving as a result of lowering the supply 

voltage (this saving is achieved in spite of “perfect” – i.e., immediate and with no overhead - power down 
of the CPU). This energy saving is achieved without sacrificing the QoS because the given deadline is met. 
An energy saving of 89% is achieved when scaling V1 to V3=V1/3 and f1 to f3=f1/3 in case of task W2. 
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Figure 1 An illustration of the DVFS technique. 

A major requirement for implementation of an effective DVFS technique is accurate prediction of the 
time-varying CPU workload for a given computational task. A simple interval-based scheduling algorithm 
is employed in [14] to dynamically monitor the global CPU workload and adjust the operating 
voltage/frequency based on a CPU utilization factor, i.e., decrease (increase) the voltage when the CPU 
utilization is low (high). Two prediction schemes have been used in interval-based scheduling: the 
moving-average (MA) and the weighted-average (WA) schemes [14]. In the MA scheme, the next 
workload is predicted based on the average value of workloads during a predefined number of previous 
intervals, called window size. In the WA scheme, a weighting factor, α, is considered in calculating the 
future workload such that severe fluctuation of the workload is filtered out, resulting in a smaller average 
prediction error. Their operations are represented in the following equations.  
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These two workload prediction schemes are easy to implement and result in effective DVFS algorithms 
when the workload fluctuation is not too severe. To illustrate this point, two popular software applications, 
MP3 and MPEG2 playback, were tested using the WA scheme. Experimental results are shown in Fig. 2 
and Fig. 3. Fig. 2 shows the CPU usage measured during each time interval whereas Fig. 3 depicts the 
workload prediction errors for both cases. These results show that interval-based voltage scaling which 
solely depends on the global state of the system is quite effective for the MP3 playback where the 
workload variation is rather small. On the other hand, it becomes ineffective (see the large prediction 
errors) for MPEG2 decoding due to the large variation in the CPU workload for this application. More 
precisely, the global system status monitoring interval-based DVFS algorithm for MPEG2 decoding 
cannot track the workload variation, resulting in a significant QoS degradation.  

2.2 MPEG2 Terminology 

An MPEG2 video stream consists of three frame types: I-frame (Intra-coded), P-frame (Predictive-coded), 
and B-frame (Bi-directionally-coded). I-frames can be decoded independently. P-frames have to be 
decoded based on the previous frame. B-frames require both the previous and the next frames in order to 
be decoded. Sequences of frames are grouped together to form a Group of Pictures (GOP). A GOP 
contains 12-15 frames, starting with an I-frame. It takes several steps to decode each frame: Parsing, 
Inverse Discrete Cosine Transformation (IDCT), Reconstruction, and Dithering [7]. Among these steps, 
the IDCT and Reconstruction take up half of the decoding time [9]. The IDCT is CPU-intensive (i.e., 
requires iterative multiplication-accumulation computation over an 8x8 array of integer or float-point 
values) whereas the reconstruction and dithering steps are memory-intensive (i.e., require data movement 
between the processed video stream and display frame buffer). Each frame type results in a different 
workload during the IDCT step, meaning that the CPU utilization of different frame types varies by a 
large amount. Based on these observations, the decoding process may be divided into two parts: a frame-
dependent part (parsing, IDCT and reconstruction) and a frame-independent part (dithering). 
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Figure 2  CPU usage of MP3 and MPEG2. 
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Figure 3  Workload prediction error. 

2.3 Prior Work 

To develop an effective DVFS technique for MPEG2 decoding, each frame decoding time should be 
accurately determined since the supply voltage should vary based on the expected decoding time for the 
frame and the given deadline. In [10], the authors empirically studied the relationship between the 
decoding time and the data size of each frame. The results showed a strong correlation between the two 
parameters with an error of less than 25%. The code size of each frame, however, cannot be obtained 
before starting the IDCT step whereas the frame type can be known immediately after the parsing step. To 
overcome this limitation, a method using feedback control was proposed in [11] in which macro blocks1 
in a frame are first divided into two parts, and the decoding time of the second part is predicted based on 
the decoding time and the code size of the first part. If the decoding time of the first part exceeds the 
predicted decoding time, the voltage for the next part is increased so that a deadline violation can be 
avoided. This technique thus scales up the voltage (and correspondingly the clock speed) during the 
second part to meet the deadline when a prediction error occurs in the first part. This results in higher 

                                                      

1 A macro block corresponds to a 16 by 16 pixel area of the original image and consists of six 8 by 8 blocks on which IDCT is 
performed. 



 

CPU energy consumption for performing the IDCT step in the second part when the prediction error 
occurs in the first part. However, the authors did not consider the energy-related characteristics of each 
step in the decoding process. It is desirable to scale voltage up during memory intensive steps since this 
does not impact the CPU energy consumption by much. On the other hand, scaling voltage up during 
CPU-intensive steps such as IDCT leads to higher energy consumption. From this observation, it can be 
concluded that it is better to compensate for the workload prediction error by raising the supply voltage 
level during a memory-intensive step as opposed to a CPU-intensive step. This would achieve the 
required QoS with maximal energy saving. 

3 Proposed Algorithm 
A DVFS algorithm for low-power MPEG2 decoding with large workload variation is presented in this 
section. The decoding time prediction is performed by maintaining a moving-average of the decoding 
time for each frame type (three averages, one per frame type). The expected decoding time for an 
incoming frame is thus determined based on the moving average for the appropriate frame type. As stated 
previously, the decoding process is divided into two parts based on the required execution time and the 
expected energy consumption. One part captures the frame-dependent (FD) portion of the decoding 
process whereas the other part captures the frame-independent (FI) portion of the decoding process as 
shown below:  

TDecoding = TFD + TFI ;    EDecoding = EFD  + EFI  

The parsing, IDCT and reconstruction steps are included in the frame-dependent time whereas the 
dithering step is included in the frame-independent time. This is because the dithering time is dependent 
upon the frame pixel size and is otherwise constant for a given video stream. Since the FI part tends to be 
memory intensive, the energy consumption during the FI step, EFI, is nearly constant [11]. In contrast, the 
energy consumption during the FD part, EFD, varies considerably. Variations in energy consumption and 
decoding time due to DVFS are captured by the following equations: 

∆∆∆∆TDecoding = ∆∆∆∆TFD + ∆∆∆∆TFI ;      ∆∆∆∆EDecoding = ∆∆∆∆EFD  

From the above equations, it can be seen that the FI section can be used as a kind of “buffer zone” to 
compensate for prediction error of TFD since changing voltage/frequency in the FI section does not 
significantly alter the energy consumption of the CPU for the decoding process (although it will change 
the FI time). The basic operation of the proposed DVFS algorithm is shown in Fig. 4.  
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 Figure 4  Proposed DVFS policy. 

The FD part comes first. Based on the frame type and the prediction of the required time for the FD part, 
voltage/frequency scaling is performed to minimize energy dissipation while meeting the predicted time. 
When a misprediction occurs (which is detected by comparing the predicted FD time with the actual FD 
time), an appropriate action must be taken during the FI part to minimize the impact of the misprediction. 
If the actual FD time was smaller than the predicted value, there will be no QoS degradation. Hence, we 
can scale down voltage during the FI time and further save energy while meeting the deadline (cf. “Over-
predicted” of Fig. 4). On the other hand, if the actual FD time was larger than the predicted value, 
corrective action must be taken to preserve the required QoS. This is accomplished by scaling up the 
voltage and frequency during the FI part so as to make up for the lost time (cf. “Under-predicted” of Fig. 
4). Note that this compensation is done by scaling up the supply voltage during the memory intensive part 
and hence does not result in much CPU energy dissipation. However, this scheme cannot guarantee that 
one will never encounter a QoS degradation because it is possible that the under-prediction of the time 
needed for the FD part is so large that even the highest voltage/frequency level for the FI part is unable to 
make up for the lost time. In practice, because of the way the predictor function is constructed and the 
dynamic nature of its updating, the probability of such an occurrence is very small (as can be observed in 
the experimental results). Note also that even when this case occurs, the penalty is the loss of video 
quality for a short period of time and is not a catastrophic failure as would have been the case if the 
application had a hard real-time deadline.   

To determine the FD and FI times for a given frame, the source code for a software MPEG2 decoder, i.e., 
mpeg_play [13], was modified, and a timestamp function was inserted at each decoding step. Fig. 5 shows 
the FD and FI time distributions for each frame when playing MPEG2 with a frames-per-second (fps) rate 
of 2. Fig. 6 depicts the same distributions for the maximum fps rate that the CPU can sustain (as high a 
fps rate as the CPU can sustain). In Fig. 5, with fps = 2, the deadline is fixed at 0.5sec. One can observe 
that the FD time varies greatly depending on the frame type and that it is longer for the I-frames and 
shorter for the B-frames. In Fig. 6, where a frame rate is not set, the decoding time varies depending on 
the frame type. Here the FI time is constant (~50 msec at the maximum clock frequency of 206MHz). 
Notice that there is a large amount of slack in the FI time in Fig. 5. Furthermore, notice that although the 



 

FD time varies considerably depending on the frame type, the FI time is nearly constant for a given frame 
type (the FI time depends on the pixel size of the given movie stream, which is obviously constant for the 
same movie.) These plots provide empirical evidence of the claims made earlier with regards to the FD 
and FI parts of the IDCT and their relationship to the frame type.   
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 Figure 5 Decoding time with fps = 2. 
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Figure 6  Decoding time without setting any fps rate  (as high a fps rate as the CPU can sustain). 

The effectiveness of the proposed frame-based workload prediction scheme is verified by calculating the 
prediction error ratio in B-frames, which exhibit the largest variation among the frame types. The MA 
scheme with a window size of six is used for the prediction. Results are shown in Fig. 7. The movie clip 
used in the experiment has 660 frames (320 X 240) including I-, P-, and B-type frames. Based on the 
measured FD time, the prediction error was calculated. Prediction errors for I-, P-, and B-type were 5%, 
3%, and 10%, respectively. Note that although the prediction error for B-frame is high, it takes less than 
half the time to decode as compared to an I-frame thereby giving us double the time to correct it in the FI 
time.  
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Figure 7 Errors in B-frame workload prediction. 

In order to find out how much prediction error in FD can be recovered by using our proposed DVFS 
policy, the maximum tolerable error rate was calculated by assuming that any CPU frequency value is 
supported. For the calculation, measured workload data and average error rate were used and these are 
summarized in Table.1. The maximum tolerable error rate should meet following two equations for no 
performance degradation, where FDworkload and FIworkload are required clock cycles to do decoding process 
in FD and FI, ERRmax is the maximum tolerable prediction error rate, CurrFreq is the CPU frequency in 
FD, and MaxFreq is the available maximum frequency value. Here, Deadline is an inverse of a given 
frame rate. The results are shown in Table.2 and B-type is the most insensitive to the prediction error rate 
among all frame types even it has the largest error rate because B-frame has more chance to recover the 
error in its FD as mentioned above. 

CurrFreq
FD ERR FI

Deadline
workload workload= ⋅ − +( )max1  
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FD
CurrFreq

FI
MaxFreq

workload workload≥ +
 

 
 

Table.1 Workload and average error rate.  

 I-type P-type B-type 

FDworkload (cycles) 65E6 55E6 30E6 

FDworkload (cycles) 13E6 13E6 13E6 

Avg. Error rate 5% 3% 10% 

 

 

 



 

Table.2 The maximum tolerable prediction error rate. 

fps I-type P-type B-type 

1 14% 18% 37% 

2 8% 12% 30% 

3 1% 5% 24% 

4 - - 16% 

5 - - 8% 

6 - - - 

 

QoS for the MPEG2 decoding can be defined as the ratio of the number of deadline-missed frames to the 
total number of decoded frames in the movie stream. The QoS value was calculated by counting the 
number of frames that violate the deadline, and the results are shown in Fig. 8. Two cases were compared: 
with and without using the FI region as a timing buffer. In case of without using the FI buffer zone, 
voltage applied during the FD time is kept maintaining during the FI. Both of the MA and WA schemes 
were used for each case in the workload prediction. There is little QoS difference between the MA and 
WA schemes while a considerably better QoS can be achieved by using the FI time as a buffer zone. At a 
frame rate of three, almost all deadline- missed frames are recovered by using our proposed scheme and 
this result corresponds to the maximum tolerable error rate given in Table.2.  
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Figure 8 QoS in MPEG2 decoding. 

 

 

 



 

 
frame_type = parsing(next frame); 
 
switch(frame_type) { 
 
case(I-type) : 
next_freq_FD = predict_next_freq(I-

type); 
changeScale(next_freq_FD); 
errorCorrect(I-type); 
break; 

 
case(P-type) : 
next_freq_FD = predict_next_freq(P-

type); 
changeScale(next_freq_FD); 
errorCorrect(P-type); 
break; 

 
case(B-type) : 
next_freq_FD = predict_next_freq(B-

type); 
changeScale(next_freq_FD); 
errorCorrect(B-type); 
break; 

} 
 
 
 
float predict_next_freq(frame_type) 
{ 

next_freq_FD = 
(AvgWorkLoad(frame_type) + 
DVFS_Overhead + FIWorkload) 
/deadline; 

 
 
void errorCorrect(frame_type) 
{ 

error = AvgWorkLoad(frame_type) – 
MeasuredWorkLoad; 

if(error != 0) { 
next_freq_FI = (FIWorkload – 

error + DVFS_Overhead ) / 
(deadline – FD_Time); 

changeScale(next_freq_FI); 
} 

} 
 
 
void changeScale(float next_freq) 
{ 

int min_diff = 100; 
int freq_map[11] = {59, 74, 89, 103,  
   118, 133, 148, 162, 177,  
   192, 206, 221 }; 
for(i=0; i<12;i++) { 

diff = freq_map[i] – next_freq; 
if( (diff >= 0)  &&  
    (diff <= mid_diff) ) { 

next_freq = freq_map[i]; 
} 

} 
set_GPIO_register(next_freq); 

 
} 
 
 
 

} 
return next_freq_FD; 

 

 

Figure 9 Pseudo code for DVFS. 
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Figure 10 The variable voltage generator for the testbed. 



 

4 Implementation 
To implement the frame-based prediction algorithm for low-power MPEG2 decoding, the mpeg_play 
program was used and the required functions for calculating the moving averages and calculating the 
clock speeds and voltages were inserted in the player program. A device driver operating under the Linux 
OS environment was written to implement the CPU clock speed changes. Pseudo codes for collecting the 
statistics and performing error compensation are shown in Fig. 9. 

Prediction of the decoding time for the next frame is based on the moving average (over the last six 
frames of the same type) as explained in Section 2. In selecting the proper frequency value, the overhead 
of DVFS itself was also considered. 

For the hardware, we used two types of test beds having different performance. One is Intel’s StrongARM 
1110 evaluation board [8] and the other is Intel’s XScale based low power platform designed at USC [15].  

4.1 StrongARM 1110 based evaluation board 

The hardware used is the Intel’s StrongARM 1110 evaluation board [8], which supports 12 different 
frequencies ranging from 59MHz to 221MHz. A D/A converter was used as a variable operating voltage 
generator to control the reference input voltage to a DC-DC converter that supplies operating voltage to 
the CPU. Inputs to the D/A converter are generated using the General Purpose Input Output (GPIO) 
signals. The extra hardware was designed, built and interfaced to the standard Intel Assabet board as a 
separate module. In Fig. 10, the block diagram of the variable voltage generator is shown.   

When the CPU clock speed is changed, a minimum operating voltage level should be applied at each 
frequency to avoid a system crash due to increased gate delays. In our implementation, these minimum 
voltages are measured and stored in a table so that these values are automatically sent to the variable 
voltage generator when the clock speed changes. Voltage levels mapped to each frequency are distributed 
from 1.1V @59MHz to 1.67V @221MHz.  

In anticipating the workload for the next frame, there is a discontinuity in the calculated workload 
between the lower frequencies (upper) and the higher frequencies (bottom) because when the CPU 
frequency changes, the memory clock characteristics are also affected, resulting in non-linear 
performance scaling, which is a typical occurrence in a StrongARM-based processor [11]. This 
phenomenon is illustrated in Fig. 11. To correct for this non-linearity, a weight factor for each frequency 
is extracted from the measurement and included in the workload calculation. 
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Figure 11 Non-linearity in memory performance as a function of the CPU clock frequency. 

4.2 XScale based testbed – Apollo Testbed 2 

The Apollo Testbed 2 (AT2), developed at USC, is a high-performance and low-power embedded 
platform with high-bandwidth wireless communication capability [15]. The AT2 system consists of the 
following components:  

•  Main module: High-performance Intel 80200 XScale microprocessor; PC100 SDRAM main 
memory (128 MByte, 64-bit bus); XScale microprocessor system bus interface and 
peripheral bus interface; SDRAM controller @100MHz (Sustained 800MB/sec of SDRAM 
bandwidth); PCI host bridge; Integrated FLASH memory controller and integrated 
UART16550 controller; DMA controller and interrupt controller  

•  FPGA module: Xilinx VirtexE/VirtexII FPGA companion chip  
•  LCD module: 10.4 inch 800×600 resolution color TFT LCD panel (LG-Philips LP064V1); 

Xilinx XC2S150 LCD controller; 16MB SDRAM frame buffer memory 
•  DSP module: TI TMS320C6713 floating point DSP; 1800 MIPS/1350 MFLOPS@225MHz  
•  Ethernet 10/100Mbps module  
•  USB 2.0 host module (NEC uPD720101) supporting up to 480 Mb/s data bandwidth 
•  PCMCIA host module (PCI RICOH R5C475II) supporting IEEE 802.11b WLAN protocol 
•  Firewire host module (TI TSB43AB23) supporting IEEE 1394 protocol with 400 Mb/s 

bandwidth 
•  Sound card module  

The photo of the main PC Board of the AT2 system is shown in Fig. 12. AT2 supports a number of 
peripheral devices such as a Web CAM, external FLASH, 16-channel, and a 100K samples/second data 
acquisition system.  AT2 systems is a complete Linux box in the sense that it provides support for a wide 
variety of I/O interfaces, allows multi-processing capability and in-system reconfiguration, permits 
accurate and high speed data acquisition for the complete system as well as for the individual modules in 
system (this is possible due to careful separation of the system power planes on the PC board layouts). 
Fig.13 shows the data acquisition system in which the voltage drop across a precision resister inserted 
between the external power line and the “design under test” (DUT) power line is used to measure the 



 

power consumption. A programmable clock multiplier (PLL) in the XScale processor generates the 
internal CPU clock which can be adjusted from 200 up to 733MHz in steps of about 66 MHz with the 
development-board speeds only available only from 333 MHz. The lower bound results from a constraint 
to the memory bus speed which is at 100 MHz in our system. The bus speed has to be less than one third 
of the CPU clock speed. This would yield a minimum speed of 333 MHz.  Running the system at CPU 
speeds slower than 333MHz causes immediate halts. The main PCB of AT2 includes an on-board variable 
voltage generator which provides suitable operating voltage at each clock frequency level.  

 

Figure 12 Main board with the CPU, memory, and memory controller. 
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Figure 13 Data acquisition system in AT2. 

5 Experimental Results  
The DVFS policies for MPEG2 decoding were implemented on both the StrongARM evaluation board 
and the AT2 system. Results are discussed below. 



 

5.1 StrongARM-based Platform 

Due to the performance limitation of the StrongARM processor, frame rates higher than 3 fps were not 
achievable. Frame rates of 1 and 2 fps, which are very low for real video applications, but are sufficient to 
demonstrate the capability of DVFS, were chosen. Fig. 14 and Fig. 15 show the power consumption 
drawn from the system supply rail (6 volts) without and with DVFS while playing MPEG2 at fps=1. The 
power consumption is measured at a 2 KHz sampling frequency. The CPU frequency is 206 MHz without 
DVFS and, depending on the frame type, it is reduced down to 89MHz with the proposed DVFS 
technique. Average board-level power consumptions for both cases are 2.94 W (0.49A @6V) and 2.46 W 
(0.41A @6V), respectively, which represent a 16% reduction in the total system energy. Since the 
StrongARM CPU consumes about 30% of the total energy, it may be concluded that the CPU energy 
consumption was reduced by about 53% as a result of applying the proposed frame-type-based DVFS 
technique. Notice that it is not possible to directly measure the CPU power consumption in the Intel 
Testbed. 
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Figure 14 Power consumption without DVFS at fps=1. 
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Figure 15  Power consumption with DVFS at fps=1. 



 

5.2 XScale-based Platform 

The same measurements were performed in the AT2 system. Unlike StrongArm-based platform, there is 
linear performance scaling in the XScale processor. This is because the AT2 main board contains an 
external memory controller that isolates the CPU from the memory, and therefore, the memory bus clock 
speed and the CPU clock speed become decoupled. By using our data acquisition system, the power 
consumption of each component on the AT2 main board can individually be measured and reported. 
Fig.16 shows the total power consumption of the AT2 main board with and without the proposed DVFS 
policy while playing a movie at rate of 7 frames per second. In Fig.17 and Fig.18, power consumptions of 
the CPU and memory are shown. The CPU power consumption is significantly reduced resulting in a total 
power consumption reduction whereas, as expected, the memory power consumption remains nearly 
constant. Fig. 19 shows a summary of the energy savings in the XScale processor and in the AT2 main 
board as a function of the frame rate (ranging from 2 to 10 fps.) As an example, at a frame rate of 7, about 
80% of the XScale processor energy is saved, which results in a 17% reduction in the energy consumption 
of complete main board, and this is achieved with no performance degradation. 
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Figure 16 Total power consumption at fps=7. 
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Figure 17 Effect of DVFS on the XScale processor power consumption. 
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                Figure 18 Effect of DVFS on the Memory power consumption. 
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Figure 19 Energy saving of the XScale processor and the AT2 main board for different frame rates. 

6 Conclusion 
A frame-based workload prediction algorithm for DVFS in MPEG2 decoding was proposed and 
implemented on two different platforms, a StrongARM-based portable system for a low performance and 
a XScale-based AT2 system for a high performance system. In this DVFS, each frame type is handled 
individually for more accurate decoding time prediction, less than 10% prediction error ratio in all frame 
types. To avoid QoS degradation due to misprediction, the whole decoding time for a frame is divided 
into two parts: frame-dependent and frame-independent. During the FI step, in which the required 
operation is memory intensive, CPU voltage increase does not affect the energy consumption since the 
power supply of the memory subsystem is separated from that of the CPU. Using this property, the FI 
period is used as a timing buffer when misprediction occurs in FD workload prediction. When applied to a 



 

dedicated MPEG2 player, more than 50% and 80% of CPU energy was saved by the proposed DVFS 
scheme in both low and high performance platforms, respectively. 
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