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Abstract circuits do not have any global timing reference; exam-
ples of this design style are given in Sutherland’s work
Due to shrinking technologies and increasing design sizesn Micropipelines[1].  Globally AsynchronousLocally

it is becoming more difficult and expensive to distribute @ynchronous systems (which we refer to as GALS systems
global clock signal with low skew throughout a processoiin this paper) are an intermediate style of design between
die. Asynchronous processor designs do not suffer from thikese two. GALS systems contain several independent syn-
problem since they do not have a global clock. However, ahronous blocks which operate with their own local clocks
paradigm shift from synchronous to asynchronous is unlikelgnd communicate asynchronously with each other. The main
to happen in the processor industry in the near future. Henckeature of these systems is the absence of a global timing ref-
the study of Globally Asynchronous Locally Synchronous (a@rence and the use of several distinct local clocks (or clock
GALS) systems is relevant. In this paper we use a cycleomains), possibly running at different frequencies.
accurate simulation environment to study the impact of asyn-
chrony in a superscalar processor architecture. Our resultd.1 Motivation
show that as expected, going from a synchronous to a GALS

design causes a drop in performance, but elimination of the The idea of GALS system design is in itself not new [2].

global clock does not lead to drastic power reductions. Fromnterest in GALS design is now growing due to the following
a power perspective, GALS designs are inherently less effeasons:

cient when compared to synchronous architectures. However,

the flexibility offered by the independently controllable local e Global clock distribution: Trends of increasing die
clocks enables the effective use of other energy conservation sizes and rising transistor counts may soon lead to a
techniques like dynamic voltage scaling. Our results show  situation in which distributing a high-frequency global
that for a 5-clock domain GALS processor, the drop in perfor-  clock signal with low skew throughout a large die is pro-
mance ranges between 5-15%, while power consumption is hibitively expensive in terms of design effort, die area,
reduced by 10% on the average. Fine-grained voltage scaling and power dissipation. GALS systems eliminate the
reduces the gap between fully synchronous and GALS imple- need for careful design and fine-tuning of a global clock
mentations, allowing for better power efficiency. distribution network.

e Design reuse: Designers are now seriously exploring
opportunities for reusing IP cores, and system-on-chip
design is gaining popularity. Integrating several cores
on one chip may not always be possible with a single
Most conventional microprocessor designs are syn-  clock system; different cores may have different clock

chronous in their construction; that is, they have a global requirements and operating frequencies. GALS systems

clock signal which provides a common timing reference  with standardized asynchronous interfaces will facilitate
for the operation of all the circuitry on the chip. On the design reuse.
other hand, fully asynchronous designs built using self-timed

1 Introduction

- ) e Inertia:  While a fully asynchronous design style
*This work was supported in part by IBM Corp. SUR Grant No. . y y 9 y
4901B10170 and by SRC Grant No. 2001-HJ-898. promises to solve both the above problems, a complete

migration from synchronous to asynchronous systems is



not likely to happen in the immediate future; CAD toolsused these wrappers along with asynchronous memory blocks
for asynchronous design are mature, but not commete implement an ASIC and have thus proved the feasibility of
cially strong yet. GALS design in silicon. However they have not provided any
direct performance comparisons between GALS systems and
In the microprocessor industry, global clock diStribUtionsynchronous systems. A similar system has been proposed
issues (further discussed in section 2) are perhaps the bggtMooreet al. in [8]; pausible clocking for GALS systems
motivating factor for the study of GALS systems. Howevehas been described by Yun and Dooply in [9]. The work of
since products in this arena are highly performance-driveSemeraret al.[10] is the closest to our GALS study. They
we need to evaluate the impact of asynchronous communicghow the effect of voltage scaling by using off-line profiling
tion on performance and power. We describe in this paper ths the application.
development of a modeling and simulation framework and the
results of some experiments with a hypothetical superscalar3  Qrganization of this Paper
GALS processor design. We have attempted to address the

following issues: The rest of this paper is organized as follows:

e If we design a microprocessorin a GALS style with mul-  § |, section 2 we discuss global clock distribution methods

tiple clock domains, how much performance overhead 5 the challenges it poses, and thus motivate the study
will it incur over a fully synchronous processor? of GALS systems.

e Will the elimination of the global clock network helpin 4 |4 section 3 we describe some of the issues involved in
reducing power in a microprocessor, as other works have g g processor design.

claimed?
) o ) ¢ In section 4 we outline an architecture for a hypothetical
e How can we exploit t.he (_axtra flexibility offered by inde- GALS processor and describe the simulation and mod-
pendent clock domains in a GALS processor? eling setup which we used to study power and perfor-

In this work, we show that GALS processors aret mance trends in this processor.

necessarily more power efficient than fully synchronous de- e |n section 5 we show some results on power and perfor-
signs, as it has been previously claimed, but thegy be- mance trends.

come so if clock speed and supply voltage are tuned for

each synchronous block. Eventually, fine adaptation can be® Finally in section 6 we summarize our contributions and
extended to support application-driven, multiple-domain dy- conclude with some future directions for research on
namic clock/voltage scaling. GALS processors.

1.2 Related Work 2 Clock Distribution

Sutherland’s paper oklicropipelines[1] contains a good 2.1 Design Practices
introduction to asynchronous design. Asynchronous proces-

sor cores have been in development for over a decade now; Generating a high frequency clock signal and distributing
for example, the Amulet processor core developed at Mancl-across a large die with low skew is a challenging task de-
ester, which implements the ARM instruction set, is in itSsyanding a lot of design effort, die area and power. Restle
third generation and is commercially viable and competitiveyt ). [11] and Bailey and Benschneider [12] give a good
[3]. GALS systems were studied in detail by Chapiro in hisgyerview of clocking system design for high-performance
1984 PhD thesis [2]. His work covers metastability issueﬁrocessors.

in GALS systems and outlines a stretchable clocking strat- | most processors, a phase lock loop (PLL) generates a
egy which provides a mechanism for asynchronous commuigh frequency clock signal from a slower external clock. A
nication. Chelcea and Nowick propose in [4, 5] the use ofombination of a metal grid and a tree of buffers is used to dis-
FIFOs as a low-latency asynchronous communication meckipute the clock throughout the chip. Trees have low latency,
anism between synchronous blocks. Hen®ral. estimated  gjssipate less power and use less wiring; but they need to be
in [6] the clock power savings in GALS designs comparegerouted whenever the logic is modified even slightly, and
to synchronous designs. However, their work targets a regiy a custom-designed processor, this requires a lot of effort.
lar ASIC design flow with simpler clocking strategies ratherrrees work well if the clock loading is uniform across the
than the aggressive clock distribution networks used in Michjp area; unfortunately, most microprocessors have widely
croprocessors. Muttershaeht al. have implemented asyn- yarying clock loads. Metal grids provide a regular structure
chronous wrappers around synchronous blocks [7]; they hayg facilitate the early design and characterization of the clock



network. They also minimize local skew by providing morewhich connect multiple local clock grids together and help in
direct interconnections between clock pins. bringing down the overall skew to 28 ps.

Moreover, clocking in most processors today is hierarchi- While techniques like active deskewing help to push the
cal. Figure 1 shows an example of a hierarchical distribuenvelope for clocked systems further, they come at a signifi-
tion network; several major clocks are derived from a globatant cost in terms of die area and power dissipation. At some
clock grid, and local clocks are in turn derived from the majopoint, pushing the limits of clock distribution networks will
clocks. This approach serves to modularize the overall desidgead to diminishing marginal returns. At that stage, GALS
and to minimize the local skew inside a block. It also has thdesign techniques will come in useful.
advantage that clock drivers for each functional block can be
customized to the skew and drive requirements of thatbloclg ~ Globally =~ Asynchronous Locally  Syn-
thus the drive on the global (_:Iock grid need not be designed chronous Processor Design
for the worst-case clock loading.

Global Major  Local In this section we discuss some architectural issues in-
clock clocks clocks volved in the design of a globally asynchronous locally syn-
C:ongk .. D—K chronous processor, with focus on performance and power
PLL —P> evaluation. Since our primary focus is at the architecture
Wﬁ—b{i level, we choose to omit several lower-level issues in our
study. Some areas which have been dealt with in detail else-
where are:
Figure 1. An example of a hierarchical clock distri-  Metastability resolution: The problem of metastable

bution network signals and techniques for metastability resolution using

synchronizers and arbiters are discussed in [14]. Our
approach uses asynchronous FIFOs [4, 5] between clock
22 Case Study domains and this in turn relies on synchronizers.

e Local clock generation:Each clock domain in a GALS

Restleet al. have argued in [11] that clock skew arises system needs its own local clock generator; ring oscil-
mainly due to process variations in the tree of buffers driving  lators have been proposed as a viable clock generation
the clock. Since device geometries will continue to shrink  scheme [2, 7]. We assume that we can use ring oscilla-
and clock frequencies and die sizes will continue to increase, tors in each synchronous block in the GALS processor.
global clock skew induced by such process variations can
only get worse. Hence we argue that we will reach a point *
where skew will thus eat up a significant proportion of the
cycle time and thus will directly affect performance.

This point may already have been reached. Table 1 shows
a case study of a few processor designs spanning four major
CMOS technology generations which entered the market dug-
ing the last decade. The numbersin the table clearly show that
technology scaling has led to a dramatic increase in design
size and speed. However, since interconnects do not scale
well as transistor gate lengths do, these numbers indicate t
the complexity of the clock distribution task has increase
even more dramatically; we now have to clock many mor
registers with much smaller skew budgets than before.

Designers have handled this increased design complexfi

using complicated hierarchical distribution systems like th nce requirements iustify manual intervention in th i
one shown in Figure 1. However, even a complex system ance requirements justify manual interventio € part-

multiple grids and H-trees is not sufficient for today’s Giga- loning phase. Since the primary motivation behind GALS

hertz clocks. For instance, the 800-MHz prototype of the It design is to avoid distributing a common clock _S|g|?al over
rge areas, the strategy for partitioning the design into syn-

nium chip has a projected skew of 110 ps using a hierarchica . . - .
distribution scheme with multiple grids and trees. This skev9jjronous blocks will largely be dictated by physical design

is almost 10% of the total cycle time. The Itanium design-a.Spe.Ct.S' However, since asynchrony can Ie_ad to higher laten-
es, it is crucial to take architecture issues into account when

ers have added a network of 32 active deskewing circuits [1 P .
artitioning the design.

Failure modeling: A system with multiple clock do-
mains is prone to synchronization failures; we do not at-
tempt to model these since their probabilities are minis-
cule (but non-zero) [14] and our work does not target
mission-critical systems.

1 Defining Synchronous Blocks

Hemaniet al. have described an automated strategy for
dau?‘cfining locally synchronous blocks in a GALS design [6].
arting from a hierarchical RTL description of the system,
eir method uses iterative refinement to get an optimal par-
itioning of the system into a number of synchronous blocks,
ing clock power as an objective function for optimization.
a custom-designed system like a microprocessor, perfor-



Design Technology Device count | Cycletime | Skew | Remarks

Alpha 21064 0.8um (1992) 1.6M 5ns 200 ps| Single line of drivers for clock grid
Alpha 21164 0.5um (1995) 9.3M 3.3ns 80 ps | Two lines of drivers for clock grid
Alpha 21264 0.35pum (1998) 15.2M 1.7ns 65 ps | 16 distributed lines of drivers
Itanium (with active deskewing) | 0.18um (2001) 25.4M 1.25ns 28 ps | 32 active deskewing circuits
Itanium (without active deskewing) 0.18um (2001) 25.4M 1.25ns 110 ps| Projected skew without deskewing

Table 1. Trends in global clock skew for microprocessor designs across process generations

In the traditional superscalar out-of-order processor modsbr pipeline, transactions occur practically during every cy-
theinstruction flowconsists of fetching instructions from the cle. Stretching the clock every cycle would lead to a situation
instruction cache, using the branch predictor for successiwehere the effective clock frequency is determined not by the
fetch addresses. Thegister dataflonconsists of issuing in- clock generator but by the rate of communication with other
structions out of the instruction window and forwarding re-synchronous modulés.This is not desirable, especially in
sults to dependent instructions. Theemory dataflowcon-  systems where the frequencies of the different clocks have
sists of issuing loads to the data cache and forwarding datalbeen chosen to meet performance and power requirements.
dependent instructions. Introducing high latencies in any of

these three crucial flows will have an impact on the proces- FIFO

sor’s performance. req —- ~—req
The level 1 instruction cache and the branch predictor data—= | [ ] r=data

taken together are a good candidate for one synchronous full = i =empty

block corresponding to the front-end of the pipeline. In some ekt —> [ -] < clk2

architectures, notably in CISC architectures like Intel's 1A- — valid

32, the decode logic occupies a large area and consists of
several pipe stages; in such cases, decode would be a good-igure 2. Asynchronous FIFO for interfacing two
candidate for another synchronous block. clock domains

Inside the out-of-order execution core, it is difficult to
make generalizations and say which parts of the core may be
decoupled without much overhead and which may not; sucgnI
decisions are very specific to the microarchitecture and the i%’s
struction set of the processor. Area and clock distribution cong
siderations obviously suggest this partitioning to some exte
For instance in the 21264 Alpha the ‘major clocks’ (tappe%

from the global clock and distributed Igcally) are defined t_hi%f data into the FIFO and is synchronized to the consumer’s
way, based mostly on the top-level hierarchy of the deslgr]:Iock; similarly, thefull signal is controlled by the consumer

they suggest a partitioning system for that specific implemer(]i—nd is synchronized to the producer's clock. A few modi-

tation. _The 21264 has the foIIovvmg major .ClOCkS [12]:.(1) ications are made to the circuit to account for latencies in
instruction fetch and branch predict (2) bus interface unit (3 nchronization and to prevent deadlock. In addition to pro-

integer issue and execution units (4) floating point issue a ding high throughput in the steady state, the design has low
e_x<_acut_ior_1 units (5) Ioad/s_tore ur_1it (6) pad ring. We shall reI'atency when compared to other methods’we tested. Since the
visit this |mplementat_|on in section 4 where we describe Yocus of our work is at a higher level of abstraction, we shall
proposed GALS architecture. not go into further details; a complete description of the op-
eration of the circuit is given in [4, 5]. We shall refer back
to this FIFO structure when describing our experiments with

) GALS design.
Many methods have been proposed for clocking GALS

systems withstretchable clockq2, 7, 8]. Such clocking g 3 Multiple Supply Voltages
systems manage asynchronous communication between two
clock domains by stretching one phase of both the clocks

while the handshaking and data transfer takes place. Thisé
typically done using an arbiter element inside the loop of a
ring oscillator. While this mechanism provides an elegant 1To an extent, this behavior is rather like the timing behavior of Suther-
and fail-safe method of communication, it also stalls botlJgnds Micropipelines where the rate of forward communication in the

. . peline makes the systeself-timed
the synchronous blocks during the transaction. In a proces-

Chelcea and Nowick have presented in [4, 5] a design for

ow-latency token-ring based FIFO which can be used for

ynchronous communication between synchronous blocks.
he interfaces to the FIFO are shown in Figure 2. Their de-

ign usedull and emptysignals to indicate the occupancy

f the FIFO. Theemptysignal is controlled by the producer

3.2 Asynchronous Communication Mechanisms

An interesting possibility with the use of multiple local
focks with potentially different speeds is the use of multiple




local supply voltages in a dynamic or application-dependent | Stage | Operation Domains
manner. Since applications vary in their usage of processor 1 Fetch from I-cache 1
resources, intelligent selection of clock frequencies can give Decode _ 2
us significant power savings with minimal impact on perfor- Register rename, Regfile regd 2
mance. The simplest example of this is slowing down or shut- Dispatch into issue queue 2, 3/4/5

oO~NO O WN

. . . : . S . Issue to functional unit 3/4/5
ting off the floating-point units while running integer applica- Execute 3/4/5
tions. Selectively slowing down certain regions of the proces- Wakeup, Writeback 3/4/5
sor is more easily achieved in a GALS design than in a syn- Regfile write, Commit 3/4/5, 2

chronous design because different subsystems run on differ-
ent clocks and these clocks can be independently controlled. Table 2. Pipeline stages in our processor models
If some parts of the core are slowed down, they can be

operated at a lower supply voltage too. In such a system, Fetch and decode rate | 4 inst/cycle
the asynchronous communication interfaces between syn- | Integerissue queue size| 20
chronous blocks will need to have level-conversion circuits. FPissue queue size | 16
The amount by which we can reduce the voltage depends on | Memory issue queue sizg 16
. T Integer registers 72
the slowdown of the clock. Since energy consumption is de- EP registers 72
pendenton thsquareof the s_l_JppIy voltage, redugng the sup- L1 data cache 16KB 4-way
ply voltage will lead to significant energy benefits. 1 cycle latency
The relationship between logic delByand supply voltage L1 instruction cache 16KB direct-mapped
Vyq is given by the following equation [15]: 1 cycle latency
Vg L2 unified cache 256KB 4-way
DO——+-—+-— Q) 6 cycles latency
(Vaa —W)® ALUs 4integer, 4 FP

where; is the threshold voltage of the transistor amds

a technology-dependent factor. For a 0}86 technology,

a is 2; for smaller technologies, the value @fis between

1 and 2. This implies that savings arising out of dynamic

voltage scaling for a given delay value are higher for smaller

technology generations. design: one for integer instructions (clock domain 3), one for
floating-point instructions (clock domain 4) and one for loads

4 A GALS Architecture and stores (clock domain 5). In the GALS processor, the inte-
ger ALUs and the integer issue queue are in the same clock-

We have studied a superscalar processor model and hd0g region. This ensures that dependent instructions within

attempted to build a GALS model which duplicates itsthe integer issue queue can be issued back-to-back as soon

pipeline structure for the most part, so that we can compafs® OPerands are available. Similarly, floating-point ALUs and
GALS processors with synchronous processors in terms i€ floating-point issue queue share one clock, and the data-
power and performance. The architecture that we chose f6RCN€; the level-2 cache and memory issue queue share one

our study is a hypothetical processor resembling the 21264°CK- _ o
Alpha in some ways. In the synchronous version, communication between suc-

cessive logic blocks is done using regular pipe stages. In the
4.1 The Architecture present version of the GALS model, asynchronous FIFOs de-
scribed in section 3.2 have been used.

After a detailed look at the architecture, we chose to have 'aPle 2 gives a summary of the pipeline stages in the pro-
five clock domains in the GALS version of the design. Figur&€Ssor models we developed for our experiments, along with
3 shows the pipeline structure of both the synchronous (basg)isting of the clock domains of the GALS processor which
processor and the GALS processor we designed. The bourfif€ mvolve.d in each pipe stage. Table 3 describes the microar-
aries between clock domains in the GALS processor are ifghitecture in some detail.
dicated by dotted lines. In the base (synchronous) model, all ] )
the logic runs off the same clock. In the GALS model, variou$-2 A GALS Simulation Framework
regions are clocked using different clock signals independent
of each other. The first stage of the pipeline consists of an Building a cycle-accurate simulator for a single-clock
instruction cache and branch prediction unit (clock domaiRipelined system is simple; in C, we only need to call vari-
1). The next stages are instruction decode and register reus pipe-stage functions in the reverse order of their occur-
name (clock domain 2). There are three issue queues in tFence in the pipeline. However, to simulate a multiple-clock

Table 3. Microarchitecture details of our processor
models
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Figure 3. Pipeline of the simulated architecture

system where the different clocks have entirely independehtence, processing the event queue for running the simula-
frequency and phase, we need a more detailed simulation itien is easy; we only need to read successive events from the
frastructure. head of the queue and execute them by calling the appropriate
We have written a general-purpose event-driven simulatioexecution functions. To simulate clocked systems, we need to
engine which can be used to simulate any asynchronous syssert one event for each clock domain; for each such event,
tem, synchronous (clocked) system, or a system which come need to specify a time period. When the execution engine
tains both asynchronous and synchronous components. Tcesses such a periodic event, it schedules another instance
guts of this event-driven simulation engine consist of an evertf the same event into the queue, thus representing the next
gueue and a global timer. The event queue is implemented agcle of execution of the clocked system.
a singly linked list in C. Each node of the queue contains the Figure 4 (a) shows an example of a system with three clock

following fields: domains, each of which has a different clock frequency. To
. simulate this system, we need to add three starting events into
e afunction to call at each occurrence of the event; the event queue, all of which are periodic, to represent the

. - three clock domains. Figure 4 (b) shows the C code which
e a parameter to call the function with;
models the system.
e atime at which the eventis scheduled to occur;
o . ~ 4.3 Performance and Power Models
e a priority number to determine the order of execution
of events which are scheduled occur at the same time 14, gyajuate the above architecture, we wrote models of

instant; both the synchronous and the GALS processors using the
« for periodic events, a time period of repetition (for sim-Simplescalar toolset [16]. Simplescalar provides a compre-

ulation of clocked systems), and hensive' infrastructure for mod'eling and simulation of mi-
croarchitecture features. To simulate the GALS processor,
e a pointer to the next queue item. we made use of the event-driven simulation engine described

. . . earlier in section 4.2. We have set up five clock domains in
To set the system in motion, we need to insert one asur simulator and in the first set of experiments, had all the

more starting events into the event queue. The queue contailgcks running at the same speed. The starting phase of each
events sorted in increasing order of their scheduled timegjock was set to a random value at runtime.



Clock 1 Clock 2
T=2ns T=3ns

Clock 3
T=25ns

ook [ | [ L | ]

clock 2 ‘ ‘ ‘ ‘ ‘

clock 3 ‘ ‘ ‘ ‘ ‘

time (ns) —

(a)

init_event_queue ();
add_event (/* start time */ 0.5,
[* function */ &clockl_logic,
[* param * NULL,
[* period */ 2.0);
add_event (/* start time */ 1.0,
[* function */ &clock2_logic,
[* param * NULL,
[* period */ 3.0);
add_event (/* start time */ 0.0,
[* function */ &clock3_logic,
[* param * NULL,
[* period */ 2.5);
process_event_queue ();

(b)

Figure 4. Event-driven GALS system simulation.
(a) An example system. (b) C code for simulating

this system.

base processor model, we assumed a clock distribution hi-
erarchy resembling that of the 21264 Alpha processor. We
modeled one global clock grid and five local clock grids cor-
responding to the five clock domains discussed in section 3.1.
The areas and metal densities of each clock grid were approx-
imated by the numbers published for the 21264 processor. For
the GALS processor, since there is no global clock, we elim-
inated the switching capacitance of the global clock grid and
retained the five major clock grids, corresponding to the dis-
tribution networks for each of the synchronous blocks.

5 Experimental Results

To assess the performance and power of our proposed
GALS processor design, we tested the base and the GALS
simulators with a set of benchmarks taken from the Spec95
[18] and the Mediabench [19] benchmark suites. We have
performed two sets of experiments:

1. Base versus GALS performance and power analysis with
all synchronous blocks running at the same clock fre-
guency and supply voltage.

2. Base versus a multiple-clock, multiple-voltage GALS
design.

5.1 Power and Performance Analysis

Performance

Not surprisingly, the GALS processor is slowed down by
asynchronous communication and does not perform as well
as the synchronous processor. Figure 5 shows the relative
slowdown of various benchmarks running on the GALS pro-
cessor when compared to the synchronous processor. On an
average, the benchmarks we ran on GALS were slower by
10% when compared to base. As expectedfpipgpbench-
mark had the lowest performance hit. This is due to the ap-
plication’s exceptionally small proportion of branch instruc-
tions; on an average only one in every 67 instructions is a
branch in this benchmark, while most other applications have
one branch for every five to six instructions. This indicates
that the asynchronous FIFO models used in our design have

We used the Wattch framework [17] to add power modelgood throughput in the steady state when there are no branch

mispredictions. This also suggests that branch mispredic-

to our processor simulation. Wattch provides switching ca- - It
pacitance modeling for structures like ALUs, caches, arrayions Will prove more expensive in the GALS model due to

and buses in a processor. These are integrated into our b4Sd0Nger recovery pipeline.
and GALS simulators to provide energy statistics. To account Ve have also observed that the performance of the GALS
for overheads arising from clock-gating and leakage currentBrocessor varies with the relative phase of the various clocks,
we modeled unused modules as consuming 10% of their ffSPecially in the case where all the clocks are of the same
power. We also modeled power consumed by the FIFOs us#§duency. This variation is of the order of 0.5%.
for communication between domains. _ _

In addition to modeling the switching capacitance of memlnstruction Latencies

ories and buses inside the processor, we have also mode(§f] ¢jose examination of other statistics in the processor
the switching capacitance of clock grids. For the synchronomtﬁpe“ne’ we can see that the introduction of asynchronous
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Figure 8. Percentage of mis-speculated instructions

in the base and GALS processors

Figure 6. Average slip of an instruction in the base

and GALS designs



communication latencies inside the design has led to various 11

other overheads which in some cases offset the power gains . 1 ol [l

due to the absence of global clock. For instancestipgthe g 00

average time taken by each instruction from the fetch to the S o8

commit stage) increases by 65% on average for all bench- < . |

marks in the GALS processor, as seen in Figure 6. Thisis D o6

because the addition of asynchronous communication chan- g '

nels leads to an increase in the effective length of the pipeline. @ *°7 BEnery
Figure 7 shows the proportion of this slip time which is spent g 04l M Pover
in the FIFOs (marked “FIFO” in the graph) versus the pro- 2 27

portion of time spent in execution units, issue queues, etc. g 02

(marked “pipeline” in the graph). As we expect, the differ- X o1

ence in slip between the GALS and the base versions is due 0 -

in part to the time spent in the FIFOs. However, there is still § 5883 g £E%838 ‘% ‘é o)
an increase in the slip which cannot be accounted for by the B = % g £ g

time spent in FIFOs alone; this is caused by the latency in
forwarding results from one queue to another through FIFOs. _
Note that this delay is caused by the FIFO latency of forward- Figure 9. Energy and power consumption of the

ing results and not by the latency in the instruction flow. GALS processor normalized to those of the base
processor

Speculation

This increase in pipeline length in the GALS processor alsg 2 Multiple-Clock, Multiple-Voltage Processors
leads to higher speculative execution, as shown in Figure 8.

This is most marked for the integer applications we tested, |, 3 second set of experiments, we tried to determine
where the percentage of mis-speculated instructions goes Which parts of the processor could be slowed down in
from 13.8 percent in the base_ processor_to 1_6.7 percentin t_gﬁ application-dependent manner without affecting perfor-
GALS processor. Increase in speculation is less for applinance. The technique of multiple supply voltages described
cations containing many long-latency instructions. Similarly;y section 3.3 was used to determine an optimal supply volt-
we have observed that the average number of in-flight instruglge for lowest operating power, using equation 1 with a value
tions in the pipeline is higher in the GALS model; so is thegf ¢ — 1.6 which is appropriate for today’s 0.18n devices.

average occupancy of the register allocation tables and issttge yoltage thus determined is of course the ideal case; in

gueues. For instance the integer register allocation table OSractice, there will be an overhead due to DC-DC level con-
cupancy went up from 15 in base to 24 in GALS for tipeg  yersion circuits.

benchmark. Figure 11 shows the results of slowing down some clock
domains in a generic fashion; the fetch clock and memory
Power clock were slowed down by 10% and the floating point clock

was slowed by 50%. The energy and power benefits are

Figure 9 shows the relative total energy and average POWEE cent but performance losses are substantial (about 18%).

consumption of the GALS processor, normalized to the re :
. rom this graph, we see that we can apply clock slowdown
spective measures of the base processor. In most benchmark

the elimination of the global clock has resulted in some savcznﬁy ona selective basis, after studying the application’s char-
. : o acteristics.
ings in the per-cycle power dissipation. But due to the extra
switching activity inside the core, higher occupancies of the e perl: Since there are virtually no floating-point instruc-
issue queues and register allocation tables, increased specula- tions in this integer benchmark, we slowed down the FP
tion and higher execution times, the total energy needed for clock by a factor of 3. The performance drop was 9%
execution is not necessarily lower, but is higher for the GALS  over the base version; the total energy was reduced by
processor in some cases. For the benchmarks we tested, this 10.8% and the average power by 18%.
increase in energy is 1% on average. . _ . .

Figure 10 shows the breakdown of the base and GALS ® 1IP€g: In this case, we have considered simultaneous
model power consumption into various macro blocks. From ~ Slowing down the fetch, floating point and memory
the figure, we can see that power gains arising from elimi- ~ €locks (domains 1, 4 and 5 in Figure 3 (b)). We chose

nation of the global clock are offset by the increased power (O Study the impact of slowing down the memory clock
consumption of other blocks. on the power and performanceiffeg since this bench-

mark has a very low proportion of memory accesses. In
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Figure 10. Breakdown of energy into various macro Figure 11. Results from selective slowdown applied
blocks on three benchmarks

all cases reported in Figure 12, the fetch clock has bedn trade off performance for energy in case of ¢oe bench-
slowed down by 10% and the FP clock by 20%, whilemark. Figure 12 shows that slowing down the memory clock
for the memory clock we have considered four cases: ndoes not lead to a good performance-energy tradeoff for the
slowdown (gals-00), slowdown of 10% (gals-10), 20%ijpeg benchmark. Hence the extent of the tradeoff we can
(gals-20) and 50% (gals-50). Figure 12 shows that wachieve by slowing down various clock domains is dictated
can trade off performance for energy savings for thidy the nature of the application.
benchmark. Energy savings vary between 4 and 13% Overall, our experimental evidence shows that naive
with a performance drop between 15 and 25% whefGALS implementations (with all clocks running at the same
compared to the fully synchronous processor. frequency) may not necessarily be very energy efficient as
. claimed previously. Instead, the increased flexibility of run-
e gcc: We chose this integer benchmark to apply a sloweping jocal clocks at different speeds (and thus different volt-
clock to the floating-point queue and units. Since the iN3ges) offers a viable solution for energy aware computing un-

struction bandwidth of this benchmark is also low, Weyer the increasing pressure of handling clock skew and distri-
slowed down the fetch unit by 10%. Figure 13 shows, tion issues.

the results for performance, power and energy, hormal-
ized to the base case. The numbers marked “gals-1" ar. .
from the case where the floating-point clock is slower bﬁe Conclusion
50% and the numbers marked “gals-2" are from the case
where it slower by a factor of 3. The graph shows that Our modeling and simulation setup has given direct com-
gcccan afford to have a slower floating point unit with- parisons of power and performance of GALS systems against
out too much performance hit. Given scaleable voltag#10se of synchronous systems. Our experimental evidence
supplies, this technique also provides energy savings §hows that the overhead associated with GALS processors
11% and power Savings of 21% with a performance |osganders them inefficient; hence eIiminating the global clock
of 13% when Compared to the fu||y Synchronous proce§S not in itself a solution for low power. However, com-
Sor. bined with intelligent fine-tuning of clock frequency and sup-
ply voltage, GALS systems can provide some power benefits.
To compare the capability of the GALS processor to trad€locking smaller areas will mean smaller skew values and
off power for performance, we have also provided the notence faster clocks; we have not modeled such effects in this
malized energy of the base (synchronous) processor when rnmork because skew estimates require extensive physical de-
at a slower clock (and lower voltage) that would exhibit arsign. Besides, having independent clock domains eliminates
equivalent performance penalty (the column labeled “idealthe need for balanced pipelines and could provide more av-
in Figures 12 and 13). It can be seen that by slowing dowanues for fine-tuning performance.
the floating-point clock domain, the GALS processor is able Since clock distribution issues may necessitate the prac-
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slowdown (gcc benchmark)

tice of GALS design in the future, studies on performancel® K.Y.YunandA. E. Dooply, “Pausible Clocking-Based Hetero-
enhancementin GALS systems are worthwhile. Further stud-

ies in this direction could involve latency-hiding techniques
like multithreaded execution in hardware. [
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