
TransHash: Transformer-based Hamming Hashing for Efficient
Image Retrieval

Yongbiao Chen∗
chenyongbiao0319@sjtu.edu.cn
Shanghai Jiao Tong University

Shanghai, China

Sheng Zhang
zhangshe@usc.edu

University of Southern California
Los Angeles, United States

Fangxin Liu
liufangxin@sjtu.edu.cn

Shanghai Jiao Tong University
Shanghai, China

Zhigang Chang∗
changzig@sjtu.edu.cn

Shanghai Jiao Tong University
Shanghai, China

Mang Ye
mangye16@gmail.com
Wuhan University
Wuhan, China

Zhengwei Qi
qizhwei@sjtu.edu.cn

Shanghai Jiao Tong University
Shanghai, China

ABSTRACT
Deep hamming hashing has gained growing popularity in approxi-
mate nearest neighbour search for large-scale image retrieval. Un-
til now, the deep hashing for the image retrieval community has
been dominated by convolutional neural network architectures, e.g.
Resnet[21]. In this paper, inspired by the recent advancements of
vision transformers, we present Transhash, a pure transformer-
based framework for deep hashing learning. Concretely, our frame-
work is composed of two major modules: (1) Based on Vision Trans-
former (ViT), we design a siamese vision transformer backbone
for image feature extraction. To learn fine-grained features, we
innovate a dual-stream feature learning on top of the transformer
to learn discriminative global and local features. (2) Besides, we
adopt a Bayesian learning scheme with a dynamically constructed
similarity matrix to learn compact binary hash codes. The entire
framework is jointly trained in an end-to-end manner. To the best of
our knowledge, this is the first work to tackle deep hashing learning
problems without convolutional neural networks (CNNs). We per-
form comprehensive experiments on three widely-studied datasets:
CIFAR-10, NUSWIDE and IMAGENET. The experiments have
evidenced our superiority against the existing state-of-the-art deep
hashing methods. Specifically, we achieve 8.2%, 2.6%, 12.7% perfor-
mance gains in terms of average mAP for different hash bit lengths
on three public datasets, respectively.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
hamming hashing, deep learning, image retrieval, vision trans-
former

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

ACM Reference Format:
Yongbiao Chen, Sheng Zhang, Fangxin Liu, Zhigang Chang, Mang Ye,
and Zhengwei Qi. 2018. TransHash: Transformer-based Hamming Hashing
for Efficient Image Retrieval. In Woodstock ’18: ACM Symposium on Neural
Gaze Detection, June 03–05, 2018, Woodstock, NY . ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The past decade has been characterized by the explosive amount of
high-dimensional data generated by countless end-users or organi-
zations, resulting in a surge of research attention on accurate and
efficient information retrieval methods. Among them, large-scale
image retrieval has attained growing traction for its pervasive uses
in various scenarios, e.g. recommendation systems, search engines,
remote sensing systems. Among all the methods proposed for this
challenging task [16, 17, 27, 38], hamming hash-basedmethods have
achieved pronounced successes. It aims to learn a hash function
mapping the images in the high-dimensional pixel space into low-
dimensional hamming space while preserving their visual similarity
in the original pixel space. Scores of works have been introduced.
Based on the way they extract features, existing hashing-based
works can be divided into two categories, namely, shallow methods
and deep learning-based methods. Shallowmethods [8, 26, 47] learn
their hash functions via the hand-crafted visual descriptors (e.g.
GIST [39]). Nonetheless, the handcrafted features do not guarantee
accurate preservation of semantic similarities of raw image pairs,
resulting in degraded performances in the subsequent hash function
learning process. Deep learning-based [14, 48] methods generally
achieve significant performance improvements when compared
to their shallow counterparts. The common learning paradigm in-
volves two phases. The first phase aims to learn discriminative
feature representations with deep convolutional neural networks
(CNNs), e.g. AlexNet. The second phase involves designing diversi-
fied non -linear functions to squash the continuous features into
binary Hamming codes and devising various [4, 5, 15, 20, 34] losses
to preserve the similarity in the raw pixel space.

Recently, transformers [45] have demonstrated great successes
in natural language processing [3, 11]. With the advent of the Vision
Transformer, a variant of transformer tailored for computer vision
tasks, transformers have trumped numerous CNN-basedmethods in
various computer vision tasks (e.g. image classification [13], object

ar
X

iv
:2

10
5.

01
82

3v
1

 [
cs

.C
V

]
 5

 M
ay

 2
02

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al., Yongbiao Chen, Sheng Zhang, Fangxin Liu, Zhigang Chang, Mang Ye, and Zhengwei Qi

-1

Patchify &
Projection

Vision
 Transformer

CLS

1

2

3

4

CLS

1

2

3

4

A

B

Multi-Head
Attention

MLP

CLS

1

2

3

4

Multi-Head
Attention

MLP

CLS

1

2

3

4

Input
Tokens

Output
Tokens

Hash
 Layer Quant Loss Bayesian

learning
Loss

-1 +1

Quantization
Regulatizer

Similarity-preserving
Bayesian learning

-1 +1

A B

A

B

Similarity Matrix

0

1

Push

Pull
1 0

0 1

Quant Loss

Figure 1: The brief architecture of our backbone Siamese vi-
sion transformer. For an image pair (A,B), we cut them into
several patches. Then every patch is flattened and projected
to a fix-sized embedding with a fully connected layer, result-
ing in a sequence of embeddings. Subsequently, we add a
classification token in the front of each sequence. Then, two
sequences are fed into the Siamese transformer architecture.
At last, we add a hash layer projecting the feature into B-bit
hash vectors. The Bayesian learning module is employed to
preserve the similarity in the hashing space for each pair.

re-identification [23], and etc). As is shown in Fig. 1, Vision trans-
former works by first reshaping the input images into a sequence of
2D patches. In the later stage, the 2D patches are transformed into
D dimensional vectors with a trainable linear projection matrix.
Then, a sequence of 1D vectors is fed into the standard transformer
architecture to learn a usable feature representation. Inspired by the
pronounced performances of ViT in other vision tasks, we ponder
the possibility of innovating novel deep hashing methods with pure
transformers.

In this paper, we build up a novel transformer-based hashing
method, dubbed Transhash, which is the very first deep hashing
method without adopting a convolutional neural network (CNN) as
the backbone architecture. Specifically, targeting pairwise deep
hashing learning, we design a Siamese Transformer backbone,
which is essentially two identical transformers sharing the same
weight parameters[2]. On top of this innovation, inspired by [23],
we design a dual-stream feature learning module by changing the
last layer of two Siamese transformers to two parallel branches.
Concretely, for the first branch, we learn a global feature repre-
sentation. In parallel, we reorder the sequence of output features
from the second last layer into K groups. The K groups are con-
catenated with the shared output token and then fed into another
transformer layer to generate K local features. The primary mer-
its are stated as follows. Firstly, the model could simultaneously
learn fine-grained global and local features with the joint global
and local stream design. Secondly, similar to [31], which employs a
divide-and-encode module to reduce the redundancy of the learned
feature representation, our method could achieve similar effects.
Since the final learned representation is a concatenation of the
global representation and several local representations, the sub-
sets of the final feature vector are loosely correlated, resulting in

increased independence and minimized redundancy. To further
preserve the semantic similarity of the image pairs in the feature
space, we propose to adopt the Bayesian learning framework to pull
close similar pairs and push away dissimilar pairs in the embedding
space for all the global and local features. Finally, since the learned
feature representations are continuous in nature, we need to adopt
the sign function ℎ = sign(𝑓) to generate binary hamming hash
code in the test stage. However, owing to the sizable gap between
the continuous feature representation 𝑓 and the hash code ℎ after
sign function, which is officially called the quantization error[55],
directly generating hash codes with 𝑠𝑖𝑔𝑛 function in the testing
stage could only lead to sub-optimal retrieval performances. In an
effort to bridge the gap in the training stage, we reformulate the
similarity-preserving learning problem as a constrained optimiza-
tion problem. Concretely, on top of the Bayesian learning module,
we add a Cauchy quantization loss [5] to statistically bridge the
gap between the continuous feature representation and the binary
hash coding.

To sum up, we make the following contributions:

(1) We design a Siamese Transformer backbone based on ViT
which is two identical vision transformers sharing the same
weight parameters.

(2) We innovate a novel two-stream feature learning module by
changing the last layer of the transformer into two indepen-
dent parallel branches. In this fashion, we could learn global
and local features at the same time. Meanwhile, as stated
before, it could also promote the independence of the learned
final hash code vector while reducing bit redundancy.

(3) By further adopting the similarity-preserving Bayesian learn-
ing module with a quantization constraint, we build up a
novel deep hashing framework for large-scale image retrieval
with pure transformer. To the best of our knowledge, this is
the very first work for deep learning-based hashing without
adopting a convolutional neural network as the backbone.

(4) We conduct comprehensive experiments on three widely-
studied datasets- CIFAR-10, NUSWIDE and IMAGENET.
The results show that we outperform all the state-of-the-art
method across three datasets by large margins.

2 RELATEDWORKS
2.1 CNNs in Computer Vision
Convolutional neural network was first introduced in [32] to recog-
nize hand-write numbers. It proposes convolutional kernels to cap-
ture the visual context and achieves notable performances. Nonethe-
less, it was not until the innovation of AlexNet [29] that the CNN
starts to become the workhorse of almost all the mainstream com-
puter vision tasks, e.g. Instance Segmentation [1, 40], Image Inpaint-
ing [52, 53], Deep hashing [5, 6], Person Re-identification [9, 25, 50,
51] and etc. To further boost the capability of CNNs, a series of
deeper and more effective convolutional neural networks have
been proposed, e.g. VGG [42], GoogleNet[43], ResNet [22], Efficient-
Net [44] and etc. While CNNs are still dominant across various com-
puter vision tasks, the recent shift in attention to transformer-based
architectures has opened up possibilities to adopt transformers as
potent alternatives to convolutional neural networks. Our work is

TransHash: Transformer-based Hamming Hashing for Efficient Image Retrieval Woodstock ’18, June 03–05, 2018, Woodstock, NY

1

Linear Projection Postion Embedding

1 2 3 4

……

Image Patching

2

3 4

L-1

Global Hash

……

Transformer Block

Norm Linear

……

Transformer Block

Norm Linear Local Hash

CLS

1

3

4

2

CLS

1

2

CLS

3

4

Global

Local

Transformer Transformer BL BL BL

BL

BL

Norm

0

Class
Token

Queries

Keys

Values

X Norm Linear

……

Transformer Block * (L-1)

Multi Head Attention

Linear Projection Postion Embedding

1 2 3 4

……

Image Patching

Global Hash

……

Transformer Block

Norm Linear

……

Transformer Block

Norm Linear Local Hash

CLS

1

3

4

2

CLS

1

2

CLS

3

4

Norm

0

Class
Token

Queries

Keys

Values

X Norm Linear

……

Transformer Block *(L-1)

Multi Head Attention

++

+

+ B/2

B/4

B/4

Local Hash

BL

Retrieval Stage

Training Stage

BL

Bayesian Learning Loss

Quantization Loss

BL

Q

Q

Q

Q

Q

Q

Q

Global

Local

++

+

+ B/2

B/4

B/4

Concat

0.2

0.8
-0.1

Sign

1

1

-1

…

-1

…

Image Patching Transformer Blocks

1

0

Project
&

Embed
Norm …… Norm

Global Hash

Local Hash

Linear

Linear

-1 1 1 -1

1 1 1 -1

-1 -1 -1 -1

-1 1 1 -1

-1 1 1 -1

1

-1 -1

1

Query

-1

-1-1 1
Gallery

Hamming Distance Ranking

Local Hash

L-1

Figure 2: The detailed architecture of the proposed TransHash. The upper part denotes the training stage. Specifically, we
follow the same protocols as ViT by feeding the patch embedding together with the position embedding into the transformer
encoder. At the last layer of the transformer, we design two parallel transformer blocks: global and local transformer blocks.
For the global feature and each local feature, we design a specific hashing layer. In the testing stage, the global and all the local
hash vectors are concatenated and quantized into one hash code.

among the first endeavour to replace CNNs with pure transformer-
based architectures in traditional computer vision tasks.

2.2 Transformer in Vision
The Transformer is first proposed in [45] for sequential data tar-
geting at usage in the field of natural language processing (NLP).
Since then, many studies have investigated the effectiveness of
Transformer in computer vision tasks by feed to Transformer the
sequence of feature maps extracted by CNNs [7, 18, 49]. In 2020,
Google proposed Vision Transformer (ViT) [13], which applies a
pure transformer directly to a sequence of image patches for image
classification. Variants of ViT have achieved remarkable successes.
For instance, [37] proposes a hierarchical vision transformer us-
ing shifted windows. [46] proposes a pyramid vision transformer
tailored for dense prediction. Further, [23] proposes the first work
of designing a pure-transform based architecture for person re-
identification. By utilizing the side information and innovating a
novel jigsaw branch, it achieves state-of-the-art across multiple

object re-identification datasets. Vision transformer is still in its
nascent stages. Mounting research attention is being directed to
investigate its potential in diversified computer vision tasks.

2.3 Hashing for Image Retrieval
Deep hashing for large-scale image retrieval has been drawing
growing research attention in recent years [17, 19, 24, 26, 27, 47].
According to the way they extract the features, we could categorize
the existing hashing methods into two groups: shallow hashing
methods and deep learning based-hash methods.

Typical shallow methods are reliant upon the handcraft features
to learn a hashing function mapping visual images into binary
hash codes. A canonical example is LSH (Locality Sensitive Hash)
[26], which seeks to find a locality-sensitive hash family where the
probability of hash collisions for similar objects is much higher
than those dissimilar ones. Later, [8] further proposed another vari-
ant of LSH (dubbed SIMHASH) for cosine similarities in Euclidean
space. Though these handcrafted feature-based shallow methods

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al., Yongbiao Chen, Sheng Zhang, Fangxin Liu, Zhigang Chang, Mang Ye, and Zhengwei Qi

achieved success to some extent, when applied to real data where
dramatic appearance variation exists, they generally fail to capture
the discriminative semantic information, leading to compromised
performances. In light of this dilemma, a wealth of deep learning-
based hash methods have been proposed [6, 15, 33, 34, 55], for the
first time, proposes to learn the features and hash codes in an end-
to-end manner. [55] offers a Bayesian learning framework adopting
pairwise loss for similarity preserving. [5] further suggests sub-
stituting the previous probability generation function for neural
network output logits with a Cauchy distribution to penalize sim-
ilar image pairs with hamming distances larger than a threshold.
[54] innovates a new similarity matrix targeting multi-label im-
age retrieval. [15] further introduces a deep polarized loss for the
hamming code generation, obviating the need for an additional
quantization loss.

3 PROPOSED METHOD
In this section, we will elaborate on the design of our framework.

Problem Formulation. Suppose we have a training set𝑇 = {𝐼𝑖 }𝑁𝑇𝑖=1
containing 𝑁𝑇 training images and the corresponding label set
𝑌 = {𝑦𝑖 }𝑁𝑇𝑖=1 . For all the pairs of images in the training set, we can
construct a similarity matrix Swhere 𝑠𝑖 𝑗 = 1 if 𝐼𝑖 and 𝐼 𝑗 are from the
same class and 𝑠𝑖 𝑗 = 0 otherwise. The goal of deep hash for image
retrieval is to learn a non-linear hash function H : I ↦→ {0, 1}𝐵
which encodes each input image 𝐼𝑖 into a binary hash vector ℎ𝑖
with 𝐵 bits while preserving the similarity information conveyed in
S. That is to say, the Hamming distance between ℎ𝑖 and ℎ 𝑗 should
be small if 𝑠𝑖 𝑗 = 1 and large otherwise.

3.1 Siamese Vision Transformer Architecture
An overview of our architecture is illustrated in Fig. 2. For an image
pair (𝐼𝑖 , 𝐼 𝑗) with size 𝐻 ×𝑊 × 3, we cut them into identical small
patches of patch size 𝑃 × 𝑃 × 3. In doing so, we obtain 𝑁 patches in
total, where 𝑁 = 𝐻 ×𝑊 /𝑃2. Note that 𝑁 is also the effective input
sequence length for the transformer.

Patch embeddings. For each image patch of 𝑃 ×𝑃 ×3, we flatten it
into a vector of size 𝑃2×3. Subsequently, similar toViT, we embed ev-
ery vector into𝐷 dimensionswith a trainable linear projection (fully
connected layer), resulting in a sequence {𝑥𝑘𝑝 } ∈ R𝐷 , 𝑘 ∈ [1, 𝑁].
We further prepend a learnable embedding 𝑥𝑐𝑙𝑎𝑠𝑠 to 𝑥 , whose state
at the end of the output layer serves as the image representation.
In this way, we obtain the final embedding 𝑋𝑝 ∈ R(𝑁+1)×𝐷

Position embeddings. Positional embedding is adopted to encode
the position information of the patch embedding, which is impor-
tant for the transformer to learn the spatial information of each
patch inside the original image. We follow the standard procedure
in ViT by adding trainable 1D position embedding for every vector
in the sequence. Thus, the input for the transformer encoder 𝑧0 is
stated as follows:

𝑧0 = 𝑋𝑝 + 𝐸𝑝𝑜𝑠 = [𝑥𝑐𝑙𝑎𝑠𝑠 ;𝑥1𝑝 , ..., 𝑥𝑁𝑝] + 𝐸𝑝𝑜𝑠 (1)

Self-attention encoder. The transformer encoder consists of 𝐿 − 1
blocks, each block containing a multi-headed self-attention layer
(MSA) and MLP layer. A layer norm (LN) is applied before each

layer while residual connections are applied after each layer, as
shown in Fig. 2. The computation of a block F𝑏𝑙𝑜𝑐𝑘 could be formu-
lated as:

𝑧𝑙 = F𝑚𝑠𝑎 (F𝑙𝑛 (𝑧𝑙−1)) + 𝑧𝑙−1
𝑧𝑙 = F𝑚𝑙𝑝 (F𝑙𝑛 (𝑧𝑙)) + 𝑧𝑙

where
𝑙 = 1...(𝐿 − 1)

(2)

Dual-stream feature learning. After the before-mentioned self-
attention encoder, we get the hidden features which are denoted
as 𝑍𝐿−1 = [𝑧0

𝐿−1; 𝑧
1
𝐿−1, 𝑧

2
𝐿−1, ..., 𝑧

𝑁
𝐿−1]. Note that, as stated before,

𝑧0
𝐿−1 is the hidden feature for the prepended learnable embed-
ding 𝑥𝑐𝑙𝑎𝑠𝑠 . Inspired by [23], we design two parallel branches, the
global branch F 𝑔

𝑏𝑙𝑜𝑐𝑘
and the local branch F 𝑙

𝑏𝑙𝑜𝑐𝑘
. For the global

branch, it serves as a standard transformer block encoding 𝑍𝐿−1
into 𝑍𝐿 = [𝑓𝑔; 𝑧1𝐿, 𝑧

2
𝐿
, ..., 𝑧𝑁

𝐿
], where 𝑓𝑔 is regarded as the global

feature representation. For the local branch, we split 𝑍𝐿−1 into
𝐾 groups and prepend the shared token 𝑧0

𝐿−1 before each group.
In this fashion, K feature groups are derived which are denoted
as{[𝑧0

𝐿−1; 𝑧
1
𝐿−1, ..., 𝑧

𝑁 /𝐾
𝐿−1], [𝑧0

𝐿−1; 𝑧
𝑁 /𝐾+1
𝐿−1 , ..., 𝑧

2×𝑁 /𝐾
𝐿−1], [𝑧0

𝐿−1; 𝑧
𝑁−𝑁 /𝐾+1
𝐿−1

, ..., 𝑧𝑁
𝐿−1]}. Then, we feed 𝐾 features groups into F 𝑙

𝑏𝑙𝑜𝑐𝑘
to learn 𝐾

local features {𝑓 1
𝑙
, 𝑓 2
𝑙
, ..., 𝑓 𝐾

𝑙
}.

Hash layer. In an effort to learn compact hash codes, we further
design several hash layers projecting every feature vector into
different bit sized hash vectors. Concretely, suppose the hash bit
length in the retrieval stage is 𝐵 for each image, then, for the global
feature vector of embedding size𝑀 , we obtain a 𝐵/2 bit global hash
vector through

ℎ𝑔 = F 𝑔
ℎ
(𝑓𝑔) = 𝑓𝑔𝑊𝑇 + 𝑏 (3)

where𝑊 is a weight parameter matrix of size (𝐵/2, 𝑀) and b is the
bias parameter of size (𝐵/2,). In a similar fashion, for each local
feature 𝑓𝑙 ∈ {𝑓 1

𝑙
, ..., 𝑓 𝐾

𝑙
}, we design a specific fully connected layer

with 𝐵/(2∗𝐾) output logits, resulting in𝐾 hash vectors {ℎ1
𝑙
, ..., ℎ𝐾

𝑙
}.

In this way, for a image pair (𝐼𝑖 , 𝐼 𝑗), the siamese model outputs
two sets of hash vectors: {{ℎ𝑔}𝑖 , {ℎ1𝑙 }

𝑖 , ..., {ℎ𝐾
𝑙
}𝑖 } and {{ℎ𝑔} 𝑗 , {ℎ1𝑙 }

𝑗 ,

..., {ℎ𝐾
𝑙
} 𝑗 }, respectively.

3.2 Similarity-preserving Bayesian Learning
In this paper, we propose to adopt a Bayesian learning framework
for similarity-preserving deep hashing learning. Given training
images (𝐼𝑖 , 𝐼 𝑗 , 𝑠𝑖 𝑗) : 𝑠𝑖 𝑗 ∈ S, where 𝑠𝑖 𝑗 = 1 if 𝐼𝑖 and 𝐼 𝑗 are from
the same class and 0 otherwise, we can formulate the logarithm
Maximum a Posteriori (MAP) estimation of the hash codes 𝑯 =

{ℎ1, ℎ2, ..., ℎ𝑃 } for 𝑃 training points as:
log 𝑃 (𝑯 | S) ∝ log 𝑃 (S | 𝑯)𝑃 (𝑯)

=
∑︁
𝑠𝑖 𝑗 ∈S

𝑤𝑖 𝑗 log 𝑃
(
𝑠𝑖 𝑗 | 𝒉𝑖 ,𝒉 𝑗

)
+
𝑁𝑇∑︁
𝑖=1

log 𝑃 (𝒉𝑖)
(4)

where 𝑃 (S | 𝑯) is the weighted likelihood function and𝑤𝑖 𝑗 is the
corresponding weight for each image pair (𝐼𝑖 , 𝐼𝑖). Since the similar-
ity matrix S could be very sparse in real retrieval scenarios [6], it
could lead to the data imbalance problem, resulting in sub-optimal

TransHash: Transformer-based Hamming Hashing for Efficient Image Retrieval Woodstock ’18, June 03–05, 2018, Woodstock, NY

retrieval performances. The weighted likelihood is adopted to tackle
this problem by assigning weights to each training pair according
to the importance of misclassifying that pair [12]. To be clear, we
set

𝑤𝑖 𝑗 =

{
|S|/|S1 | , 𝑠𝑖 𝑗 = 1
|S|/|S0 | , 𝑠𝑖 𝑗 = 0 (5)

where S1 =
{
𝑠𝑖 𝑗 ∈ S : 𝑠𝑖 𝑗 = 1

}
is the set of similar pairs, S0 ={

𝑠𝑖 𝑗 ∈ S : 𝑠𝑖 𝑗 = 0
}
being the set of dissimilar pairs. For an pair ℎ𝑖 , ℎ 𝑗 ,

𝑃
(
𝑠𝑖 𝑗 | 𝒉𝑖 ,𝒉 𝑗

)
is the conditional probability function of 𝑠𝑖 𝑗 given

a pair of hash codes ℎ𝑖 and ℎ 𝑗 . Since the 𝑠𝑖 𝑗 only takes two val-
ues 0 and 1, it is natural to define 𝑃

(
𝑠𝑖 𝑗 | 𝒉𝑖 ,𝒉 𝑗

)
as a Bernoulli

distribution:

𝑃
(
𝑠𝑖 𝑗 | 𝒉𝑖 ,𝒉 𝑗

)
=

{
𝜎
(
D𝐻

(
𝒉𝑖 ,𝒉 𝑗

))
, 𝑠𝑖 𝑗 = 1

1 − 𝜎
(
D𝐻

(
𝒉𝑖 ,𝒉 𝑗

))
, 𝑠𝑖 𝑗 = 0

= 𝜎
(
D𝐻

(
𝒉𝑖 ,𝒉 𝑗

))𝑠𝑖 𝑗 (1 − 𝜎 (
D𝐻

(
𝒉𝑖 ,𝒉 𝑗

)))1−𝑠𝑖 𝑗
(6)

where D𝐻 (.) is the Hamming distance function and 𝜎 is a proba-
bility function which takes as input a distance of a hash code pair
and generate the probability of them from the same class. Note that,
since directly optimizing the discrete binary hash code is super
challenging, in the training stage, we apply continuous relaxation
to the binary constraints h𝑖 ∈ {−1, 1}𝐵 similar to [5, 6, 55]. Thus,
we adopt a surrogate D𝑆 for D𝐻 in the continuous space which is
formulated as:

D𝑆

(
𝒉𝑖 ,𝒉 𝑗

)
=
𝐾

4

 𝒉𝑖
∥𝒉𝑖 ∥

−
𝒉 𝑗

𝒉 𝑗

2
2

=
𝐾

2
(
1 − cos

(
𝒉𝑖 ,𝒉 𝑗

)) (7)

For the probability function 𝜎 , the most commonly used is the
sigmoid function. Nevertheless, as stated in [5], the probability of
sigmoid when the input Hamming distance is much larger than 2
stays high and only starts to decrease when it approaches 𝑏/2. This
property makes it hard for the deep hashing method to pull the
distance of similar pairs close to a sufficient amount. In light of this
dilemma, we propose to adopt Cauchy distribution function:

𝜎
(
D𝑆

(
𝒉𝑖 ,𝒉 𝑗

))
=

𝛾

𝛾 + D𝑆

(
𝒉𝑖 ,𝒉 𝑗

) (8)

where 𝛾 denotes the scale parameter of the Cauchy distribution.
The Cauchy distribution has a desirable property. The probability
of Cauchy declines very fast even when the Hamming distance is
small, enabling the hashing method to pull the similar images into
a small Hamming radius. By taking Eq. 8, Eq. 7, Eq. 6 into theMAP
estimation in Eq. 4, we could derive the optimization objective of
similarity-preserving loss as:

𝐿𝑠 =
∑︁
𝑠𝑖 𝑗 ∈S

𝐿𝑐𝑒 (𝒉𝑖 ,𝒉 𝑗)

=
∑︁
𝑠𝑖 𝑗 ∈S

𝑤𝑖 𝑗

(
𝑠𝑖 𝑗 log

D𝑠

(
𝒉𝑖 ,𝒉 𝑗

)
𝛾

+ log
(
1 + 𝛾

D𝑆

(
𝒉𝑖 ,𝒉 𝑗

))) (9)

From Eq. 6 and Eq. 9, we can observe that 𝐿𝑠 takes a similar form
as logistic regression. By optimizing 𝐿𝑠 , for a similar pair (𝐼𝑖 , 𝐼 𝑗),
we are increasing the value of 𝑃 (1|h𝑖 ,h𝑗), resulting in decreased
value of 𝐷𝑆 (h𝑖 ,h𝑗) since 𝜎 is a monotonically decreasing Cauchy

function.
The quantization constraint to bridge the gap between continuous
features and their binary counterparts (𝐿𝑄) can be derived from
the proposed prior 𝑃 (𝒉𝑖) = 𝛾

𝛾+D𝑆 (|𝒉𝑖 |,1) where 𝛾 is the same scale
parameter as Eq. 8 and 1 is a vector of ones. Since we aremaximizing
𝑃 (𝐻) in Eq. 4, the quantization loss 𝐿𝑄 is stated as:

𝐿𝑄 =

𝑁𝑇∑︁
𝑖=1

𝑄 (𝒉𝑖) =
𝑁𝑇∑︁
𝑖=1

log
(
1 + D𝑆 (|𝒉𝑖 | , 1)

𝛾

)
(10)

where 1 is a vector of ones. By minimizing the quantization loss 𝑄
in the training stage, each dimension of the hash vector h is pushed
to approximate 1.

3.3 End to End training
In this section, we will derive the overall optimization objective
of our proposed Transhash method based on Sec. 3.1 and Sec. 3.2.
Given training images in pairs such as (𝐼𝑖 , 𝐼 𝑗), we obtain a pair of
continuous hash vector sets {{ℎ𝑔}𝑖 , {ℎ1𝑙 }

𝑖 , ..., {ℎ𝐾
𝑙
}𝑖 } and {{ℎ𝑔} 𝑗 , {ℎ1𝑙 }

𝑗

, ..., {ℎ𝐾
𝑙
} 𝑗 } through the siamese vision transformer. Subsequently, for

the local features, we obtain the Bayesian loss and quantization
loss as:

𝐿𝑙𝑜𝑐𝑎𝑙𝐵 =
∑︁
𝑠𝑖 𝑗 ∈S

𝐾∑︁
𝑘

𝐿𝑐𝑒 ({h𝑘𝑙 }
𝑖 , {h𝑘

𝑙
} 𝑗)

𝐿𝑙𝑜𝑐𝑎𝑙𝑄 =

𝑁𝑇∑︁
𝑖

𝐾∑︁
𝑗

𝑄 ({ℎ 𝑗
𝑙
}𝑖)

(11)

where 𝑁 is the total number of training images, S represents the
similarity matrix, and 𝐾 denotes the number of local features for
each image. In a similar fashion, we could derive the losses for the
global features. The overall learning objective for Transhash is
formulated as:

min
𝜃
𝐿
𝑔𝑙𝑜𝑏𝑎𝑙

𝐵
+ 𝐿𝑙𝑜𝑐𝑎𝑙𝐵 + 𝜆(𝐿𝑔𝑙𝑜𝑏𝑎𝑙

𝑄
+ 𝐿𝑙𝑜𝑐𝑎𝑙𝑄) (12)

where 𝜃 denotes the set of parameters of the framework, and 𝜆 is
the hyper-parameter for controlling the importance of the Cauchy
quantization loss.

3.4 Retrieval Process
In this section, we will elaborate on how to perform efficient image
retrieval given a well-trained model. Generally, we are given a
training image set Q and a gallery image set G. For an image 𝐼𝑞

𝑖
in Q, we feed it through the backbone transformer, and obtain
a set of hash vectors {{ℎ𝑔}𝑖 , {ℎ1𝑙 }

𝑖 , ..., {ℎ𝐾
𝑙
}𝑖 }. Subsequently. we

concatenate the global and local hash vectors and obtain the final
hash vector h𝑞

𝑖
:

h𝑞
𝑖
= sign(Concat([{{ℎ𝑔}𝑖 , {ℎ1𝑙 }

𝑖 , ..., {ℎ𝐾
𝑙
}𝑖 }])) (13)

where sign(𝑥) is a element-wise thresholding function which re-
turn 1 if 𝑥 > 0 and -1 otherwise. And, Concat is a function which
concatenate the global and local features into a 𝐵 bit hash vector.
In a similar fashion, for all the images in G = {𝐼𝑔

𝑘
}𝑁𝑔

𝑘=1, we obtain

the binary hash codesH𝑔 = {ℎ𝑔
𝑘
}𝑁𝑔

𝑘=1. Then, we can rank the binary
gallery codes H𝑔 through their Hamming distance with respect to
the query hash code h𝑞

𝑖
.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al., Yongbiao Chen, Sheng Zhang, Fangxin Liu, Zhigang Chang, Mang Ye, and Zhengwei Qi

Table 1: Mean Average Precision (MAP) of Hamming Ranking for Different Number of Bits on Three Datasets

Datasets CIFAR-10@54000 NUSWIDE@5000 IMAGENET@1000
Methods 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits
SH [47] (NeurIPS) - - - - 0.4058 0.4209 0.4211 0.4104 0.2066 0.3280 0.3951 0.4191
ITQ[19] (TPAMI) - - - - 0.5086 0.5425 0.5580 0.5611 0.3255 0.4620 0.5170 0.5520
KSH[36] (CVPR) - - - - 0.3561 0.3327 0.3124 0.3368 0.1599 0.2976 0.3422 0.3943
BRE[30] (NeurIPS) - - - - 0.5027 0.5290 0.5475 0.5546 0.0628 0.2525 0.3300 0.3578
DSH[35] (CVPR) 0.6145 0.6815 0.6828 0.6910 0.6338 0.6507 0.6664 0.6856 0.4025 0.4914 0.5254 0.5845
DHN[55] (AAAI) 0.6544 0.6711 0.6921 0.6737 0.6471 0.6725 0.6981 0.7027 0.4139 0.4365 0.4680 0.5018
HashNet[6] (ICCV) 0.5105 0.6278 0.6631 0.6826 0.6821 0.6953 0.7193 0.7341 0.3287 0.5789 0.6365 0.6656
DCH[5] (CVPR) 0.6680 0.6936 0.6807 0.6775 0.7036 0.7178 0.7106 0.7056 0.5868 0.5862 0.5639 0.5540
IDHN[54] (TMM) 0.5419 0.5695 0.5895 0.5972 0.6999 0.7149 0.7225 0.7256 0.2583 0.3339 0.3708 0.4037
DPN[15] (IJCAI) 0.825 0.838 0.830 0.829 - - - - 0.684 0.740 0.756 0.756
TransHash 0.9075 0.9108 0.9141 0.9166 0.7263 0.7393 0.7532 0.7488 0.7852 0.8733 0.8932 0.8921

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

PR curve @16bits (CIFAR-10)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

PR curve @64bits (CIFAR-10)

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of returned images

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Pr
ec

is
io

n

Precision curve @48bits (CIFAR-10)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

PR curve @16bits (NUSWIDE)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

PR curve @64bits (NUSWIDE)

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of returned images

0.60

0.65

0.70

0.75

0.80

Pr
ec

is
io

n

Precision curve @48bits (NUSWIDE)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

PR curve @16bits (IMAGENET)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

PR curve @64bits (IMAGENET)

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of returned images

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

Pr
ec

is
io

n

Precision curve @48bits (IMAGENET)

DCH HashNet DHN IDHN DSH TransHash

Figure 3: The experimental results of TransHash and other competing methods on three datasets

3.5 Implementation Details
All the images are first resized to 256× 256. For the training images,
we adopt standard image augmentation techniques including ran-
dom horizontal flipping and random cropping with cropping size 224.
For testing images, we only apply the center cropping with cropping
size 224. The batch size is set to 64. SGD optimizer is adopted with
a weight decay of 1𝑒 − 4. The learning rate is initialized to 3𝑒 − 2
with cosine learning rate decay. The number of warmup steps for
the scheduler is set to 500. The patch size is set to (32, 32) for the

Siamese transformer model, the hidden size to 1024. The number
of heads for the multi-head attention is set to 16, and the model
consists of 24 blocks in total.

4 EXPERIMENTATION
4.1 Datasets and Evaluation Protocols

Datasets. We conduct experiments on three widely-studied im-
age retrieval datasets: CIFAR-10, NUSWIDE, and IMAGENET.
CIFAR-10 [28] is a dataset with 60, 000 images from 10 classes. We

TransHash: Transformer-based Hamming Hashing for Efficient Image Retrieval Woodstock ’18, June 03–05, 2018, Woodstock, NY

follow the standard protocol in [5, 55]. Specifically, we randomly
select 500 images for each class as the training set, resulting in
5, 000 training points. Then, we randomly select 100 images per
class as the query set, the rest denoted as the database.
NUSWIDE [10] is a widely-studied public web image dataset con-
sisting of 269, 648 images in total. Each image is annotated with
some of the 81 ground-truth categories (concepts). For fair compar-
isons, we follow similar experimental protocols [6, 55] by randomly
sampling 5, 000 as the query set, the rest as the database. Subse-
quently, we randomly sample 10, 000 images from the database as
the training set.
IMAGENET is a subset of the dataset for Large Scale Visual Recog-
nition Challenge (ISVRC 2015) [41]. Specifically, we follow the same
protocol as [15][6] by randomly sampling 100 classes and use all
the images of these classes in the validation set as the query set.
All the images of these classes in the training set are denoted as
the database, while 100 images per category are sampled as the
training set.

Evaluation Protocols. We adopt Mean Average Precision (mAP),
Precison andRecall as the testing metrics. Concretely, we follow a
similar fashion as [5, 6]. ThemAP is calculated with the top 54,000
returned images for CIFAR-10, 5,000 for NUSWIDE and 1,000 for
IMAGENET

4.2 Comparison with State-of-the-Arts
In this section, we compare the results of our proposed TransHash
and the state-of-the-art deep hashing methods. Specifically, the
competing methods could be divided into two categories: shal-
low hashing methods and deep hashing methods. For the shal-
low hashing methods, we include the most frequently compared
methods SH [47], ITQ [19], KSH [36], and BRE [30] for detailed
comparisons. For the deep learning-based hashing methods, we
further include DSH [35] which is among the very first works tar-
geting at tackling the hashing problem for image retrieval with
deep convolutional neural networks. In addition, we incorporate
other recent deep hashing methods including DHN[55], Hash-
Net [6], IDHN [54] and DPN [15].

Note that, for all the non-deep methods and DPN, we directly
quote the results from [6] and [15]. For the rest of the competing
methods, we conduct experiments with the open-sourced codes
from the original papers. For fair comparisons, we conform to
original protocols for the hyper-parameters and the pre-processing
techniques. For example, all the images are resized to 224 × 224.

The Mean Average Precision (mAP) results are demonstrated
in Tab. 1. It is rather evident that our proposed TransHash is a
clear winner compared with the shallow hashing methods across
three datasets. Specifically, we achieve absolute performance boosts
of 19.93%, 39.69% in terms of average mAP for NUSWIDE and
IMAGENET, respectively. The unsatisfied performances of these
non-deep hashing methods could be in part attributed to the fact
that these methods could not assist in the discriminative feature
learning process, resulting in the generation of sub-optimal hashing
codes. Clearly, deep hashing methods exhibit significantly better
performances across all the datasets for different hash bit lengths.
Still, our method outperforms all the competing methods by large
margins. Specifically, on CIFAR-10, we achieve amAP of 91.66%

in terms of 64 hash bits, surpassing the state-of-the-art result by
8.8%. The performance improvement is even more pronounced in
IMAGENET. The averagemAP for TransHash is 86.10%, exceed-
ing DPN by 12.7%. The reasons for the notable performance gains
are twofold. First, the siamese architecture and the dual-stream
feature learning design could assist in learning more discriminative
features. The second reason is that the ratio between the num-
ber of similar pairs and dissimilar pairs in IMAGENET is much
larger than CIFAR-10, which is also known as the data imbalance
problem [6], deteriorating the performance of methods trained on
pairwise data [35, 54]. TransHash tackles this problem by dynam-
ically assigning a weight for each pair as is carried out in [6]. On
NUSWIDE, our method also consistently exceeds the competing
methods across different hash bit lengths. The performance gains
are not as sizable as on CIFAR-10 and NUSWIDEmainly because
TransHash is not tailored for multi-label image retrieval where
each image comprises multiple labels.

We further plot the Precision-Recall curves(PR) in terms of 16
and 64 hash bits and Precision curves with respect to different num-
bers of top returned images. As depicted in Fig. 3, the performance
of TransHash, colored with red, consistently levitates above all
the competing methods by large margins for the PR curves. In terms
of precision w.r.t numbers of returned images, as shown in the top
right pictures in Fig. 3, TransHash achieves significantly better
results against all the methods. The results on NUSWIDE are on
the middle of Fig. 3. TransHash achieves slightly better results
for PR@16 bits and PR@64 bits. For the precision w.r.t number of
returned images, our method obtains a precision of 76.77% for 100
returned images, surpassing IDHN by 2.7%. Pronounced perfor-
mance gains could also be spotted for IMAGENET. Specifically,
for PR curve with 16 bits, DCH obtains the second place while
HashNet tops DCH for 48 bits. It is easy to spot that TransHash
still exceeds both methods in two testing scenarios with consider-
able margins. For the precision curve, we achieve performances of
90.35%, 89.38% w.r.t 100 and 1000 returned images, exceedingHash-
Net by 24.73% and 28.18%, respectively. The superior results could
sufficiently demonstrate the effectiveness of our pure-transformer-
based hashing method.

4.3 Ablation Studies
To further analyze the overall design of our proposed method, we
conduct a detailed ablation study to demonstrate the effectiveness
of each component. Specifically, we investigate three variants of
TransHash:

(1) TransHash w/o P, a variant without adopting the dual-
stream feature learning.

(2) TransHash w/o Q, a variant without the Cauchy quantiza-
tion loss.

(3) TransHash w/o C, a variant adopting the sigmoid function
as the probability function 𝜎 , following the protocols in [55].

As shown in Tab. 2 and Fig. 4, when then Cauchy quantization
loss is removed (TransHash w/o Q), we experience notable per-
formance declines in NUSWIDE and IMAGENET, from 74.88% to
69.15% and 89.21% to 87.58 % for 64 hash bits, respectively. When
the model is deprived of Cauchy distribution (TransHash w/o C),
which is similar to [55], we can see that the performance decreases

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al., Yongbiao Chen, Sheng Zhang, Fangxin Liu, Zhigang Chang, Mang Ye, and Zhengwei Qi

Table 2: Mean Average Precision (MAP) of Different Variants of TransHash on Three Datasets

Datasets CIFAR-10@54000 NUSWIDE@5000 IMAGENET@1000
Methods 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits
TransHash 0.9075 0.9108 0.9141 0.9166 0.7263 0.7393 0.7532 0.7488 0.7852 0.8733 0.8932 0.8921
TransHash w/o C 0.8406 0.8384 0.8958 0.9062 0.7004 0.7265 0.7336 0.7310 0.7172 0.7808 0.8064 0.8244
TransHash w/o P 0.9029 0.9053 0.9028 0.9014 0.7190 0.7147 0.7339 0.7167 0.7549 0.8485 0.8635 0.8635
TransHash w/o Q 0.8927 0.9023 0.9048 0.9078 0.6540 0.6821 0.6689 0.6915 0.7451 0.8588 0.8689 0.8758

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

PR curve @16bits (CIFAR-10)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

PR curve @16bits (NUSWIDE)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

PR curve @16bits (IMAGENET)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

PR curve @64bits (CIFAR-10)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

PR curve @64bits (NUSWIDE)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

PR curve @64bits (IMAGENET)

TransHash w/o P TransHash w/o Q TransHash w/o C TransHash

Figure 4: Experimental results of different variants of TransHash on three datasets

(Groups (K)) 2 3 4 5 6
16 bits 0.9075 - - - -
32 bits 0.9108 0.9013 - - -
48 bits 0.9141 0.9017 0.9187 0.9107 0.9143
64 bits 0.9166 0.9103 0.9057 0.9062 0.8994

Table 3: Analysis of the effects of K on CIFAR-10. Note that
− denotes when K equals a certain number, the model fails
to converge as illustrated in the empirical analysis.

sharply. Specifically, on IMAGENET, it experiences a conspicuous
performance drop by an average of 5.55% mAP. We also note that
the drop for shorter hash codes is more severe than longer hash
codes. The primary reason is that according to [5], the Cauchy
distribution could effectively pull close similar pairs into a small
Hamming radius, giving it an edge when the hash code length is
short.

More importantly, to test the effectiveness of the proposed dual-
stream feature learning, we also include the performances of the
Siamese model with the solo global feature learning module. As de-
picted in Fig. 2, TransHash w/o P consistently underperform the
model with dual-feature learning design. On NUSWIDE and IMA-
GENET, the average decline is 2.08% and 2.83%, respectively. The
above experimental experiments have evidenced the effectiveness
of the design of our pure transformer-based hashing framework.
Since the hyper-parameter 𝐾 , which controls how many groups we
will divide our local features into, is rather important in our design,

we further provide an ablation study on the sensitivity of 𝐾 for
various hash bits on CIFAR-10. Note that if the length of the final
hash code vector is 16 and 𝐾 equals 2, then the global feature is
responsible for learning the first 8 bit and each local feature vector
for the latter 4 bits.

Empirical analysis of K. As depicted in Tab. 3, generally, the
performance is not very sensitive to 𝐾 . Also, we observe that when
the local feature vector is responsible for generating less than 4 bits,
the model will fail to converge. In light of the above observations,
we empirically set the 𝐾 to 2 across four different hash bit lengths.

5 CONCLUSION
In this paper, we have proposed a novel pure transformer-based
deep hashing framework (TransHash) to tackle the challenging
large-scale image retrieval problem. Specifically, we innovate a
novel Siamese transformer architecture for extracting robust image
features with pairwise similarity learning. On top of that, in an at-
tempt to learn more fine-grained features, we propose to add a dual-
stream feature learning module to learn global and local features
simultaneously. A well-specified Bayesian learning framework is
adopted on top of all the pairwise features for similarity-preserving
learning. The overall framework is optimized in an end-to-end
fashion. We conduct extensive experiments and demonstrate that
TransHash yields notable performance gains compared to the
state-of-the-art deep hashing methods on CIFAR-10, NUSWIDE
and IMAGENET datasets.

TransHash: Transformer-based Hamming Hashing for Efficient Image Retrieval Woodstock ’18, June 03–05, 2018, Woodstock, NY

REFERENCES
[1] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. 2019. Yolact: Real-time

instance segmentation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 9157–9166.

[2] Jane Bromley, James W Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun, Cliff
Moore, Eduard Säckinger, and Roopak Shah. 1993. Signature verification using a
“siamese” time delay neural network. International Journal of Pattern Recognition
and Artificial Intelligence 7, 04 (1993), 669–688.

[3] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[4] Fatih Cakir, Kun He, Sarah Adel Bargal, and Stan Sclaroff. 2019. Hashing with
mutual information. IEEE transactions on pattern analysis and machine intelligence
41, 10 (2019), 2424–2437.

[5] Yue Cao, Mingsheng Long, Bin Liu, and Jianmin Wang. 2018. Deep cauchy
hashing for hamming space retrieval. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 1229–1237.

[6] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S Yu. 2017. Hashnet:
Deep learning to hash by continuation. In Proceedings of the IEEE international
conference on computer vision. 5608–5617.

[7] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexan-
der Kirillov, and Sergey Zagoruyko. 2020. End-to-end object detection with
transformers. In European Conference on Computer Vision. Springer, 213–229.

[8] Moses S Charikar. 2002. Similarity estimation techniques from rounding algo-
rithms. In Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing. 380–388.

[9] Yongbiao Chen, Sheng Zhang, and Zhengwei Qi. 2020. MAENet: Boosting Feature
Representation for Cross-Modal Person Re-Identification with Pairwise Supervi-
sion. In Proceedings of the 2020 International Conference on Multimedia Retrieval.
442–449.

[10] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yantao
Zheng. 2009. Nus-wide: a real-world web image database from national university
of singapore. In Proceedings of the ACM international conference on image and
video retrieval. 1–9.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[12] Jacek P Dmochowski, Paul Sajda, and Lucas C Parra. 2010. Maximum Likelihood
in Cost-Sensitive Learning: Model Specification, Approximations, and Upper
Bounds. Journal of Machine Learning Research 11, 12 (2010).

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[14] Venice Erin Liong, Jiwen Lu, GangWang, Pierre Moulin, and Jie Zhou. 2015. Deep
hashing for compact binary codes learning. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 2475–2483.

[15] Lixin Fan, Kam Woh Ng, Ce Ju, Tianyu Zhang, and Chee Seng Chan. [n.d.]. Deep
polarized network for supervised learning of accurate binary hashing codes.
In Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20. 825–831.

[16] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2017. Fast approximate
nearest neighbor search with the navigating spreading-out graph. arXiv preprint
arXiv:1707.00143 (2017).

[17] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized product
quantization for approximate nearest neighbor search. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2946–2953.

[18] Rohit Girdhar, Joao Carreira, Carl Doersch, and Andrew Zisserman. 2019. Video
action transformer network. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 244–253.

[19] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. 2012.
Iterative quantization: A procrustean approach to learning binary codes for
large-scale image retrieval. IEEE transactions on pattern analysis and machine
intelligence 35, 12 (2012), 2916–2929.

[20] Kun He, Fatih Cakir, Sarah Adel Bargal, and Stan Sclaroff. 2018. Hashing as
tie-aware learning to rank. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 4023–4032.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[23] Shuting He, Hao Luo, Pichao Wang, Fan Wang, Hao Li, and Wei Jiang.
2021. TransReID: Transformer-based Object Re-Identification. arXiv preprint
arXiv:2102.04378 (2021).

[24] Jae-Pil Heo, Youngwoon Lee, Junfeng He, Shih-Fu Chang, and Sung-Eui Yoon.
2012. Spherical hashing. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 2957–2964.

[25] Alexander Hermans, Lucas Beyer, and Bastian Leibe. 2017. In defense of the
triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017).

[26] Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and Santosh Vempala. 1997.
Locality-preserving hashing in multidimensional spaces. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing. 618–625.

[27] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[28] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012), 1097–1105.

[30] Brian Kulis and Trevor Darrell. 2009. Learning to Hash with Binary Reconstruc-
tive Embeddings.. In NIPS, Vol. 22. Citeseer, 1042–1050.

[31] Hanjiang Lai, Yan Pan, Ye Liu, and Shuicheng Yan. 2015. Simultaneous feature
learning and hash coding with deep neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 3270–3278.

[32] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[33] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. 2015. Feature learning based
deep supervised hashing with pairwise labels. arXiv preprint arXiv:1511.03855
(2015).

[34] Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. 2016. Deep super-
vised hashing for fast image retrieval. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 2064–2072.

[35] Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. 2016. Deep super-
vised hashing for fast image retrieval. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 2064–2072.

[36] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang. 2012. Su-
pervised hashing with kernels. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, 2074–2081.

[37] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. 2021. Swin Transformer: Hierarchical Vision Transformer
using Shifted Windows. arXiv preprint arXiv:2103.14030 (2021).

[38] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[39] Aude Oliva and Antonio Torralba. 2001. Modeling the shape of the scene: A
holistic representation of the spatial envelope. International journal of computer
vision 42, 3 (2001), 145–175.

[40] Mengye Ren and Richard S Zemel. 2017. End-to-end instance segmentation with
recurrent attention. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 6656–6664.

[41] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International journal of
computer vision 115, 3 (2015), 211–252.

[42] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[43] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1–9.

[44] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International Conference on Machine Learning.
PMLR, 6105–6114.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762 (2017).

[46] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong
Lu, Ping Luo, and Ling Shao. 2021. Pyramid vision transformer: A versatile back-
bone for dense prediction without convolutions. arXiv preprint arXiv:2102.12122
(2021).

[47] Yair Weiss, Antonio Torralba, Robert Fergus, et al. 2008. Spectral hashing.. In
Nips, Vol. 1. Citeseer, 4.

[48] Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu, and Shuicheng Yan. 2014. Super-
vised hashing for image retrieval via image representation learning. In Proceedings
of the AAAI conference on artificial intelligence, Vol. 28.

[49] Enze Xie, Wenjia Wang, Wenhai Wang, Peize Sun, Hang Xu, Ding Liang, and
Ping Luo. 2021. Segmenting transparent object in the wild with transformer.
arXiv preprint arXiv:2101.08461 (2021).

[50] Mang Ye, Xiangyuan Lan, Jiawei Li, and Pong Yuen. 2018. Hierarchical discrimi-
native learning for visible thermal person re-identification. In Proceedings of the

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al., Yongbiao Chen, Sheng Zhang, Fangxin Liu, Zhigang Chang, Mang Ye, and Zhengwei Qi

AAAI Conference on Artificial Intelligence, Vol. 32.
[51] Mang Ye, Zheng Wang, Xiangyuan Lan, and Pong C Yuen. 2018. Visible thermal

person re-identification via dual-constrained top-ranking.. In IJCAI, Vol. 1. 2.
[52] Raymond A Yeh, Chen Chen, Teck Yian Lim, Alexander G Schwing, Mark

Hasegawa-Johnson, and Minh N Do. 2017. Semantic image inpainting with
deep generative models. In Proceedings of the IEEE conference on computer vision
and pattern recognition. 5485–5493.

[53] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang.
2019. Free-form image inpainting with gated convolution. In Proceedings of the

IEEE/CVF International Conference on Computer Vision. 4471–4480.
[54] Zheng Zhang, Qin Zou, Yuewei Lin, Long Chen, and Song Wang. 2019. Improved

deep hashing with soft pairwise similarity for multi-label image retrieval. IEEE
Transactions on Multimedia 22, 2 (2019), 540–553.

[55] Han Zhu, Mingsheng Long, Jianmin Wang, and Yue Cao. 2016. Deep hashing
network for efficient similarity retrieval. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 30.

	Abstract
	1 Introduction
	2 Related Works
	2.1 CNNs in Computer Vision
	2.2 Transformer in Vision
	2.3 Hashing for Image Retrieval

	3 Proposed Method
	3.1 Siamese Vision Transformer Architecture
	3.2 Similarity-preserving Bayesian Learning
	3.3 End to End training
	3.4 Retrieval Process
	3.5 Implementation Details

	4 Experimentation
	4.1 Datasets and Evaluation Protocols
	4.2 Comparison with State-of-the-Arts
	4.3 Ablation Studies

	5 Conclusion
	References

