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Feature extraction is an essential task in graph analytics. These feature vectors, called graph descriptors,
are used in downstream vector-space-based graph analysis models. This idea has proved fruitful in the past,
with spectral-based graph descriptors providing state-of-the-art classification accuracy. However, known
algorithms to compute meaningful descriptors do not scale to large graphs since: (1) they require storing
the entire graph in memory, and (2) the end-user has no control over the algorithm’s runtime. In this paper,
we present streaming algorithms to approximately compute three different graph descriptors capturing the
essential structure of graphs. Operating on edge streams allows us to avoid storing the entire graph in memory,
and controlling the sample size enables us to keep the runtime of our algorithms within desired bounds. We
demonstrate the efficacy of the proposed descriptors by analyzing the approximation error and classification
accuracy. Our scalable algorithms compute descriptors of graphs with millions of edges within minutes.
Moreover, these descriptors yield predictive accuracy comparable to the state-of-the-art methods but can be
computed using only 25% as much memory.
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1 INTRODUCTION
Graph analysis has a wide array of applications in various domains, from classifying chemicals based
on their carcinogenicity [23] to determining the community structure in a friendship network [53]
and even detecting discontinuities within instant messaging interactions [9]. The fundamental
building block for analysis is a pairwise similarity (or distance) measure between graphs. However,
efficient computation of such a measure is challenging: even the best-known solution for determin-
ing whether a pair of graphs are isomorphic has a quasi-polynomial runtime. Similarly, computing
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Graph Edit Distance [39], the minimum number of node/edge addition/deletions to interchange
between two graphs is NP-Hard.
A relatively pragmatic approach is constructing fixed dimensional descriptors (vector embed-

dings) for graphs, allowing classical data mining algorithms that operate on vector spaces. Existing
models using this approach can be categorized into (1) supervised models, which use deep learning
methods to construct vector embeddings based on optimizing a given objective function [24, 32, 52]
and (2) unsupervised models, which are based on graph-theoretic properties such as degree [18, 50],
the Laplacian eigenspectrum [25], or the distribution of a fixed number of subgraphs [3, 16, 37, 41–
43].

Unsupervised models construct general-purpose descriptors and do not require prior training
on datasets. This approach has yielded great success; for example, descriptors based on spectral
features (i.e., the graph’s Laplacian) provide excellent results on benchmark graph classification
datasets [48, 50]. The order (number of vertices) and size (number of edges) of the graph and the
number and nature of features computed directly determine the runtime and memory costs of the
methods. By computing more statistics, one can construct more expressive descriptors. However,
this approach does not scale well to real-world graphs due to their growing magnitudes [26].
Instead of storing and processing the entire graph, processing graphs as streams—one edge

at a time—is a viable approach for limited memory settings [4]. The features are approximated
from a representative sample of fixed size. This approach of trading-off accuracy for time and
space complexity has yielded promising results on various graph analysis tasks such as graphlet
counting [15], butterfly counting [38, 44], and triangle counting [45, 46]; despite storing a fraction
of edges, these models have produced unbiased estimates with reasonably low error rates. Based
on the success of these methods, our descriptors are designed to compute graph representations
from edge streams, allowing us to compute features without storing the entire graph. In contrast,
all existing descriptors and representation paradigms require storing the entire graph in memory.

This work is an extension of [22], wherein we proposed descriptors based on features obtained
from graph streams. These descriptors are inspired by two existing works, the Graphlet Ker-
nel [43] and NetSimile [9], which compute local graph statistics as features. In this paper, we
propose a new descriptor based on NetLSD [48] along with the proofs and experiments showcasing
the said descriptor’s correctness and efficacy. We perform experiments on new benchmark datasets
and provide data visualization of our proposed and NetLSD based embeddings using 𝑡-SNE.

Our contributions are summarized as follows:

• We propose simple graph descriptors that run on edge streams.
• We provide proofs to show how the features used in NetSimile [9] and NetLSD [48] can be
computed using subgraph counts.
• We restrict our algorithms’ time and space complexity to scale linearly (for a fixed budget)
in the order and size of the graph. We provide theoretical bounds on the time and space
complexity of our algorithms.
• Empirical evaluation on benchmark graph classification datasets demonstrates that our
descriptors are comparable to other state-of-the-art descriptors with respect to classification
accuracy. Moreover, our descriptors can scale to graphs with millions of nodes and edges
because we do not require storing the entire graph in memory.
• We perform data visualization to show the (global) distribution of data points in the proposed
and state-of-the-art (SOTA) descriptors. The visualization results show that the santa pre-
serves the data distribution better gabe and maeve and is comparable to the SOTA descriptor,
NetLSD.
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Fig. 1. This figure depicts the contrast between the typical approach for computing descriptors and our

proposed approach. The descriptor in this example represents a graph by the counts of select subgraphs. Note

how we tradeoff accuracy for memory consumption by keeping only a fraction of the graph in memory.

The remaining paper is organized as follows. We review some of the related work in Section 2
and give a formal problem description in Section 3. We provide detail of our descriptors in Section 4.
Section 5 contains the experimental evaluation detail, including dataset statistics, preprocessing,
hyperparameter values, and data visualization. In Section 6 we report the experimental results of
our method. Finally, we conclude the paper in Section 7.

2 RELATEDWORK
In this section, we review some closely related work on graph analysis. We discuss some dis-
tance/similar measures between graphs that are used in downstream machine learning algorithms.
We also provide an overview of the basic paradigms for graph representation learning.

2.1 Pairwise Proximity Measure between Graphs
A fundamental building block for analyzing large graphs is evaluating pairwise similarity/distance
between graphs. The direct approach to computing pairwise proximity considers the entire structure
of both graphs. A simple and best-known distance measure between graphs is the Graph Edit

Distance (ged) [39]. ged, like edit distance between sequences, counts the number of insertions,
deletions, and substitutions of vertices and/or edges that are needed to transform one graph
to the other. Runtimes of computing ged between two graphs are computationally prohibitive,
restricting its applicability to graphs of very small orders and sizes. Another distance measure is
based on permutations of vertices of one graph such that an error norm between the adjacency
matrices of two graphs is minimum. Computing this distance and even relaxation of this distance
is computationally expensive [7, 8]. When there is a valid bijection between vertices of the two
graphs, then a similar measure, DeltaCon [26], yields excellent results. However, requiring a valid
bijection limits the applicability of DeltaCon only to a collection of graphs on the same vertex set.

The representation learning approach for graph analysis maps graphs into a vector space. Vector
space machine learning algorithms are employed using a pairwise distance measure between the
vector representations of graphs. We discuss three broad approaches in this vein.
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2.2 Kernel-Based Machine Learning Methods
The kernel-based machine learning methods represent each non-vector data item to a high dimen-
sional vector. The feature vectors are based on counts (spectra) of all possible sub-structures of
some fixed magnitude in the data item. A kernel function is then defined, usually as the dot-product
of the pair of feature vectors. The pairwise kernel values between objects constitute a positive
semi-definite matrix and serve as a similarity measure in the machine learning algorithm (e.g.,
SVM and kernel PCA). Explicit construction of feature vectors is computationally costly due to
their large dimensionality. Therefore, in the so-called kernel trick, kernel values are directly evalu-
ated based on objects. Kernel methods have yielded great successes for a variety of data such as
images and sequences [10, 19, 27]. The most prominent graph kernels are the shortest-Path [11],
Graphlet [43], the Weisfeller-Lehman [42], and the hierarchical [25] kernels. The computational
and space complexity of the kernel matrix make kernel-based methods infeasible for large datasets
of massive graphs.

2.3 Deep Learning Based Methods
The deep learning approach to representation learning is to train a neural network for embedding
objects into Euclidean space. The goal here is to map ‘similar’ objects to ‘close-by’ points inR𝑑 . Deep
learning-based methods and domain-specific techniques have been successfully used for embedding
nodes in networks [13, 17, 21] and graphs [32, 52, 54, 55]. Vector-space-based machine learning
methods are then employed on these embeddings for data analysis. However, these approaches are
data-hungry and computationally prohibitive [40], hindering their scalability to graphs of large
orders and sizes.

2.4 Descriptor Computation Methods
The descriptor learning paradigm differs from kernel methods in that the dimensionality of the
feature vectors is much smaller than the kernel-based features. Unlike neural network-based models,
the features are explainable and hand-picked using domain-specific knowledge [6, 9]. One such
graph descriptor, NetSimile [9], represents a graph by a vector of aggregates of various vertex-level
features. It considers seven features for each vertex, such as degree, clustering coefficient, and
parameters of vertices’ neighbors and their “ego-networks,” and applies the aggregator functions,
such as median, mean, standard deviation, skewness, and kurtosis, across each feature. Stochastic
Graphlet Embedding [18] proposes a graph descriptor based on randomwalks over graphs to extract
graphlets (sub-structures) of increasing order. Similar to this sub-structural approach is the Higher
Order Structure Descriptor [3], which iteratively compresses graphlets within a graph to generate
“higher-order” graphs and constructs histograms of the graphlet counts in each graph. More recently,
feather was introduced as a descriptor that computes node-level feature vectors using a complex
characteristic function and aggregates these to construct graph embeddings [36]. There has been
a trend towards using graph spectra [1, 2, 47] to learn descriptors [48, 50]. These descriptors
are relatively computationally expensive but have excellent classification performance. An exact
method, Von Neumann Graph Entropy (VNGE) is proposed in [12, 14] for graph comparison. Being
an exact method, VNGE does not scale to large graphs. An approximate solution of NetLSD and
VNGE, called SLaQ [49], computes spectral distances between graphs with multi-billion nodes and
edges. Although computationally efficient, SLaQ keeps the entire graph in the memory during the
processing, making it costly in terms of space efficiency.

Most of the above approaches require multiple passes over the entire input graph. The resulting
space complexity renders them applicable only to graphs of small orders and sizes. On the other
hand, real-world graphs are dynamic and enormous in their magnitude. Algorithms that perform a
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single pass over the input stream and have lowmemory requirements [5] are best suited for modern-
day graphs. An algorithm that computes the output with provable approximation guarantees is
sufficient for the single-pass and sub-linear memory requirements. There have been few recent
algorithms for counting specific substructures in a streamed graph owing to the inherent difficulty
of the streaming model. These include approximately computing the number of triangles [46] in
graphs, induced subgraphs of order three and four [15] in graphs, and cycles of length four in
bipartite graphs [38].

3 PRELIMINARIES
In this section, we discuss the necessary prerequisites required to follow our work. We describe the
graph nomenclature, followed by the description of graph descriptors, streams, and constraints
imposed on our algorithm.

3.1 Graph Nomenclature
This section gives relevant notation and terminology for the rest of the paper, followed by a precise
formulation of our main problem. A description of the notations for common terms used in this
paper has been provided in Table 1. Notation tables specific to each descriptor have been provided
in their sections.
Let 𝐺 = (𝑉𝐺 , 𝐸𝐺 ) be an undirected graph, where 𝑉𝐺 is the set of vertices and 𝐸𝐺 is the set of

edges. We denote vertices of𝐺 by integers in the range [0, |𝑉𝐺 | − 1]. We refer to |𝑉𝐺 | and |𝐸𝐺 | as
the order and size of 𝐺 , respectively. In this paper, we only consider simple graphs (i.e., graphs
with no self-loops and multi-edges) and unweighted graphs. For a vertex 𝑣 ∈ 𝑉𝐺 , we denote
by 𝑁𝐺 (𝑣), the set of neighbors of 𝑣 , i.e., the set of vertices that are adjacent to 𝑣 . More formally,
𝑁𝐺 (𝑣) = {𝑢 : (𝑢, 𝑣) ∈ 𝐸𝐺 }. The degree of a vertex 𝑣 is denoted by 𝑑𝑣

𝐺
, i.e., 𝑑𝑣

𝐺
:= |𝑁𝐺 (𝑣) |. A pair

of vertices 𝑢, 𝑣 ∈ 𝑉𝐺 are said to be connected if there is a path between 𝑢 and 𝑣 , i.e., there exists
a sequence of vertices 𝑢 = 𝑣1, . . . , 𝑣𝑘 = 𝑣 , where for 1 ≤ 𝑖 ≤ 𝑘 − 1, (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸𝐺 . The length of a
path is the number of vertices in it. A graph is called connected iff all pairs of vertices in 𝑉𝐺 are
connected.

A graph𝐺 ′ = (𝑉𝐺′, 𝐸𝐺′) is called a subgraph of𝐺 = (𝑉𝐺 , 𝐸𝐺 ) if𝑉𝐺′ ⊆ 𝑉𝐺 and 𝐸𝐺′ ⊂ 𝐸𝐺 such that
edges in 𝐸𝐺′ are incident only on the vertices present in𝑉𝐺′ , i.e., 𝐸𝐺′ ⊆ {(𝑢, 𝑣) : (𝑢, 𝑣) ∈ 𝐸𝐺 ∧𝑢, 𝑣 ∈
𝑉𝐺′}. If all edges incident on vertices in 𝑉𝐺′ are in 𝐸𝐺′ (𝐸𝐺′ = {(𝑢, 𝑣) : (𝑢, 𝑣) ∈ 𝐸𝐺 ∧ 𝑢, 𝑣 ∈ 𝑉𝐺′}),
then 𝐺 ′ is called an induced subgraph of 𝐺 .

When vertices of a graph 𝐺1 can be relabelled in such a way that we get another graph 𝐺2, then
we say that 𝐺1 and 𝐺2 are isomorphic. In other words, 𝐺1 and 𝐺2 are isomorphic iff there exists a
bijection 𝜋 : 𝑉𝐺1 → 𝑉𝐺2 such that 𝐸𝐺2 = {(𝜋 (𝑢), 𝜋 (𝑣)) : (𝑢, 𝑣) ∈ 𝐸𝐺1 }. For a graph 𝐹 = (𝑉𝐹 , 𝐸𝐹 ), let
𝐻 𝐹
𝐺
(resp., 𝐻 𝐹

𝐺
) be the set of subgraphs (resp., induced subgraphs) of 𝐺 that are isomorphic to 𝐹 .

3.2 Graph Descriptors and Streams
A graph descriptor is a mapping from the family of all possible graphs (undirected, unweighted
and simple, in our case) to a set of 𝑑-dimensional real vectors. More formally, let G be the set
of all possible graphs. A descriptor 𝜑 is a function, 𝜑 : G → R𝑑 . The primary motivation for
using descriptors for graph analysis is to map graphs (possibly of varying sizes and orders) into
a fixed-dimensional vector space, independent of the representation of graphs [9, 48]. A direct
comparison of the number of certain subgraphs in two graphs of different orders and/or sizes is
not very meaningful, as larger graphs will naturally have more subgraphs. Moreover, descriptors
enable the application of vector-space-based machine learning algorithms for graph analysis tasks,
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Notation Description

𝐺, 𝐹,𝐺 ′ Common terms for graphs
𝑉𝐺 , 𝐸𝐺 Vertex and edge set for a graph 𝐺

𝑁𝐺 (𝑣), 𝑑𝑣𝐺 Neighborhood and degree of a vertex 𝑣 ∈ 𝑉𝐺
𝑆, 𝑒𝑡 A stream of edges, and the edge arriving at time-step 𝑡
𝐻 𝐹
𝐺

Set of subgraphs of 𝐺 isomorphic to 𝐹

𝐻 𝐹
𝐺

Set of induced subgraphs of 𝐺 isomorphic to 𝐹

𝑁 𝐹
𝐺

Estimate of |𝐻 𝐹
𝐺
|

𝑝𝐹𝑡 Probability of detecting 𝐹 in 𝐸𝐺 , at the 𝑡𝑡ℎ time-step
Table 1. Notation table for common terms used throughout the paper.

often using the ℓ2-distance (Euclidean distance) as the proximity measure. Our descriptors are
graph-theoretic and apply to graphs of varying magnitudes.

Let 𝑆 = 𝑒1, 𝑒2, . . . , 𝑒 |𝐸𝐺 | be a sequence of edges in a fixed order, i.e., 𝑒𝑡 = (𝑢𝑡 , 𝑣𝑡 ) is the 𝑡𝑡ℎ edge. We
assume an online setting wherein the input graph is modeled as a stream of edges, i.e., we assume
that elements of 𝑆 are input to the algorithm one at a time. The following constraints are imposed
on our algorithms:
C1 Constant Number of Passes: The algorithm must do processing in a constant number of

passes over the graph stream. Our algorithms require two passes at most.
C2 Limited Space: The algorithm can store at most 𝑏 edges during the execution. We refer to 𝑏

as the budget and 𝐸𝐺 as the sample.
C3 Linear Complexity: The time and space complexity of the algorithms must be linear in the

order and size of the graph, with fixed 𝑏.

3.3 Estimating Connected Subgraph Counts on Edge Streams
In this section, we formally define the subgraph estimation problem within our constraints and
describe the solution to this problem used throughout our proposed descriptors.

Problem 1 (Connected Subgraph Estimation on Edge Streams). Let 𝑆 be a stream of edges,

𝑒1, 𝑒2, . . . , 𝑒 |𝐸𝐺 | for some graph 𝐺 = (𝑉𝐺 , 𝐸𝐺 ). Let 𝐹 = (𝑉𝐹 , 𝐸𝐹 ) be a connected graph such that

|𝑉𝐹 | ≪ |𝑉𝐺 | (i.e. 𝐹 is significantly smaller than𝐺). Compute an estimate, 𝑁 𝐹
𝐺
, of |𝐻 𝐹

𝐺
| while storing at

most 𝑏 edges at any given instant.

The basic strategy for solving Problem 1 involves two things: (1) an algorithm that counts the
number of instances of a subgraph 𝐹 that an edge belongs to, and (2) a sampling scheme that allows
us to compute the probability of detecting an instance of 𝐹 in our sample, denoted by 𝑝𝐹𝑡 , at the
arrival of the 𝑡𝑡ℎ edge [15, 45, 46]. The basic streaming algorithm maintains a representative sample
of edges from the stream, and for each next edge 𝑒𝑡 , it estimates the number of subgraphs in the
sample containing the edge 𝑒𝑡 . This estimate is scaled according to the sample size. At the arrival
of 𝑒𝑡 , the estimate of |𝐻 𝐹

𝐺
| is incremented by 1/𝑝𝐹𝑡 for all instances of 𝐹 that 𝑒𝑡 belongs to in our

sample 𝐸𝐺 ∪ {𝑒𝑡 }. A pseudo-code is provided in Algorithm 1. This approach computes estimates
equal to |𝐻 𝐹

𝐺
| on expectation.

Theorem 1. Algorithm 1 provides unbiased estimates: E[𝑁 𝐹
𝐺
] = |𝐻 𝐹

𝐺
|.
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Proof. Let ℎ be a subgraph in 𝐻 𝐹
𝐺
. We define 𝑋ℎ as a random variable such that 𝑋ℎ = 1/𝑝𝐹𝑡 if ℎ is

detected at the arrival of 𝑒𝑡 , and 0 otherwise. Clearly, 𝑁 𝐹
𝐺
=
∑

ℎ∈𝐻𝐹
𝐺
𝑋ℎ , and E[𝑋ℎ] = (1/𝑝𝐹𝑡 ) ×𝑝𝐹𝑡 = 1.

Thus,

E
[
𝑁 𝐹
𝐺

]
= E

[ ∑︁
ℎ∈𝐻𝐹

𝐺

𝑋ℎ

]
=

∑︁
ℎ∈𝐻𝐹

𝐺

E [𝑋ℎ] =
∑︁
ℎ∈𝐻𝐹

𝐺

1 =
��𝐻 𝐹

𝐺

��
□

When 𝑒𝑡 arrives, the only subgraphs counted are the ones that 𝑒𝑡 belongs to. This ensures that no
subgraph is counted more than once. Due to its previous success in subgraph estimation [15, 45, 46],
we utilize reservoir sampling [51]. With reservoir sampling, the probability of detecting a subgraph
𝐹 at the arrival of 𝑒𝑡 is equal to the probability that 𝐹 ’s other |𝐸𝐹 | − 1 edges are present in the
sample after 𝑡 − 1 time-steps. Thus, we can write:

𝑝𝐹𝑡 = min
{
1,
|𝐸𝐹 |−2∏
𝑖=0

𝑏 − 𝑖
𝑡 − 1 − 𝑖

}
Algorithm 1 Compute-Estimate(𝑆, 𝐹, 𝑏)

1: 𝐸𝐺 ← ∅
2: 𝑁 𝐹

𝐺
← 0

3: for 𝑡 = 1 to |𝐸𝐺 | do
4: 𝐺 ′← (𝑉𝐺 , 𝐸𝐺 ∪ {𝑒𝑡 })
5: 𝑁 ← number of instances of 𝐹 in 𝐺 ′ that 𝑒𝑡 belongs to.
6: 𝑁 𝐹

𝐺
← 𝑁 𝐹

𝐺
+ 𝑁 × 1/𝑝𝐹

𝑡

7: Discard or store 𝑒𝑡 in 𝐸𝐺 , based on the sampling method and 𝑏
8: return 𝑁 𝐹

𝐺

To analyze the effect of the budget on our estimates, we derive an upper bound for the variance
of 𝑁 𝐹

𝐺
. Although loose, the bound shows that better estimates are obtained for any connected graph

𝐹 with increasing 𝑏.
Theorem 2. Let 𝑁 𝐹

𝐺
be the estimate of |𝐻 𝐹

𝐺
| obtained using Algorithm 1 with reservoir sampling.

Then,

Var[𝑁 𝐹
𝐺 ] ≤ |𝐻

𝐹
𝐺 |

2
|𝐸𝐹 |−2∏
𝑖=0

|𝐸𝐺 | − 𝑖
𝑏 − 𝑖

Proof. The theorem is true when 𝑏 ≥ |𝐸𝐺 | − 1. Thus, we focus on the case when 𝑏 < |𝐸𝐺 | − 1.
As in Theorem 1, we define 𝑋ℎ as a random variable such that 𝑋ℎ = 1/𝑝𝐹𝑡 if ℎ is detected at the
arrival of 𝑒𝑡 , and 0 otherwise. It is clear from the definition of 𝑝𝐹𝑡 that 𝑝𝐹𝑡 ≥ 𝑝𝐹𝑡+1 for all 𝑡 , and
thus 𝑝𝐹𝑡 ≥ 𝑝𝐹|𝐸𝐺 | . Hence, Var[𝑋ℎ] = E[𝑋 2

ℎ
] − E[𝑋ℎ]2 = 1/𝑝𝐹𝑡 − 1 ≤ 1/𝑝𝐹|𝐸𝐺 | . The Cauchy-Schwarz

inequality can be used to bound the total variance like so:

Var[𝑁 𝐹
𝐺 ] =

∑︁
ℎ∈𝐻𝐹

𝐺

∑︁
ℎ′∈𝐻𝐹

𝐺

Cov[𝑋ℎ, 𝑋ℎ′] ≤
∑︁
ℎ∈𝐻𝐹

𝐺

∑︁
ℎ′∈𝐻𝐹

𝐺

√︁
Var[𝑋ℎ]Var[𝑋ℎ′]

≤
∑︁
ℎ∈𝐻𝐹

𝐺

∑︁
ℎ′∈𝐻𝐹

𝐺

1
𝑝𝐹|𝐸𝐺 |

= |𝐻 𝐹
𝐺 |

2
|𝐸𝐹 |−2∏
𝑖=0

|𝐸𝐺 | − 1 − 𝑖
𝑏 − 𝑖
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□

As observed in [45], we note that this methodology can be used to estimate vertex counts (the
number of subgraphs that each vertex belongs to) as well. Moreover, Theorems 1 and 2 can also be
extended to vertex counts.

3.4 Improving EstimationQuality with Multiple Workers
Shin et al. proposed a model for triangle estimation which takes advantage of a master machine and
multiple worker machines that work in parallel. Each machine independently receives edge streams,
estimates triangle counts, then sends them to the master machine, which aggregates each machine’s
estimate [45]. They show that using𝑊 worker machines decreases the estimates’ variance by a
factor of 1/𝑊 . Thus, we use their approach to improve the quality of subgraph estimations used in
our descriptors.

4 GRAPH DESCRIPTORS
In this section, we describe three graph descriptors: Graphlet Amounts via Budgeted Estimates
(gabe), Moments of Attributes Estimated on Vertices Efficiently (maeve), and Spectral Attributes
for Networks via Taylor Approximation (santa). These are based on the Graphlet Kernel [43],
NetSimile [9], and NetLSD [48], respectively. For each descriptor, we describe its features and
how it can be computed using subgraph enumeration. We also analyze their algorithms to show
that constraints 𝐶1, 𝐶2, and 𝐶3 (from Section 3.2) are met. Each descriptor’s details have been
summarized in Table 2.

Name Summarized Description # Passes Time Complexity Space Complexity

gabe Normalized subgraph counts 1 𝑂 (𝑏 log𝑏 |𝐸𝐺 |) 𝑂 (𝑏 + |𝑉𝐺 |)
maeve Aggregated local features 1 𝑂 (𝑏 |𝐸𝐺 | + |𝑉𝐺 |) 𝑂 (𝑏 + |𝑉𝐺 |)
santa Functions on eigenspectrum 2 𝑂 (𝑏 log𝑏 |𝐸𝐺 |) 𝑂 (𝑏 + |𝑉𝐺 |)

Table 2. A summary of the proposed descriptors.

4.1 GABE: Graphlet Amounts via Budgeted Estimates
The first descriptor we propose is based on normalized subgraph counts. Subgraph counts have
been popular in graph classification literature (e.g., [3, 18, 41, 43]) and have been shown to provide
fruitful descriptors by capturing the prevalence of small local structures throughout a graph.

Let F𝑘 be the set of graphs with order 𝑘 . In their work on the Graphlet Kernel, Shervashidze et
al. [43] propose measuring the similarity between two graphs𝐺1 and𝐺2 by counting the number of
graphlets in F𝑘 and computing the inner product ⟨𝜙𝑘 (𝐺1), 𝜙𝑘 (𝐺2)⟩, where for a given 𝑘 and graphs
𝐹𝑖 ∈ F𝑘 :

𝜙𝑘 (𝐺) :=
1( |𝑉𝐺 |
𝑘

) [���𝐻 𝐹1
𝐺

��� · · · ���𝐻 𝐹 |F𝑘 |−1
𝐺

��� ���𝐻 𝐹 |F𝑘 |
𝐺

���]⊺
They compute the exact counts of all graphlets in F𝑘 for 𝑘 ∈ {3, 4, 5}. Unfortunately, their

algorithm uses adjacency matrices and adjacency lists, which take 𝑂 ( |𝑉𝐺 |2) and 𝑂 ( |𝑉𝐺 | + |𝐸𝐺 |)
space, respectively. Moreover, the time complexity is 𝑂 ( |𝑉𝐺 |𝑑𝑘−1), where 𝑑 = max𝑣∈𝑉𝐺 𝑑𝑣

𝐺
is the

maximum degree across all vertices in 𝐺 . Thus, their algorithm does not scale well to large graphs.
Although the authors introduce a sampling method to approximate 𝜙𝑘 (𝐺), it requires storing the
entire graph in memory and therefore does not meet our constraints.
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Notation Description

𝑘 Maximum order of a subgraph enumerated in 𝐺 by gabe
F Family of all graphs with at most four vertices
O Overlap matrix
H FG Vector of subgraph counts

Ĥ FG Vector of induced subgraph counts
Table 3. Notation table for Section 4.1.

We construct our descriptors by estimating subgraph counts and using linear combinations of
these counts to compute induced subgraph counts, similar to the methodology used by Chen et
al. [15]. The linear combinations are based on the overlap of graphs of the same order. Using this
approach, we estimate, for a given graph 𝐺 , 𝜙𝑘 (𝐺) for 𝑘 ∈ {2, 3, 4}. Each 𝜙𝑘 (𝐺) is concatenated
to construct our final descriptor. There are 17 graphs with ≤ 4 vertices, each shown in Figure 2.
Note that Chen et al. do not discuss the estimation of disconnected subgraphs. We discuss how we
compute these in the section to follow.

4.1.1 Induced Subgraph Counts. Let F = {𝐹1, 𝐹2, . . . , 𝐹17} be the set of all graphs with at most four
vertices. LetH F

𝐺
(resp., Ĥ F

𝐺
) be a |F |-dimensional vector where the 𝑖𝑡ℎ entry corresponds to |𝐻 𝐹𝑖

𝐺
|

(resp., |𝐻 𝐹𝑖
𝐺
|). Let O be an “overlap matrix.” O is an |F | × |F | matrix such that the element 𝑂 (𝑖, 𝑗)

corresponds to the number of subgraphs of 𝐹 𝑗 isomorphic to 𝐹𝑖 when 𝐹𝑖 and 𝐹 𝑗 have the same
number of vertices. The value is set to zero when the orders |𝑉𝐹𝑖 | and |𝑉𝐹 𝑗 | are not equal.
Observe that H F

𝐺
= OĤ F

𝐺
. This is because for a single subgraph 𝐹𝑖 ∈ F , the overlap matrix

counts the number of 𝐹𝑖 ’s induced in 𝐺 , and the number of 𝐹𝑖 ’s that occur in induced 𝐹 𝑗 ’s for each
𝐹 𝑗 ∈ F such that 𝐹𝑖 is a subgraph of 𝐹 𝑗 . Note that O is invertible since it is an upper triangular
matrix. Thus we can compute the vector of induced subgraphs using the formula Ĥ F

𝐺
= O−1H F

𝐺
.

Thus, our proposed approach is to compute 𝑁 𝐹𝑖
𝐺

using our estimation technique, and 𝑁
𝐹𝑖
𝐺

using the
overlap matrix, where 𝑁 𝐹𝑖

𝐺
(resp., 𝑁 𝐹𝑖

𝐺
) is the estimate of |𝐻 𝐹𝑖

𝐺
| (resp., |𝐻 𝐹𝑖

𝐺
|).

The estimated counts of each subgraph are computed as follows:
(1) Connected Subgraphs. The graphs 𝐹6, 𝐹13, . . . , 𝐹17 are computed as described in Section 3.3;

edge-centric algorithms were written to enumerate over all instances in the sample 𝐸𝐺 ∪ {𝑒𝑡 }
and increment the estimates as described earlier. The counts of the star graphs, 𝐹5 and 𝐹12,
are computed using the degrees of each vertex and the formulas written in Table 4. 𝐹2 is
simply equal to the number of edges in 𝐺 .

(2) Disconnected Subgraphs. Combinatorial formulas based on the estimates of connected sub-
graphs, |𝐸𝐺 |, and |𝑉𝐺 |. Note that the size of 𝐺 can be computed by keeping track of the
number of edges received, and the order can be computed by tracking the maximum vertex
label, on account of each vertex being labeled in the range [0, |𝑉𝐺 | − 1].

4.1.2 Time and Space Complexity. Let 𝐺 ′ denote the graph represented by 𝐸𝐺 ∪ {𝑒𝑡 }. We assume
that𝐺 ′ is stored as an adjacency list, where the list of neighbors for each vertex is stored in a sorted,
tree-like structure. Thus, determining if two vertices are adjacent takes 𝑂 (log𝑏) time.

The diameter of each connected graph in F is 2. Thus, for an edge 𝑒𝑡 = (𝑢𝑡 , 𝑣𝑡 ), only vertices at
most two hops away from 𝑢𝑡 or 𝑣𝑡 need to be visited. At most, three adjacency checks are needed
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1 1

1 1 1 1
1 2 3
1 3
1
1 1 1 1 1 1 1 1 1 1 1
1 2 2 3 3 3 4 4 5 6
1 3 3 2 5 4 8 12
1 1 1 2 2 3
1 1 2 4
1 1 2 4
1 2 4 6 12
1 4 12
1 1 3
1 6
1

1

Fig. 2. All graphs on at most four vertices, and O, the overlap matrix. Zeros are omitted.

Graph Formula Graph Formula Graph Formula( |𝑉𝐺 |
2
) ( |𝑉𝐺 |

3
) ( |𝑉𝐺 |

4
)

|𝐸𝐺 | |𝐸𝐺 | ( |𝑉𝐺 | − 2) |𝐸𝐺 |
( |𝑉𝐺 |−2

2
)( |𝐸𝐺 |

2
)
− |𝐻 𝐹5

𝐺
| ∑

𝑣∈𝑉𝐺
(𝑑𝑣

𝐺

2
) ∑

𝑣∈𝑉𝐺
(𝑑𝑣

𝐺

3
)

|𝐻 𝐹5
𝐺
| ( |𝑉𝐺 | − 3) |𝐻 𝐹6

𝐺
| ( |𝑉𝐺 | − 3) - -

Table 4. Graphs and their corresponding subgraph count formulas.

to discover each connected graph. Hence, for a single edge, 2
(∑

𝑤∈𝑁𝐺′ (𝑢𝑡 ) 𝑑
𝑤
𝐺′ +

∑
𝑤∈𝑁𝐺′ (𝑣𝑡 ) 𝑑

𝑤
𝐺′

)
×

3 log𝑏 = 𝑂 (𝑏 log𝑏) time is taken to process one edge. Thus, checking the entire graph takes
𝑂 (𝑏 log𝑏 |𝐸𝐺 |) time. 𝑂 ( |𝑉𝐺 |) integers are stored to keep track of the degrees of each 𝑣 ∈ 𝑉𝐺 . Since
each value can be accessed in 𝑂 (1) time, the counts for 𝐹5 and 𝐹12 can be updated each time an
edge arrives in 𝑂 (1) time as well.
It takes 𝑂 (1) time to compute the remaining estimates. Thus, the total runtime is 𝑂 (𝑏 log𝑏 |𝐸 |).

Storing the adjacency list and degree array takes 𝑂 (𝑏 + |𝑉𝐺 |) space.

4.1.3 Effect of Increasing 𝑘 . This method may be extended to further 𝑘 to create richer descriptors.
This would require implementing algorithms to find connected components on 𝑘 vertices, deducing
formulas to count the disconnected components, and constructing the overlap matrix to find the
induced counts. However, obtaining counts for all subgraphs on 𝑘 vertices requires finding 𝑘-cliques,
which have

(
𝑘
2
)
edges. The probability of detecting larger cliques in the stream will decrease with

increasing 𝑘 . Thus, increasing too much larger 𝑘 is likely to be unfeasible.

4.2 MAEVE: Moments of Attributes Estimated on Vertices Efficiently
NetSimile [9] proposed extracting local features for each vertex and aggregating them by taking
various moments over their distribution. The features chosen by the authors are based on four
social theories that allowed them to encompass the connectivity, transitivity, and reciprocity among
the vertices and the control of information flow across graphs.
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Similarly, we extract a subset of those features—chosen because they require at most one pass
of the edge stream, listed in Table 6. As in NetSimile, the mean, standard deviation, skewness,
and kurtosis for each feature are computed over the vertices. The only moment used in NetSimile
ignored in our work is the median, left out to ensure that only one pass is needed over the vertices’
features.

4.2.1 Extracting Vertex Features. For a graph 𝐺 , and a vertex 𝑣 ∈ 𝑉𝐺 , 𝐼𝐺 (𝑣) (see Table 5 for
description) is defined as the induced subgraph of𝐺 formed by {𝑣}∪𝑁𝐺 (𝑣), i.e.,𝑉𝐼𝐺 (𝑣) = 𝑁𝐺 (𝑣)∪{𝑣}
and 𝐸𝐼𝐺 (𝑣) = {(𝑢, 𝑣) |𝑢, 𝑣 ∈ 𝑉𝐼𝐺 (𝑣) ∧ (𝑢, 𝑣) ∈ 𝐸𝐺 }. Note that 𝐼𝐺 (𝑣) is also referred to as the “egonet”
of 𝑣 . We define 𝑇𝐺 (𝑣) and 𝑃𝐺 (𝑣) as the set of triangles that 𝑣 belongs to and the set of three-paths
(paths on three vertices) where 𝑣 is an end-point, respectively. In Theorem 3 (described below),
we show that each feature described in Table 6 can be calculated using values for 𝑑𝑣

𝐺
, |𝑇𝐺 (𝑣) |,

and |𝑃𝐺 (𝑣) |. Thus, the vertex counts for triangles are estimated for each vertex, as described in
Sections 3.3 and 4.1. Note that unlike in 4.1, the three-path estimates are not computed via the
formula in Table 4 since this formula provides no information on the number of three-paths for
each vertex. Moreover, the formula

(𝑑𝑣
𝐺

2
)
only provides us with the number of three-paths in which

𝑣 is the middle vertex. Thus, an edge-centric algorithm is employed for each vertex to estimate the
number of three-paths it ends at via the stored sample.

Notation Description

𝐼𝐺 (𝑣) Subgraph induced on {𝑣} ∪ 𝑁𝐺 (𝑣)
𝑇𝐺 (𝑣) Number of triangles 𝑣 belongs to
𝑃𝐺 (𝑣) Number of paths 𝑣 belongs to, as an endpoint

Table 5. Notation table for common terms used throughout Section 4.2.

Degree Clustering
Coefficient

Avg. Degree of
𝑁𝐺 (𝑣)

Edges in 𝐼𝐺 (𝑣) Edges leaving 𝐼𝐺 (𝑣)

𝑑𝑣
𝐺

|𝑇𝐺 (𝑣) |/
(𝑑𝑣

𝐺

2
)

1 + |𝑃𝐺 (𝑣) |/𝑑𝑣𝐺 𝑑𝑣
𝐺
+ |𝑇𝐺 (𝑣) | |𝑃𝐺 (𝑣) | − 2|𝑇𝐺 (𝑣) |

Table 6. Features extracted for each vertex, 𝑣 ∈ 𝑉𝐺 for maeve, their formulae, and a figure highlighting the

relevant edges. The filled-in vertex depicts 𝑣 .

Theorem 3. Each feature described in Table 6 can be expressed in terms of 𝑑𝑣
𝐺
, |𝑇𝐺 (𝑣) |, and |𝑃𝐺 (𝑣) |.

Proof. Observe that the degree and clustering coefficient of a vertex is already written in terms
of 𝑑𝑣

𝐺
and |𝑇𝐺 (𝑣) |. We will now show that the remaining three features can also be formulated in

terms of 𝑑𝑣
𝐺
, |𝑇𝐺 (𝑣) |, and |𝑃𝐺 (𝑣) |.

Average Degree of Neighbors: Consider a vertex 𝑢 ∈ 𝑁𝐺 (𝑣). For each 𝑤 ∈ 𝑁𝐺 (𝑣) \ {𝑣}, 𝑤 must
end at a the three-path (𝑣,𝑢,𝑤). The only remaining edge for each 𝑢 ∈ 𝑁𝐺 (𝑣) is 𝑣 itself. Note
that when summing over the degrees of all vertices in 𝑁𝐺 (𝑣), 𝑣 appears once in each degree, and
thereby 𝑑𝑣

𝐺
times in total. Hence |𝑃𝐺 (𝑣) | + 𝑑𝑣𝐺 =

∑
𝑢∈𝑁𝐺 (𝑣) 𝑑

𝑢
𝐺
and the average can be expressed as

1
𝑑𝑣
𝐺

∑
𝑢∈𝑁𝐺 (𝑣) 𝑑

𝑢
𝐺
= 1 + |𝑃𝐺 (𝑣) |

𝑑𝑣
𝐺
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Edges in 𝐼𝐺 (𝑣): Let 𝑋 ⊆ 𝐸𝐼𝐺 (𝑣) be the set of all edges in 𝐸𝐼𝐺 (𝑣) that are incident on 𝑣 , and 𝑋 =

𝐸𝐼𝐺 (𝑣) \𝑋 be the complement of 𝑋 . Clearly, 𝐸𝐼𝐺 (𝑣) = 𝑋 ∪𝑋 and 𝑋 ∩𝑋 = ∅. Thus, |𝐸𝐼𝐺 (𝑣) | = |𝑋 | + |𝑋 |.
By definition, there are exactly 𝑑𝑣

𝐺
edges incident on 𝑣 , and each of them belongs to 𝐸𝐼𝐺 (𝑣) . Thus,

|𝑋 | = 𝑑𝑣
𝐺
.

Now, consider any edge (𝑢,𝑤) ∈ 𝑋 . Recall that 𝑢,𝑤 ≠ 𝑣 , so, by the definition of 𝐼𝐺 (𝑣), 𝑢,𝑤 ∈
𝑁𝐺 (𝑣). Thus, (𝑢,𝑤) must be part of the triangle {(𝑢, 𝑣), (𝑣,𝑤), (𝑢,𝑤)}. Since each edge in 𝑋 forms
a triangle incident on 𝑣 , we have that |𝑋 | = |𝑇𝐺 (𝑣) |. Hence,

��𝐸𝐼𝐺 (𝑣) �� = |𝑋 | + |𝑋 | = 𝑑𝑣
𝐺
+ |𝑇𝐺 (𝑣) |.

Edges leaving 𝐼𝐺 (𝑣): Consider a three-path (𝑣,𝑢) (𝑢,𝑤). Clearly, if𝑤 ∉ 𝑁𝐺 (𝑣), (𝑢,𝑤) must be an
edge leaving 𝐼𝐺 (𝑣). Thereby, the number of edges leaving 𝐼𝐺 (𝑣) must be all three-paths starting
at 𝑣 and ending at a vertex not in 𝑁𝐺 (𝑣). Thus, we must account for all three-paths starting at 𝑣
that lie in 𝐼𝐺 (𝑣). Clearly, if𝑤 ∈ 𝐸𝐼𝐺 (𝑣) , then the following three-paths are formed: (𝑣,𝑢) (𝑢,𝑤), and
(𝑣,𝑤), (𝑣,𝑢). Hence, each triangle in 𝑇𝐺 (𝑣) contributes twice to the number of paths in 𝑃𝐺 (𝑣), and
we can formulate the feature as |𝑃𝐺 (𝑣) | − 2|𝑇𝐺 (𝑣) |. □

Observe that each feature is a linear combination of our estimated variables, |𝑇𝐺 (𝑣) | and |𝑃𝐺 (𝑣) |.
Thus, we note that the features computed for each vertex are equal to the true value on expectation,
as per Theorem 1 and the linearity of expectation.

4.2.2 Time and Space Complexity. We assume the same adjacency list structure described in
Section 4.1. Let 𝐺 ′ be the sampled graph. Three arrays of length |𝑉𝐺 | are used to store the values
of 𝑑𝑣

𝐺
, 𝑃𝐺 (𝑣), and |𝑇𝐺 (𝑣) | for all 𝑣 ∈ 𝑉𝐺 . The degree of each vertex takes 𝑂 (1) time to update.

Let 𝑒𝑡 = (𝑢𝑡 , 𝑣𝑡 ) be the edge arriving at time 𝑡 . Due to the sorted nature of our adjacency list,
triangles incident on 𝑒𝑡 can be found by computing the intersection of 𝑁𝐺 (𝑢𝑡 ) and 𝑁𝐺 (𝑣𝑡 ) in
𝑂 ( |𝑁𝐺 (𝑢𝑡 ) | + |𝑁𝐺 (𝑣𝑡 ) |) time. Counting three-paths also takes 𝑂 ( |𝑁𝐺 (𝑢𝑡 ) | + |𝑁𝐺 (𝑣𝑡 ) |) time, as one
pass over each neighborhood is required. Thus, the time taken to process each edge is𝑂 ( |𝑁𝐺 (𝑢𝑡 ) | +
|𝑁𝐺 (𝑣𝑡 ) |) = 𝑂 (𝑏), and processing all edges takes 𝑂 (𝑏 |𝐸𝐺 |) time. After processing the entire edge
stream, computing the moments over all arrays takes 𝑂 ( |𝑉𝐺 |) time. Thus, the total runtime is
𝑂 (𝑏 |𝐸𝐺 | + |𝑉𝐺 |). The space complexity is𝑂 (𝑏 + |𝑉𝐺 |), on account of storing 𝑏 edges in the adjacency
list and a constant number of arrays of length |𝑉𝐺 |.

4.3 SANTA: Spectral Attributes for Networks via Taylor Approximation
For a graph 𝐺 = (𝑉𝐺 , 𝐸𝐺 ), let 𝐴𝐺 be its adjacency matrix. Let 𝐷𝐺 be a diagonal matrix where
𝐷𝐺 (𝑖, 𝑖) is the degree of vertex 𝑣𝑖 ∈ 𝑉𝐺 . Let L𝐺 = 𝐼𝐺 − 𝐷−

1
2𝐴𝐷−

1
2 be the normalized Laplacian

of 𝐺 (see Table 7 for notation description), where 𝐼𝐺 is the |𝑉𝐺 | × |𝑉𝐺 | identity matrix. Let 𝜆𝑘 be
the 𝑘𝑡ℎ eigenvalue of L𝐺 , and Λ𝐺 = (𝜆1, 𝜆2, . . . , 𝜆 |𝑉𝐺 |) refers to the eigenspectrum of L𝐺 . In [48],
Tsitsulin et al. present NetLSD: a descriptor based on the spectral properties of a graph. NetLSD’s
descriptors are based on functions of the form𝜓 𝑗 : Λ𝐺 → R which map L𝐺 ’s eigenspectrum to a
real number, based on a parameter 𝑗 . For a set of parameters { 𝑗1, 𝑗2, . . . , 𝑗𝑚}, the vectors take the
following form: [

𝜓 𝑗1 (Λ𝐺 ) 𝜓 𝑗2 (Λ𝐺 ) · · · 𝜓 𝑗𝑚−1 (Λ𝐺 ) 𝜓 𝑗𝑚 (Λ𝐺 )
]⊺

The authors of NetLSD define six different functions based on two “kernels” and three normal-
ization factors based on the eigenspectrums of complete graphs and their complements on |𝑉𝐺 |
vertices. Each function is of the form:

𝜓 𝑗 (Λ𝐺 ) = 𝛼 × Re
( ∑︁
𝜆𝑘 ∈Λ𝐺

𝑒−𝑗𝛽𝜆𝑘
)

where 𝛼 is a normalization factor dependent on |𝑉𝐺 | and 𝑗 , and 𝛽 ∈ {1, 𝑖}. Each function has been
mentioned in Table 8. Note that 𝛽 = 1 for Heat kernel, and 𝛽 = 𝑖 =

√
−1 for the Wave kernel. For
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Notation Description

𝐼𝐺 |𝑉𝐺 | × |𝑉𝐺 | identity matrix
Λ𝐺 List of eigenvalues
L𝐺 Normalized Laplacian of 𝐺
𝜓 𝑗 Function that maps Λ𝐺 to a real number based on 𝑗

𝑗 Parameter for𝜓 𝑗

𝑛 Exponent of L𝐺

Table 7. Notation table for common terms used throughout Section 4.3.

small values of 𝑗 , Tsitsulin et al. suggest approximating the functions using the Taylor expansion:

𝛼

∞∑︁
𝑘=0

tr((− 𝑗𝛽L𝐺 )𝑘 )
𝑘!

= 𝛼tr(𝐼𝐺 ) − 𝛼 𝑗𝛽 tr(L𝐺 ) + 𝛼
( 𝑗𝛽)2
2

tr(L2
𝐺 ) + · · ·

The authors of NetLSD discuss approximating 𝜓 𝑗 (Λ𝐺 ) for small 𝑗 using three Taylor terms.
By enumerating over subgraphs, we propose using the first five terms of the Taylor expansion to
construct a descriptor similar to NetLSD’s for small values of 𝑗 :

𝜓 𝑗 (Λ𝐺 ) = 𝛼Re
(
tr(𝐼𝐺 ) − 𝑗𝛽 tr(L𝐺 ) +

( 𝑗𝛽)2
2

tr(L2
𝐺 ) −

( 𝑗𝛽)3
6

tr(L3
𝐺 ) +

( 𝑗𝛽)4
24

tr(L4
𝐺 )

)
In the remainder of this section, we discuss how subgraph enumeration can be used to compute

tr(L𝑛
𝐺
) for 𝑛 ≤ 4 and a two-pass algorithm that can approximate NetLSD using the estimation

scheme discussed previously.

4.3.1 Computing the Trace via Subgraph Enumeration. For an adjacency matrix 𝐴𝐺 , 𝐴𝑛
𝐺
(𝑢, 𝑣) is the

number of walks of length 𝑛 from 𝑢 to 𝑣 . The 𝑛𝑡ℎ product of the Laplacian behaves similarly with
the added facts that: (1) we must also consider the self-loops induced on each vertex due to the 1’s
in L𝐺 ’s diagonal, and (2) the value added to L𝑛

𝐺
(𝑢, 𝑣) by a walk will be a product of the “weights”

of each of its edges, as each entry in the Laplacian corresponds to the following:

L𝐺 (𝑢, 𝑣) =


1, if 𝑢 = 𝑣 and 𝑑𝑢

𝐺
> 0

− 1√︁
𝑑𝑢
𝐺
𝑑𝑣
𝐺

if (𝑢, 𝑣) ∈ 𝐸𝐺

0 otherwise
Using these facts, one can assert the following:

Theorem 4. The value of tr

(
L𝑛

𝐺

)
can be computed for 𝑛 ∈ {2, 3, 4} by enumerating over all

subgraphs on at most four vertices.

Proof. Clearly, L𝑛
𝐺
(𝑢,𝑢) is equal to the sum of the weights of all walks with ≤ 𝑛 edges from a

vertex 𝑢 to itself. Thus, it is sufficient to enumerate all such walks and sum the weight of each walk.
We do this by enumerating all relevant subgraphs, then adding a term that accounts for the weight
of each walk in the subgraph and the number of walks within it. The largest subgraph induced by
a walk of length 𝑛 from a vertex to itself is a 𝑛-cycle, which has 𝑛 vertices. The relevant subgraphs
for each 𝑛 ∈ {2, 3, 4} are shown in Tables 9, 10, and 11. Observe that each coefficient of each term is
determined by the number of walks of length 𝑛 possible on the corresponding subgraph, and each
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Kernel Normalization

None Empty Complete

Heat
∑
𝑒−𝑗𝜆 1

|𝑉𝐺 |
∑
𝑒−𝑗𝜆

∑
𝑒−𝑗𝜆

1 + (|𝑉𝐺 | − 1)𝑒−𝑗

Wave Re
(∑

𝑒−𝑖 𝑗𝜆
) 1

|𝑉𝐺 |Re
(∑

𝑒−𝑖 𝑗𝜆
) Re

(∑
𝑒−𝑖 𝑗𝜆

)
1 + (|𝑉𝐺 | − 1) cos( 𝑗)

Table 8. Each cell represents a function of the form𝜓 𝑗 proposed by the authors of NetLSD. All summations

are taken over each eigenvalue 𝜆 ∈ Λ𝐺 .

term is determined by the product of the weights of the edges as specified by the definition of the
Laplacian. □

Subgraph Walks Term Subgraph Walks Term

𝑤𝑤𝑤 1 𝑤𝑥𝑤 𝑥𝑤𝑥
2

𝑑𝑤
𝐺
𝑑𝑥
𝐺

Table 9. Subgraphs and terms relevant to computing tr

(
L2
𝐺

)
.

Subgraph Walks Term Subgraph Walks Term

𝑤𝑤𝑤𝑤 1 𝑤𝑤𝑥𝑤 𝑤𝑥𝑤𝑤 𝑤𝑥𝑥𝑤

𝑥𝑥𝑤𝑥 𝑥𝑤𝑥𝑥 𝑥𝑤𝑤𝑥

6
𝑑𝑤
𝐺
𝑑𝑥
𝐺

𝑤𝑥𝑦𝑤 𝑥𝑦𝑤𝑥 𝑦𝑤𝑥𝑦

𝑤𝑦𝑥𝑤 𝑥𝑤𝑦𝑥 𝑦𝑥𝑤𝑦
− 6
𝑑𝑤
𝐺
𝑑𝑥
𝐺
𝑑
𝑦

𝐺

Table 10. Subgraphs and terms relevant to computing tr

(
L3
𝐺

)
.

4.3.2 Computing the Descriptor on an Edge Stream. We propose a two-pass algorithm to compute
the descriptor. In the algorithm’s first pass, each vertex’s degree is stored. In the second pass, the
traces are computed; subgraphs are enumerated on the stream exactly as in the previous sections.
When incrementing our count, the term to be added is multiplied by the probability of encountering
it in the stream. We now show the validity of this method:

Theorem 5. The approach proposed to approximate tr

(
L𝑛

𝐺

)
provides unbiased estimates.

Proof. We present a proof similar to the one presented in Theorem 1. Let 𝜏𝑛 be the estimate
of tr

(
L𝑛

𝐺

)
provided by the algorithm described above. Let 𝐻𝑛

𝐺
be the set of subgraphs that are
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Subgraph Walks Term Subgraph Walks Term

𝑤𝑤𝑤𝑤𝑤 1

𝑤𝑤𝑤𝑥𝑤 𝑤𝑤𝑥𝑥𝑤 𝑤𝑥𝑤𝑤𝑤

𝑤𝑥𝑥𝑥𝑤 𝑤𝑥𝑥𝑤𝑤 𝑤𝑤𝑥𝑤𝑤

𝑥𝑥𝑥𝑤𝑥 𝑥𝑥𝑤𝑤𝑥 𝑥𝑤𝑥𝑥𝑥

𝑥𝑤𝑤𝑤𝑥 𝑥𝑤𝑤𝑥𝑥 𝑥𝑥𝑤𝑥𝑥

12
𝑑𝑤
𝐺
𝑑𝑥
𝐺

𝑤𝑥𝑤𝑥𝑤 𝑥𝑤𝑥𝑤𝑥 2
(𝑑𝑤

𝐺
𝑑𝑥
𝐺
)2 𝑤𝑦𝑥𝑦𝑤 𝑥𝑦𝑤𝑦𝑥 𝑦𝑥𝑦𝑤𝑦 𝑦𝑤𝑦𝑥𝑦 4

𝑑𝑤
𝐺
𝑑
𝑦

𝐺
𝑑
𝑦

𝐺
𝑑𝑥
𝐺

𝑤𝑥𝑦𝑤𝑤 𝑤𝑦𝑦𝑥𝑤 𝑥𝑦𝑤𝑥𝑥 𝑦𝑥𝑥𝑤𝑦

𝑤𝑤𝑥𝑦𝑤 𝑤𝑦𝑥𝑥𝑤 𝑥𝑥𝑦𝑤𝑥 𝑦𝑥𝑤𝑤𝑦

𝑤𝑥𝑥𝑦𝑤 𝑥𝑤𝑦𝑥𝑥 𝑥𝑦𝑦𝑤𝑥 𝑦𝑤𝑥𝑦𝑦

𝑤𝑥𝑦𝑦𝑤 𝑥𝑥𝑤𝑦𝑥 𝑥𝑦𝑤𝑤𝑥 𝑦𝑦𝑤𝑥𝑦

𝑤𝑦𝑥𝑤𝑤 𝑥𝑤𝑤𝑦𝑥 𝑦𝑥𝑤𝑦𝑦 𝑦𝑤𝑤𝑥𝑦

𝑤𝑤𝑦𝑥𝑤 𝑥𝑤𝑦𝑦𝑥 𝑦𝑦𝑥𝑤𝑦 𝑦𝑤𝑥𝑥𝑦

− 24
𝑑𝑤
𝐺
𝑑𝑥
𝐺
𝑑
𝑦

𝐺

𝑤𝑥𝑦𝑧𝑤 𝑦𝑧𝑤𝑥𝑦 𝑤𝑧𝑦𝑥𝑤 𝑦𝑥𝑤𝑧𝑦

𝑥𝑦𝑧𝑤𝑥 𝑧𝑤𝑥𝑦𝑧 𝑥𝑤𝑧𝑦𝑥 𝑧𝑦𝑥𝑤𝑧
8

𝑑𝑤
𝐺
𝑑𝑥
𝐺
𝑑
𝑦

𝐺
𝑑𝑧
𝐺

Table 11. All subgraphs and terms relevant to computing tr

(
L4
𝐺

)
.

observed to increment 𝜏𝑛 . For each ℎ ∈ 𝐻𝑛
𝐺
, let 𝛿ℎ be the term added to 𝜏𝑛 when ℎ is discovered in

the stream. Recall from our prior discussion that tr
(
L𝑛

𝐺

)
can be defined as follows:

tr
(
L𝑛

𝐺

)
=

∑︁
ℎ∈𝐻𝑛

𝐺

𝛿ℎ

Let 𝑋ℎ be a random variable such that 𝑋ℎ = 𝛿ℎ × 1
𝑝𝑡

if ℎ is discovered at the arrival of its last edge,
and 0 otherwise, where 𝑝𝑡 is the probability of detecting ℎ. Clearly, E [𝑋ℎ] = (𝛿ℎ/𝑝𝑡 ) × 𝑝𝑡 = 𝛿ℎ . We
now analyze the expectation of 𝜏𝑛 :

E [𝜏𝑛] = E
[ ∑︁
ℎ∈𝐻𝑛

𝐺

𝑋ℎ

]
=

∑︁
ℎ∈𝐻𝑛

𝐺

E [𝑋ℎ] =
∑︁
ℎ∈𝐻𝑛

𝐺

𝛿ℎ = tr
(
L𝑛

𝐺

)
□

4.3.3 Time and Space Complexity. The computation performed is similar to the one in Section 4.1,
with the extra step of storing the degrees in the first pass, which takes 𝑂 ( |𝐸𝐺 |) time. Computing
the descriptors takes 𝑂 (1) time. Thus, the time complexity is 𝑂 (𝑏 log𝑏 |𝐸𝐺 |). Likewise, the space
complexity is 𝑂 (𝑏 + |𝑉𝐺 |).

5 EXPERIMENTAL SETUP
This section outlines the experimental setup, including the dataset statistics, hyperparameter values,
and data preprocessing. We also introduce state-of-the-art methods for comparing results with our
proposed model. We show the visual representation of the proposed and the existing descriptor by
converting them into 2-dimensional representations. All experiments, except the ones onMalnet-TB,
are performed on a single machine with 48 processors (2.50GHz Intel Xeon E5-2680v3) and 125
GB of memory. The experiments on Malnet-TB are run on a single machine with 16 processors
(3.70GHz Intel Xeon W-2145) and 32 GB of memory. All algorithms were implemented1 in C++
using an MPICHv3.2 backend. The code is built upon the Tri-Fly code, provided by Shin et al. [45].
For each experiment, 25 processors simulate 1 master machine and 24 worker machines, and each
embedding is computed once.

1https://git.io/JEQmI
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5.1 Hyperparameters

Based on empirical observations, we use Canberra distance,
(
𝑑 ( ®𝑥, ®𝑦) := ∑𝑑

𝑖=1 | ®𝑥𝑖−®𝑦𝑖 |/| ®𝑥𝑖 |+ | ®𝑦𝑖 |
)
, as the

distance metric to measure approximation error for gabe and maeve. While ℓ2-distance metric is
used to evaluate santa. We note that these error metrics are inline with those used in the literature,
(c.f. [9, 48]).

As observed later, one achieves reasonable estimates for santa with 𝑗 ≤ 1. Thus, as in [48], we
use 60 evenly-spaced values on the logarithmic scale within the range [0.001, 1] to construct the
descriptors for santa. Note that when comparing santa to its actual values, the values produced
by NetLSD are used. Thereby, the approximation error includes both the error introduced via
subgraph estimation and the error via Taylor approximation.

5.2 Datasets Statistics
Our proposed model, along with the baselines and SOTAmethods, are evaluated on various publicly
available graph datasets, chosen primarily to showcase the efficacy of our model on large graphs.
Eight graph classification datasets were selected from the TUDataset [31] repository: DD [42], CLB,
RDT2, RDT5, and RDT12 [53], OHSU [34], GHUB [35], FMM2 [33]. These datasets were selected due
to the large size of the graphs within them relative to other datasets. The details for these datasets
are provided in Table 12. Similarly, seven massive networks were selected from KONECT [28] (i.e.,
Florida, USA, CiteSeer, Patent, Flickr, Stanford, and UK) to showcase the scalability of our models.
The details of these graphs are provided in Table 13.

(1) REDDIT graphs3 were randomly sampled to construct a dataset to evaluate the approximation
quality of our proposed methodology. Each graph represents a subreddit, wherein a vertex is
a user within that subreddit, and an edge represents two users who have interacted within
the subreddit. RDT2, RDT5, and RDT12 are datasets of REDDIT graphs, as described earlier.

(2) DD is a bioinformatics dataset. Graphs in DD represent protein structures. A protein is
represented as a graph, where the vertex represents amino acids, and there will be an edge
between two vertices if they are connected less than 6 Angstroms apart.

(3) OHSU is a bioinformatics dataset. OHSU graphs represent brain networks, wherein each
vertex represents a region of the brain, and two regions are linked if they are correlated.

(4) Graphs in CLB represent networks of researchers (each node is a single researcher) where
edges represent that two researchers have collaborated.

(5) GHUB graphs are social networks of developers (each developer is a node) who “starred”
popular machine learning and web development repositories on Github to make the edges.

(6) Graphs in FMM represent 3D point clouds of household objects, wherein each vertex repre-
sents an object, and two objects share an edge when there are nearby.

(7) The Malnet dataset was used to test the efficacy of our models on large-scale classification
tasks [20]. The dataset aims to distinguish malware based on “function call graphs.” Thus,
each graph represents a program, wherein each vertex is a function within the program, and
each edge represents an “inter-procedural” call. In lieu of using the entire dataset, we used
two subsets: Trojan and Benign. We consider the binary classification task of distinguishing
between these two sets.

(8) Florida (FO) and USA (US) datasets in KONECT are the road network graphs, where each
edge represents a road, and each vertex represents the intersection of two or more roads.

2http://www.first-mm.eu/data.html
3https://dynamics.cs.washington.edu/data.html
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(9) CiteSeer (CS) and Patent (PT) datasets in KONECT are the citation networks, where vertices
represent documents and connected vertices represent documents that reference each other.

(10) Flicker (FL) dataset in KONECT is the friendship network, where vertices represent users on
social networks, and two vertices are connected if the users are “friends".

(11) Stanford (SF) and UK 2002 (U2) datasets in KONECT are the hyperlink networks, where
vertices represent webpages, and connected vertices represent webpages that link to each
other.

Dataset Graphs Classes max |VG | max |EG | Avg. Deg.

FMM 41 11 5037 21774 4.50
OHSU 79 2 171 1646 4.33
DD 1178 2 5748 14267 4.98
RDT2 2000 2 3782 4071 2.34
RDT5 4999 5 3648 4783 2.25
CLB 5000 3 492 40120 37.39
RDT12 11929 11 3782 5171 2.28
GHUB 12725 2 957 9336 3.20
Malnet-TB 258373 2 551873 1639647 4.15

Table 12. Descriptions of each dataset used in our work for graph classification. For each dataset, we list the

number of graphs, the number of classes, the largest order and size of a graph within the dataset, and the

average degree across all graphs in the dataset.

Graph |VG | |EG | Type Description

Florida (FO) 1070376 1343951 Road Vertices are the intersections of two or more
roads, edges represent roadsUSA (US) 23947347 28854312

CiteSeer (CS) 384054 1736145 Citation Vertices are documents and are connected if
one document references the otherPatent (PT) 3774768 16518937

Flickr (FL) 2302925 22838276 Friendship Vertices represent users on social networks
and are connected if the users are “friends”

Stanford (SF) 281903 1992636 Hyperlink Vertices represent webpages and vertices are
connected if one webpage links to the otherUK 2002 (U2) 18483186 261787258

Table 13. Massive networks from KONECT listed alongside the number of vertices and edges, and descriptions.

For the preprocessing step, we convert each graph into an edge list. Duplicate edges and possible
self-loops are removed from the list. If required, each vertex is relabelled to lie in the range
[0, |𝑉𝐺 | − 1]. Finally, the list is randomly shuffled to ensure that the input stream is unbiased.

5.3 Existing State-of-the-Art Descriptors
We compare our models to the following state-of-the-art (SOTA) methods:
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NetLSD [48]: NetLSD represents a graph based on the eigenspectrum of the graph’s Laplacian.
Euclidean distance is used to compare embeddings, as suggested by the authors in their work. We
report the best accuracy for each of the six variants of NetLSD.
feather [36]: feather’s descriptors are aggregated over characteristic function descriptors of
each node in a graph. The default hyperparameters are used to construct the descriptors. We report
the best accuracy for each of the three variants proposed.
sf [29]: The authors of sf proposed a “simple” baseline algorithm based on the eigenspectrum of a
graph’s Laplacian. As suggested by the authors, the “embedding dimension” is set to the average
number of nodes of each graph within a dataset.

Remark 6. Since no distance was suggested for feather or sf, we compute results on Euclidean and

Canberra distances and report the best accuracy.

Remark 7. Note that our models have no direct competitors, as no other graph classification paradigm

is constructed to run under our proposed constraints. Despite this, we compare our model with the

SOTA methods to show its effectiveness in terms of scalability.

5.4 Data Visualization
To visually compare different descriptors, we plot them using 𝑡-distributed Stochastic Neighbour
Embedding (𝑡-SNE) [30]. Given the graph descriptors, 𝑡-SNE computes a 2-dimensional representa-
tion of the feature vectors. Figure 3 shows the 𝑡-SNE based visualization on DD dataset for our
methods (santa, gabe, and maeve on 25% and 50% budget) and NetLSD. Observe that as we
increase the budget, the class-wise separation of the data becomes more prominent. Moreover,
santa shows the most similar representation of data to NetLSD.

6 RESULTS AND DISCUSSION
In this section, we report the results of our experiments and show the changes in approximation
performance with varying values of the budget 𝑏. We also report the accuracies of classifiers
learned on these descriptors. Furthermore, we demonstrate the scalability of the corresponding
streaming algorithms. The distance between the exact and the approximate descriptor (output
of the algorithms) is referred to as the approximation error of the algorithms. Note that in the
figures ahead, santa-xy corresponds to the santa descriptor variant with kernel x (h or w) and
normalization y (n, e, or c).

6.1 ApproximationQuality
In this section, we test the approximation quality of our descriptors. We uniformly sampled 1,000
graphs of size 10,000 to 50,000 from REDDIT, representing interactions in various “sub-reddits”.

6.1.1 Effect of number of Taylor terms for SANTA. We first show in Figure 4 how increasing the
number of Taylor terms affects the approximation quality of santa with respect to 𝑗 . For 1000
linearly spaced values of 𝑗 ∈ [0.001, 1], the relative error (defined as ∥𝑥 − 𝑥 |/𝑥 , where 𝑥 is the real
value and 𝑥 is the approximation) across 1000 REDDIT graphs is averaged and plotted. Observe
that increasing the number of Taylor terms allows us to better approximate values for larger 𝑗 ,
enabling us to use a greater range of 𝑗 .

Note that there is no need to check this for each normalization since the normalization is canceled
out when computing relative error. Also, note that the values produced by four terms are ignored
for the wave kernel since the values introduced in the fourth term are imaginary and are not used
in the descriptor.
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(a) maeve 25% (b) maeve 50% (c) NetLSD-hc

(d) gabe 25% (e) gabe 50% (f) NetLSD-hc

(g) santa-hc 25% (h) santa-hc 50% (i) NetLSD-hc

Fig. 3. t-SNE plots for different descriptors and budgets on DD dataset. Legends show true classes. The figure

is best seen in color.
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Fig. 4. Average relative error for 𝑗 ∈ [0.001, 1] of santa with varying number of Taylor terms.

6.1.2 Effect of increasing the budget for each descriptor. Figure 5 shows that the average approxi-
mation error across the sampled graphs decreases as the budget increases. Observe that normalized
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versions of santa can achieve very low errors even with small values of 𝑏. Unfortunately, un-
normalized variants of santa have very large errors and would likely be unfruitful in practical
settings.
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Fig. 5. Approximation errors with increasing budget (𝑏) for gabe, maeve, and all variants of santa.

6.2 Graph Classification
We opted for a Nearest Neighbor classifier as in Tsitulin et al. [48] work on NetLSD. 10-fold
cross-validation was performed for ten random splits of the dataset. The average accuracy for each
fold is reported. Note that only two folds are used for FMM because each class has a small number
of samples. The descriptors are computed for our models by using 25% and 50% of the number of
edges of each graph.

6.2.1 Results on Different Variants of SANTA. In Table 15, we compare all variants of santa to find
out which one works best. It is clear that santa-hc often provides the best results. For this reason,
and because it has the lowest error across all variants in Figure 5, we recommend santa-hc for
practical usage and compare it to other descriptors in the coming section.
In this same table, we show the results provided by NetLSD when using the same values for

𝑗 . Despite the error added by the Taylor approximation and budgeted sampling, santa provides
results comparable to NetLSD.

We observe better results for the datasets OHSU and FMMwhen the budget is smaller, sometimes
more significant than those provided by NetLSD. We believe that due to the small size of these
datasets, the noise added when approximating the embeddings is not eliminated by the classifier.
Thus, we do not recommend using santa on smaller datasets without a larger budget; otherwise,
the classifier may not be able to generalize.

Table 16 compares the classification accuracy of our proposed models and the benchmark descrip-
tors. Despite using only a fraction of edges, our proposed descriptors provide results competitive
to descriptors that have access to the entire graph in seven of the eight classification datasets.
Unfortunately, santa is unable to compete with its competitors in most cases, despite giving results
near to NetLSD when used on the same values of 𝑗 (see Table 15).
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6.2.2 Comparing SANTA to SLaQ. We report the comparison of the accuracy achieved by santa
(across all variants) with that of SLaQ, a method introduced by Titsulin et al. [49] to approximate
NetLSD, in Table 14. For DD and CLB datasets, we observe that santa outperforms SLaQ. For RDT5
and RDT12 datasets, although SLaQ outperforms SANTA, the predictive accuracy of SLaQ is not
significantly higher compared to santa, despite SLaQ keeping the entire graph in memory.

Method Budget DD CLB RDT5 RDT12

SLaQ |𝐸𝐺 | 66.77 58.76 35.48 25.31

santa
1/4|𝐸𝐺 | 68.16 63.80 35.32 24.68

1/2|𝐸𝐺 | 66.83 64.90 34.62 23.89
Table 14. Comparing reported classification accuracy of santa and SLaQ. Results within 1% of the best have

been bold-faced.

6.2.3 Performance on Large Classification Tasks. To showcase the practical usage of our proposed
methods, we performed graph classification on the Malnet-TB dataset on a computer with relatively
weaker hardware. In this case, we used ten workers and 1/10|𝐸𝐺 | as our budget. The time taken and
classification accuracy is provided in Table 17. Note that all of our proposed models can process
260K graphs with up to 550K vertices and 1.6M edges in ≈ 11/2 days.

6.3 Scaling to Large Real-world Networks
In this section, we show the scalability of our proposed descriptors by running them on large
real-world networks. For this purpose, we ran our algorithms on the networks listed in Table 13.
For each graph, descriptors were estimated for 𝑏 ∈ {100000, 500000}. In Table 18 and 19, we show
the wall-clock time taken and the distance between the real and approximate vectors. Note that the
lower values are better.

Note that to compute the real embeddings for santa, one would have to compute the eigenspec-
trum of each graph. Due to the intractability of this method, we approximate the true embeddings
by approximating the eigenvalues using the largest and smallest eigenvalues of the Laplacian
of each graph, as proposed in [48]. As per the authors’ suggestion, we attempted to obtain 150
eigenvalues from each end of the spectrum. While this was not possible for all graphs, a minimum
of 50 eigenvalues were used for each end, i.e., at least 100 eigenvalues were used to compute the
NetLSD embeddings for each graph. Note that this was not possible for the UK 2002 graph due
to its large size. Observe that we can process graphs with millions of edges with reasonably low
approximation error. UK 2002, a graph with ≈ 260𝑀 edges, was processed under half an hour by all
of our proposed models. We note that when 𝑏 = 500000, gabe and santa take a significant amount
of time to compute on the Stanford and Flickr graphs due to their dense nature. Thus, we posit that
one must consider the graph’s density when setting the value of 𝑏.

7 CONCLUSION
This paper proposes three graph descriptors and streaming algorithms with constant space complex-
ity to construct them. Our descriptors extend the state-of-the-art graph descriptors and approximate
their embeddings over graph streams. Experiments show that while using very less memory, our
descriptors provide results comparable to SOTA descriptors, which store the entire graph in memory.
We demonstrate the scalability of our algorithms to graphs with millions of edges (which is not
possible for existing methods). We hope to introduce descriptors for attributed graphs that meet our
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Variant Method Budget DD CLB RDT2 RDT5 RDT12 OHSU GHUB FMM

hn santa
1/4|𝐸𝐺 | 66.22 61.90 76.02 35.12 22.38 54.50 54.88 26.80
1/2|𝐸𝐺 | 66.03 62.59 75.88 34.39 22.21 54.50 54.78 26.80

NetLSD★ |𝐸𝐺 | 66.44 63.29 75.82 33.50 21.74 56.98 55.75 27.14

he santa
1/4|𝐸𝐺 | 63.98 63.80 63.77 34.90 21.42 69.96 54.56 39.70

1/2|𝐸𝐺 | 65.76 64.90 64.33 34.22 21.91 66.82 55.11 20.00
NetLSD★ |𝐸𝐺 | 60.75 64.08 61.98 29.44 19.47 52.66 57.19 21.49

hc santa
1/4|𝐸𝐺 | 68.16 63.44 79.14 35.32 24.68 67.98 55.99 38.76

1/2|𝐸𝐺 | 66.83 63.50 78.34 34.62 23.89 58.25 55.61 23.74
NetLSD★ |𝐸𝐺 | 65.99 64.77 75.96 37.02 25.12 55.95 55.03 35.39

wn santa
1/4|𝐸𝐺 | 66.70 62.49 75.68 35.08 22.76 55.30 55.32 26.80
1/2|𝐸𝐺 | 66.63 63.15 75.57 34.53 22.81 55.30 55.30 26.80

NetLSD★ |𝐸𝐺 | 66.19 63.01 75.64 33.40 22.23 54.14 58.08 28.60

we santa
1/4|𝐸𝐺 | 61.55 62.52 65.10 34.09 21.66 67.59 55.04 24.37
1/2|𝐸𝐺 | 61.02 62.04 64.90 33.56 21.27 64.32 54.06 11.27

NetLSD★ |𝐸𝐺 | 59.35 64.46 62.14 26.99 19.05 60.61 58.20 15.08

wc santa
1/4|𝐸𝐺 | 64.15 61.25 74.26 31.45 21.43 58.48 55.12 24.38
1/2|𝐸𝐺 | 61.81 62.47 74.64 31.79 21.46 58.12 54.67 11.74

NetLSD★ |𝐸𝐺 | 64.81 62.97 75.10 29.39 21.56 47.93 56.60 19.01

Table 15. Classification accuracy (in %) using nearest neighbor classifier across all datasets for all variants of

santa, as well as NetLSD modified to use the same values for 𝑗 . Results within 1% of the best across all santa

variants have been bold-faced.

Approach Method Budget DD CLB RDT2 RDT5 RDT12 OHSU GHUB FMM

Benchmark
NetLSD |𝐸𝐺 | 70.36 74.27 82.85 41.23 30.90 73.79 55.73 27.14
feather |𝐸𝐺 | 63.57 73.14 83.22 43.09 34.33 62.77 60.95 26.81

sf |𝐸𝐺 | 62.84 72.82 82.38 42.36 30.80 59.50 57.01 29.00

Proposed
Descriptors

maeve
1/4|𝐸𝐺 | 59.44 68.42 85.04 41.15 32.57 49.07 61.99 12.90
1/2|𝐸𝐺 | 61.26 70.95 86.15 41.53 33.69 47.12 61.81 14.63

gabe
1/4|𝐸𝐺 | 65.23 63.62 84.65 41.10 32.18 44.30 61.88 27.37
1/2|𝐸𝐺 | 69.08 65.23 85.35 40.63 32.96 41.02 62.72 25.35

santa-hc
1/4|𝐸𝐺 | 68.16 63.44 79.14 35.32 24.68 67.98 55.99 38.76

1/2|𝐸𝐺 | 66.83 63.50 78.34 34.62 23.89 58.25 55.61 23.74

Table 16. Accuracy of the nearest neighbor classifier on different datasets, descriptors, and benchmark

methods. Results within 1% of the best have been bold-faced.

constraints in the future. Another interesting future direction is to explore neural networks that
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GABE MAEVE

SANTA

HN

SANTA

HE

SANTA

HC

SANTA

WN

SANTA

WE

SANTA

WC

Accuracy 79.52 79.93 74.60 69.38 69.47 74.89 69.39 69.40

Avg. Time [s] 0.54 0.45 0.36 0.36 0.36 0.36 0.36 0.36
Max Time [min] 66.73 37.93 33.82 33.82 33.82 33.82 33.82 33.82
Total Time [hr] 38.59 32.41 25.63 25.63 25.63 25.63 25.63 25.63

Table 17. Results on Malnet-TB for gabe, maeve, and all variants of santa with 𝑏 = 1/10|𝐸𝐺 |. We report the

accuracy, the average and maximum amount of time taken for each graph in the dataset, and the total

amount of time taken.

can process edge streams, combining the scalability of stream-based methods and the classification
prowess of graph convolutional networks.
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SANTA
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HC
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SANTA
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Table 18. Approximation error and time taken for gabe, maeve, and all variants of santa with 𝑏 = 100000.
Accuracy results for U2 have been omitted since the graph was too large to obtain true values.
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