
Hypothetical Dat alog: Negation and Linear Recursion

Anthony J. Bonner
Department of Computer Science

Rutgers University
New Brunswick, NJ 08903

bonnerOpaul.rutgue.edu

Abstract

This paper examines an extension of Horn logic in which
rules can add entries to a database hypothetically. Several
researchers have developed logical systems along these lines,
but the complexity and expressibility of such logics is only
now being explored. It has been shown, for instance, that
the data-complexity of these logics is PSPACE-complete
in the function-&ee, predicate case. This paper extends
this line of research by developing syntactic restrictions with
lower complexity. These restrictions are based on two ideas
from Horn-clause logic: linear recusaion and rttotijied nega-
tion. In particular, a notion of stratification is developed
in which negation-as-failure alternates with linear recursion.
The complexity of such rulebases depends on the number of
layers of stratification. The result is a hierarchy of syntactic
classes which corresponds exactly to the polynomial-time hi-
erarchy of complexity classes. In particular, rulebases with
k strata are data-complete for Cr. Furthermore, these rule-

bases provide a complete characterization of the relational
queries in Cr. That is, any query whose graph is in Cp can
be represented as a set of hypothetical rules with k strata.
Unlike other expressibility results in the literature, this re-
sult does not require the data domain to be linearly ordered.

1 Introduction

This paper examines an extension of Horn-clause logic in
which rules can add facts to a database hypothetically. Sev-
eral researchers in the logic-programming community have
pointed out the utility of such rules and have developed sys-
tems along these lines. Miller, for instance, has shown how
such rules can structure the runtime environment of a logic
program [19], and Warren and Manchanda have proposed
such logics for reasoning about database updates [23,16].

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

0 1989 ACM O-89791-308-6/89/0003/0286 $1.50

The legal domain has inspired much work into this kind
of hypothetical reasoning. Gabbay, for example, has re-
ported a need to augment Prolog with hypothetical rules
in order to encode the British Nationality Act. The act con-
tains rules such as, “You are eligible for citizenship if your
father would be eligible if he were still alive” [9]. In addi-
tion, McCarty has developed a wide class of hypothetical
rules for the purpose of constructing computer-based legal
consultation systems, especially systems for reasoning about
contract law and corporate tax law [16, 161.

Although hypothetical reasoning is complex in general
[ll], these systems focus on a form of hypothetical reasoning
which appears tractable. In particular, they augment Horn-
clause logic with rules of the form A c B[dd : C], which
intuitively means, “infer A if inserting C allows the inference
of B.” The formal properties of these rules are still being ex-

plored. Gabbay has shown that they have an intuitionistic
semantics [a], and Miller has developed fixpoint semantics
for the predicate case [19]. McCarty has extended this work
to a larger class of formulas and established interesting se-
mantic results [16, 171. Bonner has shown that query evalu-
ation in such systems is data-complete for PSPACE in the
function-free predicate case (data-complete for EXPTIME
when hypothetical deletions are allowed) [4]. This paper ex-
tends this line of research by developing syntactic restrictions
whose data-complexity is less that PSPACE.

Central to these restrictions is the idea of linearity. A
rule is linear if recursion occurs through only one premise.
In Horn-clause logic, “linear rules play an important role
because, (i) there is a belief that most ‘real life’ recursive
rules are linear, and (ii) algorithms have been developed to
handle them efficiently” [2]. Linearity, however, does not
affect the data-complexity of Horn-clause rulebases, even
when combined with negation-by-failure. In each case, the
data-complexity is simply P. For hypothetical rules, the sit-
uation is more interesting. Firstly, linearity reduces their
data-complexity from PSPACE to NP. Secondly, when
negation-by-failure is introduced, data-complexity is deter-
mined by the interaction between linear recursion and nega-
tion.

To capture this, we develop a new notion of stratification,
in which linear recursion alternates with negation-as-failure.

286

http://crossmark.crossref.org/dialog/?doi=10.1145%2F73721.73750&domain=pdf&date_stamp=1989-03-29

The complexity of a hypothetical rulebase then depends on
its degree of stratification. As the number of strata increases,
the data-complexity climbs the polynomial-time hierarchy
[21]. In particular, rulebases with k strata are data-complete
for Cf.

The polynomial-time hierarchy is a sequence of complex-
ity classes between P and PSPACE. It is based on the idea
of an oracle Tnring-macbine[l2] and for our purposes, can
be defined recursively as follows:

a cp =NP

a Cf;l = NP cp s = Those languages accepted in non-
deterministic polynomial time by an oracle machine
whose oracle is a language in I$.

For lill k, P E Xf C Er+;, C PSPACE.’

This paper also addresses the issue of expressibility. A
central result is that hypothetical rulebases with k strata
provide a complete characterisation of the relational queries
in Cc. That is, any relational query whose graph is in Df
can be represented as a hypothetical rulebase with at most
k strata. The proof relies on a simulation of oracle Turing
machines, and in this respect, is similar to other expressibil-
ity proofs in the literature [13, 221. One diierence, however,

is that we do not require the data domain to be linearly or-

dered. Linearly-ordered domains are used to simulate coun-
ters, which in turn, are used to simulate tape-head move-
ments. Our approach is to start with unordered domains
and assert linear orders hypothetically. This technique worh
for all generic queries, that is, for all queries satisfying the
consistency criterion of Char&a and Hare1 [6, 71.

2 Examples

This section gives several examples of hypothetical queries
and rules. In each example, tuples are hypothetically in-
serted into the database before a least-flxpoint query is
made. The queries are expressed with a modal-l&e operator
Q[add : P] which means, “if P were inserted in the database,
then Q could be inferred.” The notation R, DB I- 4 means
that the formula 4 can be inferred from the rulebase R and
the database DB.

The examples are centered on a rule-based system which
describes university policy. For instance, the atomic formula
take(8,c) intuitively means that student e has taken course
c, and grad(r) means that I is eligible for graduation. The
database DB contains facts such as take(tony,ca250), and
the rulebase R contains rules such as

grad(s) e- take(r,hislOl), toke(r,englOl).

In the following examples, each query is described in
three ways: (i) informally in English, (ii) formally at the

‘Although considered likely, it is an open question (u to
whether these containments are strict.

meta-level, and (iii) formally at the object-level with opera-
tors of addition.’

Example 1. Consider the query, “IfTony took ~452, would
he be eligible to graduate?” That is, if toke(tony,cr452)
were added to the database, could we infer grad(tony)? This
query can be formalised at the meta-level as follows:

R, DB + take(tony, ~8452) I- grad(tony) (1)

In our language of hypotheticals, the expression (I =
grod(tony)[add : take(tony, cs452)] represents this query.
That is, $J is an object-level level expression such that
R, DB k 3 iff meta-level condition (1) is satisfied.

Example 2. “Retrieve those students who could graduate
if they took one more course.” i.e., at the meta-level, we
want those I such that

3c [R, DB + take(q c) I- grad(r)]

The expression (6(n) = %,grad(r)[add : take(r,c)] repre-
sents this query at the object-level. That is, for each value
of 8, R, DB I- +(r) X the meta-level condition is satisfied.

Having introduced hypothetical queries, we can use them
in the premises of rules. Such rules will have the form
A c B[udd : C], which means, “infer A if inserting C into

the database allows the inference of B.” These rules turn
our query language into a logic for building rulebases.

Example 3. Consider the following university policy:

“A ntudent qualifies for a degree in math and
phyricr if he is within one course of a degree
in math and within one course of a degree in
phyricr.”

This policy can be represented as two rules:

tuithinl(s, d) t 3c grod(r, d)[add : take(r, c)].

grod(r,mathphy8) c- withinl(r,moth), withinl(r,phys).

Here, grad(r, d) means that student s is eligible for a degree
in discipline d, and withinl(s, d) means that I is within one
course of a degree in d. Note that the premise of the first
rule is a hypothetical query aim&u to the one in example
2. [3] shows a strong sense in which such rules cannot be
expressed in Datalog.

3 Hypothetical Inference

This section defines a logical inference system for hypothet-
ical rules and queries. Such systems have been developed
by several researchers [9, 6, 19, 15, 161. The one presented

‘See [14] for IL. description of mete-level and object-level
reasoning.

287

in this section is a simplified version which retains many
of the essential properties of the more elaborate systemss
while admitting a clean theoretical analysis. It is an exten-
sion of Horn logic, both syntactically and proof theoretically,
and some of the terminology is borrowed from first-order
predicate logic. In this paper, all logical expressions are are
function-free.

Deflnltion 1 A premire (or query) ir an ezpzerrion having
one of the following forma:

.A where A ir on atomic formula.

a A[odd: B] where A and B ore atomic formulor.

Deflnition 2 A hypothetical rule ir an ezpterrion of the
form A + 41,Qa,...,4r where k 1 0, A ir atomic, and
each q& ir a ptemire.

Deflnition 3 Suppose R ir o ret of hypothetical ruler and
DB ir a databare. Then hypothetical inference ir defined 01
followr, where A and B ore ground atomic formular:

1. R,DBI-A if AEDB

g. R,DBl-A[add:B] if R,DB+{B}t-A

3. R, DB I- A if fot lome rule A’ t 41, q%b in R,
and for rome ground rubrtitution 8 over dom(R, DB),
it ir the Cole that A = A’g and R,DB k 4ig for
each i.

Here, dom(R, DB) demotes the domain of the rulebase
R and the database DB. It includes all constant symbols
appearing in R and DB.

Example 4. Suppose the rulebase R consists of Horn rules
defining a predicate D phrs the following n + 1 rules:

At + A&dd : Bi]
Aa t As[odd : Ba]

. . .
A,. t A,+&zdd : B,]
A r+l + D

Then R,DB I- Ai X R,DB + (B; ,..., Bn) k D.

Example 6. Suppose the database DB contains the
following atomic formulas, which define a linear order
Ul,O2, . ..*a=.

FIRST(al), NEXT(q) aa), NEXT(o2, OS),

. . . NEXT@,-1, a,,), LAST(a,).

Suppose also that the rulebase R consists of rules defining
the predicate D plus the following three rules:

A c FIRST(z), A’(z)[add: B(z)].

A’(z) +- NEXT(z,y), A’(g)[add : B(y)].

A’(z) t LAST(z), D.

Then R,DB I- A X R, DB + {B(o~), B(o=)} I- D.

3e.g., This system has an intuitionirtic remanticr [3, 16, 101.

3.1 Negation by Failure

There are many queries which the above inference sys-
tem cannot express. This is because the system is mono-
tonic: as entries are added to the database, inferences do
not disappear. Clearly many queries are non-monotonic,
such as relational-algebra queries involving complementa-
tion. Negation-by-failure makes the inference system non-
monotonic. It is defined by adding the following inference
rule to those of definition 3:

R,DBk-4 if R,DBlj4

Rulebases involving negation-by-failure are not always
well-defined. This is a familiar problem in Horn-clause logic.
For example, giventhe two rules A t - B and B t - A,
it is unclear whether A is to be inferred, or B, or both, or
neither. As in the Horn-clause case, however, if there is no
recursion through negation, then there is no ambiguity. In
this paper, therefore, we assume that negation is stratified

PI*
This paper makes one other simplifying assumption:

that only atomic queries are negated. That is, N A is al-
lowed as a rule premise, but - A[add : B] is not. This
restriction is a theoretical convenience but poses no serious
limitations in practice. One can always introduce a new
predicate C and a new rule C + A[odd : B], so that - C
has the same effect as m A[odd : B].

Example 6. Suppose R is the following collection of rules:

EVEN c SELECT(z), ODD[add : B(z)].

ODD + SELECT(Z), EVEN[odd : B(Z)].

EVEN t - SELECT(=).

SELECT(Z) t A(Z), - B(Z).

Then R, DB I- EVEN iff DB contains an even number
of entries of the form A(Z).

In this example, the rulebase determines the parity of a
relation A. The rulebase introduces a new relation B and
hypothetically copies A to B one tuple at a time. As tuples
are copied to B, the first two rules “flip back and forth”
between the two predicates EVEN and ODD, reflecting the
changing parity of the difference relation A - B. During this
phase, the fourth rule selects tuples from A which are not
yet in B. When A has been completely copied to B, A - B
is empty, and the third rule infers that EVEN is true.

Note that it does not matter in which order the elements
of A are copied to B. Every order will give the same answer:
either every order will result in a proof of EVEN or every
order will result in a proof of ODD. This idea of order
independence is an important aspect of the expressibility
results in section 6.

288

Example 7. Suppose that DB is a database representing
a directed graph. That is, NODE(a) E DB X o is a node
in the graph, and EDGE(o, b) E DB ifI there is an edge in
the graph from o to b. Suppose also that R is the following
collection of rules:

YES t NODE(z), PATB(z)[add: PNODE(z)].

PATH(z) t SELECT(y), EDGE(z,y),
PATB(y)[udd : PNODE(y)].

PAT+) + - SELECT(y).

SELECT(y) t NODE(y), - PNODE(y).

Then R, DB l- YES iff the graph represented by DB has
a directed Hamiltonian path.

In this example, the data-complexity of the rulebase is
NP-hard [lo]. To find a Hamiltonian path, the rulebase
looks for a sequence of edges that contains each node in the
graph exactly once. The first rule selects a node z at which
this sequence is to begin. The second rule is then applied re-
peatedly, selecting a node y connected by an edge to the last
node in the path. Each time a node is selected, PNODE(y)
is hypothetically added to the database, recording the fact
that node y is in the path. This enables the fourth rule to
select nodes which are not yet in the path. A Hamiltonian
path has been found when it is not possible to select any
more nodes, i.e., when all nodes in the graph are also in
the path. The third rule detects this situation. Note that
all selections are non-deterministic, so the rulebase searches
non-deterministically for all possible Hamiltonian paths.

It is the ability to record facts, such as which nodes
are in the path, that distinguishes our logic from (func-
tion free) Horn logic and accounts for its NP-hardness. Al-
though negation contributes to the conceptual simplicity of
the above example, it does not contribute to its computa-
tional complexity, since there are sets of hypothetical rules
which are NP-hard but which are negation-free.’ Negation
does, however, play a crucial role in the next example.

Example 8. Given the rulebase R in the previous example,
construct a new debase R’ by adding to it the following
rule:

NOc-YES

Then R’, DB I- YES iff DB contains a Hamiltonian circuit,
and R’, DB I- NO ifI DB does not contain a Hamiltonian
circuit.

In this example, the data-complexity of R’ is both NP-
and coNP-hard. Thus, adding a single non-recursive rule
to R has increased its data-complexity class from NP to
NP u coNP.

4 Linear Stratification

In [4] it was shown that the inference system of section 3
is data-complete for PSPACE. In this section, we develop

‘The proof of this is left as an exercise for the reader.

syntactic restrictions with reduced complexity. Central to
these restrictions are the ideas of linear recursion and rtrat-
ified negation. In particular, a new notion of stratification is
developed in which linear recursion alternates with negation-
by-failure. For such rulebases, data-complexity depends on
the number of layers of stratification. Rulebases with h
strata are data-complete for Cf.

PSPACE-hardness was established in [4] by encoding
the computations of alternating Turing-machines. Central
to these encodings are rules of the form,

A t B, A[odd : C$], A[odd : Cs] . . . A[add : C,,]. (2)

These rules have two important features: (i) the premise has
more than one hypothetical operator, and (ii) each of these
operators is recursive. To reduce complexity, we disallow
such rules. We focus instead on rules in which recursion
occurs through only one premise. In Horn logic, such rules
are said to be linear [2].

Example 9. The following rulebase has three strata, the
it’ stratum defining the predicate Ai.

AstBs, As[add:Cs]
Aa + Ds, -A,.

As t Bs, As[odd: Cs]
As t Da, N AI.

AI t Bl, Al[udd: Cl]
A1 + DI

By alternating linear recursion with negation-by-failure,
stratified rulebases can be built, as in example 9 above. The
de&&ions below define stratification precisely. They are
are generalisations of those given in [l] and [2]. The essen-
tial idea is to partition a rulebase into segments, numbered
1 , n. Even segments must contain hypothetical rules with
linear recursion, and odd segments must contain Horn rules
with stratified negation. A stratum is then defined to consist
of two adjacent segments, one odd and one even.

Definition 4

A predicate symbol B occurs poritioely in o rule iff

there ir o formula of the form B(Z) in the premire of
the rule.

A predicate symbol B occura negatively in a rule iff

there ir o formula of the form N B(Z) in the premire
of the rule.

A predicate symbol B occurs hypothetically in o rule
ifi there ir o formula of the form B(S)[odd : C(i)] in
the premire of the rule.

Deflnltion 6 Suppore R ir o ret of hypothetical ruler and A
ir o predicate rymbol. Then the definition of A ir !he ret of
ruler in R whore conclusion ir o formula of the form A(Z).

289

Deflnltion 6 (iY-rtrotijicotion) A ret of hypothetic01 ruler
R is If-rtrotified if there is o partition R = RI U Ra U -. - R,,
ruch that

l If o predicate rymbol occur8 positively in o rule of Ri,
then itr definition is contained in UjliRj.

a If o predicate rymbol occur8 negotively in o rule of Rai,
then its definition is coutoined in Uj<siRj.

l If o predicate rymbol occurs hypothetically in o rule of
Rsi-1, then itr definition is contained in Uj<si-1Rj.

Deflnition 7 (Stroto) Suppore R is on Krtrotified rulebore
with partition RI, Ro..&. Then Ai = asi- ond Xi = bi.
i.e., R = Uill(Ai U Xi). We ~011 Ai U Ci the i'" rtrotum
ofR.

Each stratum thus has two parts: (i) an uppu part Ci

consisting mostly of hypothetical rules (without negatian),
and (ii) a lower part Ai consisting mostly of Horn rules (with
negation). In general, Ei or Ai may be empty.

Example 10. The following rulebase is H-stratified and has
two strata. (A, is empty.)

x2
{

Aa t Aa[odd : Es], A&dd : F,].
A:, t - &.

I

& t - Ca, &.
A2 Ca+-Da, Cr.

Da t A&add : G,].

El
1

A1 t A1 [odd : Et].
Ai t Aa [odd : Pa].
A1 t-B,.

In H-stratified rulebases, hypothetical rules alternate
with negation-as-failure. H-stratification, however, does not
exclude recursion through negation, nor does it exclude rules
of the form (2), as example 10 illustrates. A stronger notion
is therefore required, one which we call lineor rtrotijicotion,
or stratification for short. In a rulebase with linear strati-
fication, each Ai is defined to have stratified negation, and
each Ci is defined to have linear recursion.

To guarantee linearity, it is not enough that no rule have
the form (2). For instance, each of the following n + 1 rules
may appear linear, but taken together, they imply rule (2):

A t B, D1...D,.
Di + Ai[odd : Ci]

Linearity is defined precisely for Horn rules in [a], and is
easily extended to include hypothetical rules. It is based on
the idea of mutually recursive predicates. (e.g., in example
6, the predicates EVEN and ODD are mutually recursive.)
Linearity permits mutual recursion as long as the recursion
is not equivalent to a ruk of the form (2).

Deflnltion 8 (Linearity) Let B t 41, & be o hypothet-
ical rule. Thir rule ir lineor iff the premire hor ezoctly one
occurrence of o predicate which ir mutually recurrise with B.
The rule ir recurrioe iff there ir ot lecut one ruch occuronce.
A ret of ruler ir linear if eaery recursive rule ir lineor.

Deflnition 9 (Linear Strotijication) A ret of hypothetical
ruler id linearly rtrotified if it ir H-&ratified ond it satiajier
the following two conditions:

l Each Ci ir lineor.

s Each Ai bar rtrotified negation.

In example 9, the rulebase is linearly stratified. In ex-
ample 10, it is not.

Lemma 1 Given o ret 11 of hypothetic01 ruler, determin-
ing whether R ir lineorly rtrotified ir decidable in polynomial
time (polynomiol in the rize of the rulebare). If R ir linearly
rtrotified, then Ci ond Ai con be computed in polynomiol
time for some rtrotijicstion of R.

To determine whether a rulebase is linearly stratiilable
is straightforward. Fkst compute all the equivalence classes
of mutually-recursive predicates. If any equivalence class
has recursion through negation, then fail. If any equiva-
lence class has both hypothetical recursion and non-linear
recursion, then fail. The rulebase is linearly stratifiable lff
neither test falls. The first test guarantees that negation
within each Ai is stratified; the second test guarantees that
recursion within each Ei is linear.

To actually generate a linear stratification, we use a re-
laxation algorithm. When the algorithm terminates, each
predicate symbol P is assigned a partition number port(P),
as ln definition 6. From this, definition 7 determines to what
stratum each predicate belongs. Initially, each predicate is
assigned to partition number 1; then the following procedure
is executed.

do until the partition numbers stop changing:
do for each predicate symbol P:

if port(P) does not satisfy definition 6
then increment port(P) by 1;

On every iteration of the outer loop, except the last, the
partition number of some predicate symbol must increase by
1. Since the rulebase is guaranteed to be linearly stratified,
this will continue until, at worst, each predicate is assigned
to a unique partition. i.e., the number of iterations of the
outer loop is O(ms), where m is the number of predicate
symbols.

5 Data-Complexity

Data-complexity is the complexity of evaluating a query as
a function of database sise. It is defined precisely in terms
of the graph of a database query [22].

Deflnltion 10 Suppose that $ ir o relational databore
query. The graph of tj ir the ret of ordered pain
(Z, DB) where F ir on onrwer to the query when opplied
to databore DB.

290

The data complezity of a set of queries is the complexity of
their graphs. In particular,

Deflnition 11 A ret of queried ir doto-complete in o com-
plerity clorr C if (1) the graph of each query id in C, ond
(2) there ir dome query in the ret whore graph ir o complete
longuoge for C.

This section views a rulebase as a database query and es-
tablishes the data-complexity of rulebases with linear strat-
ification. In particular,

Theorem 1 Let Rh be the ret of hypothetical T&bade8 hov-
ing at moat k level8 of linear rtrotificotion. Rs is doto-
complete for Cr.

The proof is presented in the following two sections.

5.1 Lower Complexity Bound

This section shows that the data-complexity of a rulebase
having k strata is X:-hard. Our strategy is to encode the
computations of a collection of NP oracle-machines as a

stratified rulebase. In particular, we construct a rulebase
in which each stratum encodes a single NP oracle-machine,
with each machine using the stratum below as its oracle.
The k strata thus encode a cascade of k distinct NP oracle-
machines, i.e., a EC-machine. In this way, given any lan-
guage L in Cf, we can encode the computations of a ma-
chine which accepts L. Besides providing a lower complexity
bound, these encodings are central to the expressiveness re-
sults of section 6.

Suppose that L is a language in Cf and F is a string.
We encode 5 as a database DB(z) and construct a rulebase
R(L) with k strata so that

R(L), DB(p) I- ACCEPT iff 5 E L (3)

where ACCEPT is a O-ary predicate. The important point
is that the rulebase R(L) is independent of the string y.
This allows us to infer that the data-complexity of R(L) is
BP-hard. In particular, let L be a language which is Ef-
complete.’ The hardness result then follows immediately.
The rest of this section describes the construction of DB(ii)
and R(L).

5.1.1 Building the Database D)B(T)

Since L E Br, there is a Cc-machine which accepts it. That
is, there is a sequence of NP-machines MI, MI such that
(i) Mi-1 is an oracle for Mi, and (ii) Mk accepts L. Since
these machines all run in (non-deterministic) polynomial
time, there is an integer 1 such that each machine runs in
time n’, where n is the length of the input Z.6 A counter is

“See [7] for examples of such laugusges.
sNote that csch machine can only provide its orscle with a

string of polynomial length, so that the oracle runs in polynomial
time both in terms of its own input and the input of the ma&tine
which invoked it.

therefore needed to represent n’ points in time and n’ posi-
tions on tape. Such a counter is easily encoded by placing
the following entries into the database DB(S):

FIRST(O), NEXT(0, l), NEXT(l,2),

. . . NEXT(n’ - 2, n’ - l), LAST(n’ - 1).

Given thii counter, we can represent the oracle-machines

Ml, -*, Ms. Each machine has two tape-heads, one for read-
ing and writing on its work tape, and one for writing onto its
oracle tape.’ We use the following predicates to represent
machine Mi. There is one predicate for each symbol c in its
tape alphabet, and one for each state q in its finite control.

l CELL;(j,t) is true X at time t, the work tape of Mi
has symbol c in cell j.

l CONTROLf(jl, ja, t) is true iff at time t, the finite
control of Mi is in state q, the work head is over cell
ji of the work tape, and the oracle head is over cell js
of the oracle tape.

For each value of t, these atomic formulas define k distinct
id’s, one for each machine.

The database DB(p) describes the initial tape contents
of these machines. Since machines Mb-l, Ml act as ora-
cles, their work tapes are initially blank. Thus, the following
entries are placed in DB(Z) for each i 5 k - 1:

CELLf(O,O), CELLf(l,O) . . . CELLf(n’ - 1,O).

where b denotes a blank. For machine Mk, the
work tape must initially contain the input string
6=< do,dl,..., I,+-1 >. That is, the symbol dj must appear
in cell j, and the rest must be blank. Thus, the following
entries are placed in DB(Z):

CELL: (O,O), CELL:(n, 0),

CELLz(l,o), CELL:(n + l,O),

.

CELL:-‘(n - l,O), CELL:(n’ - l,O).

This completes the construction of the database DB(3).
It defines a counter from 0 to n’ - 1 and specifies the initial
contents of each machine tape. Note that this construction
takes polynomial time and space (polynomial in the length
of ‘i).

5.1.2 Building the Rulebase R(L)

The stratified rulebase R(L) encodes a sequence of oracle-
machines Mk , MI, where the iti stratum of R(L) encodes
machine Mi. Central to this encoding is a unary predicate
ACCEPTi. Indeed, the i’” stratum of R(L) consists mainly
of rules defining this predicate. Given a computation path
for Mi,’ ACCEPT’ determines whether the last id in this

‘Note that the oracle tape of Mi is the work tape of Afi-1.
s A computation path is a sequence of machine id%.

291

path is accepting. This section describes ACCEPT; more
precisely, and then provides rules which implement it.

Since Mi is an NP-machine, it can have many compu-
tation paths. During inference, the rules in the ith stratum
generate and test each of these computation paths one at a
time. This process can be viewed as a recursive, depth-fist
search: each path is inserted into the database hypotheti-
cally, tested, and then retracted. The process of inserting a
computation path is incremental. Starting with the initial
id, the path is extended by hypothetically inserting one new
id at a time.

Whereas each stratum simulates a single machine Mi,
the complete rulebase R(L) simulates the composite machine
formed from Mh , MI. Therefore, at any point during in-
ference, the database may contain many computation paths,
one for each machine. In particular, when the composite
machine has invoked oracles to a depth of j, the machines

MI,, Mb-j have been started, and the database contains
j + 1 computation paths. Note, however, that only ma-
chine Ml-j is actually running, the others being in a state
of suspended computation, since they have all invoked ora-
cles. Mb-j is the deepest oracle, and its computation path
“grows” until it reaches a terminal id. At this point, the path
is retracted and another is generated. When all of Mh-j’s
computation paths have been generated and retracted, the
simulation of Mb-j is over, an answer is returned to Mb-j+l,
and the simulation of Mb-j+1 is resumed.

An oracle returns either “Yes” or “No” to the machine
which invoked it, depending on whether the oracle accepts or
rejects its input, resp. Machine acceptance is conveniently
defined in terms of the notion of an accepting id. For non-
deterministic machines, this is defined recursively as follows:
an id is accepting X (i) it contains an accepting control
state, or (ii) at least one of its successor id’s is accepting.
A machine then accepts its input, and returns “Yes”, iif its
initial id is accepting.

The predicate ACCEPTi determines whether the last
id in the computation path of Mi is accepting. ACCEPTi
is defined only when machine Mi is actually running, and
not suspended, i.e., when Mi is the deepest oracle currently
invoked. In particular, if DB encodes computation paths for
Mh , Mi, and if the path for Mi ends at time t, then

R(L), DE I- ACCEPTi ifi the last id in the
computation path for Mi ir accepting.

Given this, we can determine when the composite ma-
chine Mb, MI accepts its input. The computations of the
composite machine begin with Mb. Indeed, the composite
machine accepts its input iif the initial id of Mk is accepting.
Recall that the database DB(Z) already encodes the initial
tape contents of Mk. AR that is needed is to add the control
information. That is, the finite control of Mk must be put
into its initial state qo, and the tape heads must be placed at
the beginning of their respective tapes. The following rule
inserts this information hypothetically and then initiates the
simulation of Mh:

ACCEPT + FIRST(z),

ACCEPTk(z) [add : CONTROLr(z,z, z)].

This rule completes the initial id for Mh and then tries to
infer ACCEPT*(O). Since the initial id forms a computation
path of length 1, ACCEPTh(0) is true iff the initial id is
accepting, i.e., iff Mh accepts its input.

Thus, given a rulebase defining the predicates
ACCEPTk . . . ACCEPTI, we can define the predicate
ACCEPT of formula (3). This, in turn, establishes the
lower bound of theorem 1.

5.1.3 Implementing the Predicate ACCEPTi

This section gives rules which define the predicate
ACCEPT<. There are three types of rules: (i) those which
detect accepting states, (ii) those which encode the transi-
tion relation of Mi, and (iii) those which encode the mech-
anism for invoking the oracle Mi-1.

(i) Suppose that q. is an accepting state of machine Mi.
Then any id containing q. is an accepting id. This is easily
encoded with the following rule:

ACCEPTi c CONTROLf’(jl, ja, t).

The variable t records the time at which acceptance occurs,
and the variables jr and js signify that the tape-head posi-
tions are unimportant.

(ii) For each element of the machine’s transition relation,
we write a single hypothetical rule. For example, suppose
that Mi has the following transition:

If the finite control is in state q and the work
head is scanning symbol B, then (i) write symbol
c onto the work tape and move the work head
one cell to the left, (ii) write symbol d onto the
oracle tape and move the oracle head one cell
to the right, and (iii) put the finite control into
state q’.

This is encoded with the following rule?

ACCEPTi + NEXT(t, t’),

CONTROLf(jl ,&, t), CELLf(jl, t),

NEXT(ji, h), NEXT(ja, jl),

ACCEPTi [add : CONTROLf’(j:, ji, t’),
CELLz(j;, t’), CELLt,(j;, t’)].

This rule hypothetically inserts the updated control infor-
mation into the database, thereby specifying a new machine
id.

(iii) Finally, we encode the mechanism for invoking ora-
cles. Au oracle machine has an extra tape-head, the oracle
head, with which it writes a string of symbols onto the ora-
cle’s input tape. At certain points, the machine invokes the
oracle, which takes its input and then replies yea or no. To

sNotice that symbol d is written onto the work tape of machine
Mi-1 e

292

carry this out, an oracle machine has three special states: Q!,
qv and q,,. When the machine enters the state qr , the oracle
is invoked and computation is suspended until the oracle re-
turns its answer. If yer is returned, the machine enters state
qv; if no is returned, it enters state q,,.

This mechanism is encoded as two rules:

ACCEPTi + NEXT(t, t’),

CONTROLf(j1, jl,t), ORACLE<-l(t),

ACCEPTi [add : CONTROL~(j~,~, t’)].

ACCEPTi(t) + NEXT(t, t’),

CONTROL”(j1, ja, t), N ORACLEi-l(t),

ACCEPTi [add : CONTROLfn(jlr ja, t’)].

Note the use of negation-by-failure in the second rule. This
defines the boundary between one stratum of the rulebase
R(L) and the next. It is also the source of the Cf complexity,
for without negation, oracle invocation camrot be simulated.

In these rules, the predicate ORACLEi-1 is true iffma-
chine Mi-1, acting as the oracle, returns yer, The following
rule puts M;-1 into its initial configuration and begins the
simulation of its computations:

ORACLEi-l(t) + FIRST(j),

ACCEPTi- (t) [odd : CONTROLfll (j, j, t)].

This rule places the tape heads of Mi-1 at the beginning
of their respective tapes and puts the finite control into its
initial state qo, thereby initiating computation.”

5.1.4 The Frame Axiom

The above rules determine the changer caused to an id by
a machine transition. The greater part of an id, however,
remains unchanged by such transitions. Indeed, except for
those cells under the tape heads, the contents of the machine
tapes remain unchanged. This is an instance of the frame
axiom [14], and we must write rules to encode it. Such rules
are necessary only because we are representing time explic-
itly; i.e., the database represents a sequence of id’s, and rules
are needed to copy the unchanged portion of an id from one
instant of time to the next.

The following rules examine the work tape of machine
Mi. They identify those cells not under an active tape head
at time t, and they propagate the content of these cells for-
ward to the next time instant t’ = t + 1. The frame axiom
is complicated slightly because Mi and Mi+I share a tape,
the work tape of Mi being the oracle tape of Mi+l. AS far
as this common tape is concerned, how the frame axiom is
applied depends on which head is doing the writing (i.e.,
which head is active). In general, a tape head will be active
as long as the machine to which it belongs is not in state q:,
that is, as long as the machine is not in suspension, waiting

loNote that until this rule is invoked, there are no formulas in
the database of the form CONTROLf-‘_, (jl, ja, t). This insertion
thus defines a unique starting point for the computations of Mi-1.

for its oracle. Thus, for each tape symbol c and each control
state q (except for q:), the following rules are added to the
bottom stratum of R(L):

CELLf(j, t’) + NEXT(t, t’), CELLCf(j, t),
N ACTIVEi(j, t).

ACTNEi(j, t) + CONTROLf(j, -(t).

ACTIVE;(j, t) t CONTROL:++,(-, j, t).

The first rule propagates cell values forward from time t to
t’. The second two rules define the predicate ACTIVE;(j, t),
which is tNG iff the work tape of machine Mi has an active
tape head over cell j at time t. The second rule determines
whether the work head of Mi is active, and the third rule
determines whether the oracle head of Mi+r is active.

Combined with those of the previous two sections, these
rules complete the definition of the rulebase R(L). This
establishes formula (3) and the lower complexity bound of
theorem 1.

5.2 Upper Complexity Bound

This section shows that the data-complexity of a rulebase
with k strata is in Cf. To show this, we write a series
of proof procedures PROtrEk, PROVEI, one for each
stratum. Each PROVEi is a non-deterministic procedure
which invokes PROVEi- as a subroutine. The main part
of the proof shows that if PROVEi- is treated as an oracle,
then PROVEi runs in non-deterministic polynomial time
(polynomial in the sise of the data domain). Thus each
PROVE; is an NP oracle-machine, and the data-complexity
of the rulebase is in Cf.

PROVE; takes two arguments, a database DB and
an atomic formula A(E), and returns true or f&e.
If A is defined at or below the ith stratum, then
PROVEi[DB, A(Z)] = true iff R, DB b A@), where R is
the stratified rulebase.

PROVEi is actually two procedures, PROVEx, and
PROVEA,, corresponding to the two parts of the ith stra-
tum of R. PROVE=, is an NP-machine which operates
top-down to create a set of subgoals. To determine whether
R, DB t- A@)), it non-deterministically chooses a rule which
defines the predicate A, and places the premises of this rule
in the set of subgoals. For each subgoal involving a predicate
in Ci, the process repeats itself. Because the rules in L?Zi are
linear, the set of subgoals can only grow to polynomial siee.
Subgoals not involving predicates defined in Ci are passed
to PROVEa<.

PROVE&, is a P-machine. Since Ai is essentially a set
of stratified Horn rules, it can answer queries in polynomial
time by generating the perfect model in a bottom-up fash-
ion [l]. The only ruffle in this approach is that some of the
rules in Ai may contain hypothetical premises A[add : B].
In such cases, however, A will be defined in a lower stra-
tum, so PROVEA, invokes PROVEz<-, as an oracle to
test hypothetical premises. Aside from this, PROVE&, is

293

the familiar, bottom-up procedure of stratified Horn-logic,
and therefore runs in polynomial time.

The rest of this section describes these two procedures
in detail for the propositional case. The predicate case is a
straightforward generaliration.

5.2.1 The Procedure PROVE=, 5.2.2 The Procedure PROVEa,

Suppose that $0 is a formula of the form A or A[add : B]
where A and B are atomic and A is dellned in Ci or below.”
Then PROVEq($s, DBs) = true X R, DBs k $0.

Central to PROVEQ is the set of subgoals which it
constructs. Each’ of these goals is an ordered pair of the
form ($,DB) where DB is a database and $ has the form
of a rule premise (section 3). A goal (gb, DB) succeeds iff
R,DB I- tp.

PROVEc, repeatedly chooses a goal from the goal set

and expands it. This is the job of lines 1, 2 and 3 in the
procedure below. These lines correspond exactly to inference
rules 1, 2 and 3 in definition 3. Line 1 determines whether
a goal is trivially true, and lines 1 and 3 replaces a goal by
a set of subgoals.

Line 2 expands hypothetical goals into atomic goals.
Atomic goals, in turn, are expanded by line 3, which chooses
a rule and places its premises in the goal set. Line 3 applies
only to atoms which are defined in SZi however. Subgoal ex-
pansion theretbre stops when the goal set contains only goals
of the form (A, DB) and (- A, DB), where A is defined be-
low Ci. GO& of this form are passed OII to PROVEA, by
line 4. PROVEA, must return true for all of these goals in
order for PROVE=, to return true.

Procedure PROVEn,($s, DBs):
GOALS +- (($0, DBo));
do until GOALS is empty

choose some goal (3, DB) in GOALS;
remove this goal from GOALS;

1. if + E DB then continue;
2. elseif 96 = B[add : c]

then GOALS t GOALS + {(B, DB + C)};
3. elseif + is atomic and is defined in Xi then

choose a rule 3 + $1,& in E;
if such a rule exiatr

then GOALS t GOALS +

4.

Ed returni..?,h~W, --v (ha, WI;

elseif PROVEA,(+, DB) = fate
then return f&e;

end do;
return tine;
end procedure;

Each of the choice points in this procedure is non-
deterministic. Furthermore, if a proof of R, DB I- $ exists,

“These are the only type of form&s passed to PROVEQ
from PROVEA~+~

then some sequence of choices will find it. More importantly,
if a proof exists, then some sequence of choices of polynomial
length will tlnd it. This is true because recursion in Xi is lin-
ear (see appendix A). Thus, PROVEzi runs iu NP time
relative to an oracle for PROVEA,.

Suppose that $ is a formula of the form A or - A where A
is a ground atomic formula defined in Ai or below.” Then
PROVEA,($,DB) = true iff R,DB I- $.

Most of the inferences performed by PROVEA, are Horn
inferences. Some of the r&s in Ai may have hypothetical
premises, but these are evaluated by invoking PROVEz(-,
as an oracle. The implementation of PROVEA, is therefore
almost identical to the bottom-up method used to perform
inference given a set of Horn rules with stratified negation

M
Since negation in Ai is stratifled, Ai can be partitioned

into strata Air, Ai,< such that within each stratum,
negation occurs only at the base level. The “perfect model”
of Ai is then computed in a bottom-up fashion as follows:
apply the rules in Ai1 to DB until a fixpoint is reached; to
this flxpoint, apply the rules in Ais until a new fixpoint is
reached; etc. After the rules in Ainrd have been applied, the
resulting fixpoint is called the “perfect model” of Ai and
DB [20].

The procedures below implement this idea. The first
four procedures are exactly as they would be in the case
of Horn rules. PROVEA, computes the perfect model by
successively applying each stratum of Ai. It then deter-
mines whether $ is true in this model. The remaining proce-
durer support the computation of &points. LFPi(&DB)
applies the ‘rules in A to DB until a fixpoint is reached;
Ti(A, DB) applies each rule in A to DB exactly once; and
TESTi($g DB) determines whether DB satisfies +, where +
is a rule premise.

Procedure PROVEA*(+, DB):
do for j Corn 1 to mi

DB t LFPi(Aijg DB);
end do;

return TESTi(+c DB);
end procedure;

Procedure LFPi(A, DB):
S t Ti(A, DB);
dountilS=DB

StDB;
DB t Ti(A, S)i
end do;

return DB;

end procedure;

laThem arc the only ty-pe of formulas passed to PROVEai by
PROVEE,.

294

Procedure Ti(A, DB):
ScDB;
do for each rule A c $1,$. in A

if TESTi($j, DB) is true for all j Corn 1 to m
then S + S + {A};

end do;
return S;
end procedure;

Procedure TESTi($, DB):
i,f $=PU#

then return not[TESc(#, DB)];
else return TESfl($, DB);

end procedure;

Procedure TESTf($, DB):
if+ E DB then return true;
elseif+ is atomic and is defined in Ai

then return f&e;

else return PROVEc,- 1 (3, DB);
end procedure;

Only the last procedure, TESe($, DB), distinguishes
this algorithm from that of stratified Horn rules. Here, $
is a rule premise with any negation signs removed. TEST!
determines whether DB satisfies (b. In the Horn-rule case,
$ would be atomic and would be satisfied iff (b E DB. In
our case, however, $ could be hypothetical or could involve
predicates defined in a lower stratum. In these cases, TES@
invokes PROVEe,-l as an oracle to evaluate Cp.

The corresponding algorithm for Horn rules with strat-
ified negation runs in polynomial time (polynomial in the
sire of the data domain). Since PROVEA, is virtually iden-
tical, it runs in polynomial time relative to an oracle for
PROVEv,-, .

6 Expressibility

In [5], hypothetical rulebases with non-linear recursion were
examined. Two results were established: (i) that the graphs
of such rulebases are in PSPACE, and (ii) that such rule-
bases can represent any typed, generic query whose graph
is in PSPACE. The expressive power of hypothetical rules
was thus established. In this section, we use the same tech-
niques to extend these results to hypothetical rulebases with
linear stratification. Section 5.2 showed that the graphs
of rulebases with k strata are in Cr. This section shows
the converse, that such rulebases can represent any typed,
generic query whose graph is in Cf.

The proof relies on the encodings of oracle Turing-
machines developed in the section 5.1. In this respect, it is

similar to other expressibility proofs in the literature (e.g.,
[13, 221). One difference, however, is that we do not assume
that the data domain is linearly ordered. Ordered domains
are used to simulate counters, which in turn, are used to
simulate the movement of Turing-machine tape-heads. For

hypothetical inference systems, however, ordering assump-
tions are unnecessary, for if there is no linear order on the
domain, then one can be asserted hypothetically.

The ditliculty with this approach is that a rulebase can-
not select and assert a particular linear-order. Since there
is no a priori ordering on the domain, there is no way for a
rulebase to select one ordering over another. A rulebase can,
however, assert all possible linear-orders, one after another,
and simulate the oracle machines for each one. This tech-
nique works as long as the machine encodings are insensitive
to the particular linear-order being used. This is the case for
database queries which are generic [6, 71.

A query is generic iff it satisfies the following consistency
criterion: if the constants in the database are renamed in
a consistent way, then the constants in the answer to the
query are renamed in the same way. In our machine encod-
ings, changing the linear order is equivalent to renaming the
database constants. Thus, if the machine computes a generic
query, it does not matter which linear order is used. In this
way, the consistency criterion is central to our ability to use
unordered domains.

6.1 Database Queries

This section defines the notion of database query precisely.
The main results regarding queries are then stated and re-
duced to a single lemma, which is proved in the next section.
The definitions are essentially those of [6] and [?I.

Definition 12 (Relational Databare) Let U be a countable
ret, called the universal data domain. A relational databare
DB of typeZ=((al, a,,,) ir a tuple (D, RI, R,) where
D ir a jinite rubret of U and Ri ir an ai-aw relation over
D, i.e., Ri E Da’. D ti called the domain of DB, written
dom(DB).

In logical systems such as ours, a relational database
is represented as a set of ground atomic formulas. U is a
universal set of constant symbols, and for each relation Ri
there is a predicate symbol Pi whose ground atomic formulas
represent Ri.

Deflnition 13 (Query) A generic databare query of type
E + a0 ir a partialfunction $ which taker a databare DB of
type ZF and returns a relation $(DB) over dom(DB) of a&y
~0. In addition, $J mwt ratirfy the following conrirtency
criterion: if DB’ can be derived from DB by a renaming

(i.e., a permutation) of the rymbolr in El,‘” then qb(DB’)
can be derived from $(DB) by the name renaming.

If one predicate symbol is reserved for the output rela-
tion, then a rulebase defines a typed database query. Not all
such queries are generic however. Non-genericity means that
some constant symbols are treated specially by the rulebase.

lsIn this case we say that DB and DB’ M isomorphic.

295

If a set of hypothetical rules has no constant symbols, how-
ever, then no symbol is treated specially, and the resulting
query is generic. We say that such rulebases are constant
free.

Theorem 2 Let Rf’ be the ret of hypothetical ruJebarer
which are constant free and which have at mort k Jeveb of
linear rtratification. The ret of relational querier ezprerred
by 7Z;j ir equal to the ret of typed, generic querier whore
graphr are in Cf.

Corollary 1 Let ‘R’j be the ret of hypothetical rulebarer
which are con&ant free and which are linearly rtratified. The
ret of relational querier ezprerred by act ir equal to the ret
of typed relational perier whore graphr are in Xr, where
c: = lJ*&.

One direction is trivial. By theorem 1, the graph of any
query in ‘R;’ is in Cc; and by the above discussion, these
queries are typed and generic. The other direction follows
from the next lemma and its corollary. The lemma applies
to yes/no queries, and the corollary generalises it to typed
queries. Whereas a typed query returns a set of tuples, a
yes/no query simply returns true or faire.

Lemma 2 Let $ be a generic yea/no query, that ir, a
generic query of type iii + 0; and ruppore that the data-
complezity of tp ir in Cf. Then there ir a rulebore R(gb) in
7Zit ruch that for aJJ databarer DB of type iii,

R($J), DB I- YES ifi $(DB) = true

where YES ir a predicate rymbol of arity zero.

Corollary 2 Let cp be a generic query of type= + ue whore
gmph ir in Cr. Then there ir a rulebore R(v) in 7Z, =j ruch
that for all databorer DB of type isi,

R(v), DB I- OUT(Z) iff Z E (p(DB)

where OUT ir a predicate rymbol of arity ~0.

Proof: Let $ be a yes/no query such that $[DB + PO(Z)]
is true X T E p(DB), h w ere PO is a predicate symbol not
appearing in DB. Thus, if (p ia of type 01, a,,, + ae,
then $ is of type ao,~l, an + 0. Furthermore, since (p
is generic and in Cr, so is (6. Thus R(3) exists by lemma 2.
R(v) is constructed by adding to R(qb) the following rule:

OUT(Z) t D&Z), YES[add : PO(=)].

where DpO(Z) is an abbreviation for D(zl), D(+,). This
rule generates all possible as-tuples 5 over dom(DB). For
each such tuple, PO(Z) is hypothetically added to the
database, so that R(4) can be used to determine whether
B E cp(DB). That is,

R(v), DB I- OUT(z)

if R(3), DB + PO(=) t- YES

if $[DB + P,(Z)] = true

ifi E’E cp(DB)

Note also that R($) and R(v) have the same number of
strata. QED

6.2 Proving the Lemma

This section is devoted to the proof of lemma 2 and in par-
ticular, to the construction of R($).

BY the premise of the lemma, the lan-
guage {DB] $(DB) = true} is in Cf. Thus there is a
series of NP oracle-machines Mh, Ml which accepts this
language. DB is the input to Mb, and each machine Mi uses
Mi-1 as its oracle. Section 5.1 showed how to encode this
composite machine as a set of hypothetical rules which are
constant free and which have k levels of linear stratification.
To use this construction, two things must be done: (i) ini-
tialise the work tape of each of machine Mi, and (ii) encode
a counter from 0 to n’ - 1, where n is the sise of the data
domain, and n’ is an upper bound on the amount of time
used by any of the machines M;.

6.2.1 Asserting a Linear Order

If there is a total linear order on the data domain, then a
counter from 0 to n’ - 1 can be constructed by using predi-
cates of arity 2. For this reason, the assumption of a linearly-
ordered domain is common in the literature [13, 22]), espe-
cially when expressibility results are established in terms of
complexity classes, as in lemma 2. For hypothetical logics,
however, this assumption is unnecessary, for if a linear order
does not exist, then one can be asserted hypothetically.

The main difliculty with this is in choosing which linear
order to assert. Since there is nothing special about any or-
dering, the rulebase R($) has no way of selecting one over
another. One solution is for R(S) to hypothetically assert
every possible ordering, one at a time. This works because-
as we shall see-the oracle-machine encodings are indepen-
dent of which ordering is used. (A similar trick was used in
implementing the query EVEN in example 6.) In this way,
no a priori domain ordering is needed and no distinguished
ordering is selected.

The rules below use the technique of examples 6 and 7
to assert every possible ordering of the domain. Elements
are selected from the domain D one at a time and inserted
into a linear order. In particular, when the domain elements
are selected in the order al, as . ..a.,, the following entries are
hypothetically inserted into the database:

FIRSTl(al), NEXTl(al,as), NEXTl(al,a:,),

. . . NEXTl(a,-l,a,), LASTI(

This is in addition to the original database relations
PO,Pl,..., Pm.

296

YES c SELECT(z), ORDER(z)[add : FIRSTI(Z

ORDER(z) c SELECT(y),
ORDER(y)[add : NEXTi(z,y)].

ORDER(z) c - SELECT(y),
ACCEPT[add : LASTl(z)].

SELECT(y) t D(y), N SELECTED(y).

SELECTED(y) t FIRSTi(

SELECTED(y) c NEXTl(z,y).

After inserting a linear order, the rules try to infer the
atom ACCEPT, which in turn, invokes a simulation of the
composite machine Mb, Ml. Either ACCEPT is inferred
for all linear orders, or for none; thus R(3), DB I- YES iff
the composite machine accepts its input. Note that these
rules are linear and that they reside in the top stratum of
R(JI), i.e., the stratum which encodes Mb.

6.2.2 Representing the Oracle Machines

Each linear ordering of the data domain provides a way of
counting from 0 to n - 1. By using predicates of arity I, this
counter can be extended to go from 0 to n’ - 1. In partic-
ular, Horn rules can be used to define the following three
predicates: FIRST(a), NEXT(Z,y), and LAST(f), where
g and B are I-tuples. FIRST@) and LAST@) are true iH
g and f represent the integers 0 and n’ - 1, respectively.
NEXT(Z, jJ) is true iff g represents the integer i + 1. (See
[5] for details).

With this counter, I-tuples can be used to represent n’
distinct points in time and n’ distinct positions on tape.
The composite machine Mb, Ml can therefore be encoded
much as was done in section 5.1. The following predicates
represent machine Mi:

CELLi(y,?): At time 1, the tape cell at position T
contains symbol c.

CONTROL:(;, ,ys,?): At time ‘i, the finite control
is in state q, the work head is over cell 7, of the work
tape, and the oracle head is over cell ;, of the oracle
tape.

The rulebase R(+) must also compute the initial tape
contents for each machine Mi. That is, the database DB
must be encoded onto the work tape of Mh, and blanks
must be encoded onto the work tapes of the other machines
ML-i, Ml, as detailed in section 5.1. The latter is accom-
plished with k - 1 rules. For each i 5 k - 1, the following
rule is added to the it* stratum of R(g):

CELL:(;,z) t FIRST(z)

where b denotes a blank. This rule puts a b in every tape
cell of Mi at time 0.

Encoding the database onto a tape is less straight-
forward. We exploit the fact that the database consists
of a fixed number relations PO, A, P,,, of fixed arity
ao,a1, am, resp. Each relation therefore has at most na

entries, where n is the sise of the data domain and u is the
maximum of QO,O~, a,,,. We divide an initial segment of
the tape into blocks, each of sise nQ, and we store a bit-
map representation of Pi in the itA block. That is, each
tape cell in block i corresponds to a possible database entry
Pi(zl, zpi), and the cell contains a 1 iff pi(xi, zpi) is
actually in the database. The use of negation-by-failure is
crucial to setting a tape cell to 0 when the corresponding
entry is not in the database.

It is straightforward, though somewhat tedious, to con-
struct a set of Horn rules which set the bit-map cells to 0
or 1 and which make all other tape cells blank. In particu-
lar, for each symbol c E (0, 1, b), we can define a predicate
INITIAL’(T) which is true ilf c is the initial value of the
tape cell at position ;. (See [S] for details). The work tape of
machine Mb is then initialised by the following three rules,
which reside in the kth stratum of RR($):

CELL;(;,x) + INITIAL’(j), FIRST@).

CELL:(;,2) t INITIAL’C), FIRST@).

CELL$,z) t INITIAL”(2, FIRST(l).

6.2.3 Order Independence

Our machine representation depends on the existence of a
total linear order on the data domain. If such an order is not
provided a priori, then the rules of section 6.2.1 can assert
one hypothetically. These rules assert every possible linear
order, one after the other, simulating the composite machine
Mb, Ml for each one. In most respects, the linear order
is a mere implementation detail; it is used to simulate a
counter, and the particular ordering used does not effect the
computations that the machine performs. In one respect,
however, this is not true: the encoding of the database onto
Mb’s work tape depends crucially on the linear order. In
particular, different linear orders will result in different bit-
map representations of the database.

Which of these bit maps actually represents the
database? They all do. The composite machine either ac-
cepts all these bit maps, or it rejects them all. This is be-
cause our machine is special. It computes a generic yes/no
query pb. Since it is generic, $ satisfies a conridtency cri-
terion: whether $(DB) is true or faire is not affected by
renaming the constant symbols in DB; i.e., if the constant
symbols in DB are renamed, then the value of $(DB) does
not change. It is not hard to see that changing the linear or-
der on the data domain is equivalent to a renaming of the do-
main, at least as far as our composite machine is concerned.
Thus, the different bit maps that the machine receives for
each linear order represent isomorphic databases.

For example, suppose that Cp is a generic yes/no query
which acts on databases consisting of a binary predicate
P and a monadic predicate Q. Consider the particular
database DB = {P(a, b), P(b,b), Q(b)}. In this case the
data domain is {a, b} and there are two possible linear or-
ders on it, a < b and b < a. The bit-map representations of

297

this database under these two linear orders are shown in di-
agrams 1 and 2 below. In each diagram, the sequence of l’s
and O’s represents the machine tape, and the entries beneath
show the interpretation given to the tape cells.

1. Encoding the database {P(b, ca), P(b, b), Q(b)}
under the linear order a < b:

P(:, a) P(:, b) P&a) P(:, b) Q;=) Q;b)

2. Encoding the database (P(b, u), P(b, b), Q(b))
under the linear order b < o:

1 1 0 0 1
P(b, b) P(b,o) P(o,b) P(,,o) Q(b) Q(“.)

3. Encoding the database {P(o, b), P(a, o), Q(o)}
under the linear order o < b:

1 1 0 0

P(o, 4 Pb, b) P(b,o) PW) $4 Q;)b)

Diagrams 1 and 2 show clearly that changing the linear
order changes the input to the machine. Diagrams 1 and 3
show that renaming the constant symbols changes the input
in exactly the same way. In general, a x-ordering of the
data domain is equivalent to a renaming. Thus, because
our machine computes a generic query, it either accepts the
database under all linear orderings, or it rejects the database
under all linear orderings.

7 Summary

This paper has studied the data-complexity and expressive
power of an extension of Horn-clause logic. This extension
is centered on rules of the form A t B[add : C], which
intuitively means, “infer A ifinserting C allows the inference
of B.” In [S] it was shown that such rulebases are data-
complete for PSPACE. The present paper has extended
this line of research by developing syntactic restrictions with
lower complexity. These restrictions are based on the ideas
of linear recutrion and rtratijied negation. (A rule is linear if
recursion occurs through only one premise.) Although these
two ideas are prominent in the theory of Horn-clause logic,
they do not affect the data-complexity of Horn rulebases.
This paper has shown, however, that negation and linearity
have a profound effect on the complexity and expressibility
of hypothetical rulebases.

First, a new notion of stratification was developed, in
which linear recursion alternates with negation-by-failure.
It was then shown that the data-complexity of a hypothet-
ical rulebase depends on its degree of stratification. As
the number of strata increases, data-complexity climbs the
polynomial-time hierarchy. In particular, rulebases with k
strata are data-complete for Cf.

The lower complexity bound was established by encod-
ing cascaded oracle machines. Suppose that Mh,...,Ml is
a sequence of NP oracle-machines in which each M; uses
Mi-1 as its oracle. Then the composite machine MJ,, MI
can be encoded as a hypothetical rulebase with k strata.
Negation-by-failure is crucial to this encoding, for it allows
the rules to detect those situations in which an oracle re-
turns the answer “No”. Without negation, only a single NP
machine can be simulated, and complexity does not climb
the polynomial-time hierarchy.

The upper complexity bound was established by defin-
ing a series of procedures PROVE*, PROVEI, one for
each stratum. Each PROVEi rum in NP-time, and uses
PROVE;-1 as an oracle. Each PROVEi is a mixed top-
down/bottom-up proof procedure. The bottom-up compo-
nent runs in polynomial time and is a simple variation of
the familiar bottom-up procedure of Horn logic. The top
down component runs in NP time and generates proofs non-
deterministically. Because of the restriction that hypothet-
ical recursion be linear, PROVE; is guaranteed to find a
proof of polynomial length, if a proof exists. In this way, the
complexity of each stratum is in NP.

The direct encoding of Turing machines not only estab-
lishes a lower complexity bound, it also helps establish ex-
pressibility results. In [S], for instance, the encoding of alter-
nating Wig machines was used to show that any database
query computable in PSPACE could be represented as a
set of hypothetical rules. In the present paper, the encod-
ing of orade Turing machines admits a similar result: any
database query whose graph is in Cr can be represented as
a hypothetical rulebase having k levels of stratification.

Unlike other expressibility results in the literature, this
result does not assume that the data domain is linearly or-
dered. Linearly ordered domains are typically used to simu-
late counters, which in turn, are used to simulate tape-head
movements [13, 221. The approach of this paper has been
to start with unordered domains and to assert linear orders
hypothetically. This technique works for all generic queries,
that is, for all queries satisfying the consistency criterion of
Chandra and Hare1 [6, 71.

Acknowledgements

The work of Thorne McCarty on the intuitionistic semantics
of embedded implications was the original stimulus for this
work. Thanks go to Tomasr Imielinski for helpful comments
on the paper.

298

References

PI

PI

[31

PI

[51

PI

PI

PI

PI

PI

PI

PI

P31

[141

K.R. Apt, H.A. Blair, and A. Walker. Towards a The-
ory of Declarative Knowledge. In Jack Minker, edi-
tor, Foundationr of Deductive Databarer and Logic Pro-
gramming, chapter 2, pages 89-148. Morgan Kaufmann,
1988.

F. BanciIhon and R. Ramakrishnan. An Amateur’s In-
troduction to Recursive Query Processing Strategies.
In Proceedings of the International Conference on Man-
agement of Doto (SIGMOD), pages 16-52, Washington,
D.C., May 28-30 1986. ACM.

A.J. Banner. A Logic for Hypothetical Reasoning. In
Proceeding8 of the Seventh National Conference on Ar-
tificial Intelligence. American Association for ArtiSciaI
Intelligence (AAAI), August 1988.

A.J. Bonner. Hypothetical Datalog: Complexity and
Expressibility. In Proceedingr of the Second Interna-
tional Conference on Datoboae Theory, pages 144-160.
Springer-Verlag, 1988. volume 326 of Lecture Notes in
Computer Science.

A.J. Bonner. Hypothetical datalog: Complexity and
expressibility. Technical Report DCS-TR-231, Depart-
ment of Computer Science, Rutgers university, New
Brunswick, NJ 08903, 1988. To appear in Theoretical
Computer Science.

A.K. Chandra and D. Harel. “Computable Queries for
Relational Databases”. Journal of Computer and Syr-
tern Sciences, 21(2):156-178, 1980.

A.K. Chandra and D. HareI. “Structure and Complex-
ity of Relational Queries”. In Proceedingr of the Sympo-
rium on the Foundotionr of Computer Science (FOCS),
pages 333-347, 1980.

D.M. Gabbay. UN-Prolog: an Extension of Prolog with
Hypothetical Implications. II. Logical Foundations and
Negation as Failure”. Joumol of Logic Programming,
2(4):251-283, 1985.

D.M. Gabbay and U. Reyle. “N-Prolog: an Extension
of Prolog with Hypothetical Implications. I”. Journal
of Logic Programming, 1(4):319-355, 1984.

M.R. Garey and D.S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completenear. W.H. Freeman, New York, 1979.

Ginsberg. UCounterfactuaIs”. Artificial Intelligence,
30(1):35-79, 1986.

J.E. Hopcroft and J.D. UIhnan. Introduction to Au-
tomata Theory, Language8 and Computation. Addison-
Wesley, 1979.

N. Immerman. Relational Queries Computable in Poly-
nomial Time. In Proceeding8 of the ACM Symporium
on Theory of Computing (STOC), pages 147-152,1982.

R. Kowalski. Logic for Problem Solving. North-Holland,
1979.

P51

[1’31

P71

WY

WI

PO1

WI

WI

[231

A

Sanjay Manchanda. A Dynamic Logic Programming
Language for Relational Updater. PhD thesis, The Uni-
versity of Arisona, Tuscan, Arizona 85721, January
1988.

L.T. McCarty. “CIausaI Intuitionistic Logic. I. Fixed-
Point Semantics”. Journal of Logic Programming,
5(1):1-31, 1988.

L.T. McCarty. Clausal Intuitionistic Logic. II. Tableau
Proof Procedures. Journal of Logk Programming,
5(2):93-132, 1988.

L.T. McCarty and N.S. Sridharan. “The Representation
of an Evolving System of Legal Concepts”. In Proceed-
ingr of the Seventh IJCAI, pages 246-253, 1981.

D. Miller. A Logical Analysis of Modules in Logic Pro-
gramming. In Proceedings of the IEEE Symporium on
Logic Programming, 1986.

T. Prsymusinski. On the Declarative Semantics of De-
ductive Databases and Logic Programs. In Jack Minker,
editor, Foundation8 of Deductive Databorer and Logic
Programming, chapter 5, pages 193-216. Morgan Kauf-
mann, 1988.

L.J. Stockmeyer. “The Polynomial Time Hierarchy”.
Theoretical Computer Science, 3(1):1-22, 1976.

M. Vardi. The Complexity of ReLational Query Lan-
guages. In Proceeding8 of the A CM Symporium on The-
ory of Computing (STOC), pages 137-146, 1982.

D.S. Warren. Database Updates in Pure Prolog. In Pro-
ceedinga of the International Conference on Fifth Gen-
eration Computer Syetemr, pages 244-253, 1984.

Appendix

This appendix completes section 5.2.1. It shows that if the
procedure PROVEx,($,DB) returns true, then the proce-
dure generates a sequence of choices of polynomial length
which proves that R,DB I- $. R is a stratified rulebase in
which Ci forms the hypothetical part of the ith stratum. Al-
though PROVEx, was described only for the propositional
case, the predicate implementation is a straightforward gen-
erahsation, and the proof below applies to the that case.

Central to the proof are two constants ke and ki. ks
is the maximum arity of all the predicate symbols in the
database and the rulebase. The number of ground atomic
formulas that can be constructed is thus O(nko) where n is
the number of constant symbols appearing iu the data do-
main dom(R, DE). ki depends on the structure of recursion
in Xi. In any nrlebase, the set of predicates can be divided
into equivalence classes in which the predicates in each class
are mutually recursive [2]. ki is the number of such classes
ill Ci.

The procedure PROVE=, makes a sequence of non-
determinisitic choices. For each sequence of choices, goals
are removed from the goaI set in a particular order, result-
ing in a sequence of goals ($1, DBl), ($2, DBa), . . . Without

299

loss of generality, we can focus on sequences in which each
goal appears only once. Because recursion in Ci is linear, any
such sequence can be of only polynomial length. In fact, the
following theorem is the main result of this appendix.

Theorem 3 Any requence of gooJ6 generated by PROVEx:,
without repetitionr ho6 length O(n”““).

The proof of this theorem focusses on atomic goals, that
is, on goals of the form (A, DE) where A i6 atomic and is
defined in Ci. The length of any goal sequence generated by
PROVE=:; is at most ms + 1 times the number of atomic
goals. Here, me is the maximum value of m over all rules

A +- $1,&. in Ci. We prove that the number of atomic
goals in any goal sequence is O(n2biho). The proof begins
with severd detlnitions.

Definition 14 (=F)

l (A[odd : B], DE) =+ (A, DE + B)

l Suppore that A’ +- $1,& ir o rule in Ci, and
that B ir o rubditution ruch thot A = A’g. Then
(A,DB) + ($jg, DE) for each j.

The symbol =S captures the notion of one god spawning
another. The two items in this definition correspond to lines
3 and 3 in the definition of PROVE=,. We let 2 be the
reflexive, transitive closure of *. Since we are rOcussing on
atomic goals, it is convenient to ignore hypothetical goals
and to speak of one atomic god spawning another. For this,
we extend the definition of + by adding the following item
to definition 14 (which does not affect the meaning of 4):

a If (A, DB) =r (B[add : C], DE)
then (A, DE) =+ (B, DE + C)

Deflnltion 16 A proof requence ir o requence of atomic
goal6 Go,Gi,G2,... ruch thot no gool appear6 twice ond
Go 5 Gj for each j.

Note that PROVEc,(Ao, DBo) non-deterministically gen-
erates all possible proof sequences beginning with the goal
(Ao,DBo).

Definition 10 If Aa ond A2 ore mutually recurrive predi-
cater, then they belong to the 6ome equivoJence ~1066, and ve
write Al - A6 ond (Al, DB1) - (A2, DBz).

Lemma 3 In any proof requence Go, GI, G6, . . . there are
O(n”O) goal6 Gj ouch that Go - Gj.

Proof: Because Ci is linear, there is at most one goal Gil
in the proof sequence such that Go =+ Gil and Go N Gjs.
Similarly, there is at most one goal Gj, such that Gil + Gja
and Gil N Gj,. Continuing in this way, we get a subse-
quence of atomic goals Go, Gjl, Gjp, . . . In fact, this subse-
quence includes all the goals Gj in the proof sequence such

that GO N Gj. We show that the length of this subsequence
is O(n”O).

If (A, DB) and (A’, DB’) are two consecutive goals in
this subsequence, then (A, DB) + (A’, DB’), and there-
fore DE E DE’. The subsequence can thus be divided into
segments such that within each segment, the database is the
same, and between segments, it increases. Each segment has
the form (Al, DE), (AZ, DE), (As, DE)... where the atomic
formulas Ai are distinct. Thus the length of a segment is no
greater than the number of possible atomic formulas, that
is, O(nLO). In going from one segment to the next, however,
the database increases, that is, a ground atomic formula is
added to it. Thii can only happen O(nCO) times, however,
before the database saturates and equals the set of all possi-
ble ground atomic formulas. Thus, the subsequence contains
O(nLo) segments each of length O(n’O). Its total length is
therefore O(n2*O). QED

Each of the O(nsho) goals mentioned in this lemma are
in the same equivalence class as GO. Each of them, however,
may spawn other goals which are not. This idea leads to a
hierarchy of goals starting at Go.

Definition 17 (Progeny) Suppore that Go, G1 ond G2 are
stomic go&. Then

If Go j G1 and Go - G1 then Cl ir a child (or a
progenur of degree 1) of GO

Suppore that Cl ir a progenur of Go of degree d. If
GI =+ G6 and G1 + G6, then every child of G2 ir a
progenur of GO of degree d + 1.

The concept of children reflects recursion within an
equivalence class. Each time a non-recursive call is made
to another equivalence class,” however, the degree increases
by one. Thus, no goal can have degree greater than ki, the
number of equivalence classes in Ci. Note also that in a
proof sequence Go, G1, Gs, . . . every goal Gj is a progenus
of Gs to some degree.

Lemma 4 In any proof requence, the jir6t goal G6 ha6
O(nluo) progeny of degree d.

Proof: (By induction on j). The base case (d = 1) is estab-
lished by lemma 3. Suppose, then, that the lemma is true
for d. We constuct all possible progeny of Gs of degree d + 1
as follows. Let Gr be a progenus of Go of degree d which ap-
pears in the proof sequence. Gr spawns at most ms atomic
subgoals, and each subgoal G2 will have O(n2ho) children
in the proof sequence, by lemma 3. Thus, in the proof se-
quence, each of the O(nldho) progeny of degree d has O(me)
subgoals, each having O(diO) children. Thus, Go has at
most O(n2dho) x O(mo) x O(n210) progeny of degree d + 1,
that is, O(n2(dt’)ho) since ms is a constant. QED

Corollary 3 Any proof requence t of length O(n2kiko).

14as represented by the item “Cl 3 G2 and G1 # G2” in the
definition.

300

