
TECHNIQUES DEPARTMENT
Editor's Note:

A revised summary of the material in the A.C.M. library is being printed to encourage fu r the r con-
tributions of missing material.

As the translation of the Russian paper appearing in this section does not give any easy clues a b o u t
its subject material or intent, a brief description is attempted here. I t is nice to see that Engl ish-speaking
peoples are not the only experts at obfuscation.

This paper deals with the production of 3-address machine language instructions (for t he B E S M
computer) from algebraic statements of the type found in For~an, Unicode and other languages. As-
sembly program characteristics are included. An algorithm is given for creating rough machine l a n g u a g e
instructions in pseudo-form and then operating upon these to alter them to the most efficient form. F o r
at least the domain of a single formula, a check is made for duplicate strings of any length.

The most pertinent point is that the algorithm itself operates more efficiently than their p rev ious
methods. Thus the processor takes an amount of time to produce an efficient object program w h i c h is
linearly proportional to the number of instructions in the program, NOT to the square of the n u m b e r
as previously. Obviously, when the interaction of instructions over the entire program is cons idered
(as in the Fortran processor) or when the formulae are exceptionally long, this method becomes m o r e
valuable as the programs grow larger.

O N P R O G R A M M I N G O F A R I T H M E T I C O P E R A T I O N S

A. P. ERSROV
Doklady, AN USSR, vol. 118, No, 3, 1958, pp. 427430

Translated by MORRIS D. FRIEDMAN, Lincoln Laboratory*

The concepts used without explanation are taken from [1].
1 °. Programming algorithms of arithmetic operations (AO) consist of three parts.
The first part A1 successively generates the commands of the AO program.
The second part A2

denotes the result of
pression. Identificati
operation so that simila

The third part A3
results, by a code of ol~
and A3 are proposed]

2 ° . Assumptions an(
address computer. The
each of which is realizec
the operation code nor
commands in the form

where O i~
denotes the
concluding (
A Block of 1
in which are

http://crossmark.crossref.org/dialog/?doi=10.1145%2F368892.368907&domain=pdf&date_stamp=1958-08-01

Commands (BRC) is a group of registers in which are located all the resultant AO commands in suc-
cession. A conventional number of the first kind means a quantity or constant in the formula. A con-
ventional number of the second kind is an intermediate result in the calculation of the formula. It is
generated by the algorithm A2 and equals the address of the non-resultant command in the BPO for
each such command. A BPO scale is a group of consecutively located registers of the memory with
continuous enumeration of the digits, with which the s-th digit of the BPO scale corresponds to the
L-t-s register of the BPO. The scale of the CN of the first kind has a similar apparatus. A Block of
Operating Registers (BOR) is a group of registers with the addresses r - ~ l , . . . , r+m, where r + l ,
r + m are codes of the operating registers. A Block of Preparatory Programs (BPP) is a group of registers
in which a preparatory AO program will be placed. The symbol (T) denotes the content of the
register T.

3 °. In existing command economy methods, the total time of operation of the A2 algorithm is pro.
portional to the square of the number of commands in the AO program.

Shown on figure I is a diagram of the A2 algorithm which permits the realization of command economy
within a time proportional to the number of commands in the AO program. The basis of the algorithm
proposed is the assumption that there exists a certain integer function F = F(O,a,b) (L + i < F < L÷n)
defined for any AO command

a [b [c I a I O [

Operation of algorithm A2 is started after construction of the next AO command K by the A1
algorithm (for simplicity, an A2 algorithm is described which does not produce economy of the resultant
commands).

Operation I investigates whether the command K is the resultant (if not, do operation 2).
Operation 2 calculates F(O,a,b) for the command K and directs the result into the register S. It is

evident that L + i ~ S < L+n. Let S = L~-p.
Operation 3 verifies whether (L+p) equals zero (if not, do operation 4).
Operation 4 verifies whether the operation codes, the first two addresses and the digit a agree for the

K and (L+p) commands (if yes, output I).
Operation 5 increases p by one if p < n and puts L--t-1 into the register S if p = n.
Operations 6-8 perform if the command K is not economized.
Operation 6 investigates the CN from the address part of the command K. If a CN of the first

kind is among them, ones are put in the appropriate digits of the scale of the CN of the first kind and
in the p-th digit of the BPO scale (zeroes are in all the digits of both scales before the start of the A0
programming).

Operation-7 calculates certain quantities needed for the operation of the A3 algorithm for the com-
mand K (see 5?).

Operation 8 directs the command K into the L + p register.
Operation 9 performs if K is a resultant command (c ~ 0). If a one is in the digit of the scale of the

CN of the first kind corresponding to the CN c, then BPO commands containing a CN of the first
15nd are scanned by using the BPO scale. Commands containing the CN c are marked by ones in the

digit. Consequently, none of the commands containing the CN c in the address part and having
bee rE constructed after K will coincide with any of the commands constructed before K during the
execution of operation 4. Then K is transmitted to the next free BRC register.

The A2 diagram has two outputs I and II. A CN of the second kind which denotes the result
of a constructed nonresultant command is obtained in the register S at the output I. The output II
corresponds to a resultant command.

4 % The duration of the execution of A2 is determined by the number of repetitions of operations
3-5. This number depends on the distribution of the values of F(0,a,b) in the strip [L--t-l, L--t-n]. [Let

gram and of the quantity of registers n in the BPO [~ = ~n (k)]. A derivation of analytic estimates
appears to be difficult and the values of ,I,, (k) were computed by the Monte Carlo method. Presented

k2 on figure 2 are the curves of log10 ~.(k) obtained for n = 150 (50) 450. CurveS of log10 k and logs0
are given for comparison. I t follows from an analysis of the results obtained that, in practice, not more
than one execution of the 3-5 operations will occur in each AO command if the BPO exceeds the number
of commands in the AO by not less than one and one-half times for all n.

The simplicity of the calculation and the sufficiently uniform distribution of the values is the unique
criterion limiting the choice of F(O,a,b). I t is expedient to use the methods of producing uniformly
distributed pseudo-random numbers for the actual construction of F(O,a,b). An investigation of the
statistical structure of the formulas of the AO to be programmed is of great value in the successful choice
of F(O,a,b).

5 ° . There are definite relations in the order of the performance of the operations entering into the
AO formula. These relations are given by a rule that the components are calculated, at the beginning,
for the components of the formula and then the operation itself is calculated. Consequently, the formula
can be considered as a semi-ordered set of the operations therein. Ordering of the operations, caused
by the successive location of the command in the program, occurs in the construction of the program ~d ~
calculate the formula, consequently, the problem of programming the formula can be formulated as a
problem in ordering the operations of the formula by retaining a given semi-order. I t is evident that the
quantity of OR required to calculate the formula depends on the method of ordering its operations:
For example, in order to calculate the formula

ab + (cd ef(gh + i j (k / - - mn))) --~ y

seven OR are needed to perform the action from left to right while only two OR are needed if the
calculation is started with the innermost parenthesis. In this connection, the problem arises of finding
such an admissible ordering of the operations of the formula for which the minimum quantity of OR
would be required for its calculation.

The problem posed is solved partially by using the algorithm A3 of the ordering of the operations Of
the formula whose diagram is presented on figure 3. Calculation of the operation 7 of the A2 :algorithm
for each nonresultant command K of two integer functions whose values are put. in the third address,
of the command before it is transmitted to t he BPO is preparatory t o t h e operation of A3. The,f i rs t
function, a function of the order P(K), is given by an inductive definition: •

A) If the command K does not contain a CN of the second kind, then P(K) .= 1. _ :~
Bi) If a CN of the second kind, denoting the result of the command K1 is an address of the com-

mand K, then P (K) = P(Ki).
B~) If CN of the second kind, denoting the result of the commands K1 and Ks, are in the first and

second addresses of the command K, then

P(K)

The second function, the entry counter, is
to the BPO, its ent ry counter equals 0.
result of the command K, is then transmit
of the command K.

The algorithm A3 starts to perform aftel
The operation 1 transmits the next AO

last register of the BRC. Let the command K b e i n R.
Operation 2 replac

L + s enters into K,
transmitted to the fi~
r--t-i, which indicate~,

dress dur ing the processing of one of the preceding AO commands, 1 is subtracted from the entry counter
of t he c o m m a n d K' in r+ i . The CN L + s in K is rep lacedbythe r + i OR code. If two CN
of the second kind L+s l and L+s~ enter into K, where the commands K1 and K~ are in the L+s~
and L + s 2 registers, that one of the commands K~, K2 is transmitted first into the BOR for which
the value of the order function is larger.

Opera t ion 3 transmits K to the next register of the BPP, starting with the last register.
Opera t ion 4, scanning from the end of the BOR, finds the first command with entry counter equal to

1. If such a command is not found in the BOR or if no commands are in the BOR, control is trans-
ferred to operat ion 6.

Opera t ion 5 transmits the command found from the r + j register into the R register, puts r + j into
the th i rd address of this command and then clears the r + j register.

Operat ion 6 transfers control to operation 1 if not all the commands are transmitted from the BRC.
T h e a lgor i thm described solves completely the problem of the most favorable ordering for an A0 for

which the en t ry count of each command is 1. This follows from the following two statements which are
val id unde r the above-mentioned limitations:

L In the interests of the minimum expenditure of operating registers for any binary operation, it is
first necessary to calculate those of its components for which the minimum number of OR required for
i ts calculat ion is larger.

2. T h e order function for each command equals the minimum quantity of OR required to calculate
t he expression in which the last operation is realized by the given command.

Moscow University June 27, 1957

A U T O M A T I C P R O G R A M M I N G S Y S T E M S

Dear Mr. Bemer,
T h e a t t ached note enumerates some corrections to my short paper in the May issue of the ACM Com-

munica t ions . The error necessitating these corrections was pointed out to me by John M. Brill in a
personal communication, and a copy of my reply to him is also enclosed for your information.

I would appreciate it if you would arrange for these corrections to appear in a forthcoming issue of
the Communicat ions .

Sincerely yours,
William H. Kautz
Stanford Research Institute

Correction to "Binary and Truth-Functional Operations on a Decimal
Computer with an Extract Command" by William H. Kautz

(ACM Communications I (5); 12-13 May 1958)

A n error in the description given of the extract command in the above paper has been pointed out.
Th is descr ipt ion should read:

~ . f'a if a is even
amp = ~a + b - 1 if a is odd~where a and b are single decimal digits

I n consequence, the inequivalence operation A4 (and the other operations, A6, A7, and A10, which
r epea t t he A4 equation) should be modified as follows:

A4. X ~ Y ~xE(I* -Y) + y E (I * - x)

Also, for no more than 9 variables, X ~ Y ~ Z ~ , . . ~ - (x + y + z + . , .) - (x + y + z + . . .) E 0 *

6

