
LocFedMix-SL: Localize, Federate, and Mix for Improved
Scalability, Convergence, and Latency in Split Learning

Seungeun Oh
seoh@ramo.yonsei.ac.kr

Yonsei University
Seoul, Korea

Jihong Park∗
jihong.park@deakin.edu.au

Deakin University
Victoria, Australia

Praneeth Vepakomma
vepakom@mit.edu

Massachusetts Institute of Technology
Massachusetts, United States

Sihun Baek
shbaek@ramo.yonsei.ac.kr

Yonsei University
Seoul, Korea

Ramesh Raskar
raskar@media.mit.edu

Massachusetts Institute of Technology
Massachusetts, United States

Mehdi Bennis
mehdi.bennis@oulu.fi
University of Oulu

Oulu, Finland

Seong-Lyun Kim∗

slkim@ramo.yonsei.ac.kr
Yonsei University

Seoul, Korea

ABSTRACT
Split learning (SL) is a promising distributed learning framework
that enables to utilize the huge data and parallel computing re-
sources of mobile devices. SL is built upon a model-split archi-
tecture, wherein a server stores an upper model segment that is
shared by different mobile clients storing its lower model segments.
Without exchanging raw data, SL achieves high accuracy and fast
convergence by only uploading smashed data from clients and
downloading global gradients from the server. Nonetheless, the
original implementation of SL sequentially serves multiple clients,
incurring high latency with many clients. A parallel implemen-
tation of SL has great potential in reducing latency, yet existing
parallel SL algorithms resort to compromising scalability and/or
convergence speed. Motivated by this, the goal of this article is to
develop a scalable parallel SL algorithm with fast convergence and
low latency. As a first step, we identify that the fundamental bottle-
neck of existing parallel SL comes from the model-split and parallel
computing architectures, under which the server-client model up-
dates are often imbalanced, and the client models are prone to
detach from the server’s model. To fix this problem, by carefully
integrating local parallelism, federated learning, andmixup augmen-
tation techniques, we propose a novel parallel SL framework, coined
LocFedMix-SL. Simulation results corroborate that LocFedMix-SL
achieves improved scalability, convergence speed, and latency, com-
pared to sequential SL as well as the state-of-the-art parallel SL
algorithms such as SplitFed and LocSplitFed.

∗Corresponding Authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3512153

CCS CONCEPTS
• Computer systems organization→ Client-server architec-
tures; • Theory of computation→ Distributed algorithms; •
Computing methodologies→ Parallel algorithms.

KEYWORDS
Split Learning, Federated Learning, Local Parallelism, Mixup, Scala-
bility
ACM Reference Format:
Seungeun Oh, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh
Raskar, Mehdi Bennis, and Seong-Lyun Kim. 2022. LocFedMix-SL: Localize,
Federate, and Mix for Improved Scalability, Convergence, and Latency in
Split Learning. In Proceedings of the ACM Web Conference 2022 (WWW ’22),
April 25–29, 2022, Virtual Event, Lyon, France. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3485447.3512153

1 INTRODUCTION
Big data and huge computing resources are essential in enabling
high-quality deep learning. In this respect, the indispensable ele-
ments are the utilization of massive amounts of data and the pro-
vision of large-scale parallel computing power [5, 12, 20, 28]. The
sheer amount of Internet-of-Things (IoT) or Web-of-Things (WoT)
clients are great sources of these two elements. They collectively
provide a huge volume of data and high parallel-computing power,
although each individual client has only a tiny fraction of data with
limited computing capabilities [8, 22]. Federated learning (FL) [10]
is the first of its kind towards exploiting these dispersed data and
computing resources. In FL, each client independently trains a local
neural network model using its own data, followed by periodically
exchanging their model parameters that are aggregated and aver-
aged by a server [10, 32]. In doing so, each client can reflect the data
owned and processed by other clients without directly exchang-
ing raw data. However, FL is still insufficient to run deep learning
on WoT clients particularly for large-sized deep neural network
models, since storing and exchanging model parameters impose
excessive memory, computing and, communication overhead on
the clients.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Seungeun Oh, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh Raskar, Mehdi Bennis, and Seong-Lyun Kim

Figure 1: Computational latency per communication round
(top) and top-1 accuracy w.r.t. # of clients, i.e., scalability
(bottom). A single communication round is defined as the
elapsed time until all clients update theirmodel parameters.

In order to cope with the resource efficiency problem in dis-
tributed deep neural networks, split learning (SL) is an alternative
solution [27]. SL divides a deep neural network model into two
parts, such that a server stores the upper model segment shared by
all clients, while each client stores the lower model segment [5]. In
between the upper and lower model segments, i.e., at the cut layer,
SL exchanges the cut-layer representations in the forward propa-
gation (FP), also known as the smashed data, and the gradients in
the backward propagation (BP). In vanilla SL, the server connects
to clients one by one. Under these sequential operations, vanilla
SL guarantees its scalability in a sense that the accuracy increases
with the number of clients. Furthermore, as compared with FL, SL
achieves even faster convergence in terms of the number of commu-
nication rounds until training converges [28]. Notwithstanding, as
observed in Fig. 1 (top), the computing and communication latency
of vanilla SL per communication round keeps increasing with the
number of clients due to its sequential operations.

To overcome the sequential processing latency of vanilla SL, in
this article, we aim to develop a parallel SL framework that ulti-
mately enables the sheer amount of WoT clients to collectively train
distributed deep neural networks, while achieving the following
three goals: scalability, fast convergence, and low latency. Achieving
this tri-fold goal is however nontrivial. Indeed, existing parallel SL
algorithms struggle with slow convergence, and what is more, they
are not scalable. In particular, to catch up the convergence speed of
vanilla SL, split federated learning (SplitFed) integrates FL into SL,
and exchanges lower model segments across clients after BP [26].
Similarly, inspired by local parallel learning [1, 14], the method in
[7], hereafter referred to as localized SplitFed (LocSplitFed), addition-
ally updates each lower model segment using the local gradients
computed within each client model segment. Unfortunately, both
SplitFed and LocSplitFed are not scalable, as illustrated in Fig. 1
(bottom). The fundamental reason for such limited scalability is
inherent to the parallel SL model architecture as elaborated below.

1. Server-Client Update Imbalance Problem. In parallel SL, a
single upper model segment is concurrently connected with multi-
ple lower segments. Therefore, while each lower model segment is
updated once in the BP, the shared upper segment is updated mul-
tiple times. In other words, the effective learning rate of the upper
model segment is higher than that of each lower model segment. A
higher learning rate often requires more training samples, i.e., larger
batch sizes [25], yet the upper model segment in parallel SL has
no access to client’s data. Alternatively, the lower model segment
averaging in [7, 26] and local gradients in [7] partly ameliorate
the imbalance by additionally training the lower model segments,
which may however encounter another issue as detailed below.
2. Client Model Detachment Problem. Separately updating
the lower model segments may bring about detaching them from
the upper model segment. Lower model segments averaging and
local gradients fall into this case, ignoring the updates in the upper
model segment. Indeed, layer-wise model parameter averaging does
not guarantee high accuracy without sophisticated techniques [2].
Likewise, local gradients make the lower model segments forget
about the existence of the upper segment, failing to utilize the full
capacity of a deep neural network. The BP from the server, i.e.,
global gradients, partly addresses this issue, yet cannot entirely
weave the lower and upper segments due to its ignoring or lagging
across the FP’s.

To resolve the aforementioned imbalance and detachment prob-
lems, in this article we propose a novel parallel SL framework,
coined localized, federated, and mixed SL (LocFedMix-SL). The key
new elements are locally regularizing the lower model segment at
each client, and augmenting smashed data at the server. The local
regularizer encourages to maximize the mutual information be-
tween the raw and smashed data in the FP, while not allowing each
lower model segment to extract too much of the original features
before reaching the upper segment. Next, the server combinatori-
ally superpositions smashed data uploaded from different clients,
producing new augmented smashed data in the FP. This smashed
data mixup increases the effective batch size at the upper model seg-
ment so as to match its higher effective learning rate. Given these
modified operations in the FP, lower model segment averaging after
BP can finally improve the convergence speed and accuracy while
achieving scalability, resulting in LocFedMix-SL.
Contributions. This work has the following contributions.

• We identify that existing parallel SL algorithms achieve nei-
ther scalability nor fast convergence, as they fail to balance
FP flows and BP updates under the server-client split parallel
SL architecture.
• To fix this issue, by leveraging local parallelism, federated
learning, and mixup data augmentation techniques, we pro-
pose a novel parallel SL framework, LocFedMix-SL.
• Simulation results corroborate that LocFedMix-SL achieves
higher scalability, faster convergence, and lower latency com-
pared to vanilla SL as well as the state-of-the-art parallel SL
algorithms including SplitFed and LocSplitFed.

Related Works. FL and SL are two spearheads in distributed
learning with siloed data, and possess their own pros and cons
[21]. FL achieves scalable accuracy with many clients [11, 18]. Yet,
it is limited to only handling small models due to the constraints

LocFedMix-SL: Localize, Federate, and Mix for Improved Scalability, Convergence, and Latency in Split Learning WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

Figure 2: Schematic illustrations of sequential SL (i.e., vanilla SL [28]) and parallel SL, as well as federated learning (i.e., feder-
ated averaging [18]) and local parallel learning [14].

of compute, memory, and communication resources available on
the clients. SL can instead run large models via model splitting [6,
23, 28, 28], while achieving even faster convergence with lower
communication overhead than FL [3, 4, 24]. However, the scalability
in its vanilla form is questionable, which is particularly critical for
WoT scenarios where the global data and computing power are
dispersed across the sheer number of clients.

SplitFed is the first hybrid of its kind, aiming to achieve advan-
tages from both the worlds by applying FL across clients after SL
backpropagation completes [9, 26]. LocSplitFed [7] additionally
applies local model parallel training [14, 30] at clients after SL
backpropagation finishes. In essence, these methods mitigate the
server-client update imbalance problem in the BP, thereby improv-
ing the convergence speed. Nevertheless, they ignore the client
model detachment problem in the FP, and fail to achieve the scal-
ability. By contrast, our proposed LocFedMix-SL aims to address
both the imbalance and detachment problem by additionally ap-
plying a novel smashed data augmentation method during the FP,
which is inspired from the Mixup data augmentation method [34]
and its variants [29, 33]. Consequently, LocFedMix-SL is scalable
while maintaining all the benefits of SplitFed and LocSplitFed.

Note that the operations of LocFedMix-SL partly coincide with
those of LocSplitFed in [7], yet they are still different. The main
focus in [7] is to propose LocSplitFed and prove its convergence,
ignoring any discussion on whether the accuracy is scalable with
many clients. In contrast, we aim to first understand the funda-
mental principles warranting scalability to develop a scalable SL
framework under limited bandwidth and latency constraints. With
extensive simulations, we discovered (i) local model averaging and
(ii) local model parallel training are essential in achieving scalability
by overcoming the server-client update imbalance in the BP. For
this reason, the operations of our proposed LocFedMix-SL partly
coincide with those of LocSplitFed that is also laid by (i) and (ii).

Compared to LocSplitFed, LocFedMix-SL additionally utilizes
the aforementioned (iii) smashed data augmentation and (iv) the
global gradient backpropagation from the server to client models.
In fact, (iv) is included in vanilla SL, yet is omitted and replaced
simply with (ii) in LocSplitFed, due to mathematical amenability
for its convergence analysis. We discovered that (iv) is crucial in
achieving scalability and fast convergence, by making client model
training undetached from server model training. For this reason,
we restored this functionality of vanilla SL back to LocFedMix-
SL that finally achieves scalability. Note also that our follow-up

work tackles the same update imbalance and detachmenet problems
but using a different technique that separately adjusts the client
and server side learning rates [19]. It achieves scalability without
additional server-side computation such as smashed data mixup,
but the accuracy is lower than LocFedMix-SL. Integrating these
two complementary techniques may yield a more energy-efficient
and scalable SL framework, which is deferred to future research.

2 FROM SEQUENTIAL TO PARALLEL SL
In this section, we describe two SL structures, which are classified
into sequential SL and parallel SL. Both sequential SL and parallel SL
are laid by the same network architecture. Specifically, the network
architecture under study consists of a set C = {1, 2, · · · , 𝑛} of mul-
tiple clients that are associated with a single server. For each 𝑖 ∈ C,
there exists a neural network model with weights w𝑖 , which is cut
into two segments at the 𝑘-th layer such that w𝑖 = [w𝑐,𝑖 ,w𝑠]T
where the superscript (·)T implies the transpose operation, and
w𝑘
𝑖
hereafter denotes the cut-layer weights connecting w𝑐,𝑖 and

w𝑠 . The lower segment w𝑐,𝑖 is stored at the 𝑖-th client, and the
upper segmentw𝑠 is shared by all clients. The 𝑖-th client has a local
datasetD𝑖 comprising unlabeled data x𝑖, 𝑗 and their one-hot encoded
ground-truth labels y𝑖, 𝑗 for 𝑗 ∈ {1, 2, · · · ,𝑚𝑖 } where𝑚𝑖 = |D𝑖 |.

2.1 Sequential SL
In sequential SL which is a basic form of SL, only one client is
randomly selected from all clients. Then, the selected 𝑖-th client
generates a random batch B𝑖 ⊂ D𝑖 , consisting of 𝑏 input-label
tuples (x𝑖, 𝑗 , y𝑖, 𝑗), from its own data set D𝑖 . Here, we define 𝑓 as
a representation for mapping from the input data to the smashed
data by the lower model segment. To update the model, the 𝑖-th
client produces 𝑏 smashed data s𝑖, 𝑗 := 𝑓w𝑐,𝑖

(x𝑖, 𝑗) by passing the
𝑗-th input data x𝑖, 𝑗 through its own lower model with weight w𝑐,𝑖

for all 𝑗 ∈ B𝑖 . Next, the client uploads the smashed data-label
tuples to the server, and the server propagates it through the upper
model segment w𝑠 to produce softmax output 𝑓w𝑠

(s𝑖, 𝑗). By using
the cross-entropy 𝐶𝐸 (𝑝, 𝑞) = −∑𝑞 log𝑝 , the loss 𝐿𝑖 for the 𝑖-th
client is given as

𝐿𝑖 =
1
𝑏

∑︁
𝑗 ∈B𝑖

CE
(
𝑓w𝑠
(s𝑖, 𝑗), y𝑖, 𝑗

)
. (1)

Next, the server generates the gradient of the upper model seg-
ment∇w𝑠

𝐿𝑖 through the 𝑖-th loss, sends the gradient of the cut-layer
∇w𝑘

𝑖
𝐿𝑖 to the 𝑖-th client, and the 𝑖-th client generates the gradient

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Seungeun Oh, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh Raskar, Mehdi Bennis, and Seong-Lyun Kim

Figure 3: Mixup and CutMix examples for raw and smashed data.

of the lower model segment ∇w𝑐,𝑖
𝐿𝑖 . Finally, the weight update of

upper and lower model segment is performed in the server and the
𝑖-th client, respectively. After that, the lower model segment w𝑐,𝑖

is sent to the 𝑖 ′-th client, where 𝑖 ′ ∈ C − {𝑖}. The update of lower
model segments between the 𝑖-th client and the 𝑖 + 1-th client are
as follows:

[
w𝑠

w𝑐,𝑖

]
←

[
w𝑠

w𝑐,𝑖

]
− [

[
∇w𝑠

𝐿𝑖
∇w𝑐,𝑖

𝐿𝑖

]
, (2)

where [is a learning rate.

w𝑐,𝑖+1 ← w𝑐,𝑖 ∀𝑖 ∈ C\{𝑛} (3)

and w𝑐,1 ← w𝑐,𝑛 .
Such a sequential SL is suitable for generating a high-accuracy

model while reducing the client-side computation cost due to the
separation of upper and lower model segments. However, due to the
sequential nature of the training, where the client and server are
connected in a 1-by-1 manner, as the number of clients participating
in learning increases, the latency proportionally increases. This
motivates parallel SL research that allows simultaneous access of
multiple clients.

2.2 Parallel SL
1 Smashed Data FP. In parallel training as shown in [7, 26],
all clients connect to the server at the same time. Therefore, the
FP in sequential training is processed in all clients simultaneously.
As in (1), the server generates a loss 𝐿𝑖 corresponding to the 𝑖-th
client’s smashed data, thereby completing FP in parallel.
2 Global Gradient BP. For all 𝑖 ∈ C and 𝑗 ∈ B𝑖 , the server
generates a loss 𝐿𝑖 for each 𝑖-th client and sends the 𝑖-th gradient
∇w𝑘

𝑖
𝐿𝑖 to its corresponding client. Then, for all 𝑖 ∈ C, the 𝑖-th client

and the server update the lower model segment w𝑐,𝑖 and the upper
model segment w𝑠 in the following ways:

[
w𝑠

w𝑐,𝑖

]
←

[
w𝑠

w𝑐,𝑖

]
− [

[∑
𝑖∈C (𝛿𝑖∇w𝑠

𝐿𝑖)
∇w𝑐,𝑖

𝐿𝑖

]
, (4)

where 𝛿𝑖 denotes the weight of the 𝑖-th lower model segment deter-
mined by its dataset size, and is equal to 𝛿𝑖 = |D𝑖 |∑

𝑖∈C |D𝑖 |
. Note that

the cut-layer gradient BP method of sequential SL is a special case
in which the 𝑖-th weight 𝛿𝑖 is 1 and the remainder is 0 in the global
gradient BP method of parallel SL.

2.3 Server-Client Update Imbalance in
Parallel SL

By allowing multiple accesses, parallel training solves the latency
problem of sequential training. However, in parallel training, while
the client’s lower model segment calculates gradient with a sin-
gle batch of input data, the server’s upper model segment calcu-
lates a global gradient by averaging the gradients using aggregated
smashed data from multiple clients. This can be clearly seen when
comparing Equations (2) and (4). In (2),w𝑠 is updated for the loss of
a single client, whereas in (4), the loss of multiple clients is reflected
to update onw𝑠 . This implies that the effective learning rate of upper
model segment has the effect of an 𝑛-fold increase from its original
value, and this gap widens as the number of participating clients 𝑛
increases. This yields the imbalance on server-client update may
induce performance degradation in terms of convergence speed or
accuracy and necessitate techniques to overcome them.

In summary, the parallel SL allows to break through the limit
of sequential SL with regards to latency. However, parallel SL has
a critical ‘update imbalance problem’ between server and clients
as discussed in section 1. This highlights the need for additional
techniques to address this problem.

3 LOCFEDMIX-SL: PARALLEL SL WITH
LOCAL REGULARIZATION, LOCAL
FEDERATED LEARNING, AND SMASHED
DATA MIXUP

In this section, we describe the key component techniques used
in the existing SL algorithms, and other component techniques in
the DNN algorithms to target aforementioned imbalanced update
problem with little or no additional cost. The list of component
techniques to be covered in this section is as follows: 1) smashed
data augmentation, 2) regularized local loss, and 3) lower model
aggregation. Detailed design elements of each component technique
are provided along with analysis.

3.1 Smashed Data Augmentation
The core idea of this subsection comes from how to improve accu-
racy and guarantee scalability without additional communication
cost in the parallel SL structure. We consider the manifold mixup
proposed in [29], using the smashed data aggregated to the server
through the existing FP process, as a key to solve this problem.
3 Smashed Data Mixup. For the sake of convenience, we first
assume a scenario in which only two clients (𝑖-th and 𝑖 ′-th client)
exist. When all smashed data and its corresponding ground-truth

LocFedMix-SL: Localize, Federate, and Mix for Improved Scalability, Convergence, and Latency in Split Learning WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

Figure 4: Top-1 accuracy w.r.t the number of mixed-up
smashed data 𝑛𝑠 and hyperparameters for Beta distribution
in Mixup and CutMix algorithms.

Table 1: Top-1 accuracy w.r.t 𝑛 and 𝑛𝑠 in Mixup algorithm
with _ ∼ [0, 1].

Methods
of mixed-up smashed data, 𝑛𝑠

2 6 10 14 18

Mixup (𝑛=10) 0.4575 0.5042 0.5245 - -
Mixup (𝑛=20) 0.4733 0.5335 0.5400 0.5422 0.5162

label are uploaded to the server, the server generates mixed-up
smashed data by mixing the 𝑗-th smashed data of the 𝑖-th client and
the 𝑗 ′-th smashed data of the 𝑖 ′-th client as follows:

s𝑖
′, 𝑗 ′

𝑖, 𝑗
= _ · s𝑖, 𝑗 + (1 − _) · s𝑖′, 𝑗 ′, (5)

where the mixing ratio _ follows the beta distribution (_ ∼ 𝐵(𝛼, 𝛽)),
which is equal to a uniform distribution𝑈 [0, 1] if 𝛼 = 𝛽 = 1.

The server propagates the mixed-up smashed data through the
upper model segment, and produces the loss expressed as �̃�𝑖

′, 𝑗 ′

𝑖, 𝑗
=

𝐶𝐸 (s𝑖
′, 𝑗 ′

𝑖, 𝑗
, 𝑦

𝑖′, 𝑗 ′

𝑖, 𝑗
) where 𝑦𝑖

′, 𝑗 ′

𝑖, 𝑗
= _ · 𝑦𝑖, 𝑗 + (1 − _) · 𝑦𝑖′, 𝑗 ′ . In the sce-

nario with two clients, the 𝑖-th loss is expressed as �̃�𝑖
′
𝑖

= 1/𝑏 ·∑
𝑗 ∈B𝑖 , 𝑗 ′∈B𝑖′ �̃�

𝑖′, 𝑗 ′

𝑖, 𝑗
. Note that the gradient obtained from �̃�𝑖

′
𝑖
is de-

tached from the lower model segment and thereby only flows to
the upper model segment.

Generalizing this, consider 𝑛 > 2 smashed data uploaded to the
server. Single smashed data is 1-to-1 mixed-up with the one other
smashed data, and the 1-to-1 mixup operation is repeated 𝑛𝑠 ≤ 𝑛−1
times per one smashed data. Consequently, each client’s smashed
data can generate up to 𝑛 gradients, i.e., 𝑛 − 1 from smashed data
mixup and 1 from the original smashed data. LetC𝑛𝑠

𝑖
denote a subset

obtained by sampling𝑛𝑠 elements fromC−{𝑖}without replacement,
in which C − {𝑖} is a special case of C𝑛𝑠

𝑖
when 𝑛𝑠 = 𝑛 − 1. When

𝑛𝑠 + 1 out of 𝑛 gradients are used to calculate the 𝑖-th loss, denoted
by �̃�𝑖 =

∑
𝑖′∈D𝑛𝑠

𝑖
�̃�𝑖
′
𝑖
, w𝑠 and w𝑐,𝑖 are updated by the server and the

𝑖-th client, respectively, as follows:[
w𝑠

w𝑐,𝑖

]
←

[
w𝑠

w𝑐,𝑖

]
− [

[∑
𝑖∈C (𝛿𝑖∇w𝑠

(�̃�𝑖 + 𝐿𝑖))
∇w𝑐,𝑖

𝐿𝑖

]
. (6)

Figure 5: Illustrations of Infopro operations.

1) Full vs. partial mixup: Mixup data augmentation has several
variants among which CutMix is one popular method. In CutMix,
patches are cut and pasted among training images while the ground
truth labels are mixed proportionally to the area of the patches.
When CutMix is applied, (5) is changed to the following:

s̃𝑖
′, 𝑗 ′

𝑖, 𝑗
= M_ ⊙ s𝑖, 𝑗 + (I −M_) ⊙ s𝑖′, 𝑗 ′, (7)

where both M_ and I are of the same size as s𝑖, 𝑗 , M_ is a matrix
with |s𝑖, 𝑗 | · 𝑏 random elements 1 and remainder 0, I is a matrix
in which all elements have a value of 1, and ⊙ denotes element-
wise multiplication operation. Fig. 4 compares the top-1 accuracy
according to the Mixup and CutMix, along with the distribution
of the mixing ratio _, and the number of mixed-up smashed data
𝑛𝑠 . Overall, the accuracy of Mixup is higher than that of CutMix,
especially when _ follows a uniform distribution (𝛼 = 𝛽 = 1).

2) Impact of mixing weights: In Fig. 4, CutMix has fluctuations
in the overall accuracy, so it does not show a specific tendency
according to the distribution of _. On the other hand, in Mixup,
the performance is high in the order of uniform distribution, beta
distribution with 𝛼 = 1.5, and beta distribution with 𝛼 = 4 in terms
of accuracy.

3) Impact of 𝑛𝑠 : Both Fig. 4 and Table 1 show that the accuracy is
maximized when 𝑛𝑠 is 10 if 𝑛 = 10, and 𝑛𝑠 is 14 if 𝑛 = 20 on a mixup
with a uniform _. That is, accuracy is not always an incremental
function for 𝑛𝑠 . This is because increasing 𝑛𝑠 has a similar effect
to increasing batch size. As shown in [16], when the batch size
increases, accuracy has either an increasing curve or a concave
curve. Nevertheless, thanks to its augmentation effect, the larger
𝑛𝑠 is, the higher the probability of achieving higher accuracy. In
terms of scalability, larger 𝑛 means that the range of 𝑛𝑠 that can
be searched is widened, which leads to a potential improvement
in accuracy. From here, the optimal 𝑛𝑠 according to 𝑛 is left as
future work, and the mixup technique with uniform _ is used with
𝑛𝑠 ∝ 𝑛. Recalling the batch increasing effect of 𝑛𝑠 , this may be a key
solution to solve the server-client update imbalance problem that
occurs in parallel SL by providing an increased batch of smashed
data according to the increased effective learning rate of the server.
It is also noted that exchanging the smashed data of the cut-layer is
heavily dependent on where the cut-layer is located. In general, the
closer the cut-layer is to the input layer, the higher the performance
gain when exchanging it.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Seungeun Oh, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh Raskar, Mehdi Bennis, and Seong-Lyun Kim

Table 2: Top-1 Accuracy of three local parallel algorithms.

Local Regularization Techniques Top-1 Accuracy

Infopro Regularization 0.496
Norm-based Regularization 0.465
Without Regularization 0.474

3.2 Local Loss with Mutual Information
Regularization

The purpose of utilizing local loss for SL can be roughly divided
into two categories: 1) (as in LocSplitFed) to update the lower model
if the gradient is not transmitted or the transmission fails, and 2) (as
in [30]) to control the amount of information contained in smashed
data. In this subsection, we focus on existing algorithms centered
on the second purpose. Hereafter, let ℎ denote the mapping from
the smashed data to the reconstructed data by the auxiliary network
with weight ŵ𝑐,𝑖 . For 𝑖 ∈ C, the 𝑖-th client has local model segment,
where weight is represented by w𝑑,𝑖 = [w𝑐,𝑖 , ŵ𝑐,𝑖]T.
4 Regularized Local Gradient. The goal of local regularizer
is to maximize the information about the input data that can be
obtained from given smashed data, that is, the mutual informa-
tion between the smashed data and the input data denoted by
𝐼 (x𝑖, 𝑗 |s𝑖, 𝑗) = 𝐻 (x𝑖, 𝑗) − 𝐻 (x𝑖, 𝑗 |s𝑖, 𝑗) [17]. To maximize the mutual
information 𝐼 , the residual randonness 𝐻 (x𝑖, 𝑗 |s𝑖, 𝑗) should be mini-
mized. Here, the auxiliary network aims to minimize this residual
randomness through its local loss L̂𝑖 . By utilizing both local and
global loss, the 𝑖-th client updates its local model segment with
weight w𝑑,𝑖 as follows:[

ŵ𝑐,𝑖

w𝑐,𝑖

]
←

[
ŵ𝑐,𝑖

w𝑐,𝑖

]
− [

[
∇ŵ𝑐,𝑖

(�̂�𝑖)
∇w𝑐,𝑖

(�̂�𝑖 + 𝐿𝑖)

]
. (8)

Then, the 𝑖-th client uploads the auxiliary network and the server
produces the global auxiliary network ŵ𝑐 by taking weighted aver-
aging on the aggregated auxiliary networks to be downloaded to
the 𝑖-th client, as following formula:

ŵ𝑐,𝑖 ← ŵ𝑐 =
∑︁
𝑖∈C
(𝛿𝑖ŵ𝑐,𝑖) . (9)

1) Infopro vs. norm-based regularization: To maximize of the mu-
tual information, the local regularizers in Infopro and norm-based
regularization to be minimized are given as follows:

�̂�𝑖=

{
| |x𝑖, 𝑗 − ℎ(s𝑖, 𝑗) | |2 : Infopro
\ · |

x𝑖, 𝑗 − s𝑖, 𝑗 | : Norm-based,
where ∥·∥ denotes the L2-norm function and \ is a hyperparameter
controlling a ratio of local gradient. Table 2 compares the accuracy
of the two regularization techniques and the standalone technique.
Among them, the accuracy of Infopro regularization is the high-
est, and from this point on, we adopt the Infopro algorithm as
a regularizer. In Fig. 4, Examples of representation of input data,
smashed data, and reconstructed data are shown when the Infopro
regularization is applied.
2) Impact of cut-layer : As the location of the cut-layer changes, the
size of the output smashed data also varies, which determines how
well Infopro works. Generally, the closer the cut-layer is to the
input layer, the larger the size of the smashed data and the smaller

Figure 6: Top-1 accuracy and cumulative uplink cost (in
Mbit) of local model federated averaging w.r.t lower model
averaging interval 𝑇𝑐 . The uplink cost only counts for the
communication payload size of model parameters.

the difference with the input data is, so the mutual information
with the input data tends to be relatively high.
3) Detachment problem: If a lower model segment is trained only
using local gradients instead of global gradients propagated from
the server, the lower model can be detached from the upper model
segment the server. This isolates the lower model update from the
upper model update incurring performance degradation in terms of
global model accuracy. This emphasizes the importance of learning
in harmony between the server and the client.

3.3 Local Model Federated Averaging
After updating the lower model and upper model through FP and
BP, an additional aggregation phase is introduced to supplement
the lower model updated with only local gradient compared to the
upper model updated with global gradient.
5 Local Federated Averaging. Each 𝑖-th client uploads the
updatedw𝑐,𝑖 back to the server. The server produces a global lower
model w𝑐 through aggregated lower models and substitutes its
own lower model segment with the global lower model with the
following expression :

w𝑐,𝑖 ← w𝑐 =
∑︁
𝑖∈C
(𝛿𝑖w𝑐,𝑖) . (10)

1) Period of Local Averaging: It is well known that the more frequent
weight averaging is, the higher the test accuracy tends to be [35].
However, by increasing the weight averaging interval, the overhead
caused by model aggregation can be reduced. Fig. 6 shows the
accuracy and communication cost trade-off according to the
local model averaging interval 𝑇𝑐 . With the auxiliary network of
section 3.2, the performance gain in terms of communication cost
become larger when increasing the communication period. As with
other subsection techniques, the change in communication cost
and test accuracy is greatly affected by the location of the cut-layer
and furthermore the structure of the entire model. Although its
performance enhancement in accuracy is large enough with the
help of FL, still this does not solve the detachment problem, since
the lower model is updated independently with the server model.

3.4 Proposed: LocFedMix-SL
As depicted in Fig. 7, the operation of our proposed LocFedMix-SL,
including all mentioned processes 1 to 5 , can be simplified in
the following 3 steps: i) forward propagation with smashed data

LocFedMix-SL: Localize, Federate, and Mix for Improved Scalability, Convergence, and Latency in Split Learning WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

Figure 7: An illustration of the overall operation of LocFedMix-SL.

Table 3: Top-1 accuracy, total communication round of combinations for multiple techniques in SL.

Techniques
Top-1 Accuracy Total Comm. Round

Remarks𝑛 = 20 40 60 80 100 𝑛 = 20 40 60 80 100

1: 1 0.5946 0.6050 0.6171 0.6225 0.6295 9,770 9,680 9,600 9,760 9,390 Vanilla SL

2: 1 + 2 + 3 0.4988 0.4971 0.5402 0.5433 0.5551 2,970 8,900 8,890 7,990 7,950 -
3: 1 + 2 + 4 0.4751 0.4818 0.4788 0.4961 0.4797 2,190 2,170 2,130 1,940 2,470 -
4: 1 + 2 + 5 0.6214 0.6257 0.6229 0.6208 0.6196 6,270 6,090 6,360 6,130 6,400 SplitFed
5: 1 + 2 + 3 + 4 0.5152 0.5421 0.5568 0.5592 0.5687 8,940 9,230 8,980 9,090 9,820 -
6: 1 + 2 + 3 + 5 0.6292 0.6398 0.6398 0.6688 0.6698 3,750 2,460 2,300 2,020 1,840 -
7: 1 + 2 + 4’ + 5 0.6348 0.6376 0.6362 0.6356 0.6381 5,520 5,670 8,160 7,240 6,860 LocSplitFed + 2
8: 1 + 2 + 3 + 4 + 5 0.6365 0.6409 0.6591 0.6784 0.6810 3,590 2,470 2,060 1,340 1,960 LocFedMix-SL

mixup, ii) back propagation with local and global gradients, and iii)
periodic local model aggregation.
Step 1 (1 + 3): For all 𝑖 ∈ C, the 𝑖-th client propagates𝑏 input data
x𝑖, 𝑗 through its lower model segment with weightw𝑐,𝑖 to produce 𝑏
smashed data s𝑖, 𝑗 . Then, the client passes the smashed data through
its auxiliary network ŵ𝑐,𝑖 to generate �̂�𝑖 , while sending it to the
server at the same time. The server mixes s𝑖, 𝑗 with s𝑖′, 𝑗 ′ 𝑛𝑠 times
where 𝑖 ′ ∈ D𝑛𝑠

𝑖
, and obtains global gradient from �̃�𝑖 + 𝐿𝑖 using the

upper model segment.
Step 2 (2 + 4): The server updatesw𝑠 using the aggregated global
gradient from

∑
𝑖 𝛿𝑖 (�̃�𝑖 + 𝐿𝑖). Then, the server transmits the cut-

layer gradient ∇w𝑘
𝑖
𝐿𝑖 to the 𝑖-th client, and the client updates w𝑐,𝑖

and ŵ𝑐,𝑖 using the gradient flowing from both the global & local
gradient ∇w𝑐,𝑖

(�̂�𝑖 + 𝐿𝑖) and the gradient flowing from the local
gradient ∇ŵ𝑐,𝑖

�̂�𝑖 , respectively.
Step 3 (5): The 𝑖-th client sends its local model w𝑑,𝑖 to the server,
for all 𝑖 ∈ C. The server takes weighted averaging on the aggregated
local model, and produces a global local model w𝑑 downloaded by
all clients. The 𝑖-th client replaces w𝑑,𝑖 with w𝑑 . This completes a
single communication round of LocFedMix-SL. The detailed opera-
tion of our proposed algorithm is described in Appendix F.

4 NUMERICAL EXPERIMENTS
Experimental Settings. By combining 1 to 5 techniques de-
scribed in section 3 appropriately, we design 8 SL frameworks
shown in Table 3 including our proposed LocFedMix-SL, and other
state-of-the-art SL algorithms. In Table 3, we compare the perfor-
mance of the above algorithms in terms of top-1 accuracy and total

communication round. Both Table 4 and Fig. 8 measure the latency
of the algorithms while changing the ratio of computing and com-
munication latency. Fig. 9 of Appendix B shows the learning curve
w.r.t training time which simultaneously shows the test accuracy,
convergence time, and latency.

In Table 3, the LeNet5 [15] is used for the CIFAR-10 dataset [13].
Fig. 9 additionally uses the fashion-MNIST dataset [31]. Regarding
the model split, the cut-layer of LeNet-5 is located after the first
convolutional layer and max-pooling layer. For data split, in the
case of CIFAR-10, each device randomly samples 5, 000 training
data out of a total of 50,000 training data sets and, in the case of
fashion-MNIST, randomly holds 12, 000 training data out of a total
of 60,000 training data sets.

Regarding the structure of the auxiliary network, the interpolate
function is first used to compensate for the small size of smashed
data compared to input data, and then it passes through a decoder
that includes two convolutional layers, one batch normalization
layer, one ReLU function, and one sigmoid function. Finally, the
mean squared error (MSE) function is used to measure the loss
between the reconstructed data and the input data. Other simulation
parameters are given as follows: batch size 𝑏 = 64, learning rate
[= 0.004, and # of communication rounds 𝑇 = 10, 000.
Scalability & Convergence Speed. Table 3 reports the top-1
accuracy and total communication rounds for several combinations
of different techniques. The proposed LocFedMix-SL (algorithm 8)
achieves the highest accuracy regardless of𝑛 and always records the
top performance in terms of convergence speed. Even when 𝑛 = 60
and 80, its convergence speed is the fastest. Next, Table 3 reveals that
scalability is guaranteed under the algorithm 1 (i.e., Vanilla SL) as

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Seungeun Oh, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh Raskar, Mehdi Bennis, and Seong-Lyun Kim

Table 4: Latency comparison during 𝑇 communication
rounds of split learning algorithms with 𝑛 clients.

Methods Latency for 𝑇 communication rounds

Vanilla SL (𝑇𝑐𝑜𝑚𝑝 + 𝑛𝑇𝑐𝑜𝑚𝑚) · 𝑛𝑇
SplitFed (𝑇𝑐𝑜𝑚𝑝 + 𝑛𝑇𝑐𝑜𝑚𝑚 · |s |+ |wc |

|s |) ·𝑇
LocSplitFed (𝑇𝑐𝑜𝑚𝑝 +𝑚𝑎𝑥 (𝑇𝑐𝑜𝑚𝑝 , 𝑛𝑇𝑐𝑜𝑚𝑚) + 𝑛𝑇𝑐𝑜𝑚𝑚 · |ŵ𝑐 |+ |w𝑐 |

|w𝑐 |) ·𝑇
Proposed (𝑇𝑐𝑜𝑚𝑝 + 𝑛𝑇𝑐𝑜𝑚𝑚) ·𝑇 + 𝑛𝑇𝑐𝑜𝑚𝑚 · |ŵ𝑐 |+ |w𝑐 |

|w𝑐 | · ⌊ 𝑇
𝑇𝑐
⌋

well as under the new algorithms 2, 5, 6, and 8 (i.e., LocFedMix-SL).
The common feature of the algorithms that guarantee scalability
except for Vanilla SL is the use of technique 3 , smashed data mixup.
In the case of techniques such as lower model averaging and local
parallel training used by existing parallel SL algorithms, the update
imbalance problem between server-client is not resolved, and the
detachment problem is rather caused by updating independently
of the server’s upper model leading to a decrease in accuracy. As 𝑛
increases, the imbalance and detachment problems become severe,
and the accuracy gradually decreases accordingly.

Smashed data mixup resolves the update imbalance problem
between server-client by providing a large amount of augmented
samples to the server with a large effective learning rate. As 𝑛
increases and the effective learning rate of the server increases, the
number of mixed-up smashed data 𝑛𝑠 < 𝑛 also increases and is
supplemented, thereby ensuring scalability. Furthermore, smashed
data mixup avoids the detachement problem in a sense that each
local model is not separately trained as in local weight averaging or
local regularization techniques. The effectiveness of smashed data
mixup is bolstered by 4 , local loss regularization, as shown by
comparing the algorithms 2,5 with 6,8 in Table 3. As mentioned, it
is known that the accuracy gain tends to increase as the data mixup
is performed in a layer closer to the input layer. Local regularization
learns in the direction of maximizing the amount of information
about the input data that the smashed data has, which may have a
similar effect to making the smashed data mixup closer to the input
data mixup. In this context, simultaneous utilization of smashed
data mixup and local regularizer leads to greater accuracy gain.

Similarly, from Table 3, the combination of technology 3 and
5 has good performance in terms of convergence speed. As men-
tioned above, smashed data mixup has the same effect as increasing
the batch size of the server, which speeds up the convergence
speed of the upper model of the server. However, with the smashed
data mixup technique alone, the convergence speed of the client’s
lower model can be bound, and this can be confirmed through the
algorithm 2 in the table. Although local weight averaging can re-
duce scalability by inducing a detachment problem, it is an optimal
technique to increase the convergence speed of the lower model.
Therefore, as the smashed data mixup and local weight averaging
are used together, the convergence speed of the lower model and
the upper model is simultaneously improved, which speeds up the
convergence speed of the entire model.
Communication-Computing Latency. Table 4 compares SL
algorithms’ latency for 𝑇 communication rounds with 𝑛 clients.
The latency measures the time it takes for all 𝑛 clients to learn for
each 𝑇 communication round. Under the premise that the server’s
computing power and transmission power are very large, only

computing and communication latency occurring at the client-side
is considered while ignoring the computing and communication
latency occurring on the server-side. Also, it is assumed that all
clients share the entire band equally. Within a single communica-
tion round, 𝑇𝑐𝑜𝑚𝑚 denotes the uplink transmission latency under
the assumption that a client utilizes full bandwidth, and 𝑇𝑐𝑜𝑚𝑝 de-
notes the computational latency. In addition, |s|, |w𝑐 |, |ŵ𝑐 | denote
the size of 𝑏 smashed data, lower model segment, auxiliary network,
respectively. 𝑇𝑐 is the upper layer average interval in our method.
Accordingly, in terms of latency, 𝑇𝑐 = 1 is regarded as the worst
case, whereas 𝑇𝑐 = 𝑇 is regarded as the best case.

In Appendix A, Fig. 8 (top) illustrates the latency w.r.t the number
of clients 𝑛 when the ratio of 𝑇𝑐𝑜𝑚𝑝 and 𝑇𝑐𝑜𝑚𝑚 is 10:1. The best
case of our proposed algorithms achieves the lowest latency, and
the worst case of our proposed methods is still better than all
other baselines except for SplitFed. This latency gain decreases
when the communication delays dominate the overall latency (i.e.,
𝑇𝑐𝑜𝑚𝑚 ≥ 𝑇𝑐𝑜𝑚𝑝). For such scenarios, the best case of our proposed
method still achieves the lowest latency, and our worst case latency
is on par with LocSplitFed, as shown in Figs. 8 (middle & bottom).
Impacts of Local Parallelism, Federated Learning, andMixup.
According to Table 3, smashed data mixup contributes to improv-
ing convergence speed and to achieving scalability in tandem with
lower model averaging. Smashed data mixup also creates a syn-
ergetic effect in improving accuracy, in combination with local
regularization that does not provide any performance gain alone.
Local model averaging contributes to the improved convergence
speed and accuracy. In Appendix B, Fig. 9 compares the learning
curves of different algorithms over time. The results reveals that the
proposed LocFedMix-SL achieves the highest accuracy, fastest con-
vergence, and lowest latency by carefully integrating local parallel
training, federated learning, and Mixup.

5 CONCLUSION
Departing from sequential SL, we studied parallel SL having great
potential in reducing latency. However, existing parallel SL algo-
rithms are not scalable, and often struggle with slow convergence.
We discovered that the reason comes fundamentally from the par-
allel SL architecture that is inherently prone to incur the problems
of server-client update imbalance and client model detachment
from the server model. To fix this issue, we carefully integrated
local parallelism, federated learning, and mixup data augmenta-
tion techniques into parallel SL, so as to keep the FP flows and BP
updates balanced. Consequently, we proposed a novel parallel SL
framework, named LocFedMix-SL, and validated its achieving high
scalability, fast convergence, and low latency by simulation. Extend-
ing this work, investigating the effectiveness of LocFedMix-SL in
various datasets under imbalanced data distributions and different
model architectures could be interesting topics for future work.

ACKNOWLEDGMENTS
This work was supported by Institute of Information & commu-
nications Technology Planning & Evaluation (IITP) grant funded
by the Korea government(MSIT) (No.2021-0-00347, 6G Post-MAC
(POsitioning- & Spectrum-aware intelligenT MAC for Computing
& Communication Convergence)), and by EU-CHISTERA project
LeadingEdge and CONNECT.

LocFedMix-SL: Localize, Federate, and Mix for Improved Scalability, Convergence, and Latency in Split Learning WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

REFERENCES
[1] Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. 2019. Greedy

layerwise learning can scale to imagenet. In International conference on machine
learning. PMLR, 583–593.

[2] Anis Elgabli, Jihong Park, Sabbir Ahmed, and Mehdi Bennis. 2020. L-FGADMM:
Layer-wise federated group ADMM for communication efficient decentralized
deep learning. In 2020 IEEE Wireless Communications and Networking Conference
(WCNC). IEEE, 1–6.

[3] Yansong Gao, Minki Kim, Sharif Abuadbba, Yeonjae Kim, Chandra Thapa,
Kyuyeon Kim, Seyit A Camtepe, Hyoungshick Kim, and Surya Nepal. 2020. End-
to-end evaluation of federated learning and split learning for internet of things.
arXiv preprint arXiv:2003.13376 (2020).

[4] Yansong Gao, Minki Kim, Chandra Thapa, Sharif Abuadbba, Zhi Zhang, Seyit A
Camtepe, Hyoungshick Kim, and Surya Nepal. 2021. Evaluation and Optimization
of DistributedMachine Learning Techniques for Internet of Things. arXiv preprint
arXiv:2103.02762 (2021).

[5] Otkrist Gupta and Ramesh Raskar. 2017. Secure Training of Multi-Party Deep
Neural Network. US Patent App. 15/630,944.

[6] Otkrist Gupta and Ramesh Raskar. 2018. Distributed learning of deep neural
network over multiple agents. Journal of Network and Computer Applications 116
(2018), 1–8.

[7] Dong-Jun Han, Hasnain Irshad Bhatti, Jungmoon Lee, and Jaekyun Moon. 2021.
Accelerating Federated Learning with Split Learning on Locally Generated Losses.
In ICML 2021 Workshop on Federated Learning for User Privacy and Data Confi-
dentiality. ICML Board.

[8] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim. 2018. Communication-
Efficient On-Device Machine Learning: Federated Distillation and Augmentation
under Non-IID Private Data. presented at NeurIPS Wksp. MLPCD (Montréal,
Canada). arXiv preprint arXiv:1811.11479 (Dec. 2018).

[9] Praveen Joshi, Chandra Thapa, Seyit Camtepe, Mohammed Hasanuzzamana, Ted
Scully, and Haithem Afli. 2021. Splitfed learning without client-side synchro-
nization: Analyzing client-side split network portion size to overall performance.
arXiv preprint arXiv:2109.09246 (2021).

[10] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. 2019. Advances and open problems in federated learning.
arXiv preprint arXiv:1912.04977 (2019).

[11] Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. 2015. Federated op-
timization: Distributed optimization beyond the datacenter. arXiv preprint
arXiv:1511.03575 (2015).

[12] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies
for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).

[13] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
Technical Report.

[14] Michael Laskin, Luke Metz, Seth Nabarrao, Mark Saroufim, Badreddine Noune,
Carlo Luschi, Jascha Sohl-Dickstein, and Pieter Abbeel. 2020. Parallel training of
deep networks with local updates. arXiv preprint arXiv:2012.03837 (2020).

[15] Yann LeCun et al. 2015. LeNet-5, convolutional neural networks. URL: http://yann.
lecun. com/exdb/lenet 20, 5 (2015), 14.

[16] Linjian Ma, Gabe Montague, Jiayu Ye, Zhewei Yao, Amir Gholami, Kurt Keutzer,
and Michael Mahoney. 2020. Inefficiency of k-fac for large batch size training. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 5053–5060.

[17] David JC MacKay and David JC Mac Kay. 2003. Information theory, inference and
learning algorithms. Cambridge university press.

[18] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[19] Shraman Pal, Mansi Uniyal, Jihong Park, Praneeth Vepakomma, Ramesh Raskar,
Mehdi Bennis, Moongu Jeon, and Jinho Choi. 2021. Server-Side Local Gradient
Averaging and Learning Rate Acceleration for Scalable Split Learning. to be
presented at 2022 AAAI-FL Wksp. arXiv preprint arXiv:2112.05929 (2021).

[20] Jihong Park, Sumudu Samarakoon, Mehdi Bennis, and Mérouane Debbah. 2019.
Wireless network intelligence at the edge. Proc. IEEE 107, 11 (2019), 2204–2239.

[21] Jihong Park, Sumudu Samarakoon, Anis Elgabli, Joongheon Kim, Mehdi Bennis,
Seong-Lyun Kim, and Mérouane Debbah. 2021. Communication-Efficient and
Distributed Learning Over Wireless Networks: Principles and Applications. Proc.
IEEE 109, 5 (May 2021), 796–819. https://doi.org/10.1109/JPROC.2021.3055679

[22] Jihong Park, Shiqiang Wang, Anis Elgabli, Seungeun Oh, Eunjeong Jeong, Han
Cha, Hyesung Kim, Seong-Lyun Kim, and Mehdi Bennis. 2019. Distilling on-
device intelligence at the network edge. arXiv preprint arXiv:1908.05895 (2019).

[23] Maarten G Poirot, Praneeth Vepakomma, Ken Chang, Jayashree Kalpathy-Cramer,
Rajiv Gupta, and Ramesh Raskar. 2019. Split learning for collaborative deep
learning in healthcare. arXiv preprint arXiv:1912.12115 (2019).

[24] Abhishek Singh, Praneeth Vepakomma, Otkrist Gupta, and Ramesh Raskar. 2019.
Detailed comparison of communication efficiency of split learning and federated

learning. arXiv preprint arXiv:1909.09145 (2019).
[25] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. 2017. Don’t

decay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489
(2017).

[26] Chandra Thapa, Mahawaga Arachchige Pathum Chamikara, and Seyit Camtepe.
2020. Splitfed: When federated learning meets split learning. arXiv preprint
arXiv:2004.12088 (2020).

[27] Chandra Thapa, Mahawaga Arachchige Pathum Chamikara, and Seyit Ahmet
Çamtepe. 2020. Advancements of federated learning towards privacy preser-
vation: from federated learning to split learning. CoRR abs/2011.14818 (2020).
arXiv:2011.14818 https://arxiv.org/abs/2011.14818

[28] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. 2018.
Split learning for health: Distributed deep learning without sharing raw patient
data. arXiv preprint arXiv:1812.00564 (2018).

[29] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas,
David Lopez-Paz, and Yoshua Bengio. 2019. Manifold mixup: Better represen-
tations by interpolating hidden states. In International Conference on Machine
Learning. PMLR, 6438–6447.

[30] Yulin Wang, Zanlin Ni, Shiji Song, Le Yang, and Gao Huang. 2021. Revisiting
Locally Supervised Learning: an Alternative to End-to-end Training. arXiv
preprint arXiv:2101.10832 (2021).

[31] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine Learning Algorithms.
arXiv:cs.LG/1708.07747 [cs.LG]

[32] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federatedmachine
learning: Concept and applications. ACM Transactions on Intelligent Systems and
Technology (TIST) 10, 2 (2019), 1–19.

[33] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and
Youngjoon Yoo. 2019. Cutmix: Regularization strategy to train strong classifiers
with localizable features. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 6023–6032.

[34] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. 2017.
mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412
(2017).

[35] Jian Zhang, Christopher De Sa, Ioannis Mitliagkas, and Christopher Ré. 2016.
Parallel SGD: When does averaging help? arXiv preprint arXiv:1606.07365 (2016).

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Seungeun Oh, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh Raskar, Mehdi Bennis, and Seong-Lyun Kim

A LATENCY UNDER DIFFERENT
COMPUTING-COMMUNICATION COSTS

Figure 8: Latency of SL algorithmswhen𝑇𝑐𝑜𝑚𝑝 : 𝑇𝑐𝑜𝑚𝑚 is 10:1
(top), 1:1 (middle), and 1:10 (bottom), respectively.

B LEARNING CURVE UNDER DIFFERENT
DATA SETS (𝑛 = 100)

Figure 9: Learning curves of SL algorithms on CIFAR-10 and
fashion-MNIST data sets.

C VANILLA SL PSEUDOCODE

Algorithm 1 Vanilla SL
1: requirements: D𝑖 with 𝑖 ∈ C, 𝑡 = 0
2: while 𝑡 < 𝑇 do
3: 𝑖-th Client:
4: generates s𝑖, 𝑗 by passing x𝑖, 𝑗 through w𝑐,𝑖 ⊲ FP
5: unicasts (s𝑖, 𝑗 , y𝑖, 𝑗) to the server ⊲ Uplink
6: Server:
7: generates 𝐿𝑖 by using (1)
8: updates w𝑠 via (2) with ∇w𝑠

𝐿𝑖 ⊲ BP
9: unicasts ∇w𝑘

𝑖
𝐿𝑖 to the 𝑖-th client ⊲ Downlink

10: 𝑖-th Client:
11: updates w𝑐,𝑖 via (1) with ∇w𝑐,𝑖

𝐿𝑖
12: unicasts w𝑐,𝑖 to the 𝑖 + 1-th client as (3) ⊲ Model Transition
13: 𝑡 ← 𝑡 + 1
14: end while

LocFedMix-SL: Localize, Federate, and Mix for Improved Scalability, Convergence, and Latency in Split Learning WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

D SPLITFED PSEUDOCODE

Algorithm 2 SplitFed
1: requirements: D𝑖 with 𝑖 ∈ C, 𝑡 = 0
2: while 𝑡 < 𝑇 do
3: Client 𝑖 ∈ C:
4: generates s𝑖, 𝑗 by passing x𝑖, 𝑗 through w𝑐,𝑖 ⊲ FP
5: unicasts (s𝑖, 𝑗 , y𝑖, 𝑗) to the server ⊲ Uplink
6: Server:
7: generates 𝐿𝑖 by using (1)
8: updates w𝑠 via (4) with

∑
𝑖 𝛿𝑖∇w𝑠

𝐿𝑖 ⊲ BP with Global
Gradient

9: unicasts ∇w𝑘
𝑖
𝐿𝑖 to the 𝑖-th client for all 𝑖 ∈ C ⊲ Downlink

10: Client 𝑖 ∈ C:
11: updates w𝑐,𝑖 via (4) with ∇w𝑐,𝑖

𝐿𝑖
12: unicasts w𝑐,𝑖 to the server ⊲ Uplink
13: Server:
14: calculates w𝑐 via (10) ⊲ Lower Model Averaging
15: unicasts w𝑐 to the 𝑖-th client for all 𝑖 ∈ C ⊲ Downlink
16: Client 𝑖 ∈ C:
17: replaces w𝑐,𝑖 with w𝑐

18: 𝑡 ← 𝑡 + 1
19: end while

E LOCSPLITFED PSEUDOCODE

Algorithm 3 LocSplitFed
1: requirements: D𝑖 with 𝑖 ∈ C, 𝑡 = 0
2: while 𝑡 < 𝑇 do
3: Client 𝑖 ∈ C:
4: generates s𝑖, 𝑗 by passing x𝑖, 𝑗 through w𝑐,𝑖 ⊲ FP
5: unicasts (s𝑖, 𝑗 , y𝑖, 𝑗) to the server ⊲ Uplink
6: generates �̂�𝑖 by passing s𝑖, 𝑗 through ŵ𝑐,𝑖

7: updates w𝑑,𝑖 with �̂�𝑖 ⊲ Local Gradient
8: Server:
9: generates 𝐿𝑖 by using (1)
10: updates w𝑠 via (4) with

∑
𝑖 𝛿𝑖∇w𝑠

𝐿𝑖 ⊲ BP with Global
Gradient

11: Client 𝑖 ∈ C:
12: unicasts w𝑑,𝑖 to the server ⊲ Uplink
13: Server:
14: calculates w𝑑 via (9)&(10) ⊲ Local Model Averaging
15: unicasts w𝑑 to the 𝑖-th client for all 𝑖 ∈ C ⊲ Downlink
16: Client 𝑖 ∈ C:
17: replaces w𝑑,𝑖 with w𝑑

18: 𝑡 ← 𝑡 + 1
19: end while

F LOCFEDMIX-SL PSEUDOCODE

Algorithm 4 LocFedMix-SL (𝑇𝑐 = 1)
1: requirements: D𝑖 with 𝑖 ∈ C, 𝑡 = 0, 1 ≤ 𝑛𝑠 ≤ 𝑛

2: while 𝑡 < 𝑇 do
3: Client 𝑖 ∈ C:
4: generates s𝑖, 𝑗 by passing x𝑖, 𝑗 through w𝑐,𝑖 ⊲ FP
5: unicasts (s𝑖, 𝑗 , y𝑖, 𝑗) to the server ⊲ Uplink
6: generates �̂�𝑖 by passing s𝑖, 𝑗 though ŵ𝑐,𝑖

7: updates ŵ𝑐,𝑖 via (8) with �̂�𝑖 ⊲ Local Gradient
8: Server:
9: generates 𝐿𝑖 by using (1)
10: generates 𝑠𝑖

′, 𝑗 ′

𝑖, 𝑗
for all 𝑖 ′ ∈ D𝑛𝑠

𝑖
via (5) ⊲ Smashed Data

Mixup
11: calculates �̃�𝑖 using all 𝑠

𝑖′, 𝑗 ′

𝑖, 𝑗

12: updates w𝑠 via (6) with
∑
𝑖 𝛿𝑖∇w𝑠

(�̃�𝑖 + 𝐿𝑖) ⊲ BP with
Global Gradient

13: unicasts ∇
𝑤𝑘
𝑖
(�̃�𝑖 + 𝐿𝑖) to 𝑖-th client for all 𝑖 ∈ C ⊲

Downlink
14: Client 𝑖 ∈ C:
15: updates w𝑐,𝑖 via (8) with ∇w𝑐,𝑖

(�̃�𝑖 + 𝐿𝑖)
16: unicasts w𝑑,𝑖 to the server ⊲ Uplink
17: Server:
18: updates w𝑑 via (9)&(10) ⊲ Local Model Averaging
19: unicasts w𝑑 to the 𝑖-th client for all 𝑖 ∈ C ⊲ Downlink
20: Client 𝑖 ∈ C:
21: replaces w𝑑,𝑖 with w𝑑

22: 𝑡 ← 𝑡 + 1
23: end while

View publication stats

