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This paper describes efficient new heuristic methods 
to color the vertices of a graph which rely upon the 
comparison of the degrees and structure of a graph. A 
method is developed which is exact for bipartite graphs 
and is an important part of heuristic procedures to find 
maximal cliques in general graphs. Finally an exact 
method is given which performs better than the 
Randall-Brown algorithm and is able to color larger 
graphs, and the new heuristic methods, the classical 
methods, and the exact method are compared. 
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Introduction 

The  co lo ra t ion  o f  the vert ices in a g raph  G is of ten 
used for  solving schedul ing p rob lems  o f  the fol lowing 
type.  W e  are  given a set E o f  j o b s  (al l  o f  t hem have  the 
same process ing t ime)  which  have  to be pe r fo rmed  by  
some agents  wi th  some machines .  The  constra ints  to be 
t aken  into account  are  that  for each j o b j  in E there  is a 
subset  o f  j o b s  which  cannot  be pe r fo rmed  at  the  same 
t ime as j because  they  have  to be pe r fo rmed  ei ther  by  
the same agent  or  by  the same machine .  This  type  o f  
p r o b l e m  arises in the  so-cal led school  schedul ing p rob -  
lem where  teachers  are  "agents ,"  classes are  "mach ines , "  
and  lectures are " jobs ."  
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Unfortunately until now we have not found in the 
literature very good algorithms for coloring the vertices 
of  a graph in a reasonable amount  of  computation time 
(NP-complete  problem in the sense of Karp  [4]). 

In this paper  we present new heuristic methods and 
improve an exact method proposed by Randall-Brown 
[6]. The purpose is to demonstrate that we can find good 
heuristic methods which are almost as good as the exact 
method, but which require very little execution time. 

1. A Heuristic Method, Exact for Bipartite Graphs 

Definition 1. Let G be a simple graph and C a partial 
coloration of  G vertices. We define the saturation degree 
of  a vertex as the number  of  different colors to which it 
is adjacent (colored vertices). 

Dsatur Algorithm (so called because it uses saturation degree) 

1. Arrange the vertices by decreasing order of degrees. 
2. Color a vertex of maximal degree with color 1. 
3. Choose a vertex with a maximal saturation degree. If there is an 

equality, choose any vertex of maximal degree in the uncolored 
subgraph. 

4. Color the chosen vertex with the least possible (lowest numbered) 
color. 

5. If all the vertices are colored, stop. Otherwise, return to 3. 

THEOREM 1. The Dsatur algorithm is exact for bipar- 
tite graphs. 

PROOF. Let G be a connected bipartite graph with at 
least three vertices. Assume that one vertex x has a 
saturation degree of  two; in this case it has two neighbors 
with different colors and we can build two chains. Be- 
cause G is finite, we find a common vertex y, hence a 
cycle. Either the cycle is even and the two neighbors of  
x have the same color or G is not bipartite. Therefore 
the Dsatur  algorithm is exact for bipartite graphs. It is 
also a good method to determine if a graph is bipartite 
(polynomial time: O(n2)). 

I f  we successively color the vertices with the least 
possible color in a given order, we obviously begin by 
the coloration of  a clique. Thus we obtain lower bounds 
on the chromatic number.  There are at least two methods 
with given order that give cliques with an almost maxi- 
mal dimension, because they use the graph structure: 
Dsatur algorithm and an algorithm created by Matula et 
al [5]. Thus we have two good heuristic methods to find 
a maximal  clique. 

In their paper  Matula et al [5] give a method to 
improve their algorithm. This method SLI (smallest last 
with interchanges) seeks to make an interchange of  colors 
in a bipartite subgraph for each case for which we must 
introduce a new color. This interchange method can be 
used for any algorithm with coloration of the vertices by 
the least possible color in a given order; therefore it can 
be used for the Dsatur  algorithm. This new algorithm 
will be called DSI (Dsatur with interchanges). Finally if 
we use, at the beginning of the Dsatur algorithm, the 
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biggest clique obtained by the comparison of the methods 
Dsatur  and Matula, we have a new algorithm called 
Matula-Dsatur  algorithm. 

Suppose we are interested in the balancing of  the sets 
of  colors. For all algorithms with coloration by the least 
possible color of  the vertices in a given order (Welsh, 
Matula, Dsatur) ,  we can use the method proposed by 
Br61az et al [2]. It chooses for the next vertex of the 
classified list a color with a minimal number  of  vertices 
in the set of  all already used possible colors. In [2] a 
comparison of  the Welsh and Matula methods with and 
without balancing on 55 graphs shows that the balancing 
method is nearly as good as the original method and that 
the difference between the cardinalities of  the colors is 
generally small (there is often perfect balancing and 
rarely more than two as the maximal difference). 

In the last part of  this paper  we compare the new 
heuristic methods with the following algorithms: Ma- 
tula's algorithm [5], Welsh's algorithm [8], Dunstan 's  
algorithm [3] (Welsh's method with successive saturation 
of the colors, and reordering of  the degrees), Tehrani 's  
algorithm [7] (creation and coloration of  bipartite 
subgraphs by examination of  the successive sets of  neigh- 
bors of  the maximal  degree vertex) and the SLI method. 
We will see in Section 3 that the Matula-Dsatur  algo- 
rithm, used in Section 2, is a very good heuristic method. 

2. A New Exact Method 

Randall-Brown [6] has developed an algorithm which 
avoids redundancy in the solution enumeration of  a 
graph vertex coloration problem. For this, he constructs 
the following tree. 

Definition 2. A partial solution of  level p is any 
assignment in which only the vertices xl . . . . .  xp have 
been given a color. 

Building of the Tree 

Let Kpq be a coloration of  Xl . . . . .  x ,  with q colors. 
F rom Kpq we obtain all the solutions with preservation 
of  the xa . . . . .  xp colorations by the following method: 

h Introduce a new vertex xp+l. 
2. Assign to x,+~ the colors 1, 2, ..., q + 1 successively. 
3. Eliminate the cases, which are not usual colorations. 
4. Continue the same procedure with all the new partial solutions. 

All solutions which use the smallest number  of  colors 
are op t imal  

After this formal definition of  the solution tree, Ran- 
dall-Brown gives an algorithm to go over this tree to 
reduce the number  of  solutions, which are examined 
while retaining only one at a time in memory.  In this 
section we present an algorithm which uses Randall-  
Brown's algorithm, some ideas contained in his paper, 
and some new ideas. 
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To start, we note that the sequential coloration 
method, which gives at each vertex the least possible 
color, gives the path the most to the left of the solution 
tree with vertices in the order given by the coloration 
order. We also remark that we can arbitrarily color the 
vertices of  a clique at the beginning of the coloration, 
without increasing the number of  colors. 

Definition 3. We define the rank of  a vertex as the 
position of  this vertex in the coloration order. 

Randall-Brown's Modified Algorithm 

1. Find a coloration order of  the vertices, an initial clique with 
dimension w, and an initial coloration with r colors (an upper 
bound) by using the Matula-Dsatur  algorithm or the DSI algo- 
rithm. If  w = r, stop. 

2. Color the vertices of  the clique K with 1, 2 . . . . .  w successively. 
For each other vertex xk, write U(x~) = U(x~) - (j),  w h e r e j  is 
the color o f a  K vertex, which is adjacent to xh. 

3. k = w +  l , q = r .  

Let U(x'k) be the set of  colors, which can color xk(U(xk)  is upper- 
limited by color q - 1 and each vertex is limited by the color with 
the same cardinality as its rank). Color xk with the least possible 
color and remove this color from U(xk). Prohibit this color for all 
the vertices which are adjacent to xk until there is a modification 
of  the x~ color. 

4. k = k + 1, determine U(Xk). 
5. If U(x~) = ~ go to 10. 

Otherwise let i be the minimal  color of  U(xk), color xk with i and 
write U(xk) = U(xk) - (i); prohibit this color for the vertices 
which are adjacent to Xk (with greater rank) until there is a 
modification of  the x~ color. If  i _> q go to 8. Otherwise go to 6. 

6. If  k = n, write q = L where L is the number  of  colors used for 
this coloration, go to 7. Otherwise go to 4. 

7. If q = w, stop. Otherwise: Let xj be the q-colored vertex with 
minimal  rank. If  xj has the rank w + 1, stop; otherwise write 
k = j -  l a n d g o t o 5 .  

8. If  k = w + 1, stop. Otherwise: Label all the unlabeled vertices 
which possess all the following properties: (i) smaller rank than 
k, (ii) adjacent to k, (iii) none of  the colors of  clique vertices 
adjacent to k, (iv) minimal  rank among all the vertices of  their 
color, which are adjacent to k. Write v = k. Those vertices are 
labeled with k; once we obtain the rank k or more in a partial 
coloration, we must  remove this label. 

9. Let k = t where t is the maximal  rank of  labeled vertices, which 
have a smaller rank than k; for k < i <_ v, U(xi) is the set of  colors 
defined in step 3. Go to 5. 

10. None of  the colors is possible for xk (all are tested), we must  
backtrack. For this, go to 8. 

THEOREM 2. Randall-Brown's modified algorithm is an 
exact  method f o r  coloring the vertices o f  a graph. 

LEMMA. Let  r be an upper bound on the chromatic 
number and C be a partial coloration o f  a simple graph G 
in Randall-Brown's modified algorithm. Let  k be a vertex 
o f  rank p, which has neighbors with r - 1 different colors; 
s(s <_ r - 1) o f  which belong to the initial clique K. l f  s < 
r - 1, consider M the set o f  colors ( f rom  among 1 to r - 
1), which does not contain vertices o f  the clique K which 
are adjacent to k. Let  ti be the vertex o f  color ci with 
minimal rank, adjacent with k and t = max(rank  ti, i = 1, 
. . . .  v). Let  c be the color o f  the corresponding vertex (with 
rank t); we can write U(xt) = U(xt) - (c) and we can 
continue Randall-Brown's modified algorithm f r o m  this 
vertex without the risk o f  eliminating a solution with at 
most  (r - 1) colors. 
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Fig. 1. Graph  with 10 vertices. 
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PROOF (Lemma). k is adjacent to the vertices of  
r - 1 different colors; if we want to obtain a (r - l)- 
coloration we must change the color of  at least one vertex 
with rank between w + 1 and p - 1 (because w is the 
dimension of  the clique K and the clique vertices have 
the ranks 1 . . . . .  w). On the other hand, if we change the 
coloration of  a vertex adjacent to k and if there exists a 
vertex with the same color also adjacent to k, this color 
will still be prohibited for k. Finally, if we change the 
color of  a vertex, which has not a minimal rank in the 
set composed of  the vertices of  the same color, which are 
adjacent to k, then k will not receive this color because 
the minimal rank adjacent vertex will still be of  the 
prohibited color. Finally, if we do not want to risk losing 
solutions, we must take the maximal rank vertex from 
among all the minimal rank vertices of  the different 
colors. 

PROOF (Theorem 2). We already know that Randall- 
Brown's algorithm is an exact method for coloring the 
vertices of  a graph. We have proved in the above lemma 
that we can go up to the labeled vertex with maximal 
rank without losing an interesting solution. If  we arrive 
at step 10, all the permitted colors have been tested for 
the vertex; for this reason, we must backtrack. Therefore 
it follows that Randall-Brown's modified algorithm is an 
exact method to color the vertices of  a graph. 

Illustration o f  lemma. Consider the example given in 
Figure 1. The vertices 2, 4, 9 constitute a clique. Assume 
that we choose the following order to color the vertices: 
2, 4, 9, 7, 5, 8, 3, 10, 1, 6. The sequential coloration 
method (least possible color for each vertex) gives the 
initial coloration: 2(1), 4(2), 9(3), 7(2), 5(1), 8(4), 3(3), 
10(3), 1(2), 6(1). This coloration uses four colors, where 
r = 4 and w = 3. If  we seek to improve this coloration we 
must change the color of  vertex 8 with rank 6. 8 is 
adjacent to 9, which belongs to the clique; for this reason 
color 3 is prohibited for vertex 8. For the colors 1 and 2, 
8 is not adjacent to a vertex of  the clique. The minimal 
rank vertices are 7 (color 2) and 5 (color 1); the maximal 
rank is for 5. Let the color of  5 be 3 because 5 must not 
have color 2. Thus we have the coloration: 8(1), 3(3), 
10(3), 1(2), 6(1). We have a three-colored coloration, 
which is the dimension of  a clique; therefore this clique 
is maximal and the chromatic number is 3. 
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Look-ahead algorithm. Randall-Brown [6] presents 
another method, called look-ahead algorithm, to im- 
prove his results. This algorithm looks ahead and deter- 
mines whether a candidate ci for U(xk) would, at some 
later time, cause an increase in the number of attributes 
needed. This information is also used to determine which 
attribute ci E U(xk) to assign to xk. 

In Section 3, the following exact methods are com- 
pared: 

--Randall-Brown's method with the look-ahead algo- 
rithm (RB) 

- -The  method described in this paper without the look- 
ahead algorithm (EM) 

- -The  method described in this paper with the look- 
ahead algorithm (EMEA). 

Randall-Brown's algorithm is slightly improved here 
because we stop it if the number of colors obtained is the 
same as the dimension of a known maximal clique. 

The results are as follows. Randall-Brown's algo- 
rithm is onlyusable for the small graphs, where its time 
iS not as good as the two others; for the rest of the graphs, 
its time is too large. For the two other algorithms, the 
look-ahead procedure is certainly useful for group 4 
(density ~ 0.3): For the other groups and for the smallest 

graphs, the results for this algorithm are not so good, the 
same efficiency as without look-ahead. For large graphs, 
this result is obtained because the Dsatur heuristic al- 
gorithm uses ideas of the same type as the: look-ahead 
procedure. Finally, the superiority of the improved Ran- 
dall-Brown algorithm has three causes: (1) best quality 
initial heuristic procedure, (2) determination of a large 
clique and the comparison of its dimension and the 
number of colors actually used, (3) elimination of all the 
intermediary cases in the backtrack procedure. 

These results are very interesting because this prob- 
lem is NP-complete in the sense of Karp [4]. 

Table I. Summary of  Results. 

Best known total: 986 (+328), number of  graphs 59 (+21) 
Minimal theoretical total: (with lower bounds for un-fmished 

cases): 1274 
Total of the lower bounds (Matula): 1164 
Total of the lower bounds (Dsatur): 1146 
Total of the lower bounds (best of the two): 1181 
Number of first places (best result between the heuristic methods): 

Welsh: 12 (GI: 4, G2: 2, G3: 1, G4: 5), Matula: 16 (6, 3, 3, 4), Dunstan: 
23 (8, 3, 4, 8), Tehrani: 34 (11, 4, 7, 12), SLI: 42 (13, 7, 13, 9), Dsatur: 
51 (13, 9, 14, 15), Matula-Dsatur: 55 (12, 10, 15, 18), DSI: 66 (14, 11, 
19, 22) 

Table II. Heuristic Methods (Error). 

Matula- 
Welsh Matula Dunstan Tehrani SLI Dsatur Dsatur DSI 

Group 1 Total 23 11 10 5 4 4 5 3 
error 

% 1 5.42 2.59 2.36 1.18 0.94 0.94 1.18 0.71 

Group 2 Total 25 17 16 16 8 6 5 5 
error (+ 15) (+ 12) (+8) (+7) (+4) (+4) (+4) (+2) 

% 1 12.38 8.42 7.92 7.92 3.96 2.97 2.48 2.48 
% 2 13.38 9.70 8.03 7.69 4.01 3.34 3.01 2.34 
% 3 16.49 12.71 11.00 10.65 6.87 6.19 5.84 5.15 

Group 3 Total 38 31 24 19 16 13 12 9 
error (+21) (+17) (+13) (+10) (+6) (+8) (+7) (+5) 

% l 15.90 12.97 10.64 7.95 6.69 5.44 5.02 3.76 
% 2 15.73 12.80 9.87 7.73 5.87 5.60 5.07 3.73 
% 3 20.89 17.83 14.76 12.53 10.58 10.31 9.75 8.36 

Group 4 Total 23 23 15 13 l I 8 5 4 
error (+ 19) (+ 14) (+ 11) (+7) (+9) (+5) (+5) (+2) 

% 1 20.54 20.54 13.39 11.61 9.82 7.14 4.46 3.57 
% 2 19.44 17.13 12.03 9.26 9.26 6.02 4.63 2.78 
% 3 29.00 26.50 21.00 18.00 18.00 14.50 13.00 11.00 

General Total 109 82 65 53 39 31 27 21 
case error (+55) (+43) (+32) (+24) (+ 19) (+ 17) (+ 16) (+9) 

% 1 11.16 8.39 6.65 5.42 3.99 3.17 2.76 2.15 
% 2 12.48 9.51 7.38 5.86 4.41 3.65 3.27 2.29 
% 3 16.01 12.95 10.75 9.18 7.69 6.91 6.51 5.49 
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T a b l e  I l L  H e u r i s t i c  M e t h o d s  ( T i m e ) .  

M a t u l a -  

W e l s h  M a t u l a  D u n s t a n  T e h r a n i  S L I  D s a t u r  D s a t u r  D S 1  

G r o u p  

i A 15.40 16.27 24.63 15.83 51.34 17.54 18.18 47.90 
(1.10) ( 1. ! 6) ( 1.76) ( I. 13) (3.67) ( 1.25) (1.30) (3.42) 

1B 2.36 2.64 4.21 2.47 8.15 2.71 2.89 7.62 

2A 15.25 16.19 21.52 15.59 47.92 17.27 17.91 45.45 
(1.09) (1.16) (1.54) ( 1.11 ) (3.42) (1.23) (1.28) (3.25) 

2B 2,3 ! 2.59 3.76 2.42 7.33 2.66 2.84 6.97 

3A 12,98 14.28 18.48 15.79 26.46 14.77 15.48 27.84 
(0,76) (0,84) (1.09) (0.93) (1.56) (0.87) (0.91) (1.64) 

3B 13.13 14,98 19.27 15.64 28.18 14.88 15.73 30.36 
(1.88) (2.14) (2.75) (2.23) (4.03) (2.13) (2.25) (4.34) 

3C 2.03 2.30 3.05 2.60 4.66 2.37 2.58 4.82 

4A 12,74 14,04 16.48 13.17 17.96 14.48 14.99 19.87 
(0.75) (0.83) (0.97) (0.77) (1.06) (0.86) (0.88) (1.17) 

4B 13.86 14.68 17.32 13.48 19.74 14.51 15.36 21.93 
(1.98) (2.10) (2.47) (1.93) (2.82) (2.07) (2.19) (3.13) 

4C 1.99 2.20 2.61 1.98 2.98 2.18 2.37 3.19 

Note. When a group contains several graphs, the average CPU time is given in parenthesis. 
Composition of the groups 

1 A (2 A): The 14 smallest graphs of group I (2) 
I B (2 B): The biggest graph (100 vertices) of group I (2) 
3 A (4 A): The 17 smallest graphs (from 10 to 85 vertices) of group 3 (4) 
3 B (4 B): 7 graphs from 85 to 1(]4) vertices of group 3 (4) 
3 C (4 C): 1 of the greatest graphs (100 vertices) of group 3 (4) 

Table IV. Compar ison  of  Exact Methods.  

No. 
prob-  

No. vertices Av. den. lems RB 

Time N u m b e r  of  backtracks 

EM E M L A  RB EM E M L A  

10-50 0.7 5 59.74 
60 0.7 1 41.46 
65 0.7 1 382.06 
75 0.7 1 In£ 
85 0.7 1 In~ 
90 0.7 1 3.18 

100 0.7 1 In£ 
10-55 0.5 8 19.18 

60 0.5 1 In£ 
65 0.5 1 In£ 
70 0.5 2 In£ 
75 0.5 2 In£ 
80 0.5 2 In£ 
90 0.5 1 267.47 

100 0.5 1 In£ 
10-45 0.3 6 9.27 

50 0.3 1 49.62 
55 0.3 1 9.23 
60 0.3 1 5.32 
65 0.3 1 94.64 
70 0.3 1 ln£ 
75 0.3 1 In£ 
85 0.3 1 ln£ 
90 0.3 1 In£ 
95 0.3 1 ln£ 

5.54 5,41 
5.37 4.57 
9.50 8.40 

90.49 75.39 
4.48 4.43 
3.26 3.26 
6.41 6.20 
5.54 5.70 
5.49 11.87 

42.09 41.00 
8.69 8.98 

59.72 95.63 
147.57 176.76 

4.91 5.73 
86.34 57.67 

3.78 3.89 
11.71 8.47 
9.91 4.89 
2.74 2.52 
7.62 7.26 
3.49 3.20 

168.84 53.53 
5.15 5.80 

In£ 365.05 
ln£ 479.34 

3091 44 28 
1022 80 40 

11802 284 130 
- 3223 1637 
- 6 4 

0 0 0 
- 13 10 

628 31 27 
- 372 303 
- 1976 1265 
- 152 102 
- 2019 1998 
- 4488 3243 

5609 8 8 
- 2448 1000 
260 6 5 

3458 870 339 
516 652 160 
197 58 33 

4472 385 249 
49 36 

8849 1795 
- 48 42 
- - 10454 
- - 12396 

2 5 5  

Inf. = more than 512 seconds CPU. 
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3. Comparison of the methods 

3.1 Data Used 
We generated groups of  graphs. Each graph was 

generated randomly as follows: for each possible edge, a 
random number was generated from a uniform distri- 
bution between 0 and 1; if the number was less than the 
desired density, the edge was included. 

Group 1 Group 2 Group 3 Group 4 

Number of 15 15 25 25 
graphs 

Density 0.73-0.82 0.61-0.72 0.44-0.59 0.26-0.34 

For groups 1 and 2, we have the following numbers 
of  vertices: 10, 20, 30, 40, 50, 60, 65, 70, 75, 80, 85, 90, 95, 
I00, 100. For groups 3 and 4 we have the supplementary 
numbers 35, 45, 55, 70, 75, 80, 85, 90, 95, 100. 

coloration of the subgraph, which contained the first 40 
vertices of the order obtained by the Matula-Dsatur 
algorithm. The true percentage is between the figures in 

"% 2" and those in "% 3." 
Tables I - I I I  show a superiority of  the DSI, Matula- 

Dsatur, and Dsatur methods (with the advantage going 
to DSI, which has a penalty of two colors only once in 
all the cases); next comes the SLI method, next Tehrani's 
method, next Dunstan's method, then far behind Ma- 
tula's method (which has often a penalty of three or four 
colors), and very far behind Welsh's method (which has 
often a penalty of four colors and once five colors). The 
best exact method [see Table IV] has allowed us to 
resolve the 15 graphs of group 1, 11 out of  15 graphs in 
group 2, 18 out of  25 graphs in group 3, and 15 out of 25 
graphs in group 4. 

Received May 1977; revised September 1978 

3.2 Results and Interpretations 
Table I gives a summary of the totals. In Table II we 

show under the heading "Total error" the difference in 
the total number of  colors used between each heuristic 
method and the exact method. In parenthesis we show 
the difference using the best known result for the cases 
where the exact method did not terminate in a time of  
512 seconds CPU on a CDC Cyber 7326. Under "% 1" 
we show this difference as a percentage of  the total 
number of colors, which have been obtained by the exact 
method for the terminated cases. Under "% 2" we show 
the difference as a percentage of  the total number of  
colors which have been obtained by the best known 
results (exact method for the ended cases and best known 
result for the other graphs). Finally under "% 3" we use 
the same percentage, but we consider this time the best 
lower bound for the cases which are not ended by the 
exact method. This lower bound is obtained by the exact 
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