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ABSTRACT
The goal of this work is to learn discriminative visual representa-
tions for lip reading without access to manual text annotation. Re-
cent advances in cross-modal self-supervised learning have shown
that the corresponding audio can serve as a supervisory signal
to learn effective visual representations for lip reading. However,
existing methods only exploit the natural synchronization of the
video and the corresponding audio. We find that both video and
audio are actually composed of speech-related information, identity-
r elated information, and modal information. To make the visual
representations (i) more discriminative for lip reading and (ii) indis-
criminate with respect to the identities and modals, we propose a
novel self-supervised learning framework called Adversarial Dual-
Contrast Self-Supervised Learning (ADC-SSL), to go beyond previ-
ous methods by explicitly forcing the visual representations disen-
tangled from speech-unrelated information. Experimental results
clearly show that the proposed method outperforms state-of-the-art
cross-modal self-supervised baselines by a large margin. Besides,
ADC-SSL can outperform its supervised counterpart without any
finetune.
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•Computingmethodologies→Computer vision; Speech recog-
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1 INTRODUCTION
Supervised deep learning has brought revolutionary progress in
many fields, such as image classification [17], object detection and
segmentation [29], speech recognition [21], and machine transla-
tion [5]. Despite the remarkable progress witnessed in the past
decade, the successes of supervised deep learning rely heavily on
vastmanually annotated training data, which has serious limitations
in many real world applications including the interested lip reading
task [1, 12] of this paper. Firstly, supervised learning is restricted to
relatively narrow domains defined largely by the labeled training
data, and thus leads to limited generalization ability. Secondly, a
large amount of accurately labeled data like a large scale annotated
dataset for lip reading is costly to gather, even extremely expensive
for many applications like medical image analysis. Finally, However,
for some specific tasks, e.g., lip reading [1, 12], the cost of annotation
can be extremely expensive. Recently, self-supervised learning has
received a growing amount of attention due to its high label effi-
ciency and good generalization. Self-supervised learning methods
have shown great promise in natural language processing (e.g.,
GPT [35, 36] and BERT [18]), computer vision (e.g., CPC[26, 31],
MOCO [24, 33], SimCLR [9, 10], RoCL [27] et al.) and cross-modal
representation learning [3, 13, 15]. However, Methods that do not
rely on massive accurate manual annotation like self-supervised
learning are yet underexplored for the lip reading task.

How do we communicate with others? Literature in cognitive
sciences demonstrates that humans rely both on hearing voices and
seeing lipmovements in the process of speech perception [6, 30].We
will be confused if the sound we hear does not match the lip move-
ments we see, which means that voices and lip movements convey
the same speech information. Motivated by this observation, voices
and lip movements can naturally be treated as mutual supervisory
signals to learn discriminative A-V representations for multiple
downstream tasks, e.g., cross-modal retrieval, speech recognition,
and lip reading. In this work, we try to extract discriminative visual
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Figure 1: Problem & Framework description. This work
aims to learn visual representations for lip reading. To
do so, three pretext tasks are introduced: contrastive
learning based on A-V synchronization; Identity adversarial
training to make the representations free of identity-
related information; Modal adversarial training to make
the representations disentangled from modal information.
Solid lines: Contrastive learning. Dash lines: Adversarial
training.

representations for lip reading through a novel audio-visual cross-
modal self-supervised learning method.

Given a talking face video, the lip movements and the audio
are naturally co-occurring and synchronized. Previous works in
this area try to use the pairwise contrastive strategy to force the
visual embeddings closer to the corresponding audio embeddings
and further apart from the non-corresponding audio embeddings
[3, 13, 28, 32, 37]. Despite the remarkable progress, those methods
have the following shortcomings. Firstly, the pairwise contrastive
learning requires manual selection of the negative samples, and the
performance depends heavily on the effectiveness of the negative
samples. Secondly, representations learning only relies on the syn-
chronized audio-video data pairs. Other self-supervisory signals,
e.g., speaker-related information and modal information, can also
be utilized to optimize the quality of the learned representations.
However, those self-supervisory signals are generally ignored in
previous works.

To address these drawbacks, we present the Adversarial Dual-
Contrast Self-Supervised (ADC-SSL) Framework to learn efficient
visual representations by combining contrastive learning [31] and
adversarial training [19], as illustrated in Figure 1. There are three
pretext tasks: dual-contrastive learning based on A-V synchroniza-
tion, identity adversarial training, and modal adversarial training.

Instead of the pairwise contrastive strategy used in previous
works, another contrastive loss based on Noise Contrastive Esti-
mation (NCE) [22] is considered in this paper. Compared to the
pairwise objectives, NCE loss enforces that an embedding is far
frommultiple negative samples, instead of only one negative sample.
Besides, we apply contrastive learning both on short-time and long-
time A-V representations. This dual-contrast method can further

optimize representations learning by integrating multi-scale speech
information.

For the adversarial training, visual representations extracted
from a single video share a common identity; Otherwise, the iden-
tity information is different. The objective is to force the learned
visual representations to be free of identity information and modal
information. To do so, we propose an identity discriminator and a
modal classifier for A-V representations. The former’s function is
to discriminate whether the input visual features share a common
identity; The latter is to predict whether the input feature belongs to
visual modal or audio modal. Then adversarial training is achieved
by Gradient Reversal Layer (GRL) [19]. We find that the original
GRL is hard to balance these different training objectives. To solve
this problem, the Momentum Gradient Reversal Layer (M-GRL) is
proposed in this paper. M-GRL can optimize the training process
by automatically learn the optimally weighted hyper-parameter
based on the momentum update mechanism.

The major contributions of this work are summarized as follows.
• We propose a novel cross-modal self-supervised learning
framework called Adversarial Dual-Contrast Self-Supervised
Learning (ADC-SSL), which goes beyond previous methods
by combing contrastive learning and adversarial training on
three pretext tasks.
• We propose the Momentum Gradient Reversal Layer (M-
GRL) for adversarial training, which stabilizes the training
process by automatically learn the optimally weighted hyper-
parameter.
• Experiments on cross-modal retrieval and lip reading clearly
show that the proposed method outperforms state-of-the-art
cross-modal self-supervised methods and exceeds the super-
vised counterparts both on the word-level and the sentence-
level lip reading tasks.

2 RELATEDWORK
2.1 Deep Lip Reading
The works on deep lip reading mainly focus on the architecture
design of these two sub-networks: visual front-end networks and
sequence back-end networks.

As for the design of visual front-end networks, plenty of works
utilize deep CNNs to perform visual feature extraction. For example,
Stafylakis et al.[38] proposes a simple variation of ResNet (changing
the first 2D convolution layer to 3D convolution layer). This model
consists of a shallow 3D CNN and deep 2D CNN, and it achieves
83% recognition accuracy for word-level lip reading on LRW [12]
dataset. Due to the considerable performance of the model, most
lip reading models [1, 34, 42] adopt it as the backbone network for
visual features extraction. This network architecture is also used as
the visual encoder in this work.

There are two main lip reading tasks: word-level and sentence-
level. The former is to classify isolated words from the input videos,
usually trained with multi-classification cross-entropy loss. Stafy-
lakis et al. have created the baseline word-level lip reading model
with Temporal convolution network (TCN) and BiLSTM based
back-end network [38]. The latter is to do sentence-level sequence
prediction, both connectionist temporal classification loss (CTC)
[20] and sequence-to-sequence loss [39] can be used to train the
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Figure 2: The overall pipeline of the proposed ADC-SSL framework. The left part are the pipelines of A-V features extraction,
which are explained in Section 3.1. The right part is an illustration of the proposed three pretext tasks, which are explained
in Section 3.2 and Section 3.3. M-GRL: Momentum Gradient Reverse Layer.

model. LipNet [4], consisting of 3D CNNs and BiGRUs, is the first
end-to-end sentence-level lipreading model that simultaneously
learns spatio-temporal visual features and temporal information.
Besides, Afouras et al. introduce transformer self-attention archi-
tecture to lip reading. They propose Transformer-CTC model and
Transformer-seq2seq model [1], and further discuss the difference
between the two models in detail.

2.2 Audio-Visual Self-Supervised Learning
Audio-Visual self-supervised learning aims to extract efficient repre-
sentations from the co-occurringA-V data pairs without anymanual
annotation. Based on the natural synchronization characteristics
of audio and video, existing methods mainly adopt contrastive
learning to achieve this goal. Chung et al.[13] is the first to train an
A-V synchronization model in an end-to-end manner with margin-
based [23] pairwise contrastive loss. Besides, they have also shown
that the trained network works effectively for speaker detection
and lip reading. With the same training strategy, Korbar et al.[28]
broaden the scope of the study to encompass arbitrary human
activities rather than lip movements. Except for margin-based loss,
binary classification loss [3, 32, 37] is also widely used for A-V
representations learning. Those works have proved the learned
A-V representations can further transferred to more downstream
tasks, such as visualizing the locations of sound sources, action
recognition, audio-visual source separation, et al.. Recently, Chung
et al.[15] reformulated the contrastive task as a multi-way matching
task, and demonstrated that the use of multiple negative samples
can improve the performance.

3 PROPOSED METHODOLOGY
In this section, we first give a brief introduction to the pipeline
of the proposed ADC-SSL framework. And then, the framework
is described in detail based on the three pretext tasks: A-V syn-
chronization, identity adversarial training, and modal adversarial
training. Finally, we elaborate on the network architectures used
in this work.

3.1 The Overall Pipeline
As illustrated in Figure 2, given a talking mouth video 𝑆𝑣 and its
corresponding audio 𝑆𝑎 , a visual encoder 𝑓 𝑣 (·) (C3D_ResNet) and
an audio encoder 𝑓 𝑎 (·) (VGG-M) are first introduced to extract A-V
embeddings. To ensure the consistency of A-V embeddings, both
the audio encoder network and the visual encoder network ingest
the clips with the same duration, generally 0.2 seconds [13, 15].
Specifically, the inputs to the audio encoder are the 13-dimensional
Mel-frequency cepstral coefficients (MFCCs), extracted at every
10ms with 25ms frame length. And the input to the visual encoder
is 5 consecutive mouth-centered cropped video (𝑓 𝑝𝑠 = 25) frames.

To learn effective visual representations for lip reading, three
pretext tasks are introduced. Dual-Contrastive learning objectives
𝐿𝑠𝑡𝑠 and 𝐿𝑙𝑡𝑠 aim to make the visual embeddings closer to the
corresponding audio embeddings both on short-time scale and
long-time scale. Adversarial learning objectives 𝐿𝑖𝑑 and 𝐿𝑚𝑜𝑑 make
the learned embeddings indiscriminate for modal and identity in-
formation.

3.2 Dual-Contrastive Learning
As we mentioned above, most of the previous methods adopted a
pairwise contrastive strategy to train the model, which suffers from
hard negative mining. In addition, recent progress [9, 10, 15, 24]
in self-supervised learning shows that the training significantly
benefits from more negatives. Motivated by this, Noise Contrastive
Estimation (NCE) [22] is considered as the training objective in this
paper. NCE constructs a binary classification task, whose objective
is to distinguish the real samples from the noise samples. In this
paper, we build a contrastive loss based on NCE for the pretext task
of A-V synchronization.

Let 𝒉𝑣1:𝑇 = 𝑓 𝑣 (𝑆𝑣) and 𝒉𝑎1:𝑇 = 𝑓 𝑎 (𝑆𝑎) denote visual represen-
tations and audio representations respectively, where 𝑇 is time
duration. And then, we randomly sample aminibatch of𝑁 examples
and define the synchronization task on A-V pairs derived from the
minibatch, resulting in (2𝑁𝑇 ) A-V embeddings. Given a visual
embedding 𝒉𝑣𝑛,𝑡 (as well as audio embedding) from a minibatch, we
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treat the corresponding audio embedding 𝒉𝑎𝑛,𝑡 as positive sample,
and the other 2(𝑁𝑇−1) A-V embeddings as negative samples. where
𝑛 indicates the example index in a minibatch, and 𝑡 denotes the
timestep. We introduce 𝑠𝑖𝑚(𝒖, 𝒗) = 𝒖𝑇 𝒗/∥𝒖∥ ∥𝒗∥ to measure the
similarity between two embeddings 𝒖 and 𝒗. Then the loss function
on a positive pair (𝒉𝑣𝑛,𝑡 , 𝒉

𝑎
𝑛,𝑡 ) is defined as:

𝑙𝑜𝑠𝑠
𝑣,𝑎
𝑛,𝑡 = − log

exp(sim(𝒉𝑣𝑛,𝑡 ,𝒉𝑎𝑛,𝑡 )/𝜏)∑
𝑖, 𝑗 exp(sim(𝒉𝑣𝑛,𝑡 ,𝒉

(𝑎,𝑣)
𝑖, 𝑗
)/𝜏)

(1)

where 𝜏 is a temperature hyper-parameter per [41]. In essence,
this is simply a (2𝑁𝑇 −1)-way cross-entropy loss that distinguishes
the positive pair out of all other negative pairs within a minibatch.
The loss encourages the positive pair to have a higher similarity
than any negative pairs. This loss is based on the short-time A-V
synchronization, and the total loss for short-time-synchronization
𝐿𝑠𝑡𝑠 in a minibatch is:

𝐿𝑠𝑡𝑠 =
∑

𝑛,𝑡
(𝑙𝑜𝑠𝑠𝑣,𝑎𝑛,𝑡 + 𝑙𝑜𝑠𝑠

𝑎,𝑣
𝑛,𝑡 ) (2)

Compared to the manual selection of negatives and the com-
plex curriculum learning strategy used in previous work [28], 𝐿𝑠𝑡𝑠
integrates both hard negatives (embeddings from the same video
and audio) and easy negatives (embeddings from the other videos
within a minibatch), which significantly simplify the training.

Actually, 𝐿𝑠𝑡𝑠 is performed based on the assumption of precise
synchronization. However, the problem of off-sync sometimes oc-
curs in videos [13]. 𝐿𝑠𝑡𝑠 performed on the off-sync videos may hurt
the performance. Motivated by this observation, we propose to
do contrastive learning for the whole video based on the speech
matching. To do so, we introduce two multi-scale temporal convo-
lution networks (MSTCN) with average pooling to aggregate global
speech information for A-V representations, denoted as Ψ𝑎 (·) and
Ψ𝑣 (·) respectively. As shown in Figure 3, let 𝒛𝑎 = Ψ𝑎 (𝒉𝑎1:𝑇 ) and
𝒛𝑣 = Ψ𝑣 (𝒉𝑣1:𝑇 ). Similar to 𝐿𝑠𝑡𝑠 , the long-time-synchronization 𝐿𝑙𝑡𝑠

can be defined as:

𝑙𝑜𝑠𝑠
𝑣,𝑎
𝑛 = − log exp(sim(𝒛𝑣𝑛, 𝒛𝑎𝑛)/𝜏)∑

𝑖 exp(sim(𝒛𝑣𝑛, 𝒛
(𝑎,𝑣)
𝑖
)/𝜏)

(3)

𝐿𝑙𝑡𝑠 =
∑

𝑛
(𝑙𝑜𝑠𝑠𝑣,𝑎𝑛 + 𝑙𝑜𝑠𝑠𝑎,𝑣𝑛 ) (4)

Based on the dual-contrastive learning mentioned above, the
harness caused by off-sync examples can be mitigated to a large
extent.

3.3 Adversarial Training
For the speech-related A-V representations learning, Zhou et al.[43]
have demonstrated that explicitly disentangled training can make
the learned representations more general to multiple speech-related
downstream tasks. They have proposed the Disentangled Audio-
Visual System (DAVS) to learn disentangled A-V representations.
However, DAVS is performed based on multiple supervised labels,
such as word label and identity label.

In this paper, we propose two novel and simple pretext tasks to
force the learned A-V representations disentangled from identity-
related information and modal information. The two adversarial
pretext tasks (as illustrated in Figure 3) are performed based on ad-
versarial training in a self-supervised manner. Next, we will briefly
introduce the two pretext tasks and then explain how adversarial
training is performed.

Identity Discrimination. Identity discrimination is based on
the evidence that representations from a single video share a com-
mon identity. We build an identity discriminator 𝑓 𝑖𝑑 (·) whose ob-
jective is to discriminate whether the two input embeddings share
a common identity or not. The two input embeddings are random
sampled from the outputs of the visual encoder. Then, the identity
discrimination loss 𝐿𝑖𝑑 can be defined as:

𝐿𝑖𝑑 =
1
𝐾

∑
𝑖
𝑦𝑖 log(𝑓 𝑖𝑑 (𝒉𝑖 ,𝒉

′
𝑖 ))+

(1 − 𝑦𝑖 ) log(1 − 𝑓 𝑖𝑑 (𝒉𝑖 ,𝒉
′
𝑖 ))

(5)



Actually, this is a simple binary cross entropy loss used for 2-way
classification. Where 𝐾 is the total sampling number, (𝒉𝑖 ,𝒉

′
𝑖
) is the

𝑖𝑡ℎ sampling pairs, 𝑦𝑖 ∈ {0, 1} is the identity label.
Modal Classification. Similar to identity discrimination men-

tioned above, we build a modal classifier 𝑓𝑚𝑜𝑑 (·) whose objective
is to discriminate whether the input embeddings are extracted from
audio encoder or not. Then the modal classification loss 𝐿𝑚𝑜𝑑 is:

𝐿𝑚𝑜𝑑 =
1

2𝑁𝑇

∑
𝑛,𝑡
𝑦𝑣𝑛,𝑡 log(𝑓𝑚𝑜𝑑 (𝒉𝑣𝑛,𝑡 ))+

(1 − 𝑦𝑎𝑛,𝑡 ) log(1 − 𝑓𝑚𝑜𝑑 (𝒉𝑎𝑛,𝑡 ))
(6)

Momentum Gradient Reversal Layer. To enforce the repre-
sentations disentangled from identity-related information andmodal
information, we propose a novel application of the Gradient Re-
versal Layer (GRL), originally introduced in [19] to learn domain-
agnostic features. The GRL acts as the identity function during
the forward pass of the network. On the gradient backward pass
stage, the GRL reverses the weighted gradients flowing back from
the corresponding branch. Inspired by this, we add GRL layers
on the top of identity discriminator 𝑓 𝑖𝑑 (·) and modal classifier
𝑓𝑚𝑜𝑑 (·). So, The GRL inverts the sign of the weighted gradient that
is backpropagated to the encoder networks 𝑓 𝑣 (·) and 𝑓 𝑎 (·).

By this means, the target of adversarial training is to do minimax
learning, which can be written as:

𝑚𝑖𝑛
𝜃𝑖𝑑 ,𝜃𝑚𝑜𝑑

𝑚𝑎𝑥
𝜃𝑎,𝜃𝑣
(𝐿𝑖𝑑 + 𝐿𝑚𝑜𝑑 ) (7)

Where 𝜃𝑖𝑑 , 𝜃𝑚𝑜𝑑 , 𝜃𝑎 and 𝜃𝑣 are the parameters of 𝑓 𝑖𝑑 (·), 𝑓𝑚𝑜𝑑 (·),
𝑓 𝑎 (·) and 𝑓 𝑣 (·) respectively. Specifically, the A-V encoder networks
are learned to maximize the 𝐿𝑖𝑑 and 𝐿𝑚𝑜𝑑 , while the modal classifier
and identity discriminator try to minimize the losses.

The gradient updates of 𝜃𝑣 can be written as:

𝜃𝑣 ← 𝜃𝑣 − 𝜇 (
𝜕(𝐿𝑠𝑡𝑠 + 𝐿𝑙𝑡𝑠 )

𝜕𝜃𝑣
− 𝜆1

𝜕𝐿𝑖𝑑

𝜕𝜃𝑣
− 𝜆2

𝜕𝐿𝑚𝑜𝑑

𝜕𝜃𝑣
) (8)

where 𝜇 is the learning rate. 𝜆1 and 𝜆2 are weighted hyper-
parameters applied on the GRL. We find that the fixed 𝜆1 and 𝜆2
will cause the training to become unstable or even not converge. In
order to achieve a better balance between contrastive learning and
adversarial training, we propose M-GRL to momentum update the
weighted hyper-parameters 𝜆1 and 𝜆2.

Take themodal classifier as an example.We argue that theweighted
hyper-parameters should be dynamically adjusted based on the
modal classifier’s uncertainty. When the uncertainty is high, the
network should focus more on contrastive objectives. Otherwise,
more attention should be paid to adversarial training. Specifically,
we quantify the uncertainty as 𝐻 (𝑓𝑚𝑜𝑑 ) = −∑𝐶

𝑐=1𝑝𝑐 log 𝑝𝑐 . The
maximal value of 𝐻 (𝑓𝑚𝑜𝑑 ) is log𝐶 . Where 𝐶 is the number of
classes (𝐶 = 2) and 𝑝𝑐 is the probability of class 𝑐 . To do so, we
reformulate 𝜆2 as:

𝜆2 = 𝜆ℎ𝑖𝑔ℎ (1 − 𝑒𝐻 (𝑓
𝑚𝑜𝑑 )−log𝐶 ) + 𝜆𝑙𝑜𝑤 (9)

Where 𝜆ℎ𝑖𝑔ℎ and 𝜆𝑙𝑜𝑤 are constrained hyper-parameters. In exper-
iments, we set 𝜆ℎ𝑖𝑔ℎ = 0.5 and 𝜆𝑙𝑜𝑤 = 0.001. To ensure the stability
of training, we update 𝐻 (𝑓𝑚𝑜𝑑 ) with a momentum mechanism.

𝐻 (𝑓𝑚𝑜𝑑 ) ←𝑚𝐻 (𝑓𝑚𝑜𝑑 ) + (1 −𝑚)𝐻𝑛 (𝑓𝑚𝑜𝑑 ) (10)

Here𝑚 is a momentum coefficient, and 𝐻𝑛 (𝑓𝑚𝑜𝑑 ) is the uncer-
tainty of the current minibatch. In this way, 𝜆2 can be automatically
optimized to the optimal value. M-GRL is applied to the identity
discriminator in the same way.

Overall Loss.With the combination of the dual-contrastive loss,
the modal classification loss, and the identity discriminator loss, the
final loss function of the proposed ADC-SSL training framework
can be written as:

𝐿𝐴𝐷𝐶 = 𝐿𝑠𝑡𝑠 + 𝐿𝑙𝑡𝑠 + 𝐿𝑖𝑑 + 𝐿𝑚𝑜𝑑 (11)

The network is trained end-to-end with Eq. 11.

3.4 Network Architectures
In this section, we elaborate on all network architectures used in
this work in detail.

Visual Encoder.We adopt a simple variation of ResNet34 [25,
38], called C3D_ResNet34 in this paper, as the visual encoder net-
work 𝑓 𝑣 (·). C3D_ResNet34 only expands the first convolutional
kernels to be 3D ones with the temporal receptive field equals to 5,
and removes the last fully-connected layer.

Audio Encoder. Similar to [13, 15, 43], the audio encoder net-
work 𝑓 𝑎 (·) is based on the VGG-M [8] CNN model, but the filter
sizes are modified for the audio MFCCs features.

MSTCN. The function of Ψ𝑣 (·) and Ψ𝑎 (·) is to aggregate multi-
scale speech information from the short-time representations. They
consist of three stacked Multi-Scale dilated TCN layers, a fully
connected (FC) layer, and an average pooling layer.

Identity Discriminator &Modal Classifier. The Identity Dis-
criminator 𝑓 𝑖𝑑 (·) is stacked of a convolution layer, two linear layers,
and a softmax activation layer. The convolution layer is to aggregate
the two input embeddings. And the modal classifier 𝑓𝑚𝑜𝑑 (·) is
composed of two linear layers and a softmax activation layer.

4 EXPERIMENTS AND ANALYSIS
In this section, we first describe the datasets used to evaluate our
methods and some technical details for the self-supervised training
stage. And then, the results and analysis on three downstream tasks
are elaborated in detail.

Dataset Subset #Utter. Word inst. #Vocab.

LRW Trainval
Test

514k
25k

514k
25k

500
500

LRS2 Pretrain
Main

96k
48k

2M
344k

41k
20k

LRS3
Pretrain
Trainval
Test

132k
32k
1,452

4.2M
358k
11k

52k
17k
2,136

Table 1: Description of the datasets used for training and
testing.

4.1 Datasets and Technical Details
LRW.The LRWdataset [12] is commonly used for word-level visual
speech classification task. It consists of up to 1000 utterances of 500
different English words, spoken by hundreds of different speakers.



V-A Retrieval A-V Retrieval
Approach R@1 R@10 R@1 R@10

Baseline [43] 64.2 84.7 67.7 85.8
Ours (𝐿𝑠𝑡𝑠 + 𝐿𝑙𝑡𝑠 ) 93.1 99.1 93.2 99.1
Ours(𝐿𝑠𝑡𝑠 + 𝐿𝑙𝑡𝑠 + 𝐿𝑚𝑜𝑑 ) 95.3 99.6 95.2 99.6
Ours(𝐿𝑠𝑡𝑠 + 𝐿𝑙𝑡𝑠 + 𝐿𝑖𝑑 ) 91.8 98.9 92.3 99.0
Ours(𝐿𝑠𝑡𝑠 + 𝐿𝑙𝑡𝑠 + 𝐿𝑚𝑜𝑑 + 𝐿𝑖𝑑 ) 93.6 99.4 93.7 99.4

Table 2: 1:25000 A-V retrieval results with different training objectives.

The length of each video lasts 1.16 seconds (29 frames), and one
word is uttered in the middle of the video.

LRS2 & LRS3. Both of the two datasets [11, 14] are commonly
used for sentence-level lip reading task, containing three sets: pre-
train, trainval and test. All videos in LRS2 are selected from BBC
program, and it contains over 2.3 million words with a vocabulary
size of 41,000. LRS3 are selected from TED and TEDx videos, it
contains over 4.2 million words and the vocabulary size is 51,000.

The statistics of the datasets used in this paper is given in Table 1.
Technical details. For all the datasets, we use a face-alignment

detector [7] to detect 68 facial landmark points for each video
frame. For the input of visual encoder, a mouth-centered video of
size 112 × 112 pixels is cropped based on the detected landmark
points. The video inputs are converted to grayscale and all frames
are normalized with respect to the overall mean and variance of
all videos. Similar to [9], we also add projection heads that maps
representations to the embedded space where contrastive loss is
applied. For the hyper-parameters, temperature hyper-parameter
𝜏 is set as 0.07 [24], momentum coefficient 𝑚 = 0.99. Standard
Adam algorithm is implemented to optimize the parameters of the
whole network. The Adam weight decay is 0.0001 and the Adam
momentum is 0.9. We use the same data augmentation technique as
that in [1] for visual input, such as horizontal flipping and random
shifts.

4.2 The Effectiveness of the M-GRL.
As we pointed out in Sec. 3.3, the original GRL results instability or
even non-convergence for the training of our network.

Here, we further elaborate the effectiveness of M-GRL. In Eq. 8,
suppose we apply the original GRL here, 𝜆1 and 𝜆2 are constants.
In the experiment, we find it difficult to set suitable values for 𝜆1
and 𝜆2. Take 𝜆2 as an example. If 𝜆2 = 0.1, 𝐿𝑚𝑜𝑑 almost converges
to zero. That is to say, the modal adversarial training does not work
at all. If 𝜆2 = 0.5, the training focuses too much on adversarial
objective, and does not converge after a few iterations. Compared
to the original GRL, the proposed M-GRL achieves a better balance
between contrastive learning and adversarial training.

Fig. 4 lists the 𝜆1 & 𝜆2 curves in the training process on the LRW
dataset. After some iterations, both 𝜆1 & 𝜆2 will converge to the
optimal values that make the contrastive learning and adversarial
training balanced.

4.3 Cross-modal Retrieval
Cross-modal retrieval task is used to evaluate the similarity between
the A-V representations. We adopt the same evaluation protocols
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Figure 4: 𝜆1 & 𝜆2 curves in the first 70,000 iterations. Red:
curves of 𝜆2, blue: curves of 𝜆1.

used in [43]. The cross-modal retrieval is performed on the test set
of LRW (totally 25000 samples). Given a source video (audio), the
objective is to find the matching audio (video) based on the cosine
similarity of the representations. Here we report the 𝑅@1 and
𝑅@10 results. As we can see in Table 2, Our method significantly
outperforms the baseline method.

Ablation study. To evaluate how the three pretext tasks impact
the retrieval results, we also conduct several ablation experiments.
We let the dual-contrastive learning as a baseline. Then ablation
study is performed to evaluate the effects of identity adversarial
training and modal adversarial training. As shown in Table 2, the
best results are achieved based on dual-contrastive learning and
modal adversarial training. However, the introduction of identity
adversarial training has a side effect on cross-modal retrieval. This
proves that in addition to speech information, identity information
is also useful for cross-modal retrieval.

4.4 Word-level Lipreading
The goal of word-level lipreading on LRW is to recognize the iso-
lated word class based on the input video. Experiments on this
task are to show that the visual representations learned by the
ADC-SSL framework are effective for lip reading. We compare the
performance using the representations learned by the proposed
self-supervised method to state-of-the-art self-supervised baselines,
without any finetune on the visual encoder network. Besides, with



Training method TOP-1 Acc (%)
SyncNet [13] 67.8
AVE-Net [3] 66.7

Perfect Match [15] 71.6
CDDL [16] 75.9

ADC-SSL (wo/ 𝐿𝑠𝑡𝑠 ) 71.4
ADC-SSL (wo/ 𝐿𝑙𝑡𝑠 ) 80.4
ADC-SSL (wo/ 𝐿𝑚𝑜𝑑 ) 82.7
ADC-SSL (wo/ 𝐿𝑖𝑑 ) 82.9

ADC-SSL 83.9
ADC-SSL & finetune 84.0

Supervised Counterpart 79.1
Table 3: Word-level Lip reading Results. The Supervised
Counterpart means the model (same as that used in the self-
supervised training) trained from scratch.

the same network architecture, we also compare the performance
with the full supervised counterpart trained from scratch.

The word-level lip reading network contains two sub-networks:
a front-end visual encoder and a back-end sequence network. The
front-end architecture is directly taken from the visual encoder
𝑓 𝑣 (·). For the back-end network, we propose a 2-layer temporal
convolution network, followed by a 500-way softmax classification
layer. This simple back-end classifier is widely used to evaluate the
effectiveness of the learned visual representations [13, 15, 16]. We
follow the common evaluation protocol, where only the back-end
classifier is trained on top of the frozen visual encoder network,
and test accuracy on LRW is used as a proxy for representation
quality.

The results are listed in Table 3. Our ADC-SSL training method
exceeds state-of-the-art self-supervised methods by a large margin.
We also provide the results of ablation studies in this experiment. It
turns out that all the four training objectives used in our framework
are useful for the classification performance, where the short-time-
synchronization 𝐿𝑠𝑡𝑠 contributes the most to the performance.

It is worth noting that our result (83.9%) even outperforms the
supervised counterpart (79.1%). The training curves of these two
methods are provided in Figure 5. As we can see, training accuracy
is basically the same (about 95%) after 10 epochs. But the validation
accuracy differs evidently (about 3%). This phenomenon suggests
that compared to training from scratch, the representations learned
by the self-supervised method can effectively prevent overfitting.
Besides, we also list the result of fine-tuning the entire network
based on the self-supervised pre-training. Its performance is not
significantly improved compared to our results (83.9% vs. 84.0%).

4.5 Sentence-level Lipreading
Sentence-level lipreading aims to infer the content of a speech
through the motion of the speaker’s mouth. Compared to the word-
level lipreading task, this task is more complicated and more prac-
tical. To further evaluate the quality of the learned visual represen-
tations, we provide the experiment results on this task. We would
like to emphasize that there is currently no baseline method for
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Figure 5: Training and validation accuracy curves. Red:
curves of training from scratch, blue: curves of trainingwith
frozen visual encoder. Solid: curves of training accuracy,
Dash: curves of validation accuracy.

self-supervised learning applied to this task, so we directly compare
it with state-of-the-art end-to-end methods.

Next, the sequence back-end network is first presented. Then we
give a brief introduction of the evaluation protocols and training
details for this task.

Transformer back-end. For the sentence-level lip reading task,
the output dimension is 39, including the 26 letters, 10 digitals, one
punctuation “’” and [SPACE] and [EOS]. The commonly used trans-
former variant (transformer_seq2seq [1, 40]) network is adopted
as the sequence back-end network. In this variant, we remove the
embedding layer in the transformer encoder part because the input
is visual representations instead of word class indexes. In addition,
the output dimension of the last fully-connected layer of the decoder
is changed to 39 to fit the size of the vocabulary.

Evaluation protocol. For all experiments, we report the Char-
acter Error Rate (CER) and Word Error Rate (WER). CER is defined
as 𝐶𝐸𝑅 = (𝑆 + 𝐷 + 𝐼 )/𝑁 , where S, D and I are the numbers of
substitutions, deletions, and insertions respectively to get from the
reference to the hypothesis, and N is the number of characters in
the reference. WER and CER are calculated in the same way. The
difference lies in whether the formula is applied to character level
or word level.

Training details. The pretrain sets of LRS2 and LRS3 are used
to do self-supervised learning. After that, the parameters in the
visual encoder are frozen. During the training on the transformer
back-end, we follow a similar curriculum learning scheme as that
in [11]: start training with utterances of 2 consequent words then
gradually increase the number of words as training moving forward.
Because the timestamp of every word in the input video is labeled,
we can easily choose any continuous sentence instance within the
dataset, and get the corresponding frames in the long input video.
The model is first trained on the pretrain sets of LRS2 and LRS3
with text annotation. Then it is fine-tuned on the train-val sets of
LRS2 and LRS3 separately.



LRS2 LRS3
Approach Front-end architecture Back-end architecture CER WER CER WER
WAS [11] VGG-M LSTM - 70.4 - -

TM-CTC [1] C3D_ResNet34 Transformer - 65.0 - 74.7
FC15 + CTC [1] C3D_ResNet34 FC15 35.3 64.8 - -
TM-seq2seq [1] C3D_ResNet34 Transformer 38.6 49.8 - 59.9
CTC + KD [2] Jasper-lip 5x3 - - - 60.9
Zhang et al.[42] C3D_ResNet18 TF-block - 51.7 - 60.1

Ours C3D_ResNet34 Transformer 35.1 52.8 40.5 59.2
Supervised Counterpart C3D_ResNet34 Transformer 41.4 60.2 48.1 68.8

Table 4: Sentence-level Lip reading Results (lower is better).WER: Word Error Rates. CER: Character Error Rates.

The transformer is trained with teacher forcing strategy. In the
training process, the ground truth of the previous decoding step as
the input to the decoder. During the inference stage, the decoder
prediction at the last timestep is fed back to the decoder input.
Decoding is performed with beam search of width 6. For a fair
performance comparison, we do not use an external languagemodel
to optimize prediction results.

Comparative Evaluation. Results are presented in Table 4. Our
ADC-SSL self-supervised method exceeds state-of-the-art fully su-
pervised methods both on LRS2 dataset and LRS3 dataset, without
any finetune on the visual encoder front-end.

It is worth noting that some of those SOTA methods (e.g., TM-
CTC, TM-seq2seq, CTC+KD, Zhang et al.[42]) need to pre-train
on extra word-level lip reading datasets, e.g., LRW dataset. Where
TM-seq2seq and TM-CTC pre-train the visual front-end on the pri-
vate word-level MV-LRS [14] dataset. Our proposed self-supervised
training for this task in only performed on the pretrain dataset of
LRS2 and LRS3. Besides, the results of CTC+KD [2] are achieved by
distilling knowledge from an Automatic Speech Recognition (ASR)
model that has been trained on a large-scale audio-only corpus.

To give a better comparison, we reproduce the supervised coun-
terpart without extra datasets, and the results are listed on the penul-
timate column in Table 4. As we can see, Our self-supervised train-
ing method significantly outperforms that training from scratch.
This also provides evidence for the conjecture that cross-modal
self-supervised training can effectively prevent overfitting.

In sum, self-supervised training based on the ADC-SSL frame-
work can extract effective visual representations for lip reading.
Besides, the experiments and analysis of word-level lipreading task
and sentence-level lipreading task proves that our proposed self-
supervised training can effectively prevent overfitting.

5 CONCLUSIONS
In this paper, we proposed a new self-supervised training frame-
work to learn discriminative visual representations for lip read-
ing, without access to manual annotation. The proposed method
combines contrastive learning and adversarial training by three
pretext tasks, A-V synchronization, identity discrimination, and
modal classification. In this way, the learned A-V representations
are enforced to be free of identity-related information and modal-
related information. Besides, a novel M-GRL is proposed to bal-
ance contrastive learning and adversarial training. Results on the

cross-modal retrieval, word-level lipreading, and sentence-level
lip reading tasks prove that the model trained with the proposed
ADC-SSL framework outperforms state-of-the-art cross-modal self-
supervised baselines, and even exceeds its supervised counterpart.
The effectiveness of the ADC-SSL framework also opens up many
possible applications for future works. For example, fake taking
video detection, cross-modal anti-spoofing, lip movements genera-
tion et al..

ACKNOWLEDGMENTS
This work was partially supported by the Academy of Finland under
grant 331883, Outstanding Talents of “Ten Thousand Talents Plan”
in Zhejiang Province (project no. 2018R51001), and the Natural
Science Foundation of China (project no. 61976196). The authors
also wish to acknowledge CSC IT Center for Science, Finland, for
computational resources.

REFERENCES
[1] Triantafyllos Afouras, Joon Son Chung, Andrew Senior, Oriol Vinyals, and

Andrew Zisserman. 2018. Deep audio-visual speech recognition. IEEE transactions
on pattern analysis and machine intelligence (2018).

[2] Triantafyllos Afouras, Joon Son Chung, and Andrew Zisserman. 2020. ASR is
all you need: Cross-modal distillation for lip reading. In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2143–2147.

[3] Relja Arandjelovic and Andrew Zisserman. 2018. Objects that sound. In
Proceedings of the European Conference on Computer Vision (ECCV). 435–451.

[4] Yannis M Assael, Brendan Shillingford, Shimon Whiteson, and Nando
De Freitas. 2016. Lipnet: End-to-end sentence-level lipreading. arXiv preprint
arXiv:1611.01599 (2016).

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural
machine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[6] Pascal Belin, Shirley Fecteau, and Catherine Bedard. 2004. Thinking the voice:
neural correlates of voice perception. Trends in cognitive sciences 8, 3 (2004),
129–135.

[7] Adrian Bulat and Georgios Tzimiropoulos. 2017. How far are we from solving the
2d & 3d face alignment problem?(and a dataset of 230,000 3d facial landmarks). In
Proceedings of the IEEE International Conference on Computer Vision. 1021–1030.

[8] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2014.
Return of the devil in the details: Delving deep into convolutional nets. arXiv
preprint arXiv:1405.3531 (2014).

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020.
A simple framework for contrastive learning of visual representations. arXiv
preprint arXiv:2002.05709 (2020).

[10] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey
Hinton. 2020. Big self-supervised models are strong semi-supervised learners.
arXiv preprint arXiv:2006.10029 (2020).

[11] Joon Son Chung, Andrew Senior, Oriol Vinyals, and Andrew Zisserman. 2017.
Lip reading sentences in the wild. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, 3444–3453.



[12] Joon Son Chung and Andrew Zisserman. 2016. Lip reading in the wild. In Asian
Conference on Computer Vision. Springer, 87–103.

[13] Joon Son Chung and Andrew Zisserman. 2016. Out of time: automated lip sync
in the wild. In Asian conference on computer vision. Springer, 251–263.

[14] J. S. Chung and A. Zisserman. 2017. Lip Reading in Profile. In British Machine
Vision Conference.

[15] Soo-Whan Chung, Joon Son Chung, and Hong Goo Kang. 2020. Perfect Match:
Self-Supervised Embeddings for Cross-modal Retrieval. IEEE Journal of Selected
Topics in Signal Processing (2020).

[16] Soo-Whan Chung, Hong Goo Kang, and Joon Son Chung. 2020. Seeing voices
and hearing voices: learning discriminative embeddings using cross-modal self-
supervision. arXiv preprint arXiv:2004.14326 (2020).

[17] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[19] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. 2016.
Domain-adversarial training of neural networks. The Journal of Machine Learning
Research 17, 1 (2016), 2096–2030.

[20] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber.
2006. Connectionist temporal classification: labelling unsegmented sequence
data with recurrent neural networks. In Proceedings of the 23rd international
conference on Machine learning. 369–376.

[21] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech
recognition with deep recurrent neural networks. In 2013 IEEE international
conference on acoustics, speech and signal processing. IEEE, 6645–6649.

[22] Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation:
A new estimation principle for unnormalized statistical models. In Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics.
297–304.

[23] Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006. Dimensionality reduction
by learning an invariant mapping. In 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06), Vol. 2. IEEE, 1735–1742.

[24] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020.
Momentum contrast for unsupervised visual representation learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
9729–9738.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[26] Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, SM
Eslami, and Aaron van den Oord. 2019. Data-efficient image recognition with
contrastive predictive coding. arXiv preprint arXiv:1905.09272 (2019).

[27] Minseon Kim, Jihoon Tack, and Sung JuHwang. 2020. Adversarial Self-Supervised
Contrastive Learning. In Thirty-fourth Conference on Neural Information

Processing Systems, NeurIPS 2020. NeurIPS.
[28] Bruno Korbar, Du Tran, and Lorenzo Torresani. 2018. Cooperative learning of

audio and video models from self-supervised synchronization. In Advances in
Neural Information Processing Systems. 7763–7774.

[29] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, and
Matti Pietikäinen. 2020. Deep learning for generic object detection: A survey.
International journal of computer vision 128, 2 (2020), 261–318.

[30] Harry McGurk and JohnMacDonald. 1976. Hearing lips and seeing voices. Nature
264, 5588 (1976), 746–748.

[31] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[32] Andrew Owens and Alexei A Efros. 2018. Audio-visual scene analysis with
self-supervised multisensory features. In Proceedings of the European Conference
on Computer Vision (ECCV). 631–648.

[33] Tian Pan, Yibing Song, Tianyu Yang,Wenhao Jiang, andWei Liu. 2021. Videomoco:
Contrastive video representation learning with temporally adversarial examples.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 11205–11214.

[34] Stavros Petridis, Themos Stafylakis, Pingehuan Ma, Feipeng Cai, Georgios
Tzimiropoulos, andMaja Pantic. 2018. End-to-end audiovisual speech recognition.
In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 6548–6552.

[35] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018.
Improving language understanding by generative pre-training.

[36] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI
blog 1, 8 (2019), 9.

[37] Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan Yang, and In So Kweon.
2018. Learning to localize sound source in visual scenes. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 4358–4366.

[38] Themos Stafylakis and Georgios Tzimiropoulos. 2017. Combining residual
networks with LSTMs for lipreading. arXiv preprint arXiv:1703.04105 (2017).

[39] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems. 3104–
3112.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[41] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. 2018. Unsupervised
feature learning via non-parametric instance discrimination. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 3733–3742.

[42] Xingxuan Zhang, Feng Cheng, and Shilin Wang. 2019. Spatio-temporal fusion
based convolutional sequence learning for lip reading. In Proceedings of the IEEE
International Conference on Computer Vision. 713–722.

[43] Hang Zhou, Yu Liu, Ziwei Liu, Ping Luo, and Xiaogang Wang. 2019. Talking
face generation by adversarially disentangled audio-visual representation. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 9299–9306.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Deep Lip Reading
	2.2 Audio-Visual Self-Supervised Learning

	3 Proposed Methodology
	3.1 The Overall Pipeline
	3.2 Dual-Contrastive Learning
	3.3 Adversarial Training
	3.4 Network Architectures

	4 Experiments and Analysis
	4.1 Datasets and Technical Details
	4.2 The Effectiveness of the M-GRL.
	4.3 Cross-modal Retrieval
	4.4 Word-level Lipreading
	4.5 Sentence-level Lipreading

	5 Conclusions
	Acknowledgments
	References

