
Programming G. Manacher
Techniques Editor

A Linear Space
Algorithm for
Computing Maximal
Common Subsequences
D.S . H i r s c h b e r g
P r i n c e t o n U n i v e r s i t y

The problem of finding a longest common subse-
quence of two strings has been solved in quadratic time
and space. An algorithm is presented which will solve
this problem in quadratic time and in linear space.

Key Words and Phrases: subsequence, longest
common subsequence, string correction, editing

CR Categories: 3.63, 3.73, 3.79, 4.22, 5.25

Introduction

The problem of finding a longest common subse-
quence of two strings has been solved in quadratic time
and space [1, 3]. For strings of length 1,000 (assuming
coefficients of 1 microsecond and 1 byte) the solution
would require 106 microseconds (one second) and 106
bytes (1000K bytes). The former is easily accommo-
dated, the latter is not so easily obtainable. I f the
strings were of length 10,000, the problem might not be
solvable in main memory for lack of space.

We present an algorithm which will solve this prob-
lem in quadratic time and in linear space. For example,
assuming coefficients of 2 microseconds and 10 bytes,
for strings of length 1,000 we would require 2 seconds
and 10K bytes; for strings of length 10,000 we would
require a little over 3 minutes and 100K bytes.

String C = c~c2 . . . cp is a subsequence of string
Copyright © 1975, Association for Computing Machinery, Inc.

General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Research work was supported in part by NSF grant GJ-30126
and National Science Foundation Graduate Felolwship. Author's
address: Department of Electrical Engineering, Princeton Uni-
versity, Princeton, NJ 08540.

A = axa2 . . . am if and only if there is a mapping F:
{1, 2, . . . , p} ~ {1, 2, . . . , m} such that f(i) = k only
if c~ is ak and F is a monotone strictly increasing func-
tion (i.e. F(i) = u, F (j) = v, and i < j imply that
u < v) .

String C is a c o m m o n subsequence of strings A and B
if and only if C is a subsequence of A and C is a subse-
quence of B.

The problem can be stated as follows: Given strings
A = aia.2.. "am and B = bxb2 . . . bn (over alphabet Z),
find a string C = ClC2. . .cp such that C, is a common
subsequence of A and B and p is maximized.

We call C an example of a m a x i m a l c o m m o n subse-
quence.

Nota t ion . For string D = dld2. • • dr, Dk t is dkdk+l. • • d,
i f k < t ; d k d k _ x . . . d , i f k >__ t. When k > t, we shall
write]3kt so as to make clear that we are referring to a
"reverse substring" of D.

L(i , j) is the maximum length possible of any com-
mon subsequence of Ax~ and B~s.

x[lY is the concatenation of strings x and y.
We present the algorithm described in [3], which

takes quadratic time and space.

Algorithm A

Algorithm A accepts as input strings A~m and Bx.
and produces as output the matrix L (where the ele-
ment L(i , j) corresponds to our notation of maximum
length possible of any common subsequence of Axl and
B.) .

ALGA (m, n, A, B, L)
1. Initialization: L(i, 0) ~ 0 [i=0...m];

L(O,j) +-- 0 [j=0...n];
2. for i +-- 1 to m do

begin
3. for j ~- 1 to n do

if A (i) = B(j) then L(i, j) ~- L(i-- 1, j - - 1) "k 1
else L(i , j) ~-- max{L(i, j--1), L(i-- I , j)}

end

Proof of Correctness of Algorithm A
To find L(i , j) , let a common subsequence of that

length be denoted by S(i , j) = ClC2. . .cp. I f al = bj,
we can do no better than by taking cp = a~ and looking
for c l . . . c p _ l as a common subsequence of length
L(i , j) -- 1 of strings AI,~-1 and B1.i-x. Thus, in this
case, L (i , j) = L (i - 1 , j - 1) -+- 1.

I f ai ~ bs, then cp is ai, b;, or neither (but not both).
I f cp is a~, then a solution C to problem (A~, B~j) [writ-
ten P(i, j)] will be a solution to P(i , j - 1) since bj is
not used. Similarly, if cp is bi, then we can get a solu-
tion to P(i , j) by solving P (i - - 1, j) . I f c~ is neither,
then a solution to either P(i - - 1,j) or P (i , j - - 1) will
suffice. In determining the length of the solution, it is
seen that L(i , j) [corresponding to P(i, j)] will be the
maximum o f L (i - - 1 , j) and L (i , j - - 1). []

341 Communications June 1975
of Volume 18
the ACM Number 6

http://crossmark.crossref.org/dialog/?doi=10.1145%2F360825.360861&domain=pdf&date_stamp=1975-06-01

Time and Space Analys is o f Algorithm A
The if statement in Algorithm A will be executed

exactly mn times. Input and output arrays require
m --}- n + (m + 1)(n + 1) locations. Thus Algorithm
A requires O(mn) time and O(rnn) space.

Algorithm B

In Algorithm A, the derivation of row i of matrix L
(L(i, 1), L(i, '2), . . . , L(i, n)) requires only row i -- 1
of matrix L. Thus, a slight modification yields Algorithm
B, which accepts as input strings Aim and B1, and pro-
duces as output vector L L where L L (j) will have the
value L(m, j) .

ALG B (m, n, A, B, LL)
1. Initialization: K(1, j) *-- 0 [j=0. . .n];
2. for i*-- 1 to n do

begin
3. K(O,j) *- K(I, j) [j=0..-n];
4. for j *-- 1 to n do

if A(i) = B(j) then K(1, j) ,-- K(O, j - - 1) + 1
else K(1, j) ,-- max{K(1, j - - 1), K(0, j)};

end
5. LL(j) *-- K(1,j) [j=O...n]

and using the theorem below, we shall be able to deter-
mine a prefix B1 of B which can be matched with the
first half A1 of A (and the corresponding suffix B2 of B
matched with the last half As of A) such that a maximal
common subsequence (mcs) of A1 and B1 concatenated
with an mcs of .'12 and B2 will be an mcs of A and B.

Define M(i) = max {L(i, j) + L*(i, j)}.
O<j<n

THEOREM. For 0 < i < m, M(i) = L(m, n).
PROOF. Let M(i) = L(i, j) q- L*(i, j) for some j.

Let S(i, j) be any maximal common subsequence of
AI~ and Blj; let S*(i, j) be any maximal common subse-
quence of Ai+t.m and Bj+~,,. Then C = S (i , j)]] S* (i , j)
is a common subsequence of Arm and B1, of length
M(i) . Thus L(m, n) >_ M(i) .

Let S(m,n) be any maximal common subsequence
of Aim and B1,. S(m,n) is a subsequence of B that is
$1 (a subsequence of Axi) ll S~ (a subsequence of
A~+t.m). Then there existsj such that $1 is a subsequence
of Bli and $2 is a subsequence of Bi+l.,. By definition of
L and L*, 1S1[_< L(i, j) and IS=l _< L*(i, j) . Thus
L(m,n) = IS(m, n)] -- 1811 + IS~l _< Z(i,j) + Z*(i,j)
< M(i) . []

Proof of Correctness of Algorithm B
Algorithm B is Algorithm A with K(0, j) in state-

ment 4 o f A L G B having the same value as L(i -- 1,j)
in statement 3 of A L G A and K(1, j) receiving the same
value as L (i , j) . We show this by induction on i.

For i = 1, L(i -- 1,j) is zero (initialized in statement
1 of A L G A) . In ALG B, K(0, j) received in statement 3
the value of K(1, j) , which was just initialized to zero
in statement 1.

Assume K(0, j) has the same value as does L(i -- 1,j) .
Then K(1, j) receives the same value as L(i, j) since the
assignment statements within the inner loops of ALG A
and ALG B are equivalent. For the next iteration,
K(0, j) receives (in statement 3 of ALG B) the value of
K(1,j) which has the value of L(i , j) as shown above. []

Time and Space Analys is o f Algorithm B
As in Algorithm A, the if statement in Algorithm B

is executed exactly mn times. Input and output arrays
require m + n + (n + 1) locations. Local storage
requires 2(n -I- 1) locations. Thus Algorithm B requires
O(mn) time and O(m + n) space.

We shall show that using Algorithm B for appro-
priate substrings of A and B will enable us to recover a
maximal common subsequence of A and B in linear
space.

Define L*(i, j) to be the maximum length of common
subsequences of A~+1,m and Bi+l,,.

We note that L(i, j) j = 0 . . . n are the maximum
lengths of common subsequences of AI~ and various
prefixes of B1,. We also note that L*(i, j) j = 0 . . . n
are the maximum lengths of common subsequences of
/1,,,~+1 and various prefixes of/~,1. Choosing i to be m / 2

Algorithm C

We now apply the above theorem recursively to di-
vide a given problem into two smaller problems until we
obtain a trivial subproblem.

Algorithm C accepts as input strings A and B (of
lengths m and n) and produces as output a common
subsequence C of A and B that is of maximum length p.

ALG C (m, n, A, B, C)
1. If problem is trivial, solve it:

if n = 0 then C ~-- e (e is the empty string)
else if m = 1 then if 3 j < n such that A(1) = B(j)

then C ~ A(1)
else C ~-- e

2. Otherwise, split problem:
else begin i ~-- Im/2_J;

3. Evaluate L(i,j) and L*(i,j) [j = 0...n]:
ALG B (i, n, Ali, BI,, L1);
ALG B (m-i , n, .~,,I+~,B,1, L2);

4. Findj such that L(i,j) + L*(i,j) = L(m, n) using theorem:
M ~ max {LI(j) -t- L2(n--j)};

0 < i < n

k ~ minj such that LI(j) + L2(n-j) = M;
5. Solve simpler problems:

ALG C (i, k, A~, B~k, CI);
ALG C (m-i , n--k, Ai+l.m, Bk+i.,, C2);

6. Give output:
C ~ C1 II C2;
end

Proof of Correctness of Algorithm C
L1 (j) produced by the first call to ALG B in line 3 is

equal to L(i, j) . This was shown in the proof of correct-
ness of Algorithm B. Similarly, L2(j) is equal to the
maximum length of common subsequences (max lcs)
of,4m.i+l and B,.,-j+I by the proof of correctness of
Algorithm B.

342 Communications June 1975
of Volume 18
the ACM Number 6

Thus

L2(n -- j) = max lcs o f A,,,i+x and B,.i+l,
= max Ics o f Ai+a.,, and Bj+~.n,
= L*(i , j) .

By our theorem, we can find k (as in line 4) such
that L(i, k) -q- L*(i, k) = L(m, n). So there must exist
solutions C1 and C2 to the subproblems (Ali, B~k) and
(Ai+x.m, Bk+~.n) such that C1 II C2 will be a c o m m o n
subsequence o f A and B of length L(m, n). The solu-
tions to the subproblems are obtained in line 5 and are
added together in line 6 to obtain the final output . []

Algor i thm C can be modified to find the edit dis-
tance between two strings (as defined in [3]). In this
case we would seek to minimize D(m, n), the cost o f a
trace f rom Alra t o Bin. The corresponding statement o f
our theorem would be: for all i,

D(m, n) = min {D(i, j) -q- D*(i, j)}.
0< j<n

The modified Algor i thm C would split problems in hal f
by the above theorem, using a modified Algor i thm B to
evaluate D(i, j) and D*(i, j), and call itself recursively.

Received May 1974; revised November 1974

Time Analysis of Algorithm C
For P(1, n) we look for a single match. For some

constants cl and c2 this is t ime-bounded by o ' n -k- c~.
For P(2m,n), let operat ions on vectors that are

linear in m or n be t ime-bounded by ca. m q- c4. n -q- c5.
That leaves two calls to A L G B and two calls to A L G C.
The calls to A L G B are bounded by c8. mn by time analy-
sis o f A L G B. Assume P(m, n) is t ime-bounded by
dl.mn + d2 (dl >_ o, d2 >__ c2). Then the calls to A L G C
will be t ime-bounded by d~.rnk + d.2 and dl.m(n - k)
q- d2. Thus a total t ime-bound T for P(2m,n) will be

T = (dl q- c6)'mn + ca.m q- c4.n "-k c5 q- 2d~.

F o r n > _ 1, T < (dl + c6 + ca + c4 + c~ + d2)'mn + d2.
For n = 0, let T _< d.,. Then to be consistent with our
assumpt ion on the t ime-bound of P(m, n), we must
have dx q- c6 q- ca q- c4 q- c5 q- d2 < 2d,, which is
realizable by letting d~ = c6 q- ca q- c4 -q- c~ q- de.

Thus Algor i thm C has an O(mn) time bound.

References
1. Chvatal, V., Klarner, D.A., and Knuth, D.E. Selected
combinatorial research problems. STAN.CS-72-292, Stanford U.,
(June 1972), 26.
2. Private communication from D. Knuth to J.D. Ullman.
3. Wagner, R.A., and Fischer, M.J. The string-to-string correc-
tion problem. J. ACM 21, 1 (Jan. 1974), 168-173.
4. Aho, A. V., Hirschberg, D.S., and Ullman, J.D. Bounds on
the complexity of the longest common subsequence problem.
Proc. 15th Ann. Symp. on Switching and Automata Theory,
1974, pp. 104-109.

Space Analysis of Algorithm C
We assume that vectors A and B are in c o m m o n

storage and substrings can be transferred as arguments
by giving initial and final locations.

Then, during execution, the calls to A L G B use
t empora ry storage which is linear in m and n (see space
analysis of Algor i thm B). It is seen that, exclusive o f
recursive calls to A L G C, A L G C uses a constant
amoun t of memory space. There are 2m - 1 calls to
A L G C (proven below), and so A L G C requires
m e m o r y space propor t iona l to m and n, i.e. O(m -t- n)
space.

Proof That There Are 2m - - 1 Calls to ALG C
Let m _< 2 r. I f r is zero, then m is one, and there are

2.1 -- 1 = 1 call t o A L G C .
Assume that for m < 2 r = M there are 2m -- 1

calls to A L G C. Fo r m' _< 2 r+I = 2M, iw i l l be set
equal to at most M in line 2. There will be two calls to
A L G C with first parameters ml and rn2 such that
rnl q-- rn2 = m' and both rn~ and rn2 are at most M.
By assumption, each of these calls will generate a total
o f 2mi -- 1 calls to A L G C. Adding in the initial call
results in a total of: (2m~ -- 1) -I- (2m2 -- 1) q- 1 =
2(m1 -q- m2) -- 1 = 2m' -- 1 calls. []

343 Communications June 1975
of Volume 18
the ACM Number 6

