Unlucky Explorer: A Complete non-Overlapping Map

Mohammad Sina Kiarostami
Center for Ubiquitous Computing,
Faculty of ITEE, University of Oulu
Oulu, Finland
mohammad kiarostami@oulu.fi

Negar Yousefian
School of Computer Sciences,
Institute for Research in Fundamental
Sciences (IPM)
Tehran, Iran
n.yousefian@ipm.ir

Simo Hosio
Center for Ubiquitous Computing,
Faculty of ITEE, University of Oulu
Oulu, Finland
simo.hosio@oulu.fi

Exploration
Saleh Khalaj Monfared

School of Computer Sciences,
Institute for Research in Fundamental
Sciences (IPM)

Tehran, Iran
monfared@ipm.ir

Mahsa Massoud
School of Computer Sciences,
Institute for Research in Fundamental
Sciences (IPM)
Tehran, Iran
m.massoud@ipm.ir

Dara Rahmati
Computer Science and Engineering
Department, Shahid Beheshti
University
Tehran, Iran
d_rahmati@sbu.ac.ir

Mohammadreza

Daneshvaramoli
School of Computer Sciences,
Institute for Research in Fundamental
Sciences (IPM)
Tehran, Iran
daneshvaramoli@ipm.ir

Aku Visuri
Center for Ubiquitous Computing,
Faculty of ITEE, University of Oulu
Oulu, Finland
aku.visuri@oulu.fi

Saeid Gorgin
Iranian Research Organization for
Science and Technology (IROST)
Tehran, Iran
gorgin@irost.ir

ABSTRACT

In this work, we introduce the Maze Dash puzzle as an exploration
problem where the agent must find a Hamiltonian Path visiting all
the cells with a minimum number of turnings for most cases. We
also discuss the real-world application of the problem, such as 8
ball billiards and Snooker games. We investigate different methods
by a focus on Monte-Carlo Tree Search (MCTS) and SAT to get an
overview of which class of solutions solves the puzzle quickly and
accurately. Also, we perform optimization to the proposed MCTS
algorithm to prune the tree search. Also, since the prefabricated
test cases of this puzzle are not large enough to assay the proposed
method, we employ a technique to generate solvable test cases
to evaluate the approaches. Eventually, our comparison indicates
that the MCTS-based approach is an up-and-coming method that
could cope with the test cases with small and medium sizes with
faster run-time than SAT. However, for specific discussed reasons,
including the features of the problem, tree search organization, and
also the approach of MCTS in the Simulation step, MCTS takes
more time to execute in large size scenarios. Our results can be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WSSE 2021, September 24-26, 2021, Xiamen, China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8409-4/21/09...$15.00
https://doi.org/10.1145/3488838.3488864

employed to choose a proper approach to create an Al to solve the
Maze Dash, 8 ball billiards, and Snooker games.

CCS CONCEPTS

+ Theory of computation — Solution concepts in game the-
ory; Representations of games and their complexity; Theory
of randomized search heuristics.

KEYWORDS

Maze Dash, Exploration, Hamiltonian Path, Monte-Carlo Tree Search
(MCTS), SAT.

ACM Reference Format:

Mohammad Sina Kiarostami, Saleh Khalaj Monfared, Mohammadreza Danesh-
varamoli, Negar Yousefian, Mahsa Massoud, Aku Visuri, Simo Hosio, Dara
Rahmati, and Saeid Gorgin. 2021. Unlucky Explorer: A Complete non-
Overlapping Map Exploration. In 2021 The 3rd World Symposium on Software
Engineering (WSSE 2021), September 24-26, 2021, Xiamen, China. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3488838.3488864

1 INTRODUCTION AND BACKGROUND

Graph Traversal is an important and famous problem in computer
science with many applications in memory and storage systems
[1], network flow [4], as well as computer games [14]. As the con-
ventional approaches to solving the Graph Exploration problem
and other variations like Tree Traversal, Depth-first search (DFS),
and Breadth-first search (BFS) are known to be effective in gen-
eral. On the other hand, random-based approaches such as Monte-
Carlo Tree Search (MCTS) are demonstrated to be efficient in many

https://doi.org/10.1145/3488838.3488864
https://doi.org/10.1145/3488838.3488864

WSSE 2021, September 24-26, 2021, Xiamen, China

search-based problems and games as well [3, 6, 11]. The fundamen-
tal problem of many simple computer games lies in solving specific
computer or mathematical puzzles. The solution methodology used
in many of these games is very relevant to fundamental approaches.
For instance, Flow-Free is a variant of a known mathematical puzzle
named Numberlink, and interestingly, the problem could be ad-
dressed as a non-Overlapping Multi-Agent Pathfinding [12]. In this
context, Icosian Game [13] as an old mathematical game invented
by W.R Hamilton, could be considered as a modified version of
a Graph Traversal problem. The objective in Icosian is finding a
Hamiltonian Cycle along the edges of a dodecahedron, visiting all
the vertexes of a graph by ending at the same point as the starting
vertex. The Hamiltonian Path problem as an NP-Complete prob-
lem [10] has its own applications in various fields [5] with many
solution methods [2].

In this article, we investigate the foundation of the Maze Dash
game and demonstrate that the constraints involved in solving the
game inevitably minimize the number of turning movements in the
grid exploration procedure. Satisfying this particular condition ap-
plied in this game could be interesting in terms of real-world robot
exploration since an extra cost is often associated with the turn-
ing in intelligent explorer vehicles [8]. Also, this problem could be
modelled to other computer games or physical sports such as 8 ball
billiards, and Snooker games [16]. In this game, the ball would turn
only if it hits the wall or other balls, which are considered obstacles.
Hence, finding an efficient and effective solution to the focused
Maze Dash game could lead to faster Grid Traversal approaches
where realistic restrictions in the robots are considered. Further-
more, we mathematically define the underlying primary problem of
the game as a particular case of a Hamiltonian Path problem. Then,
by studying the problem’s specifications, we tackle the problem
with different possible approaches, including the MCTS, as one of
the promising methods. We examine the unique characteristics of
the involved tree search in detail and study the exclusive attributes
of the Hamiltonian Path in this problem.

1.1 Maze Dash Game

Maze Dash is a puzzle game with a single agent and a 2-Dimensional
grid map. The map might have some obstacles or blocking cells.
The agent moves in the map and marks the cells after visiting them
by changing their colour and can not return to the marked cells. So,
each cell must be visited just once. Eventually, the puzzle aims to
visit all the cells or to explore the whole of the map. The essential
rule in this puzzle is that if the agent chooses to go to one of the
quad directions, it will continue to move until it reaches an obstacle
or wall. As shown in Figure 1, the agent starts to move from the
initial cell (S) and decides to go down to reach the wall or the border
of the grid. Then, it keeps moving to explore all the viable cells,
finishing the traversal at the last cell (E).

1.2 Monte-Carlo Tree Search

MCTS is a best-first search algorithm with four main steps which
are Selection, Expansion, Simulation, and Backpropagation. This al-
gorithm uses Monte-Carlo methods to sample steps and create the
search tree indeterminately to solve problems in their particular do-
main [3]. In the context of our problem, the initial state is the state

Kiarostami et al.

A ® +—H |®

(A) (B)

Figure 1: Maze Dash game solving process.

that the agent craves to move from its current cell. The first step of
the MCTS is the selection that the algorithm chooses the best node,
which is a leaf at the moment based on the Tree Policy. Then, at the
expansion point, all non-terminal children of the selected node, if
exist, will be expanded. In the next step, simulation, MCTS strides
in the search tree aimlessly based on a policy until it reaches a leaf.
The obtained result will be evaluated and measured how much is
this result is analogous to the desired result and how many of the
rules and conditions of the problem are satisfied. Finally, in the
backpropagation, the results are propagated back through the tree,
and all related node values are updated. After that, the next rounds
will be iterated to find a suitable solution.

2 PROPOSED METHOD

This section defines the problem precisely, and then we provide
several promising approaches to solve it.

2.1 Problem Definition

The exact definition of the problem as a modification of a Hamilton-
ian Pathin a 2-D grid is described below. The set of O = {01, 02, ...,0m }
is demonstrated as the obstacle set which determines the coordina-
tion of the obstacle cells in the grid. By considering an N X N grid,
the function r identifies the movement path in the grid:

TN —->NXN (1)

The input of 7 function rises incrementally to represents the move-
ment path in the grid. The output represents the coordinates with
the constrain of moving a single cell at each step to ensure the
consistency of the solution path:

7(0)=S
Direction = {(1,0),(0,1),(-1,0),(0,-1)}
V(N2 =1|0])>i>0: (2)

(i + 1) — n(i) € Direction, n(i + 1) ¢ O

Vi, j: (i) # n(j)
In Equation 2, S is the initial coordinate of the beginning cell. The
Direction set D is the set of all possible movements that can be
used in this context. As for the constraints regarding the reach-

able minimum turning movement restrictions in the game, the x
function falls into either one of the two Straight Movement, Turning

Unlucky Explorer: A Complete non-Overlapping Map Exploration

Movement conditions as defined in Equation 3, respectively:
YIN2=|0])>i>1: oneofThree :
Straight : (i) + (z(i) —x(i — 1)) = n(i + 1)
Turning : 7(i) + (z(i) — n(i— 1)) € O
Turning : 3j < i: (i) + (n(i) — n(i — 1)) = 7(j)

®)

Note that the turning is occurred either by a blocking obstacle or a
previously occupied cell by the earlier path. Hence, the i*" step in a
cell must be as the same previous direction, or a turning movement
happens.

Eventually, the solution of the game comprises of the adequate as-
signment for the 7 function satisfying all the constraints presented
in Equations 2 and 3.

2.2 Promising Approaches

We apply and discuss three primary approaches to solve the prob-
lem.

2.2.1 SAT. The accurate mathematical definition discussed, as the
foundation of the problem, could be fed to a Satisfiability solver
(SAT Solver, e.g., Z3[9]) as a simple solution approach by convert-
ing the conditions into Boolean constraints. In this respect, the
Boolean assignments of t,s : N' — {0, 1}, should be defined to
determined whatever a cell falls into the Turning Movement or the
Straight Movement sets. Then, by creating the same constraints in
the function 7 for each cell of the grid, the Satisfiability check could
be performed over the described assignments of {t,s, 7}

Figure 2: An example of the procedure of Backtracking in
solving the puzzle.

2.2.2 Backtracking. As a naive approach to solve the problem, one
could apply the Backtracking method to find the correct solution.
The Backtracking process is very similar to a DFS method. Consid-
ering the conditions of the game, a single branch of the possible
solution is pursued until all the cells are traversed, or a deadlock
occurs. In the case of a failure, the movement path backtraces itself
to the previous state and changes the branch by choosing another
possible path. A simple backtrack demonstration is shown in Figure
2. The algorithm has to eliminate its current path to correct it since
one of the cells is not visited.

WSSE 2021, September 24-26, 2021, Xiamen, China

223 MCTS. As mentioned in the background section, one of the
particular and pronounced features of the game is that the agent
must explore the grid with the reachable minimum number of turns.
More precisely, the agent only could change its direction when
it reaches the end of the current path. This constraint intensely
affects the tree search of the puzzle. As shown in Figure 3, each
non-terminal node of the tree search despite of the starting point,
has only one or two children. Therefore, the Branching Factor of the
tree is equal to or smaller than two making the tree significantly
long in-depth. The starting point can be in the middle of a empty
grid, then it has more than two expandable children. One of the
approaches that could solve the problem is MCTS. As explained
earlier, MCTS runs its four steps iteratively to construct the tree
search and find the solution.

<®
v
X
< ® ®
v
<
[® ®
-

Figure 3: Construction of the tree search of the puzzle.

We disregard the nodes with a certain failure at their final stats to
prune the tree to solve the problem more efficiently. More precisely,
the Expansion function is amended to block a terminal state with
an inadequate value of the desired final state. Then, the Selection
function blocks a node if all of its children were blocked before
by assigning 0 as the node’s value. Therefore, gradually wrong
paths could be blocked efficiently. Nevertheless, even by employing
these modifications to the algorithm, the execution time increases
immensely due to the computational overhead caused by the huge
depth in the tree. Another optimization is employed by applying
the Fast Rollout Function, where instead of constructing a new state
for each Child Node, the state of the parent is updated each time.
This optimization reduces the memory consumption of O(N?) to
O(1) for each node [7]. These details will be discussed in the result
section.

Another approach to the problem could be a BFS method where
all of the branches are searched at the time without traversing deep
into the final state. Not surprisingly, this method burdens many
memory usages to store the branch states. This memory overuse
could be predicted due to the tremendous depth of the tree search.
Consequently, a BFS approach would not be a suitable solution
compared to other possible methods.

WSSE 2021, September 24-26, 2021, Xiamen, China

3 EVALUATION

As the test cases of the Maze Dash game are not large enough
to assess the methods correctly, we utilize a method to generate
significant random test cases. First, an empty grid with the desired
size is assumed. Then an agent starts to move through the grid
randomly based on the uniform random policy. Whenever the agent
turns or changes its direction, an obstacle is placed at the next
cell of the current cell. It means that there was a hypothetical
obstacle in the path, so the agent decided to change the direction.
For avoiding creating a unique path for solving the test case, we
defined a variable as the number of obstacles. After generating the
test cases, all of them would be tested by the Backtracking approach
without any concerns regarding the execution time to ensure that
they are solvable. All of the C-programmed compiled files with
GCC compiler are executed on a machine running Ubuntu 16.04
equipped with two Intel XEON E5 2697V3 CPUs clocked at 2.6 GHz
and 128 GB of DDR3 RAM.

As shown in Table 1, we have implemented and compared pos-
sible approaches to solve the defined problem. Each test case is
executed by each method 50 times, and the average values are pre-
sented. The Backtracking algorithm is used to indicate our worst-
case scenario, not to be a good rival. The MCTS approach as a
promising candidate from random-based approaches performs well
in small and medium-size test cases but could not cope with large
ones under one minute, as shown in Figure 4. Also, based on Figure
4, our implemented SAT method indicates that it is a stable ap-
proach and solves the problem with any size, particularly in terms
of memory consumption. However, MCTS is better than SAT in the
test cases that it can solve. We should clarify that both Backtrack
and MCTS methods can solve all the test cases in, let us say, an
unlimited time, but we consider Failed as a result if they can not
solve the problem in under one minute.

As highlighted in Table 1, we can see that MCTS handles typical
test cases with a lesser number of obstacles due to the structure
of the tree search, which causes the algorithm to search randomly
better than the exact computations of the SAT method. The results
of the MCTS method could be discussed more in detail. First, most
of the execution run-time of the algorithm is spent in the simulation
step. Assume that I defines the number of iterations of the simu-
lation in each MCTS traversal. In each simulation, the algorithm
would traverse the tree down to N? depth. After selecting each
node and adding one depth to the MCTS tree, the algorithm would
be repeated. Thus, the search would be performed for another N2
times. Ultimately, the simulations process enlarges and will have
an immense cost, calculated as follows:

SimulationsCost = I x N* (4)

This order is a massive cost for the problem since the agent
could not determine or predict a complete solution until it tests all
possible movements. For instance, the Evaluation Function could
return 0.98 as a value of a final state, meaning that only two cells are
not visited among 100. We know that this state is not the accurate
answer, but the algorithm would recognize it as a promising state
in the previous steps. So, the algorithm would never prune these
kinds of states. Furthermore, the agent would face new obstacles
after each movement due to the non-overlapping problem’s feature.

Kiarostami et al.

Time evaluation of solving each test case by the methods

- N
. o 2 gogg
£ OOO(C)ocI OO/ DOO//
050(/7 Oo c‘// OO '/ OOG
L fe] L] oG
‘L & E §E E B
0 o 00, el O 00,
ogccz Zo% oZoé ogé Zo? oZaé
. O OL% Oo(/ ooo (/ c>0 / Oo / ooo
"1 &£ ¢ &
e} cc% 0oo(/ ooo/ c>c / co / ooo/
Of O'(:n

28

R
2=
1.
{

50%50

Figure 4: Comparison of the promising approaches in differ-
ent test cases.

Moreover, previously visited cells are considered dynamic obsta-
cles and walls, making the algorithm unable to be optimized by any
pre-process methods. Furthermore, as explained, the branching fac-
tor of the problem is equal to or smaller than 2, constructing a tree
with a considerable depth without many branches. This kind of tree
produces a troublesome circumstance for MCTS in its simulation
step.

4 DISCUSSION AND CONCLUSION

In this article, we first introduced the Maze Dash puzzle as a mod-
ification of the exploration problem or, more precisely, a non-
overlapping exploration that the Hamiltonian Path could solve.
It means that the primary purpose of this problem is to visit all of
the cells in a 2-D grid. We investigated promising approaches to
find a proper solution. Although three methods implemented to
compare with each other, the main focus was on MCTS and SAT.
However, our study is not finished yet, and we will investigate
learning-based methods, such as Reinforcement Learning, as future
work.

As expected, our implemented SAT could solve the auto-generated
test cases accurately. Nevertheless, by reducing the number of ob-
stacles in the grid, the execution time increased exponentially. In
small and medium-size test cases, MCTS could outperform SAT. As
explored in the significant test cases, the simulation time increased
uncontrollably since the algorithm recognizes the failure early in
the simulation. As our observation, due to the non-overlapping
feature of the problem, the agent considers its previous path as dy-
namic walls or obstacles. Therefore, pre-processing methods could
not optimize the algorithm, but the SAT performs more beneficial
in these test cases.

Investigating the introduced intricacy, we came to realize two
more practical and pronounced problems that should be considered.
The first one is reasonably analogous to the current problem but
differs in the non-overlapping constraint. It means that the aim of
the problem is that an agent must explore all of the environment
fast and accurately. However, the agent’s previous path would not
be defined as a new obstacle. Thus, the agent prefers not to use the

Unlucky Explorer: A Complete non-Overlapping Map Exploration

WSSE 2021, September 24-26, 2021, Xiamen, China

Table 1: Evaluation of different algorithms for solving Maze Dash game.

Grid Size(N2) | No. Obstacles SAT method Backtrack method (DFS) |Randomized method (MCTS)
’ Run-Time(S) | Memory(MB) | Run-Time(S) | Memory(MB) | Run-Time(S) | Memory(MB)
5x5 4 0.45 6.01 0.010 7.7 0.011 5.94
6x6 10 0.65 8.12 0.012 8.1 0.013 10.61
10x10 32 1.79 12.83 0.45 10.4 0.07 11.5
15x15 66 4.18 13.27 5.24 13.5 0.09 14.2
20x20 133 11.28 13.86 9.62 19.2 1.16 16.9
30x30 378 17.94 15.5 43.7 26.1 5.42 20.1
50x50 776 126.6 49.9 Failed Failed Failed Failed

visited cells but is not forced to do this. The second problem is the
exploration of a grid to find a goal with minimum numbers of turns
by assuming that turning movement has an additional cost since the
agent must reduce its velocity, stop, and then start to move again
[8, 15]. By this constraint, the agent prefers to choose a path with
lesser turnings. In our future studies, we would concentrate on these
two problems, which would be helpful in real-world applications,
such as 2-D Robotic soccer.

ACKNOWLEDGMENTS

This research is connected to the GenZ strategic profiling project
at the University of Oulu, supported by the Academy of Finland
(project number 318930), and CRITICAL (Academy of Finland Strate-
gic Research, 335729). Part of the work was also carried out with
the support of Biocenter Oulu, spearhead project ICON.

REFERENCES

[1] Alok Aggarwal and S Vitter, Jeffrey. 1988. The input/output complexity of sorting
and related problems. Commun. ACM 31, 9 (1988), 1116-1127.

[2] Andreas Bjorklund. 2014. Determinant sums for undirected hamiltonicity. SIAM
. Comput. 43, 1 (2014), 280-299.

[3] C.B.Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton. 2012. A Survey of Monte
Carlo Tree Search Methods. IEEE Trans on Compt Int and Al in Games 4, 1 (March
2012), 1-43. https://doi.org/10.1109/TCIAIG.2012.2186810

[4] To-Yat Cheung. 1983. Graph traversal techniques and the maximum flow problem
in distributed computation. IEEE Transactions on Software Engineering 4 (1983),
504-512.

[5] James Cooper and Radu Nicolescu. 2019. The Hamiltonian cycle and travelling
salesman problems in cP systems. Fundamenta Informaticae 164, 2-3 (2019),
157-180.

[6] Juhriyansyah Dalle, Dwi Hastuti, and Muhammad Riko Anshori Prasetya. 2021.
The Use of an Application Running on the Ant Colony Algorithm in Determin-
ing the Nearest Path between Two Points. Journal of Advances in Information
Technology Vol 12, 3 (2021).

[7] Mohammadreza Daneshvaramoli, Mohammad Sina Kiarostami, Saleh Khalaj
Monfared, Helia Karisani, Keivan Dehghannayeri, Dara Rahmati, and Saeid
Gorgin. 2020. Decentralized Communication-less Multi-Agent Task Assign-
ment with Cooperative Monte-Carlo Tree Search. In 2020 6th International
Conference on Control, Automation and Robotics (ICCAR). 612-616. https:
//doi.org/10.1109/ICCAR49639.2020.9108073

[8] Mansoor Davoodi, Fatemeh Panahi, Ali Mohades, and Seyed Naser Hashemi.

2015. Clear and smooth path planning. Applied Soft Compt 32 (2015), 568—-579.

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In

International conference on Tools and Algorithms for the Construction and Analysis

of Systems. Springer, 337-340.

[10] Juris Hartmanis. 1982. Computers and intractability: a guide to the theory of
NP-completeness (michael r. garey and david s. johnson). Siam Review 24, 1
(1982), 90.

[11] Khaoula Hassoune, Wafaa Dachry, Fouad Moutaouakkil, and Hicham Medromi.
2020. Dynamic Parking Guidance Architecture Using Ant Colony Optimization
and Multi-agent Systems. Journal of Advances in Information Technology Vol 11,
2 (2020).

=

[12] M. S. Kiarostami, M. Reza Daneshvaramoli, S. K. Monfared, D. Rahmati, and S.
Gorgin. 2019. Multi-Agent non-Overlapping Pathfinding with Monte-Carlo Tree
Search. In 2019 IEEE CoG. 1-4.

[13] Ed Pegg Jr. 2009. The icosian game, revisited. The Mathematica Journal 11, 3
(2009), 310-314.

[14] Aske Plaat, Jonathan Schaeffer, Wim Pijls, and Arie De Bruin. 1996. Exploiting
graph properties of game trees. In AAAI/IAAL Vol. 1. 234-239.

[15] HTWK Robots. [n.d.]. GO 2015 SPL Finals: Nao-Team HTWK vs. B-Human 1st
half. Youtube. https://www.youtube.com/watch?v=NFNEOooEQX4

[16] David Silva and Rui Prada. 2018. MiniPool: Real-time artificial player for an
8-Ball video game. (2018).

https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/ICCAR49639.2020.9108073
https://doi.org/10.1109/ICCAR49639.2020.9108073
https://www.youtube.com/watch?v=NFNEOooEQX4

	Abstract
	1 Introduction and Background
	1.1 Maze Dash Game
	1.2 Monte-Carlo Tree Search

	2 Proposed Method
	2.1 Problem Definition
	2.2 Promising Approaches

	3 Evaluation
	4 Discussion and Conclusion
	Acknowledgments
	References

