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Abstract

Encoding facial expressions via Action Units (AUs)
has been found effective for resolving the ambiguity issue
among different expressions. In the literature, AU detec-
tion has extensive researches in macro-expressions. How-
ever, there is limited research about AU analysis for micro-
expressions (MEs). ME AU detection becomes a challeng-
ing problem because of the subtle facial motion. To alle-
viate this problem, in this paper, we study the contrastive
learning for modeling subtle AUs and propose a novel
ME AU detection method by learning the intra- and inter-
contrastive information among MEs. Through the intra-
contrastive learning module, the difference between the on-
set and apex frames is enlarged and utilized to obtain the
discriminative representation for low-intensity AU detec-
tion. In addition, considering the subtle difference between
ME AU, the inter-contrastive learning is designed to auto-
matically explore and enlarge the difference between differ-
ent AUs to enhance the ME AU detection robustness. In-
tensive experiments on two widely used ME databases have
demonstrated the effectiveness and generalization ability of
our proposed method.

1 Introduction

Micro-expressions (MEs) are rapid and subtle involun-
tary facial movements that reveal people’s hidden emo-
tions [5, 4]. Recent researches demonstrate that ME anal-
ysis has potential and emerging applications in different
fields, such as clinical diagnosis, national security and in-
terrogations [6} 25]. However, direct ME recognition can
be very challenging because of ambiguities between several
ME:s [3} 24} [12]. One of the effective methods in resolving
the ambiguity issue is employing the Facial Action Coding
System (FACS) to represent individual expressions [7]]. Ek-
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Figure 1. (a) Examples of AUs in micro- and
macro-expressions. In each facial expression
clip, the onset is the starting frame, the apex
is the frame with the largest intensity, and
the close-to-apex is around the apex; (b) lllus-
tration of the distribution of the AU features
learned by intra- and inter-contrastive learn-

ing.

man declared that he would never ever discover the MEs
without FACS [7]], in which each facial expression is iden-
tified as a specific configuration of multiple basic Action
Units (AUs) [14]]. Therefore, a robust AU detection system
is important for the analysis of MEs [14].

Mostly existing researches focus on the analysis of
strong AUs in macro-expressions [30, [20]. To the best of
our knowledge, few work is conducted on analyzing AUs
for MEs. Compared with macro-expression AU detection,
ME AU detection is more difficult. This is explained by the
fact that ME AU detection suffers from much lower inten-
sity of AU occurrence, shown as Figure [T] (a). In Figure[l}
the onset frame is the first frame which changes from the
baseline (usually neutral facial expressions) in a particular
facial expression clip. The apex frame is the frame that the
facial muscle movement expresses the largest intensity. The
frames around the apex frame are regarded as close-to-apex
frames. From FigureE] (a), it can be seen that the AUs in ME
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Figure 2. lllustration of the training and testing stages of IICL for ME AU detection. During training,
lICL takes the processed onset, apex, and close-to-apex images as input. After passing the images
through several convolutional layers, the features can be obtained for onset, apex, and close-to-apex
images, respectively. The IntraCL drives the AU-related features of apex and close-to-apex away from
the features of onset. The InterCL module automatically selects the negative pairs (a pair of apex
images without the same AU presence) in a batch and enlarges the distance between different AUs.
During testing, the IICL takes the apex as input, outputting the predicted probabilities for all ME AUs.

apex frames are very subtle. It is hard to distinguish the fa-
cial muscle movements between the onset and apex frames
in MEs, which are referred as AUs, let alone identifying
different AUs. The subtle change of ME leads to a hard AU
detection. Li et al. [18] firstly proposed to detect subtle ME
AUs through spatial and channel attention (SCA). However,
the performance of SCA is far from satisfactory.

In this paper, to address the low intensity problem
of MEs, an Intra- and Inter-Contrastive Learning (IICL)
framework is proposed to increase the discrimination and
robustness of features to represent ME AUs effectively.
Different from current methods employing the apex frame
[[177, [19] or sequences [1, 28] for ME analysis, we study
the contrastive information in MEs for better modeling sub-
tle AUs. As Figure [I] (b) shows, Intra-contrastive learning
(IntraCL) utilizes contrastive learning to push the onset
which is usually neutral apart from AU-related apex frames.
Thus, IntraCL can enlarge the difference between them and
obtain discriminative AU representation form apex frames.
Furthermore, considering the subtle difference between dif-
ferent AUs in MEs, Inter-contrastive learning (InterCL) is
developed to enlarge the difference between different AUs.
In this way, InterCL is able to improve the robustness of ME
AU detection.

Our main contribution is in three-fold:

* We propose a novel intraCL module for ME AU detec-
tion, which obtains discriminative AU representations
through driving the features of apex and close-to-apex

away from the features of onset.

* The interCL learning module is designed to explore
and enlarge the difference between different AUs to
enhance the AU detection robustness.

* To the best of our knowledge, this is the first work
studying contrastive learning for ME analysis and
achieving subtle AU detection through learning and
reinforcing the between-frame and between-AU dis-
tance. We conduct intensive experiments on two
widely used ME databases CASME 1II and SAMM.
The results demonstrate the effectiveness of our
method.

2 METHODOLOGY

To learn the discriminative and robust representation for
AU detection in MEs, we propose a simple yet effective
intra- and inter- contrastive learning network, as shown in
Figure In this section, we introduce the details of IntraCL
and InterCL modules. Then, the loss of multi-label AU de-
tection is elaborated.

2.1 Intra-contrastive learning

ME AU detection suffers from low intensity. It is dif-
ficult to identify the subtle facial motion. Even the apex



frame with the highest intensity does not have much dif-
ference compared with the onset frame. To cope with the
problem, an IntraCL module composed of three contrastive
losses is constructed to make sure that the AU-related fea-
tures of apex and close-to-apex far way from the features of
onset in the feature space, as illustrated in Figure[I] (b).

Firstly, we locate the apex frame based on the frequency
representation of facial muscle change in the frequency do-
main [16]]. Then, a contrastive loss [9, 26, [13| [8]] of the
onset and apex frames Lo 4 is developed to maximize the
difference between the onset and apex frames in the fea-
ture space to obtain the discriminative representation of ME
AUs. Moreover, considering the limited number of apex
frames may restrict the learning ability for ME AUs, Intr-
aCL further explores the relationship with weaker close-to-
apex frames which are more commonly displayed in MEs.
Specifically, Lo loss is designed to push the close-to-apex
apart from the onset, as shown in Figure 2| (c).

The Lo 4 and Lo are defined as follows:

1 N
Loa= Y maz {0,6— || f(L,) = f(Ia,) 3}, (D
i=1

N
Loc = > max {05 | /(T,) ~ f(I.) B}, @
1=1

where f(1,), f(I.),and f(I.) represent the normalized fea-
tures of the onset, apex, and close-to-apex frames. The ob-
jectives of Loc and Lo 4 are learning representations with
a greater distance for onset and apex frames, and onset and
close-to-apex frames, respectively. In this way, the AUs in
apex and close-to-apex frames can be differentiated from
onset frames. Specifically, when the distance is not bigger
than 4, the loss will be positive and the net parameters will
be updated to generate more discriminative features for sub-
tle ME AU representation. J is a margin and set to 1 in our
experiment following [23]]. [V is the training batch size.
Furthermore, the recent research [31] demonstrated that
considering the intrinsic correlations between weak and
strong expressions can achieve better results on weak ex-
pressions. Inspired by [31], AUs in both apex and close-
to-apex frames are classified during training, as shown in
Figure[2](e). Moreover, a loss termed as L a¢ is designed to
pull apex and close-to-apex frames towards each other for
robust ME AU detection. The L 4¢ is formulated as:

N
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where f(I,) and f(I.) are the normalized apex and close-
to-apex features, respectively.

2.2 Inter-contrastive learning

As discussed in the introduction section, AUs in ME
apex frames still have low intensity. This makes it diffi-
cult to distinguish different AUs in MEs. InterCL designs a
strategy automatically choosing the negative ME AU pairs
in a batch and enlarges their difference during training to
improve the AU detection robustness, as shown in Figure [2]
(d).

As AUs can co-exist in MEs, only the pairs without
the same AU presence can be treated as the negative pairs.
Thus, the negative AU pairs should be orthogonal. In prac-
tical, the negative ME pairs are decided following the equa-
tion below:

Cnegative = AUSL : AUS]’; 4

where Aus; and Aus; are the i-th and j-th ME AU labels in
abatch and 1 < <5 < N. N represents the batch size. If
Chegative = 0, it is the negative pair.

Then the contrastive loss L 4 is employed to maximize
the apex feature distance of negative AU pairs for the im-
provement of AU detection robustness.

K
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where f(,,) and f(I,;) are i-th and j-th normalized apex
features belonging to a negative pair. K represents the num-
ber of negative AU pairs in a batch. Similar with Lo and
Lo, Lya will be positive when the distance is smaller
than the margin value ¢ and network will be updated for
negative AU pairs, so that the training can focus on more

difficult AU pairs. The margin § is set to 1 following [23]].
2.3 ME AU detection objective

For multi-label ME AUs, each AU can be treated as a
specific task, as shown in Figure [2| (). The loss for each
task is defined as a binary cross-entropy loss. Thus, the loss
of M AUs is formulated as:

M
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where v, is the ground truth for the m-th AU in the ME,
with 1 denoting occurrence of the AU and O denoting ab-
sence. ¥, is the predicted probability of the occurrence of
m-th AU. M is number of AU categories.

The overall loss of the IICL framework is defined as:

Liotal = Lavsq+Lavsc+MLoa+Loc+Lac+Lna),
@)



where L 475, and L 4y, are the losses for AUs in apex and
close-to-apex frames, respectively. A is the hyper-parameter
that balance the influences of contrastive loss.

3 Experiments
3.1 Database and annotation.

We perform experiments about the ME AU detection on
the CASME II and SAMM databases. The common AUs
with the number of samples no less than 15 are utilized in
the experiments. The sample numbers are denoted as ‘Num-
ber’ in Tables 2] and 3] For CASME II [29], we evaluate
243 videos with eight AUs: ‘AU1’, ‘AU2’, ‘AU4’, ‘AU7’,
‘AU12’, ‘AU14°, ‘AU15’, and ‘AU17’ occurred in disgust,
happy, surprise, angry, and others emotions. In SAMM [2]
database, the 101 samples including ‘AU2’, ‘AU4’, ‘AU7’,
and ‘AU12’ are used to verify the effectiveness of the pro-
posed method.

3.2 Metrics

AU detection is a multi-label binary classification prob-
lem. In our evaluation, Fl-scores are computed for eight
AUs on CASME II and four AUs on SAMM, according
to the AU samples quantity and importance following [[18].
The overall performance of the algorithm is described by
the average F1-score.

3.3 Implementation

In the experiments, the aligned face images provided by
the databases are employed. The three frames before and af-
ter the apex frame are regarded as the close-to-apex frames.
The popular SEnet-50 [11] is employed as the backbone.
All models were pre-trained on VGG-FACE database [22].
The images are resized to 256 x 256 and then randomly
cropped to 224 x 224 for training [21]]. In the pre-processing
step, the MEs are magnified with ratio 10, according to the
research of [27,[15]]. All of the methods are evaluated with
magnified MEs. During training, the networks are opti-
mized using stochastic gradient descent (SGD). The initial
learning rate is set to 0.01, divided by 10 every 40 epochs
until 80 epochs. The weight of the contrastive losses A is
set to 0.1 for balancing the losses. Following experimen-
tal settings for AU detection [18]], the subject independent
four-fold cross validation is used in our experiments.

3.4 Ablation study

In this section, we provide ablation study on CASME II
database to investigate the effectiveness of each part in the

Table 1. Abalation study on the CASME II
database. The baseline is SEnet [11].

Methods | AUl  AU2 AU4 AU7 AUI2 AUI4 AUI5 AUl17 AVG
Baseline | 043 048 089 020 0.60 0.59 0.20 0.17 045
IntraCL | 0.85 0.66 090 026 0.63 0.49 0.20 025 053
InterCL | 0.70 0.58 090 022 048 0.48 0.15 043 049

IICL 078 0.67 089 030 0.56 0.53 0.33 033  0.55

Table 2. F1-scores on the CASME Il database.
The best is indicated using bold. The base-
line is SEnet [11].

Methods AUl AU2 AU4 AU7 AUI2 AUI4 AUIS AUI7 AVG
Number 26 21 129 58 34 21 16 25
Baseline 043 048 089 020 060 059 020 017 045
SEseq 047 041 091 020 036 060 0.26 0.13 042
RESnet [10] | 0.51 035 090 0.11 0.62 051 0.22 0.00  0.40
RESseq 024 021 086 009 043 0.49 020 027 035
SCA [18] 029 045 0.89 025 048 0.33 040 052 045
CL 9] 065 058 09 030 056 050 020 025 049
TL [23] 071 062 088 028 050 054 032 032 052
1IICL 078 0.67 089 030 056 053 0.33 033 055

IICL network. To verify the effectiveness of IntraCL and
InterCL modules, we add IntraCL and InterCL modules on
the baseline, separately.

As shown in Table [T} the framework with InterCL out-
performs the baseline by 0.04 in terms of the average F1-
score on CASME II. The framework with IntraCL reaches
higher Fl-scores in six out of eight AUs on CASME II,
compared with the baseline. The results demonstrate the ef-
fectiveness of InterCL and IntraCL modules. Furthermore,
IICL consisted of InterCL and IntraCL modules achieves
the best performance and improves the average F1-score by
22.22%, in comparison with the baseline. The results in-
dicate that contrastive learning can explore discriminative
representation for subtle ME AUs. From Table [I] it can
be seen that the Fl-scores declines on AU12 (Lip corner
puller) and AU14 (Dimpler). This may caused by the simi-
lar appearance changes on the same region lip corner. It is
hard to distinguish them. In general, the results suggest that
enlarging the between-frame and between-AU differences
can improve the discriminative ability of subtle AUs and is
useful for most ME AUs.

3.5 Comparisons of methods

Tables 2] and 3] show the AU detection results of differ-
ent methods on the CASME II and SAMM databases, re-
spectively. The proposed IICL and the baseline methods
based on SEnet [11] are tested on apex images in MEs.
Compared with the baseline (SEnet), the IICL reached
higher F1-scores in five out of eight AUs on the CASME
II database and all AUs on the SAMM database. Further-
more, IICL outperforms SEseq which employs temporal in-



Table 3. F1-scores on the SAMM database.
The best is indicated using bold. The base-
line is SEnet [11].

Methods AU2 AU4 AU7 AUI12 AVG
Number 18 23 46 30
Baseline 023 037 040 035 034
SEseq 024 031 045 041 035
RESnet [10] | 0.21 037 032 037 032
RESseq 027 036 042 030 034
SCA [18] 033 013 049 042 034
CL [9] 028 030 042 038 035
TL [23] 030 035 047 039 038
IICL 034 040 042 045 040

formation through aggregating the onset, close-to-apex, and
apex frame features by 0.13 and 0.05 in terms of the average
Fl1-score on CASME II and SAMM, respectively. More-
over, IICL achieves large improvements on the challeng-
ing AUs containing unclear motions and very few samples,
compared with the baseline on CASME II (0.43 vs. 0.78 on
AU, 0.20 vs. 0.33 on AU1S5, and 0.17 vs 0.33 on AU17
in terms of F1-score). The results demonstrate that learn-
ing the between-frame and between-AU contrastive infor-
mation can improve the discriminative ability for ME AU
detection.

In order to further verify the IICL effectiveness of ME
AU detection, the IICL is compared with the methods con-
trastive learning based on Contrastive loss (CL) [9] and
Triplet loss (TL) [23] and SCA [I8]. In Tables 2] and [3]
it can be seen that IICL improves the average Fl-score
by around 12% and 6% on CASME II, and 14% and 5%
on SAMM, in comparison with CL and TL, respectively.
Furthermore, IICL outperforms SCA by 0.10 and 0.06 in
terms of average F1l-score on CASME II and SAMM, re-
spectively. The results indicates that the IICL has a good
generalization ability and can learn discriminative AU rep-
resentation from the subtle movements in MEs effectively.

Figure [3] shows some example class activation maps on
CASME 1I. It can be seen that the IICL can focus more on
the accurate region of ME AUs. For example, the base-
line and CL networks focus on the wrong nose and eye re-
gions for AU2 (Outer Brow Raiser), respectively. The TL
roughly learns features from the whole forehead. The pro-
posed IICL enlarging the difference of multiple frames and
different AUs can accurately focus on the outer brow region
for AU2 detection. This further verifies the effectiveness of
IICL for ME AU detection.

4 Conclusion

Micro-expression AU detection becomes an important
and challenging task, as micro-expression has subtle facial
muscle changes. In this paper, we design an Intra- and Inter-
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Figure 3. ME AU visualization.

Contrastive Learning (IICL) network for ME AU detection
to improve the discriminative and robust ability for subtle
AUs. The IICL network is able to efficiently identify subtle
AUs by exploring the between-frame and between-AU dif-
ference. Intensive experiments demonstrate the effective-
ness and generalization ability of our IICL network. In fu-
ture, we will consider the study on an end-to-end contrastive
learning network for micro-expression AU detection and
exploring ME recognition enhanced by AU information.
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