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ABSTRACT

Micro-expressions (MEs) are brief and involuntary facial expres-
sions when people hide their true feelings or conceal their emo-
tions. Based on psychology research, MEs play an important role in
understanding genuine emotions, which leads to many potential ap-
plications. However, the ME analysis system can still not work well
in the real environment because of the challenging performance of
ME spotting, which is to spot the images with micro-expressions
from long video sequences. To improve the performance of ME
spotting, we focus on hybrid feature engineering, which aims to
create a robust feature for discriminating tiny movements. The
proposed framework consists of two main modules: (1) the feature
engineering extracts both geometric features and appearance fea-
tures based on dynamic image; (2) the new deep neural network
inputs the handcrafted feature for the late fusion and ME samples
classification. Our experimental results from three baseline datasets
demonstrate the promising results.
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1 INTRODUCTION

MEs are brief and involuntary facial expressions that convey the
hidden emotions of people. Through psychology research [4, 10],
ME analysis has become an attractive topic due to their potential
applications [10, 20]. However, building a real system of ME analysis
still faces big challenges. One of the defiance is locating the correct
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positions of ME in long videos that is one of two main tasks of ME
analysis in computer vision, called ME spotting.

Through the existing research of ME spotting, there are various
techniques involved in this topic, but there still remain several
issues [15, 20]. The most critical thing is the poor performance of
ME spotting techniques evaluated on long natural video sequences.

In the recent research [20], the authors evaluated diverse tech-
niques for ME spotting tasks but obtained poor results on three
commonly used ME spotting datasets. Based on the experimental
results of [9, 15, 20], almost all methods returned a high false pos-
itive rate, although the state-of-the-art techniques were utilized.
One reason is that the number of ME samples is not enough for
deep learning methods, which often require huge data samples.
In three popular ME spotting datasets, there are only around 300
ME samples in various modals [15, 20, 24]. A new ME spotting
database construction is time consuming and often requires well-
trained experts to annotate the ME samples. Therefore, we focus on
the hybrid models which can discriminate ME samples from other
extrinsic movements.

The studies in [12, 16, 18] raise the issue that the combination
of handcrafted feature and deep learning technique is a reasonable
approach to handle the problems of limited data. In these works,
the handcrafted features are utilized as the first step to extract the
discriminative information, then the robust tools from deep learn-
ing are used to learn the hybrid model for classification. Inspired
by this approach, we select dynamic image features due to their
impressive performance on the ME recognition task [16]. Further-
more, the output of a dynamic image is the compact representation
that captures motion information in a single image which can take
advantage of the state-of-the-art image classification architectures.
In the research of Niu et al. [12], the geometric feature combining
with deep feature obtained promising results for the facial analy-
sis problem. Thus, the geometric feature is a feasible option if we
consider the combination.

Overall, we propose a framework for ME spotting, which con-
structs a new ME feature representation by the dynamic image
and deformable feature of facial landmark points. Then, a multi-
model deep learning architecture that incorporates the VGG-16
backbone and a multi-layer perception module is utilized to learn
the extracted face information end-to-end. The model output is a
binary classification of ME and non-ME samples.

The contribution of our works are summarized as follows:

e (1) We propose a new feature engineering fusing dynamic
appearance and geometric features for discriminating ME
motion samples.

e (2) We learn a specialized deep neural network to take input
from the fusion between geometric features and appearance
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Figure 1: The illustration of our framework for spotting Micro-expression in the long videos. Our framework contains three
parts: Pre-processing step, Feature engineering and DynGeoNet. DynGeoNet consists of two modules: the first part relies on
ConvNet to extract the feature from a dynamic image. The second part is the multi-layer perceptron to extract the feature
from the geometric feature. Then two learning features are concatenated for the binary classification.

features. To our best knowledge, this is the first time geom-
etry feature and appearance feature are fused for spotting
ME in long videos.

o (3) The first results of cross-database for ME spotting are
reported and show promising results. Our work is the first
study that makes the cross-database evaluation to general-
ization capability.

The remaining sections of this paper are organized as follows:
Section 2 reviews the related works; Section 3 introduces the meth-
ods used for our proposed framework; Section 4 presents the exper-
imental results and discussions, and Section 5 is the Conclusions.

2 RELATED WORK

When a potential application of ME analysis is implemented in real-
life, it needs to detect the temporal locations of ME events before
any recognition step can be applied. Therefore, MEs spotting is an
indispensable module for a fully automated ME analysis system.
Several studies have been involved in this topic. We will briefly
go through the existing studies to understand the situation of ME
spotting.

Most methods utilized unsupervised learning approach to de-
tect ME positions in long videos. Firstly, Moilanen et al. [11] utilized
the Chi-Square distance of the Local Binary Pattern (LBP) in fixed-
size scanning windows to detect MEs. Patel et al. [14] computed the
optical flow vectors for extracting features on small, local regions,
then utilizing heuristic techniques to remove non-ME samples.
Wang et al. [22] introduced a technique called Main Directional
Maximal Differences (MDMD), which utilizes the magnitude of
maximal difference in the main direction of optical flow for spot-
ting MEs. In [3], Riesz transforms combining with facial maps have
been employed to spot MEs automatically. Kai et al. [1] suggested a
ME spotting method in long videos by geometric features in three
facial regions. Recently, authors in the study [25] computed the

specific patterns (magnitude and angle of motion) on each region
of interest.

In the supervised learning approach, the authors tried to train
the classifiers for discriminating the ME samples from other fa-
cial movements that cause the false alarms in detection. The study
in [23] is the first study utilizing machine learning based on de-
formable features and the Adaboost classifier to detect ME samples.
Tran et al. [19] proposed using a multi-scale sliding window based
on spatial-temporal feature for ME spotting. In [26], Zhang et al.
proposed using a Convolutional Neural Network (CNN) to detect
the apex frame in two main steps: (1) constructing CNN networks
to predict apex frames and neutral frames; (2) introducing a feature
engineering technique to merge nearby detected samples. Tran et
al. [18] introduced the dense prediction-based technique by fusing
spatial-temporal features with Long short-term memory architec-
ture to calculate the apex score of the ME samples in long videos.
Recently, Pan et al.[13] proposed the bilinear convolutional neural
network (LBCNN) to extract the local and global features of the face
area for classifying the ME samples and macro-expression samples.

In this paper, we contribute a technique from supervised learning
approach to spot ME in long videos.

3 PROPOSED METHOD

In order to enhance the performance of ME spotting, we propose a
combination of appearance features and geometric features. The
proposed framework is illustrated in Fig. 1, which consists of three
main parts: (1) Several sub-steps are employed to pre-process the
video and extract the Region of Interest of ME samples. (2) we
apply feature engineering on the interested samples to extract the
dynamic appearance features that summarize the frames sequence
information, and we compute the geometric features that model the
changes of specific facial landmark points. (3) the fusion network
is constructed to learn the appearance and geometric features for
classifying ME samples and non-ME samples.
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Figure 2: The illustration of geometric feature on single
frame. The lines indicate the distance of specific landmark
points.

3.1 Pre-processing

Pre-processing step carries out face detection and face-alignment
for image sequences for which DLIB toolbox is utilized. Then, we
apply the technique in [10] to extract the ROI of ME samples for
next steps.

3.2 Dynamic image features

In order to take the advantages of deep convolutional neural net-
work, we explore the features which summarize the information
of frame sequence into one image. Dynamic image which have got
the impressive results for the micro-expression recognition [7, 21]
is selected here as appearance features.

Dynamic image summarizes video content by remodeling video
structure to a typical static image which represents all information
of the whole video. This feature resembling is basically based on the
idea of a ranking function proposed in [2], where each frame in a
given input video is ranked and ultimately mapped to a real vector
that carries distinctive appearance elements from original image
sequence. In [2], authors proposed the fast computation version for
the dynamic image by equation 1:

T
pU D, .. IT;Y) = ZWWQ) (1)
=

where p(I1, Iy, ..., IT; /) represents the dynamic image and ¢ is the
video frame. a; = 2t — T + 1 where T is number of frame in sample.
For the improvement, we apply dynamic image computation on
the particular regions of the face. We only focus on the eye, nose,
and mouth area because of the action of ME samples.

3.3 Geometric features

In this paper, we propose the geometric feature computation be-
tween the onset frame and apex frame, which are the first frame
and middle frame of the sample, respectively, to obtain the changes
of these two frames.

First, we calculate the single-frame geometric features by the
Euclidean distance between specific points. We utilize the DLIB
toolbox [6] to extract 68 landmark points on the face. Then, we
select points on the eyebrow and mouth regions to calculate the dis-
tance between points. Fig. 2 shows the particular landmark points

which are utilized. The lines between two points describe the dis-
tance feature, which are: (1) the lines between 10 eyebrow landmark
points linked to markers: 28”’, 32t7 and 36t" points; (2) the lines
of (P;, Piy1) where i is from 49 to 60. Additionally, we calculate the
distances of couples: (Ps1, Psg), (P53, P557) and (Py9, Ps5) to explore
the motion of mouth. In total, N = 45 lines are obtained.

To extract the motion information between apex frame and onset
frame, we suggest combining two features: ratios of distance Ratio
and the deformable feature De form. The Ratio is calculated by the
ratios between onset frame and apex frame as formula 2:

1 2 N
Ratio = [d—i d—; %] (2)
dT dT dT

where di is the i*" Euclidean distance of onset frame, while d% is

the i*" Euclidean distance of apex frame.

The deformable feature Deform is computed by the distance
between selected points of two onset and apex frames: Deform =
[D(P}, P1); D(PZ, P2); .., D(PM, PM)], where D(PL, PL) is the dis-
tance between i’” point of onset frame and ith point of apex frame.
We select M = 22 points from the two regions: 18" point to 27:%
point for eyebrow, and 49" point to 60" point for mouth region.

Finally, we concatenate Deform and Ratio to form a feature
vector f with dimension M + N = 67.

3.4 DynGeoNet

After feature extraction, two kinds of features are inputted to the
network for predicting ME or non-ME classification. For the pur-
pose of fusing geometric information and dynamic image, we con-
struct a new network, namely DynGeoNet.

In Fig 1, we illustrate our network which consists of two parts:
the first part is the VGG-16-based network which extracts the deep
appearance feature from dynamic image. The second part is a simple
two-layers network to learn the facial movements.

After learning the deep feature from each module, features
are concatenated for a fused feature and go through two Fully-
connected (FC) layers for the binary classification of ME samples.

The objective function is the Binary Cross Entropy loss as the in
Eq. 3:

N
1 * *
Loss == > yilog(y}) + (1= y)dog(1~4})  (3)
i=0
where y; and y; are predicted value and ground truth of each sample.
In our research, y € [0, 1].

4 EXPERIMENTS
4.1 Experimental Setting

We evaluate the proposed method on three spontaneous databases:
CAS(ME)?, SAMM-Long and SMIC-E-Long [8, 15, 20]. These datasets
have long videos which are suitable for ME spotting. In CAS(ME)?,
there are 57 ME samples in 97 videos from 22 subjects. SAMM-Long
has 159 ME samples recorded in 147 videos from 32 subjects. There
are 166 MEs in SMIC-E-Long with 162 videos from 16 subjects.



We set the parameters for each dataset as follows: for SMIC-
E-long with FPS = 100, we set the window size as L = 35; for
CAS(ME)2 with FPS = 30, we set size as 11 for the detected window;
for SAMM-long with FPS = 200, we set the value as 65. Through
the setting of window size for each dataset, we determine the apex
frame of ME sample by the middle frame of window (L/2).

As well, the parameters for learning are set as: the number of
epoch is 100, the learning rate is 0.0001. The training and testing
sets follow the protocol Leave-one-subject-out (LOSO) of [8, 20].
For the evaluation metric, we utilize the F1 — score metric which is
widely used in ME spotting [8, 20]. Intersection over Union (IoU) is
set by 0.5 to determine the true positive samples.

Additionally, we conduct the cross-database evaluation; thus we
denote three experimental setups: A, B, and C. Set A contains the
training samples from SMIC-E-long and CAS(ME)? while testing
from SAMM-Long; setup B has the samples from CAS(ME)? and
SAMM-Long and evaluates in SMIC-E-long; setup C using the sam-
ples from SMIC-E-long and SAMM-Long for training while testing
in CAS(ME)?. To compare the cross-database evaluation with our
method, we re-implement the CNN-based idea from the studies
[20, 26]. The VGG-16 architecture [17] is selected as the backbone
of ConvNet. The learning rate is set as 0.0001, and we optimize the
network by Stochastic gradient descent (SGD). Finally, we utilize
the evaluation metric introduced in [20] to compare the methods.

Table 1: The experimental results on three ME spotting
datasets

Method CAS(ME)’ SAMM SMIC

LBP-X2 [8, 20] 0.0055 0.0111 0.0666
HOGTOP-LSTM [20] 0.0111 0.03202  0.0535

HIGOTOP-LSTM [20] 0.00902 0.03428  0.0835
MDMD |5, 20] 0.0082 0.0364 0.0268
LBCNN [13] 0.0595 0.0813 -
DynNet (Ours) 0.00921 0.0208 0.0438
GeoNet (Ours) 0.0081 0.0198  0.0278
DynGeoNet (Ours) 0.05012 0.0974 0.1035
4.2 Results

4.2.1  Comparison on each dataset. In this Section, we describe
the experimental results when we conducted on three datasets by
comparing our methods (denoted as DynGeoNet) with existing
techniques from the studies [5, 8, 13, 20].

Ablation study: we also conducted an independent experiment
for each component in our network to explore the performance of
each module. As shown in Table 1, DynNet and GeoNet are two
subnets of the DynGeoNet that process only dynamic image feature
or geometric feature, respectively. We can see that the independent
modules have lower performance than the fusion network.

In Table 1, we can see that our method is better than the baseline
results from [5, 8, 20]. The proposed method obtains F1-score as
0.05012, 0.0974 and 0.1035 for the datasets CAS(ME)?, SAMM-long
and SMIC-E-Long, respectively. In the CAS(ME)? result, our method
gets the comparable result to the best one from [13] with F1-score
0.0595.
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4.2.2  Comparison on cross-database evaluation. The experimental
results from DynGeoNet are reported on Table 2. The best result
with F1-socre 0.06512 is obtained by the SMIC-E-long when testing
. The dataset CAS(ME)? is still very challenging with the F1-score
0.01521. It is probably because that CAS(ME)? has only 30FPS; thus,
it can not extract robust features when applying models trained on
data with high-speed camera images from SAMM-Long (FPS = 200)
and SMIC-E-Long (FPS = 100).

In Table 2, we compare our technique with one existing method
from the study of Tran et al. [20] which is denoted as VGG16. As
shown in Table 2, the proposed technique outperforms VGG16
method on all setups. We obtain F1-scores by 0.0481, 0.06512 and
0.01521 on set A, B and C, respectively. The proposed technique
also reduces the number of false positive effectively than VGG16.
The results show that our proposed technique is promising with
better generalization capability.

Table 2: The cross-database evaluation performance of Dyn-
GeoNet.

Method Setup TP FP FN Fil-score

VGG16 [20] A 45 2157 114 0.0381
DynGeoNet A 49 1830 110  0.0481
VGG16 [20] B 58 2340 108 0.0452
DynGeoNet B 48 1260 118 0.06512
VGG16 [20] C 11 2521 46 0.0085
DynGeoNet C 12 1509 45 0.01521

4.3 Discussion

High false positive rate is still an issue. One reason is that the false
detections caused by the subtle macro-expressions are still one of
the biggest challenges for the ME spotting task. In later works, multi-
scale window detection should be considered to discriminating the
macro-expression from ME samples.

Furthermore, the current method depends on the handcrafted
features for the input of the deep network. In the next work, dif-
ferent end-to-end architectures robust to extract valuable features
with limited data will be explored.

5 CONCLUSION

This paper introduced a new method for ME spotting based on the
fusion of geometric features and appearance features. The exper-
imental results show that our proposed network model achieves
state-of-the-art performance with limited data. Furthermore, our
research also provides the baseline results for the cross-database
evaluation. However, there is still room for further improvement
while the performance is not good enough for real-world applica-
tions.
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