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The problem of finding a longest common subse- 
quence of  two strings has been solved in quadratic time 
and space. An algorithm is presented which will solve 
this problem in quadratic time and in linear space. 
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Introduction 

The problem of  finding a longest common subse- 
quence of two strings has been solved in quadratic time 
and space [1, 3]. For  strings of  length 1,000 (assuming 
coefficients of  1 microsecond and 1 byte) the solution 
would require 106 microseconds (one second) and 106 
bytes (1000K bytes). The former is easily accommo- 
dated, the latter is not so easily obtainable. I f  the 
strings were of length 10,000, the problem might not be 
solvable in main memory  for lack of space. 

We present an algorithm which will solve this prob- 
lem in quadratic time and in linear space. For  example, 
assuming coefficients of  2 microseconds and 10 bytes, 
for strings of  length 1,000 we would require 2 seconds 
and 10K bytes; for strings of  length 10,000 we would 
require a little over 3 minutes and 100K bytes. 

String C = c~c2 . . . cp  is a subsequence  of  string 
Copyright © 1975, Association for Computing Machinery, Inc. 

General permission to republish, but not for profit, all or part 
of this material is granted provided that ACM's copyright notice 
is given and that reference is made to the publication, to its date 
of issue, and to the fact that reprinting privileges were granted 
by permission of the Association for Computing Machinery. 

Research work was supported in part by NSF grant GJ-30126 
and National Science Foundation Graduate Felolwship. Author's 
address: Department of Electrical Engineering, Princeton Uni- 
versity, Princeton, NJ 08540. 

A = axa2 . . . am if and only if there is a mapping F: 
{1, 2, . . . ,  p} ~ {1, 2, . . . ,  m} such that f( i)  = k only 
if c~ is ak and F is a monotone  strictly increasing func- 
tion (i.e. F(i)  = u, F ( j )  = v, and i < j imply that  
u < v ) .  

String C is a c o m m o n  subsequence  of  strings A and B 
if and only if C is a subsequence of  A and C is a subse- 
quence of B. 

The problem can be stated as follows: Given strings 
A = aia.2.. "am and B = bxb2 . . . bn  (over alphabet Z), 
find a string C = ClC2. . .cp such that C, is a common 
subsequence of A and B and p is maximized. 

We call C an example of  a m a x i m a l  c o m m o n  subse-  
quence.  

Nota t ion .  For  string D = dld2. • • dr, Dk t is dkdk+l. • • d, 
i f k  < t ; d k d k _ x . . . d ,  i f k  >__ t. When k > t, we shall 
write ]3kt so as to make clear that we are referring to a 
"reverse substring" of  D. 

L(i ,  j )  is the maximum length possible of  any com- 
mon subsequence of Ax~ and B~s. 

x[ lY is the concatenation of strings x and y. 
We present the algorithm described in [3], which 

takes quadratic time and space. 

Algorithm A 

Algorithm A accepts as input strings A~m and Bx. 
and produces as output  the matrix L (where the ele- 
ment L(i ,  j )  corresponds to our notation of maximum 
length possible of  any common subsequence of Axl and 
B. ) .  

ALGA (m, n, A, B, L) 
1. Initialization: L(i, 0) ~ 0 [i=0...m]; 

L(O,j) +-- 0 [j=0...n]; 
2. for i +-- 1 to m do 

begin 
3. for j ~- 1 to n do 

if A (i) = B(j) then L(i, j )  ~- L(i--  1, j - -  1) "k 1 
else L(i , j )  ~-- max{L(i, j--1),  L(i-- I , j)} 

end 

Proof  of  Correctness of  Algorithm A 
To find L(i ,  j ) ,  let a common subsequence of that  

length be denoted by S(i ,  j )  = ClC2. . .cp.  I f  al = bj, 
we can do no better than by taking cp = a~ and looking 
for c l . . . c p _ l  as a common subsequence of  length 
L(i ,  j)  -- 1 of  strings AI,~-1 and B1.i-x. Thus, in this 
case, L ( i , j )  = L ( i -  1 , j -  1) -+- 1. 

I f  ai ~ bs, then cp is ai, b;, or neither (but not both). 
I f  cp is a~, then a solution C to problem (A~, B~j) [writ- 
ten P(i,  j)]  will be a solution to P(i ,  j - 1) since bj is 
not used. Similarly, if cp is bi, then we can get a solu- 
tion to P(i ,  j )  by solving P ( i  - -  1, j ) .  I f  c~ is neither, 
then a solution to either P( i  - -  1,j)  or P ( i , j  - -  1) will 
suffice. In determining the length of the solution, it is 
seen that L(i ,  j )  [corresponding to P(i,  j)]  will be the 
maximum o f L ( i - -  1 , j )  and L ( i , j - -  1). [] 
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Time and Space Analys is  o f  Algorithm A 
The if statement in Algorithm A will be executed 

exactly mn times. Input and output arrays require 
m --}- n + (m + 1)(n + 1) locations. Thus Algorithm 
A requires O(mn) time and O(rnn) space. 

Algorithm B 

In Algorithm A, the derivation of row i of matrix L 
(L(i,  1), L(i, '2),  . . . ,  L(i, n)) requires only row i -- 1 
of  matrix L. Thus, a slight modification yields Algorithm 
B, which accepts as input strings Aim and B1, and pro- 
duces as output vector L L  where L L ( j )  will have the 
value L(m,  j ) .  

ALG B (m, n, A, B, LL) 
1. Initialization: K(1, j) *-- 0 [ j=0. . .n];  
2. for i*-- 1 to n do 

begin 
3. K(O,j) *- K(I, j) [j=0..-n]; 
4. for j *-- 1 to n do 

if A(i)  = B( j )  then K(1, j )  ,-- K(O, j - -  1) + 1 
else K(1, j )  ,-- max{K(1,  j - -  1), K(0, j)}; 

end 
5. LL(j) *-- K(1,j) [j=O...n] 

and using the theorem below, we shall be able to deter- 
mine a prefix B1 of B which can be matched with the 
first half A1 of A (and the corresponding suffix B2 of B 
matched with the last half As of A) such that a maximal 
common subsequence (mcs) of A1 and B1 concatenated 
with an mcs of .'12 and B2 will be an mcs of  A and B. 

Define M(i)  = max {L(i, j )  + L*(i, j)}. 
O<j<n 

THEOREM. For 0 < i < m, M( i )  = L(m,  n). 
PROOF. Let M(i)  = L(i,  j )  q- L*(i, j)  for some j. 

Let S(i, j )  be any maximal common subsequence of 
AI~ and Blj; let S*(i, j )  be any maximal common subse- 
quence of Ai+t.m and Bj+~,,. Then C = S ( i , j )  ]] S* ( i , j )  
is a common subsequence of Arm and B1, of  length 
M(i) .  Thus L(m,  n) >_ M( i ) .  

Let S(m,n)  be any maximal common subsequence 
of  Aim and B1,. S(m,n)  is a subsequence of B that is 
$1 (a subsequence of Axi) ll S~ (a subsequence of 
A~+t.m). Then there existsj  such that $1 is a subsequence 
of Bli and $2 is a subsequence of Bi+l.,. By definition of 
L and L*, 1S1[ _< L(i, j )  and IS=l _< L*(i, j ) .  Thus 
L(m,n) = IS(m, n)] -- 1811 + IS~l _< Z(i,j) + Z*(i,j) 
< M(i ) .  [] 

Proof  of  Correctness of  Algorithm B 
Algorithm B is Algorithm A with K(0, j) in state- 

ment 4 o f A L G  B having the same value as L( i  -- 1,j)  
in statement 3 of  A L G A  and K(1, j)  receiving the same 
value as L ( i , j ) .  We show this by induction on i. 

For  i = 1, L(i  -- 1,j) is zero (initialized in statement 
1 of  A L G A ) .  In ALG B, K(0, j) received in statement 3 
the value of  K(1, j ) ,  which was just initialized to zero 
in statement 1. 

Assume K(0, j)  has the same value as does L( i  -- 1,j) .  
Then K(1, j)  receives the same value as L(i, j )  since the 
assignment statements within the inner loops of ALG A 
and ALG B are equivalent. For  the next iteration, 
K(0, j)  receives (in statement 3 of ALG B) the value of 
K(1,j)  which has the value of L( i , j )  as shown above. [] 

Time and Space Analys is  o f  Algorithm B 
As in Algorithm A, the if statement in Algorithm B 

is executed exactly mn times. Input and output arrays 
require m + n + (n + 1) locations. Local storage 
requires 2(n -I- 1) locations. Thus Algorithm B requires 
O(mn) time and O(m + n) space. 

We shall show that using Algorithm B for appro- 
priate substrings of A and B will enable us to recover a 
maximal common subsequence of A and B in linear 
space. 

Define L*(i, j)  to be the maximum length of common 
subsequences of A~+1,m and Bi+l,,. 

We note that L(i, j )  j = 0 . . .  n are the maximum 
lengths of common subsequences of AI~ and various 
prefixes of B1,. We also note that L*(i, j )  j = 0 . . .  n 
are the maximum lengths of  common subsequences of  
/1,,,~+1 and various prefixes of/~,1. Choosing i to be m / 2  

Algorithm C 

We now apply the above theorem recursively to di- 
vide a given problem into two smaller problems until we 
obtain a trivial subproblem. 

Algorithm C accepts as input strings A and B (of 
lengths m and n) and produces as output  a common 
subsequence C of A and B that is of maximum length p. 

ALG C (m, n, A, B, C) 
1. If problem is trivial, solve it: 

if n = 0 then C ~-- e (e is the empty string) 
else if m = 1 then if 3 j < n  such that A(1) = B(j) 

then C ~ A(1) 
else C ~-- e 

2. Otherwise, split problem: 
else begin i ~-- Im/2_J; 

3. Evaluate L(i,j) and L*(i,j) [j = 0...n]: 
ALG B (i, n, Ali, BI,, L1); 
ALG B (m-i ,  n, .~,,I+~,B,1, L2); 

4. Findj such that L(i,j) + L*(i,j) = L(m, n) using theorem: 
M ~ max {LI(j) -t- L2(n--j)}; 

0 < i < n  

k ~ minj such that LI(j) + L2(n-j) = M; 
5. Solve simpler problems: 

ALG C (i, k, A~, B~k, CI); 
ALG C (m-i ,  n--k, Ai+l.m, Bk+i.,, C2); 

6. Give output: 
C ~ C1 II C2; 
end 

Proof  of  Correctness of  Algorithm C 
L1 (j) produced by the first call to ALG B in line 3 is 

equal to L(i, j ) .  This was shown in the proof  of correct- 
ness of Algorithm B. Similarly, L2(j) is equal to the 
maximum length of common subsequences (max lcs) 
of,4m.i+l and B,.,-j+I by the proof  of correctness of 
Algorithm B. 
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Thus 

L2(n -- j) = max lcs o f  A,,,i+x and B,.i+l, 
= max Ics o f  Ai+a.,, and Bj+~.n, 
= L*( i ,  j ) .  

By our  theorem, we can find k (as in line 4) such 
that  L(i, k) -q- L*(i, k) = L(m, n). So there must  exist 
solutions C1 and C2 to the subproblems (Ali, B~k) and 
(Ai+x.m, Bk+~.n) such that  C1 II C2 will be a c o m m o n  
subsequence o f  A and B of  length L(m, n). The solu- 
tions to the subproblems are obtained in line 5 and are 
added together in line 6 to obtain the final output .  [] 

Algor i thm C can be modified to find the edit dis- 
tance between two strings (as defined in [3]). In  this 
case we would seek to minimize D(m, n), the cost  o f  a 
trace f rom Alra t o  Bin. The corresponding  statement  o f  
our  theorem would be:  for all i, 

D(m, n) = min {D(i, j)  -q- D*(i, j)}. 
0< j<n  

The modified Algor i thm C would split problems in hal f  
by the above theorem, using a modified Algor i thm B to 
evaluate D(i, j) and D*(i, j),  and call itself recursively. 
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Time Analysis of Algorithm C 
For  P(1, n) we look for a single match.  For  some 

constants  cl and c2 this is t ime-bounded by o ' n  -k- c~. 
For  P(2m,n), let operat ions  on vectors that  are 

linear in m or n be t ime-bounded by ca. m q- c4. n -q- c5. 
That  leaves two calls to A L G  B and two calls to A L G  C. 
The calls to A L G  B are bounded  by c8. mn by time analy- 
sis o f  A L G  B. Assume P(m, n) is t ime-bounded by 
dl.mn + d2 (dl >_ o, d2 >__ c2). Then the calls to A L G  C 
will be t ime-bounded  by d~.rnk + d.2 and dl.m(n - k) 
q- d2. Thus  a total  t ime-bound  T for P(2m,n) will be 

T = (dl q- c6)'mn + ca.m q- c4.n "-k c5 q- 2d~. 

F o r n > _  1, T < (dl + c6 + ca + c4 + c~ + d2)'mn + d2. 
For  n = 0, let T _< d.,. Then to be consistent with our  
assumpt ion on the t ime-bound of  P(m, n), we must  
have dx q- c6 q- ca q- c4 q- c5 q- d2 < 2d,, which is 
realizable by letting d~ = c6 q- ca q- c4 -q- c~ q- de. 

Thus  Algor i thm C has an O(mn) time bound.  
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Space Analysis of Algorithm C 
We assume that  vectors A and B are in c o m m o n  

storage and substrings can be transferred as arguments  
by giving initial and final locations. 

Then, during execution, the calls to A L G  B use 
t empora ry  storage which is linear in m and n (see space 
analysis of  Algor i thm B). It  is seen that, exclusive o f  
recursive calls to A L G  C, A L G  C uses a constant  
amoun t  of  memory  space. There are 2m - 1 calls to 
A L G  C (proven below), and so A L G  C requires 
m e m o r y  space propor t iona l  to m and n, i.e. O(m -t- n) 
space. 

Proof That There Are 2m - -  1 Calls to ALG C 
Let m _< 2 r. I f  r is zero, then m is one, and there are 

2.1 -- 1 = 1 call t o A L G C .  
Assume that  for m < 2 r = M there are 2m -- 1 

calls to A L G  C. Fo r  m'  _< 2 r+I = 2M, iw i l l  be set 
equal to at most  M in line 2. There will be two calls to  
A L G  C with first parameters  ml and rn2 such that  
rnl q-- rn2 = m'  and both  rn~ and rn2 are at most  M. 
By assumption,  each of  these calls will generate a total  
o f  2mi -- 1 calls to A L G  C. Adding  in the initial call 
results in a total  of: (2m~ -- 1) -I- (2m2 -- 1) q- 1 = 
2(m1 -q- m2) -- 1 = 2m' --  1 calls. [] 
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