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1 INTRODUCTION

Nowadays, data sharing is growing in popularity. It is shaping innovative business models and
creating new marketplaces. Ad-based business models as Social network companies (Facebook,
Twitter, Instagram, etc.) need user-centric designs to grow. Even companies that do not rely totally
on an ad-based model may also benefit from their users’ data to make extra money like telecommu-
nications corporations, video-on-demand service providers, and so on. Then, a user-centric design
benefits from its users and their data to make profits. While it is bringing benefits to data providers,
at the same time, it is putting a significant risk on the privacy of the data owners. This risk appears
because the shared data contains sensitive information and needs to be appropriately protected.
Several privacy breach scenarios have been widely cited, notably, the leaks of the medical records
of the governor of Massachusetts [37, 52] and the AOL search data in 2006 [4], which are typical
examples of privacy breaches caused by inappropriate protection of data.

Several techniques were proposed in the literature to protect various types of data. In k-
anonymity [49], the values of the quasi-identifier attributes of the tuples are suppressed or gen-
eralized until each tuple is identical with at least (k − 1) other tuples on their quasi-identifier
attributes. In l-diversity [38], a group of tuples is considered l-diverse if it contains at least l ”well
represented” values for the sensitive attribute. A table is l-diverse if every group is l-diverse. In
t-closeness [31], the distribution of sensitive attributes in any group is close to its distribution in
the full population. The distance between the distribution in a group and the population distri-
bution should not exceed a distance of t . Differential Privacy (DP) [43] provides a mathematically
provable guarantee that, whether or not, an individual’s private information is included in the
input of any DP algorithm, the output will lead to the same assumption about this individual’s
private information. In an attempt to fortify an individual’s privacy, DP [16] has been proposed
and has since garnered much attention among the privacy policymakers. DP is a privacy defini-
tion that aims to ensure a tradeoff between privacy and utility by adding a small amount of noise
enough to hide the adding or dropping of an individual from the database.

Current DP mechanisms have been applied on a variety of data structures such as images [13],
location data [3, 24, 56], set-valued data [10, 17], relational data [28], and graph-based datasets
[2, 32, 48, 55] (representing for instance social networks interactions and call detail records). In
these graphs, vertices represent individuals, sometimes annotated with meta-information. Edges
represent interactions among users and can be labeled as well. Applying the DP mechanism on
graph datasets is done by adding noise to the edges, as in References [7, 20, 21, 25, 45, 48, 54] or to
the nodes [11, 14, 26] to prevent identity and link disclosure while keeping the dataset suitable for
analysis. For example, in Figure 1, if a background knowledge determines three people calling each
other; thus, we can identify them in the graph as the triangle (1-2-4). With some sensitive data, we
can recognize each of them. However, by adding some noisy edges, we increase the uncertainty
and make it harder for the adversary to relate their background knowledge to the triangle (1-2-4)
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Fig. 1. Original and edge-Differentially Private Graphs.

Table 1. Sensitive Data Associated to the Nodes

Vertex Age Gender Marital Status Political View

1 30–40 Male Divorced Democratic
2 10–20 Male Single Republican
4 20–30 Female Married Republican

by creating another one (5-6-7). By releasing noisy data, the aim of DP is preventing adversary
with a background knowledge from breaching the privacy of individuals that exists or not in a
database. However, Kifer et al. [27] have proved that an adversary with a background knowledge
can still disclose sensitive information from the data that induces correlations across tuples even
if DP is applied.

This article shows a new user-centric design that relies on sharing or publishing subsequent
graph versions representing interactions between individuals at subsequent time frames instead
of just one graph. The limitation of DP proved by Kifer et al. [27] can appear in this kind of data.
Since anonymizing each release independently will not be sufficient, an attacker can still infer
information about the individuals by combining the anonymized released graphs together. Here,
we show how a DP mechanism can be extended to address the multi-release graph anonymization.

To illustrate this scenario in an example, let us consider that we record the communications
inside our university community for some statistics and social studies. Let us say that the graphs
in Figure 2 are the records of three days: G1 for the first day, G2 for the second, and G3 for the
third. However, by sharing these graphs as they are, a real threat privacy could arise even if no
identifiers are associated with the vertices. For example, if the shared graphs fall into the hands
of an adversary possessing a background knowledge such as as Doctor Bob and his two students,
Alice and John, who all call each other every day, by intersecting the three graphs G1,G2, and G3

as in Figure 2 and by projecting the background knowledge to this intersection, it becomes easy
to know that vertices 1, 2, and 4 represent Doctor Bob and his two students.

If the sensitive data associated with these nodes are as mentioned in Table 1, then, it is effortless
to guess that the vertices 1, 2, and 4 represent Bob, John, and Alice, respectively. In this way, the
adversary can discover the three individuals’ marital status and political view, which presents a
serious privacy breach. The situation does not improve in Figure 3 despite applying a DP algorithm
to add edges in each graph. These noisy edges cannot change the fact that just one triangle appears
in the Intersection graph. If we even use a privacy-preserving technique to protect the users’
identity in the three graphs, then the adversary can still connect the persons in his/her background
knowledge with nodes 1, 2, and 4. Here, we can define the background knowledge as a list of tuples
representing interactions between users and labeled with timestamps. (ui ,uj , [ts , te ]) indicates that
user i has communicated with user j in the time frame [ts , te ]. For example: (Bob, Alice, Day1); (Bob,
John, Day1); and so on. This background knowledge could be improved in a way that every tuple
represents the interactions between many users instead of just two, which can be projected on the
graph as a subgraph instead of just an edge: ((ui , uj ), (ui , uz ), (uj , uz ), [ts , te ]) indicating that users



Fig. 2. Graphs at disjoint time frame.

Fig. 3. Graphs anonymized by an edge-DP mechanism.

i, j and z have interacted with each other in the time frame [ts , te ]. For example, ((Bob, Alice), (Bob,
John), (Alice, John), Day1).

We intend to solve a paradox, since we need the data to still carry out valid information about
the population represented by the graphs without exposing individuals’ privacy. We can define
the utility of the released data as one or more statistical measures that the data user can compute
with a certain degree of confidence. We propose here a new anonymization technique for a dataset
composed of sequential dependent released graphs based on a relaxed version of Blowfish Privacy
(BP) [23]. Our goal is to propose a mechanism that protects the correlated communications be-
tween users in sequentially released graphs. We can identify these communications as subgraphs.
The subgraphs’ privacy relies on the fact that the mechanism’s output is independent of the origi-
nal existence or absence of these particular subgraphs. Our mechanism applies reliable protection
for these subgraphs by manipulating their existence or absence in each graph. We notice that
implementing these manipulations is not simple and requires a fine-tuning about the subgraphs’
privacy. We prove that our mechanism is under a relaxed version of BP [23]. BP has two inten-
tions: from the privacy side, it presents a solution to correlated data where DP fails to protect data.
In contrast, from the utility side, it allows to unveil more about the individuals without risking
their privacy. In our solution, we are applying the non-interactive approach of BP. Thus, the BP
mechanism returns a noisy data set instead of a query result. The BP mechanism will generate the
noisy version of the released graphs [41] under a privacy guarantee called (ϵ,δ )-BP.

The rest of the article is organized as follows. In Section 3, we present the main related work
in the literature. Section 2 introduces DP and BP backgrounds. In Section 4, we discuss our data
model. We propose a new anonymization mechanism in Section 5, and we discuss its privacy
guarantee. In Section 5.1, we also discuss how to implement this mechanism in the graphs and
how the implementation affects privacy. Then, we present our algorithm to apply the mechanism
and the implementation in Section 6. Section 7 presents conducted experiments to validate our
approach. Finally, Section 8 concludes the article and draws some future directions.

2 BACKGROUND

2.1 Differential Privacy

Before discussing our mechanism, we introduce some basic notions of DP. Dwork et al. [16]
define DP as a privacy mechanism for a curator holding a data of individuals in a database D,
where each row represents the data of a single individual, to provide a sanitized database that al-
lows statistical analysis and simultaneously protecting the individual rows. Formally speaking, a



randomized mechanism M with domain N |χ | is (ϵ,δ )-Differential Private if for all S ⊂ Range(M)
and for all D,D ′ ∈ N |χ | such that ‖D − D ′‖1 ≤ 1:

Pr [M(D) ∈ S] ≤ eϵ .Pr [M(D ′) ∈ S] + δ , (1)

where D and D ′ are two databases of records from a universe χ , which differ by just one row at
most and eϵ is always greater or equal to 1 (ϵ ≥ 0). DP promises that the probability of harm for
an individual to participate in a survey, for example, is not more significant than the probability of
harm if she does not. By choosing δ = 0, we ensure that, for every run, the randomized mechanism
(M) returns the same results for D and D ′ with roughly the same probability. In other words, the
probabilities that the output of M(D) is in the range S and the probability that M(D ′) is in the range
S too are very close. This closeness is managed by a privacy factor ϵ . We can list two types of DP
applied to graphs:

• Node-based: requires insensitivity to the addition or removal of any vertex (and all its edges)
from the graph.

• Edge-based: requires insensitivity to the addition or deletion of any edge from the graph.

In our work, we create two probabilities represented in Lemma 1, and we prove that the added
noise based on these probabilities respects the DP inequality.

2.2 Blowfish Privacy

BP is a generalization of DP. It relies on the same inequality but has a privacy policy P as an
extension of DP. P = (T ,GS ,IQ ), where T denotes the domain of all possible tuples,GS = (VS , eS )
is a discriminative secret graph withVS ⊆ T and IQ denotes the set of databases that are possible
under the constraintsQ . Let us say that in Figure 3 we have released noisy graphs that appear as if
some professors or students are communicating from inside the university during some holidays
where working is strictly forbidden, for tradition or religious reasons, or during a strike of the
University Teachers Union. Then, releasing these graphs (showing calls between these phones in
one of these days) may pose a problem for employees, students, or the university. Therefore, any
Call Detail Records (CDR) graph that respects the privacy policy P = (T ,GS ,IQ ) should not show
any call between phones on these specific days.

While in DP, the discriminative secret graph GS is always a complete graph, BP may allow the
public to distinguish between specific tuples. Besides, DP does not have any constraint Q . Since
BP is a strong privacy definition, a relaxation is needed in many cases to prove that a mechanism
is relaxed Blowfish Private. The data owner provides the upper bound of this relaxation. Before
releasing the graphs, we have to ensure that the noise is enough that the relaxation does not surpass
the upper bound. The data owners also provide any background knowledge that they possess about
their database. The service takes this knowledge as constraints and checks if the noisy graphs
respect them. Therefore, in our study, any mechanism that does not consider these two types of
constraints, does not respect BP. We will prove in Lemma 2 that our proposed mechanism respects
the BP inequality, and we explain the BP privacy policy adopted by our mechanism in 1.

3 RELATED WORK

In this section, we outline some techniques and algorithms dedicated to protect the graph datasets.
We divide them into four categories: (1) identity and link disclosure [15, 57, 60], (2) dK-graph
generation model [12, 48, 54], (3) platforms and programming languages [40, 45, 46], and, finally,
(4) static [32, 42], and dynamic graphs anonymization [5, 6, 57].



3.1 Identity and Link Disclosure

Graph data disclosure can be divided into three categories [34]: (1) Identity: the identity of an
individual associated with a node is revealed; (2) Link: the sensitive relationships between two
individuals are disclosed; and (3) Content: the sensitive data associated with each node is compro-
mised. We can list three privacy definitions to encounter identity disclosure:

• k-Candidate Anonymity [22, 57]: An anonymized graph satisfies k-candidate anonymity if,
for a given structural query, no individual can be identified with a probability higher than
1
k

.
• k-Degree Anonymity [35]: An anonymized graph satisfies k-degree anonymity if every

node in the graph has the same degree with at least (k − 1) other nodes.
• k-Neighborhood Anonymity [61]: A node is k-anonymous in a graph if there are at least

(k − 1) other nodes such that the subgraphs constructed by the neighbors of each node
are all isomorphic. A graph satisfies k-neighborhood anonymity if all the nodes are k-
anonymous as defined above.

Other approaches can also be listed for the link disclosure. In the Link Re-identification [60],
edges are classified as either sensitive or observed. The goal is to minimize the probability of
predicting sensitive edges based on the observed edges while keeping the number of observational
edges removed small enough to preserve the utility. Another approach is Privacy-Preserving Link
Analysis [15] to enable link analysis in dynamic graphs. The algorithms address privacy concerns
by applying encryption. For Random Perturbation for Private Relationship Protection [57], two
randomization techniques were studied. The first is based on adding then deleting edges randomly.
The second one relies on switching two edges, e.g., deleting the two edges (v1,v2) and (v3,v4),
then adding the two edges (v1,v3) and (v2,v4), wherev1,v2,v3, andv4 are nodes in the graph. The
content disclosure is a significant problem, but, to the best of our knowledge, the literature does
not consider the impact of graph structure on this category of disclosure.

It is worth noting that, in contradiction with anonymization techniques, many works proposed
de-anonymization techniques. For example, Data for Development (D4D) is an innovation chal-
lenge for societal development. In Reference [50], the authors study one of the D4D datasets
where the anonymization strategy is to disconnect users’ ego nets up to depth 2. The ego nets
are published to conceal the overall graph structure. The authors successfully propose two de-
anonymization techniques for identifying 1-hop and 2-hop nodes in these ego nets. Furthermore,
automated social graph de-anonymization using adversarial machine learning is proposed in Ref-
erence [51].

3.2 dK-graph Generation Model

Another type of DP mechanisms is based on thedK-graph generation model. In these mechanisms,
various parameters are derived from the original graph. DP is applied on these parameters to cre-
ate noisy versions, and, finally, new dereived graphs are generated using a generation model. Chen
et al. [12] present a method for publishing graphs under DP. They rely on a community-preserving
generative model called CAGM. This model profits from some properties from the community as
parameters to generate the graphs. Some differential private methods are applied to these prop-
erties to create the noisy parameters of CAGM. Another example is in References [48, 54], where
the authors propose an edge-DP graph generation mechanism relying on the dK-graph model.
The mechanism generates a noisy graph based on a set of properties in the single static original
graph. Thus, this mechanism cannot ensure the privacy of individuals in dynamic or multi-released
graphs.



3.3 Programming Languages and Platforms for Queries

Programming languages and platforms listed in this subsection provide the possibility of creat-
ing queries that guarantee noisy results respecting the DP requirements. McSherry [40] repre-
sents the Privacy Integrated Queries (PINQ) platform for differentially private data analysis, a
privacy-preserving version of Language Integrated Queries (LINQ). This platform adopts the in-
teractive approach; thus, the outputs are the noisy results of queries and not a noisy or synopsis
dataset.

The wPINQ platform [46] generalizes PINQ to deal with weighted datasets. It improves the
results on graph analysis and introduces new generalization by counting triangles with given de-
grees, for example. Note that in an interactive approach, a privacy budget always limits the num-
ber of possible queries. In contrast, in a non-interactive approach, the analyst can apply unlimited
queries on the noisy graph. In Reference [45], the authors benefit from wPINQ to extract noisy
properties of the secret graph then generate a seed synthetic graph that fits these properties by re-
lying on Marko Chain Monte Carlo. The properties extraction is composed of two steps: Rescaling
the resulting records’ weights of the query, then aggregating the weighted secret records, adding
noise, and exposing results. Nevertheless, nothing indicates that wPINQ is designed to protect
correlated data like sequentially released graphs.

3.4 Anonymization of Static Graphs

Static graphs are those that are fixed once created. A plethora of work addresses the anonymiza-
tion of static graphs. For example, Nguyen et al. [42] categorize the state-of-the-art into two main
groups: direct publication schemes and model-based publication schemes. The authors introduce
a new scheme, so-called Top-m-Filter (TmF), and improve an existing technique called EdgeFlip.
Both of them exhibit consistent behavior with increasing privacy budgets while the model-based
publication schemes do not. Li et al. [32] propose a graph-based framework for privacy-preserving
data publication. They define how to transform a dataset to a graph G = U ∪V ∪ S,E, where U ,
V , and S are the sets of vertices representing the users or ids, the quasi-identifiers, and the secrets,
respectively. Edges E indicate a semantic relation (connecting two users) or correlation relation
(connecting two vertices from different types). The authors propose a framework to preserve pri-
vacy against background knowledge based on Anonymity Operators for the addition and deletion
of vertices and edges, and a graph partition to apply these operators on a member of subgraphs
instead of the whole graph. This work does not consider the multi-released graph scenario, thus
does not guarantee that their framework is robust against correlated data from multiple versions
of a graph.

3.5 Anonymization of Dynamic Graphs

Dynamic graphs are those subjected to changes in their structures or the weights of their
edges. Less work follows the direction of dynamic graphs. The authors in [36] rely on DP for
anonymizing dynamic social networks. Their approach, named Dynamic Differential Privacy Al-
gorithm (DDPA), adds Laplacian noise to edge weights. DDPA tracks the edge weight information
across the graph iterations and adds the privacy protection budget. However, it does not con-
sider altering the graph topology. Very similar to our work is Reference [53]. In this article, social
network graphs representing a time series of the corresponding social network’s evolution are
anonymized to a sequence of sanitized graphs released for further analysis. We share the same
view that naively applying the existing approaches to each time-series graph will breach privacy
purposes. However, our assumptions are more restricted, since we assume that the attacker has
external background knowledge about the graphs.



Li et al. [33] propose a privacy model km where k indicates the privacy level and m is a time
period that an adversary can monitor a victim to collect the attack knowledge. A distributed
algorithm is provided that adds nodes to the graph, then generates the noisy version. The dis-
tributed greedy merge noise node algorithm reduces the number of nodes added under satisfying
the anonymous model. Qiuyang et al. [47] propose a dynamic algorithm that satisfies DP and
protect social networks against attacks based on semantic information. They classify the original
graph into several subgraphs according to some characteristics of nodes. The graph is represented
as an adjacency matrix. Quad-tree is used to divide the dense area of each subgraph. DP noise is
added to the tree’s leaf nodes, and finally, the adjacency matrix is reconstructed and published.

Yue et al. [59] proposed local and global anonymity functions and a framework called APRI to
apply sequential online anonymization on a set of graphs. They anonymize the degree of the node
of the current graph locally, then they compare, via APRI using a Kolmogorov–Smirnov Test, the
distribution of node degrees of the current graph, and the set of previously anonymized graphs.
When the difference is equal or greater than a given threshold, they restart the anonymization
process for this graph. They use the global anonymity function to ensure the similarity in the
distribution of node degrees between all the anonymized graphs.

Mcwan et al. [39] propose a clustering algorithm to group at least k nodes into k clusters based
on their connectivity and anonymize each cluster for every instance of the graph. The algorithm
supports the addition of nodes in new instances. Each cluster contains the nodes with close con-
nectivity, and these nodes in the anonymized instance of the graph are assigned with the same
label. Also, Yu et al. [58] propose a grouping mechanism for the nodes based on their properties.
The mechanism guarantees that without a background knowledge, an attacker’s probability of
identifying a node involved in any edge is at most 1

k
. Also, the probability that an attacker iden-

tifies an edge between two nodes is at most 1
k

. Therefore, the goal of the mechanism is to protect
edges against attacks without background knowledge dynamically.

All these mechanisms for sequentially released graphs focus on the properties of nodes, es-
pecially degrees of nodes. Thus, two of them [39, 59] might protect dynamic graphs against a
background knowledge. However, all of them do not aim to protect the dynamic graphs against
the type of background knowledge containing information about the connections or the relation
between two or more individuals. Returning to the example provided in the Section 1, the back-
ground knowledge could be that Alice and John call their Doctor Bob daily, especially in exams and
project submissions. They do not usually communicate in summer, but we also know that Alice’s
birthday is on August 6 and Doctor Bob’s birthday is on August 24. We doubt that it is possible
to prove that the mechanisms proposed to deal with the background knowledge of nodes could
deal with an adversary having our type of background knowledge and trying to project it into
the graphs by searching for three nodes communicating in the time of academic year especially
in the periods of exams and projects. Then, a period of no communication in summer interrupted
by calls on August 6 and 24. Thus, our work is different from others by addressing the problem
of facing this type of background knowledge and preserving an acceptable level of utility in the
graph’s released instances.

4 PRELIMINARY DEFINITIONS

Definition 1. A simple graphG is undirected and defined in a given time frame by a set of vertices
and a set of edges: G (V ,E, [ti , ti+1]) where:

• V is the set of vertices V ⊂ V representing all the users in the time frame [ti , ti+1] (While
V represents all the vertices in all the versions).



Fig. 4. An example of the Union graph G∪ and logical matrix.

• E is the set of edges E ⊂ V ×V representing interactions between the users inV during the
time frame [ti , ti+1]. We consider only two states: interaction and no interaction. An edge
is assigned to two vertices (representing two individuals) if they are interacting during the
ith time frame.

• [ti , ti+1] is the ith time interval (i = 0, 1, . . . ,N )

The definition can be used for the anonymized graph G∗ (V ∗,E∗, [ti , ti+1]).

For example, the first graph in Figure 4(a) is a simple undirected graph with a set of seven
vertices, a set of six edges, and a time interval defined as Day 1.

Definition 2. Let G be a set of graphs to be released in distinct time frames, G = {G1, . . . ,Gn }.
Let SG be a subgraph of G where ∃G ∈ G such that SG ⊆ G. We define the logical matrix M
whose row and column indices indicate the elements of SG and G.M[SGi ][G j ] =Mi j represents
the status of subgraph SGi in the graph G j , where

Mi j =

{
0 if SGi � G j

1 if SGi ⊆ G j
. (2)

In what follows, we will useMi j to denoteM[SGi ][G j ].

Several subgraphs were sampled from the Union graph in Figure 4(a) and were represented as
the rows of the matrix in Figure 4(b). The columns of the matrix represent the graphs of the three
days, and each element represents the existence of the subgraph in the graph.

The notations in this article are summarized in Table 2.

5 BP MECHANISM FOR SEQUENTIALLY RELEASING GRAPH DATASETS

DP provides reliable privacy in a single graph [11, 25]. However, it has severe limitations when
graphs are sequentially released [27] in different time frames. The problem appears when the back-
ground knowledge can be linked to correlated or sensitive subgraphs in G. Hence, the adversary
will tie his/her background knowledge to a complete subgraph instead of separated edges or ver-
tices in G. Here, we propose a new layer of privacy-preserving approach. It is neither edge-DP nor
node-DP, considering that we are not protecting separated edges or vertices but a combination of
them in the form of subgraphs. We propose a robust privacy-preserving operation on the logical
matrix M represented by the graphs in G and the correlated (or sensitive) sampled subgraphs.



Table 2. Notations and Descriptions

Symbol Description Symbol Description

T Domain of all possible tuples GS Discriminative secret graph
G∪ Union graph of the set of graphs G G Undirected simple graph
V Set of nodes in G E Set of edges in G

[ti , ti+1] ith time interval G∗ Anonymized version of G
G Set of graphs to be released Mn×m Logical matrix of size n ×m
M∗ Anonymized version ofM SG Sampled subgraph from G
f Operation on logical matrixM S Range of outputs

p, q Probabilities д Operation on a set of graphs G
δ ′ Rate of subgraph in G that does

not reflect their values inM∗
IQ Set of databases that are

possible under the constraints Q

Fig. 5. MatrixM and three of its possible neighbors.

In this way, we can determine the noise as many subgraphs are suppressed or added from/to the
graphs in G.

Before we elaborate more about our privacy-preserving mechanism, we define first how two
logical matricesM andM′ can be considered as neighbors.

Definition 3 (Neighboring Matrices). We say that two matricesM andM′ are neighbors if:

(1) M,M′ ∈ IQ , which means that both respect the constraints mentioned in Section 2.2.
(2) M, M′ differ by just one binary element: ∃!i ∈ {0, . . . ,n}, j ∈ {0, . . . ,m} | Mi j �M′

i j

where n is the number of graphs in the dataset andm is the number of sampled subgraphs.

For example, in Figure 5, we check the neighboring betweenM and the three other matrices. If
we have the following constraint Q that “No column in any published matrix could be formed by
just 1s,” thenM andM′ could not be neighbors, because the second column ofM′ violates the
constraint, then M′ � IQ . M and M′′ are not neighbors, because they differ by more than one
element, whileM andM′′′ are neighbors, because both of them respects the constraint and they
differ by just one element.

Figure 6 shows the input and the output of the privacy-preserving operation applied to the
logical matrixM.

Lemma 1. Let f be an operation on the logical matrixM, we say that f (M ) is Differential Private

(or f is ϵ-DP) if it respects the inequality:

Pr [f (M) = S] ≤ eϵ × Pr [f (M′) = S],

whereM andM′ are two neighbors matrices, S is one possible output of the operation f , ϵ is a privacy

parameter.



The output of f (M) is a matrixM∗ related toM by the equation

f (Mi j ) =M∗
i j =

{
Mi j with probability q = 1

eϵ+1
Mi j with probability p = 1 − q = eϵ

eϵ+1

, (3)

whereMi j is the opposed binary value ofMi j and p > q.

Proof. Let us say that we have two neighboring matricesM andM′ that differ by only one
elementMi j �M′

i j . Let S be an output matrix of the operation f .

Pr [f (M) = S]

Pr [f (M′) = S]
=

Pr [M11 → S11] × · · · × Pr [Mnm → Snm]

Pr [M′
11 → S11] × · · · × Pr [M′

nm → Snm]

=
Pr [Mi j → Si j ]

Pr [M′
i j → Si j ]

.

(4)

Then, to prove that f is ϵ-DP using the inequality Pr [f (M)=S]
Pr [f (M′)=S] ≤ eϵ , we have to prove that

Pr [Mi j→Si j ]
Pr [M′

i j
→Si j ] ≤ eϵ . Each ofMi j ,M′

i j and Si j can have two values 0 and 1. In case,Mi j =M′
i j then

Pr [Mi j→Si j ]
Pr [M′

i j
→Si j ] = 1 ≤ eϵ . The four other cases to compute are as follows:

• Pr [1→1]
Pr [0→1] =

p

q
=

eϵ

1+eϵ

1
1+eϵ
= eϵ

• Pr [0→1]
Pr [1→1] =

q

p
= 1

eϵ ≤ eϵ (because eϵ ≥ 1)

• Pr [1→0]
Pr [0→0] =

q

p
= 1

eϵ ≤ eϵ (because eϵ ≥ 1)

• Pr [0→0]
Pr [1→0] =

p

q
= eϵ .

In the four cases, the operation respects the inequality, which proves that f is ϵ-DP. �

5.1 Achieving the Mechanism f in G
This section discusses how to populate the binary flips of the values in the logical matrix in their
corresponding set of graphs G. We also evaluate how these flips may affect the privacy of our
proposed mechanism. In the implementation, these flips are achieved by suppressing or adding
edges in G. We notice that this might affect the ability of the mechanism to achieve DP. The flips
made by the operation f have two types:

• 0 −→ 1: Here, the element inM is 0 (which means that the subgraph does not exist in the
corresponding original graph) but has been flipped to 1 inM∗ (the subgraph exists in the
correspondent anonymized graph). All the missed edges of the subgraph should be added
to perform this modification in the anonymized graph.

• 1 −→ 0: Here, the element inM is 1 (which means that the subgraph exists in the corre-
sponding original graph) but has been flipped to 0 inM∗ (the subgraph does not exist in the
correspondent anonymized graph). One or more edges should be deleted from the subgraph
to perform this modification in the anonymized graph.

Let д be the operation that implements the flips made by f (M) in G. д cannot guarantee a full
projection of the flips in G. A possible scenario to explain this drawback in privacy is when the
same edge should remain in a subgraph while it should be deleted in another subgraph in the same
graph. Then, it is obvious that it is not possible to implement in the graphs all the modifications
done on the matrix. In Figure 7, for example, to perform the first flip, the operation д deletes the
edge (1, 4). For the second flip, the operation adds the two edges (1, 4) and (1, 5); thus, the second



Fig. 6. An anonymization operation

applied on a logical matrix results a

noisy logical matrix.

Fig. 7. Two flips performed by д
where the first flip was cancelled by

the second one.

flip cancels the effect of the first flip, and then the final status of the subgraph in the second flip
is similar to its status before the flip. In this way, the privacy guarantee provided by f could be
reduced when applyingд on the graphs. In other words, after releasing G, an adversary may create
a matrix Madv that might represent the real status of the subgraphs more accurately than M∗.
That is the effect of д on the privacy guarantee. Thus, the implementation cannot provide the
desired privacy guarantee provided by the operation of f . Still, it can offer a relaxed guarantee
called (ϵ,δ )-BP, where ϵ is a privacy parameter provided by the data owner and δ is the relaxation
parameter of the privacy definition.

In the next subsection, we will discuss in detail the privacy guarantee. However, this discussion
cannot be reliable if we do not define the implementation steps first. As we have explained, the
purpose of the implementation is to populate the flips in the graphs. We can list four types of these
flips:

• 0 −→ 0: Aan element 0 in the matrixM remains 0 in the noisy matrixM∗.
• 0 −→ 1: An element 0 in the matrixM is flipped to 1 in the noisy matrixM∗.
• 1 −→ 0: An element 1 in the matrixM is flipped to 0 in the noisy matrixM∗.
• 1 −→ 1: An element 1 in the matrixM remains 1 in the noisy matrixM∗.

Because the implementation of a flip can cancel the effects of some previous implementations,
we can assume that the ones performed initially have a higher probability of being canceled than
those performed at the end. A random implementation of the flips will make impossible to compute
the level of privacy provided by the implementation and to define the relaxation parameter δ .
Therefore, two possible orders can be applied. If we are interested in preserving the subgraphs
that should exist in G, then the steps are as follows:

(1) Remove at least one edge from each subgraph represented by 1 inM and 0 inM∗.
(2) Ensure that all the subgraphs represented by 1 inM andM∗ remain in the graphs after

Step (1). In other words, if any edge removed in Step (1) leads to the removal of a subgraph
represented by 1 in the matrix, this edge should be re-added.

(3) Add all the missing edges for the subgraphs represented by 0 inM and 1 inM∗.

In this way, we guarantee that all the subgraphs represented by 1 in the matrixM∗ will exist
in the released version of G. Also, we may find in the set some subgraphs that should not exist.
Whilst, if we are interested in guaranteeing that all the subgraphs represented by 0 inM∗ do not
exist in the released version of G, then the order need to be reversed as follows:

(1) Add all the missing edges for the subgraphs represented by 0 inM and 1 inM∗.



(2) Ensure that all the subgraphs represented by 0 inM andM∗ do not exist in the graphs
after Step (1).

(3) Remove one or more edges from each subgraph represented by 1 inM and 0 inM∗.

By following this order, the set is clean from all undesirable subgraphs, but it may also miss
some subgraphs that should appear in G.

5.2 Toward a BP Mechanism

After explaining the operation f and its reliable privacy guarantee as well as the drawbacks of
implementing д in the privacy domain, we will determine the implementation’s privacy guarantee
in this subsection.

Lemma 2. Let δ ′ be the rate of subgraphs in G that does not reflect their values inM∗. Let G, G′
and S be three sets of graphs where G and G′ are two neighboring sets that differ in just one sampled

subgraph and S is a possible output of д applied on G and G′. д respects the inequality

Pr [д(G) = S] ≤ eϵ .Pr [д(G′) = S] + δ , (5)

if

δ ′ ≤ δ

eϵ − 1
. (6)

Proof. To prove the Lemma 2, we have to prove that:

Pr [д(G) = S] − δ
Pr [д(G′) = S]

≤ eϵ . (7)

The left-hand side part of the inequality can be written in the following way:

Pr [д(M11) = S11] × · · · × Pr [д(Mnm ) = Snm] − δ
Pr [д(M′

11) = S11] × · · · × Pr [д(M′
nm ) = Snm]

.

Let SGdif be the only subgraph that differs between G and G′. The status of SGdif in G, G′,
and S can be indicated by the binary valuesMi j ,M′

i j , and Si j . Then, the above fraction can be
reduced to

Pr [д(Mi j ) = Si j ]

Pr [д(M′
i j ) = Si j ]

− δ

Pr [д(M′
11) = S11] × · · · × Pr [д(M′

nm ) = Snm]
.

All the probabilities are less than or equal to 1. Thus,

Pr [д(M′
11) = S11] × · · · × Pr [д(M′

nm ) = Snm] ≤ Pr [д(M′
i j ) = Si j ].

Consequently, we can assume that

Pr [д (Mi j )=Si j ]
Pr [д (M′

i j
)=Si j ] −

δ
Pr [д (M′11 )=S11]×···×Pr [д (M′nm )=Snm ] ≤

Pr [д (Mi j )=Si j ]
Pr [д (M′

i j
)=Si j ] −

δ
Pr [д (M′

i j
)=Si j ] ,

which leads to
Pr [д(G) = S] − δ
Pr [д(G′) = S]

≤
Pr [д(Mi j ) = Si j ] − δ
Pr [д(M′

i j ) = Si j ]
≤ eϵ .

Therefore, to prove the Inequality (7), it is enough to prove that

Pr [д(Mi j ) = Si j ] − δ
Pr [д(M′

i j ) = Si j ]
≤ eϵ . (8)



To continue our proof, we have to find all possible values of these probabilities. In this step of the
proof, we can see the importance of the orders in the second stage. We will continue this proof
based on the first order listed, but the second order will also lead to the same final result. We can
list four possible values to the probabilities in Equation (8):

• Case 1: Pr [1→ 0] is the probability that f flips the binary value in the matrix. Nevertheless,
because these flips are performed at first by the operation д, based on the first order, then
there is a probability δ ′ that the following flip will cancel the current one, thus: Pr [1→ 0] =
q − δ ′.

• Case 2: Pr [0→ 0] is the probability that f does not flip the value. But some following flips
performed by д may cause the appearance of the subgraph in G, thus: Pr [0→ 0] = p − δ ′.

• Case 3: Pr [1→ 1] is the probability that f does not flip the value. Based on the order of
flips in д, all the upcoming flips will be performed by adding edges so that no flip can cause
the drop of this subgraph from G, thus: Pr [1→ 1] = p.

• Case 4: Pr [0→ 1] is the probability that f flips the binary value in the matrix. In this case,
too, no further flip could drop this subgraph, thus: Pr [0→ 1] = q.

In this way, we have computed the four possible values for the probability. The next step is to
show that by using any two of these values in Equation (8), the result remains lesser than eϵ :

• Pr [1→1]−δ
Pr [0→1] =

p−δ

q
≤ p

q
= eϵ

• Pr [0→1]−δ
Pr [1→1] =

q−δ

p
≤ q

p
= 1

eϵ ≤ eϵ (because eϵ ≥ 1)

• Pr [1→0]−δ
Pr [0→0] =

q−δ ′−δ

p−δ ′ ≤
q

p
if:

p (q − δ ′ − δ ) ≤q(p − δ ′)
pδ ′ + pδ ≥qδ ′

δ ≥δ ′ × q − p
p

(9)

q − p ≤ 0 and δ ≥ 0, then Inequality (9) is always true, thus:
Pr [1→0]−δ

Pr [0→0] ≤
q

p
= 1

eϵ ≤ eϵ (because eϵ ≥ 1)

• Pr [0→0]−δ
Pr [1→0] =

p−δ ′−δ

q−δ ′ ≤
p

q
if

q(p − δ ′ − δ ) ≤p (q − δ ′)
qδ ′ + qδ ≥pδ ′

δ ≥δ ′ × p − q
q
.

Then, the only inequality that should be verified to ensure that G can be released under
(ϵ,δ )-BP is δ ′ ≤ δ × q

p−q
. By substituting p and q by their values, we get the following:

δ ′ ≤ δ

eϵ − 1
. �

Theorem 1. Let д be the operation that implements the flips made by f (M) in G, we say that д is

(ϵ,δ )-BP if there exists a policy P = (T ,GS ,IQ ) that applies on G and composed of the Universe T ,

the discriminative secret graph GS and IQ that denotes all the possible G under the constraints Q .

Proof. T contains all the possible graphs from the anonymized version of the set G. GS =

(VS ,ES ) is a discriminative secret graph where VS = T and eS ∈ ES connects two vertices that
should be indistinguishable for the public. In this work, eS will connect any two vertices of GS



Fig. 8. Process diagram.

that represent two graphs that differ by just one subgraph sampled in our mechanism. Two graphs
that differ by one or more edges but resemble in all the sampled subgraphs do not form a discrim-
inative pair. They might be distinguishable, and the two vertices representing them in GS are not
connected by an edge eS . Therefore, the discriminative secret graph GS is not complete. In other
words, ES is the set of edges that connects two vertices representing a difference in the status of
one or more sampled subgraphs. By proving that our mechanism’s discriminative secret graph
is not complete, we have demonstrated that our mechanism does not respect the DP definition
requirements.

We can assume that our mechanism is under the Attribute version of BP. The Attribute Defini-
tion in BP describes a mechanism that aims to hide any changes made to any attribute in a set of
tuples, which is literally what we aim to do by protecting any modifications done to the element
of the matrixM by manipulating the existence and non-existence of its corresponding subgraph
in the released set of graphs.

Finally, the constraint Q is related to the Inequality 6: δ ′ ≤ δ
eϵ−1 beside any constraint provided

by the data owner. Therefore, if G respects this inequality, then G ⊂ IQ . �

By proving that д respects:

• the BP Inequality in Equation (5),
• a well-defined Policy P ,

we have proved that the mechanism is (ϵ,δ )-BP.

6 ANONYMIZATION ALGORITHM

This section details our mechanism by applying the Blowfish Privacy for sequentially releasing
graphs discussed in the previous section.

The process is depicted in Figure 8. To note that we should possess all the graphs before starting
the anonymization process. To proceed, we sample a number of subgraphs from a Union Graph
G∪, based on some criteria. For example, in our implementations, we will focus on the high cor-
related subgraphs. These are the subgraphs that exist in the most graphs in the set of graphs G:
a subgraph that exists in 90% of graphs has a much higher possibility of being sampled than a



subgraph that exists in 50% of the graphs. Based on these sampled subgraphs, we create a matrix
M, as in Figure 4(b), with binary attributes showing the status of each subgraph in each graph.
Then, we apply the flipping probability to the values of the attributes. In this section, we will adapt
the first order of implementation explained in Subsection 5.1; for this reason, all the 1 −→ 0 flips
should be performed first by suppressing the edge that occurs the least in the sampled subgraphs
to minimize the effect of this flip on other subgraphs. When all the 1 −→ 0 flips are performed,
the 0 −→ 1 flips are applied by adding all the subgraph’s missing edges. If all the required flips are
completed, then we can start to release the noisy graphs.

In summary, our proposed mechanism is composed of these steps:

(1) Sampling a number of subgraphs of K vertices.
(2) Creating a matrix that represents the existence of the sampled subgraphs in each graph

of the set.
(3) Applying the operation f by anonymizing the matrix under the requirements of Differ-

ential Privacy.
(4) Applying the operation д by adding/suppressing edges in the set of graphs.

In the following subsection, we will propose an algorithm to apply the operation and the imple-
mentation.

6.1 Applying the Algorithm

The list of sampled subgraphs is converted into a matrixM, as explained in the Definition 2.M
will be subject to the flipping operation f , as in Figure 6 where the binary output of the algorithm
relies on the probabilities p and q shown in Lemma 1.

ALGORITHM 1: Main Algorithm

Require: G, {SGBK }, p
Ensure: G∗
{SG1, . . . , SGn } ← SampleSG (G∪, {SGBK })
Mn×m ← BuildLoдicalMatrix (G, {SG})
for i ← 1 to n do

for j ← 1 tom do

M∗i j ← Flip (Mi j ,p)

end for

end for

G∗ = G
for i ← 1 to n do

for j ← 1 tom do

if Mi j == 1 & M∗i j == 0 then

G∗i ← DropSG (SGi ,G
∗
j )

end if

end for

end for

for i ← 1 to n do

for j ← 1 tom do

if M∗i j == 1 then

G∗i ← AddSG (SGi ,G
∗
j )

end if

end for

end for



The main algorithm takes as input the original set of graphs G, a number of subgraphs that
we estimate representing the background knowledge or public knowledge of this set, and the
probability p. The output is the noisy version of the set G∗. The algorithm adapts the first order
explained in Subgraph 5.1, which focuses on well representing the 1s of the matrix M∗ in the
released graphs. In step 1, we sample a number of subgraphs based on the data provided by the
Union Graph G∪ and the set of background knowledge subgraphs. Each edge in G∪ contains data
concerning the graphs where this edge exists. In the second step, the logical matrix Mn×m is
created where each row represents a subgraph, and each column represents a graph of G and each
binary valueMi j represents the existence of subgraph SGi in graph G j .

1: function Flip(val ,p)
2: rnd := random(0, 1)
3: if rnd ≤ p then

4: val∗ := val
5: else

6: if val :== 0 then

7: val∗ := 1
8: else

9: val∗ := 0
10: end if

11: end ifreturn val∗

12: end function

In steps 3–7, the algorithm creates the noisy matrix M∗ by applying the function Flip. This
function takes a binary value and a probability of p as input; it generates a random number of rnd
between 0 and 1; if rnd is higher than p, then the binary value is flipped.

In steps 9–15, the algorithm drops all the subgraphs that should be deleted based on the flipping
process. While in steps 16–22, the algorithm adds the corresponding subgraphs, even if these sub-
graphs are already in the original graph, because steps 9–15 might have caused the drop of some
of these subgraphs unintentionally.
AddSG searches for all the edges that should be in the subgraph SGi and adds all of these edges

that do not exist in the graphG∗j . While theDropSG function sorts all the edges of SGi , then deletes
the one having the least weight in the Union Graph G∪. The edges’ weight is calculated while
creating the Union Graph based on the required type of the subgraphs’ sampling, for example,
sampling the high correlated subgraphs or the least correlated subgraphs.

In is important to note that before releasing, we have to compute δ ′ = F aultSд

n×m
, where FaultSд

is the number of subgraphs in G that does not reflex their binary values inM∗ and n ×m is the
number of elements inM∗.

Finally, we have to verify the Inequality (6). In case the inequality is verified, then it is safe
to release the graphs under the guarantee of (ϵ,δ )-BP. Otherwise, the mechanism must be re-
executed, or the data owner may decide to increase the relaxation parameter δ .

6.2 Discussion

In this subsection, we will discuss three issues. The first one is as follows: Is it possible to have a
different result by re-executing the mechanism without changing any of the inputs ϵ,δ , and K?
Actually, yes, it is possible. Any BP or DP algorithms are called a randomized algorithm, which
means they employ a degree of randomness as part of their logic. In our case, the two probabilities
p and q are concerned with this randomness. The value of these probabilities will remain the same
as the ϵ is not changed. However, even if the probabilities and the original matrix did not change,



each value in this matrix is subjected to a flip with a probability of q. The group of subgraphs that
should be flipped and the rate of subgraphs in this group that will not be flipped practically because
of other flips, as explained in Subsection 5.1 and especially in Figure 7, cannot be controlled by the
mechanism. Therefore, if δ ′ is not respecting the Inequality (6), then maybe a re-execution will fix
the problem. However, if many re-executions did not help, this is an indicator that the relaxation
parameter δ provided by the data owner is very small for this dataset and should be increased.

The second issue is about how n the number of sampled subgraphs may impact the result. Any
increase in the number of sampled subgraphs means more manipulation in the edges. That is
because the number of subgraphs that should be added or removed will increase, leading to a
big increase in the added edges and a smaller increase in the removed edges, especially if we are
removing just one edge for each subgraph. Overall, the rise in the value of n will lead to more
privacy and less utility.

The third issue is why we have chosen to remove just one edge from each subgraph that should
be dropped. In Figure 7, we have explained how deleting one edge may effect a subgraph that
should be added but does not exist in the final result. When deleting two or more edges from each
subgraph, the possibility of this impact increases, so the rate δ ′. Hence, the possibility that the
Inequality 6 is not respected becomes higher, forcing the data owner to re-execute the mechanism
or increase the relaxation parameter δ .

function AddSG(SGi ,G
∗
j )

for each edge e in SGi do

if e not in G∗j then

add (e ) to G∗j
end if

end for

return G∗j
end function

function DropSG(SGi ,G
∗
j )

Sort all edges of SGi based on
their weights in G∪
#G∪ = G1 ∪G2 ∪ · · · ∪Gn

emin := edge of SGi with
minimum weight
drop (emin ) from G∗j return G∗j

end function

7 EXPERIMENTS

This section will present our experiments’ results to evaluate our approach both in terms of utility
and privacy. We implement our algorithm in Python on the ”Autonomous Systems AS-733” dataset
[29, 30] containing 733 releases, 6,474 vertices, and 13,895 edges in the largest release, and we
conducted experiments on an Intel Core i7 2.4-GHz PC with 8 GB RAM.

As well as our algorithm, we will apply an edge-DP algorithm called TmF [42] that adds noise to
each graph without considering the correlations. We will compare the results of both algorithms
based on many privacy and utility measures.

7.1 Tradeoff between Privacy and Utility

When applying DP or BP mechanisms, one of the data owners’ issues is choosing the privacy
parameters to set an acceptable tradeoff between privacy and utility. This subsection proposes a
method for the data owners applying our mechanism and the TmF mechanism to choose ϵ .

The values we have used for the privacy parameter ϵ of our algorithm are: 0.1, 0.2, 0.5 and 1.
The TmF mechanism has two privacy parameters ϵ1 and ϵ2. In Reference [42], they fix the value of
ϵ2 = 0.1, while ϵ1 is related to the number of nodes | V |: ϵ1 = coe f × ln( | V |), where coe f = 1, 2
and 3. In our work, we add also the value 0.5 to the values of coe f .

In this subsection, we use the confusion matrix as a method for the data owners to choose ϵ for
our BP mechanism and ϵ1 for the TmF mechanism. We extract a number of subgraphs from each



Fig. 9. Confusion matrix for sampled subgraphs in every graph and its noisy versions based on K (number

of vertices for each subgraph) and privacy parameter.

original graph and project them on original and private versions of the graph to find isomorphic
subgraphs. We compare the number of subgraphs found in all the versions and compute the ratio
of:

• True Positive: Subgraphs that appear in both original and released versions.
• False Positive: Subgraphs appear in the released version but do not exist in the original

one.
• True Negative: Subgraphs that exist neither in the original graph nor in the released one.
• False Negative: Subgraphs that exist in the original graph but do not appear in the released

one.

In Figure 9, we consider the percentage of True Positive and True Negative as the ratio of utility,
while the rate of False Positive and False Negative is the ratio of privacy. It is up to the data owners
to choose the privacy parameter based on how much privacy they want in their released graphs.
For the BP mechanism, increasing ϵ means more utility and less privacy. Increasing coe f for ϵ1 in
the TmF mechanism also leads to less privacy, but this drop in privacy is quicker than the decline
in the BP mechanism. We can then say that our mechanism maintains a more balanced tradeoff
between privacy and utility than TmF while changing each mechanism’s privacy parameters.

7.2 Measuring Privacy

In these experiments, we are focusing on protecting the high correlated subgraphs. By high cor-
related, we mean the subgraphs that frequently appear in the original graphs. Therefore, we have
sampled 1,000 high correlated subgraphs. We consider the scenario that an adversary has gener-
ated the Intersection graph from our released graphs. Then we compare the percentage of these
1,000 subgraphs that appear in the Intersection graphs generated from the released graphs under
our mechanism and TmF mechanism. Higher numbers mean more high correlated subgraphs are
not protected.



Fig. 10. Percentage of sampled high correlated subgraphs unprotected in Intersection graphs.

Figure 10 shows that the percentages of high correlated subgraphs that our mechanism failed to
protect in the Intersection of the released graphs are much smaller than these of the TmF mech-
anism. It also shows that increasing the number of nodes in the sampled subgraphs from 3 to 5
leads to a smaller portion. The reason is that a higher number of nodes in a subgraph means a
higher number of edges, which increases the possibility that one of these edges is removed in the
Intersection, which is enough to consider this subgraph as protected.

Also, in Figure 10, we can notice that a higher ϵ increases the percentage of failure for both
algorithms and the three K values. That is reasonable, because having a higher ϵ means that the
value of probability p has increased. In contrast, the value of q has decreased, which leads to a
decline in the number of flips. Therefore an rise in the number of unprotected subgraphs can be
predictable.

7.3 Kullback–Leibler Divergence for Union and Intersection Graphs

In this subsection, we use Kullback–Leibler (KL) Divergence to compare the distributions of de-
grees of nodes between the Union of the original graphs and the Union of the released graphs
under our mechanism and TmF mechanism. We generate the Union of the original graphs then
the Union of the released graphs. Each edge in these Unions is weighted by the number of times
it appears in the graphs. For example, an edge that appears in 35 graphs, its weight in the Union
is 35. We create two lists of edges W∪ containing all the edges and their weights in the original
Union andW ′

∪ for the edges of the Union of released graphs,

DK L (W ′
∪ | |W∪) =

�
�
�
�
�
�
�
�

∑
e ∈EW ′∪

W ′
∪[e] × loд

W ′
∪[e]

W∪[e]

�
�
�
�
�
�
�
�

, (10)

where EW ′
∪

are all the edges listed in listW ′
∪ andW ′

∪[e] is the weight of edge e .
For the second KL Divergence, we generate the weighted Intersections of the original and the

released graphs. Then we create two listsW∩ andW ′
∩ containing the edges that appear in at least

one of the two Intersections. The weight of each edge inW∩ is the number of times it appears in
the original graphs, while its weight inW ′

∪ is the number of times it appears in the released graphs.

DK L (W ′
∩ | |W∩) =
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∑
e ∈EW ′∩

W ′
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. (11)

In Figure 11(a), KL Divergence of Union graphs under the TmF mechanism is much higher than
those under the BP mechanism for K = 3, 4, and 5. That is because TmF adds and removes a large



Fig. 11. KL Divergence for Union and Intersection graphs. (The above values in horizontal axis are the values

of ϵ for our algorithm. The bottom values represent coe f for TmF mechanism.)

number of edges all over each graph, and all these manipulations affect the Union graphs, leading
to this high KL Divergence for TmF. However, our mechanism focuses on manipulating the edges
that create high correlated subgraphs. All other edges are not affected by our algorithm; hence,
the KL Divergence under our mechanism is much smaller than the KL divergence of TmF.

In Figure 11(b), we see that KL Divergence for TmF is smaller than KL Divergence for our algo-
rithm. This chart proves the motivation for this work. As we have explained, using a DP mechanism
on sequentially released graphs will cause the injection of much noise, as shown in Figure 11(a).
Still, most of the noise disappears when generating the released graphs’ Intersection, which may
lead to a serious privacy breach.

We also notice from the two charts in Figure 11 that a higher K leads to a higher KL Divergence,
which means more privacy and less utility. It can be explained as a result of adding a high number
of edges for each sampled subgraph that should be added to K = 5 nodes, for example, compared
to K = 3.

7.4 Centrality Measures

The majority of the studies on social networks focus on extracting the most important individu-
als (vertices) in the network. We will prove that the effect of our mechanism on the list of most
important individuals is negligible.

To find the most important individuals, we study the centrality of the vertices, and according
to the purpose of each study, we choose the type of centrality measures. Linton C. Freeman said
in 1978 [19]: “There is certainly no unanimity on exactly what centrality is or on its conceptual
foundations, and there is little agreement on the proper procedure for its measurement,” which is
still true today. However, we can define it as a measurement of the extent to which an individual
interacts with other individuals in the network. We compare the 100 most important nodes of the
original graphs, the BP version, and the TmF version based on four centralities:

• Degree: It is the number of vertices at a distance one for each vertex. In our case, where the
graph is a simple undirected graph, we can define the degree simply as the number of edges
connected to each vertex. The degree centrality [9] of a vertex v is defined asCD = deд(v ).
In many social studies, people with the most connections are the most important individuals
in the network.

• Farness: The farness of a node v is the sum of all shortest paths of v to all other nodes.

The closeness [44] is the reciprocal of the farness : C (v ) =
1∑

y d (y,v )
, where d (y,v ) is the



Fig. 12. Number of common nodes for the 100 most important nodes based on four centralities.

distance between vertices v and y. In this case, the most important vertices are the closest
ones to all other nodes. Thus, we can rely on these individuals to spread information to all
other nodes sequentially.

• Betweenness [1]: This centrality quantifies the number of times a vertex occurs on a geo-
desic; in other words, it is the number of times a vertex appears in the shortest path between
two other nodes.

This centrality was proposed by Freeman [18], and his idea was that actors who exist
between other individuals might control the interactions between these individuals. Then,
this centrality quantifies the control of a vertex on the communication of other vertices.
Therefore, in this case, the most important individuals have a high probability of occurring
in the shortest path of two vertices randomly chosen.

The betweenness centrality of vertex v is defined as CB (v ) =
∑

i<j

spi j (v )

spi j
, where spi j is

the number of shortest paths between vertices i and j, and spi j (v ) is the number of shortest
paths between vertices i and j that pass through v .

• Eigenvector [8]: This centrality measures the influence of the vertex in the graph. It depends
on the number and the quality of the connections. Therefore, a vertex v1, with number of
connections less than a vertex v2, may outrankv2 if the quality of its connections is higher.
The centrality score of vertexv can be defined as: xv =

∑
i ∈N (v ) xi =

∑
i Avixi , where N (v )

is a set of the neighboring nodes of v , A is the non-negative adjacency matrix of the graph.

The main idea of releasing multiple graphs sequentially instead of releasing just one graph is
to improve the utility of the released data. For this reason, we compare the 100 most important
nodes between each graph and its released versions to measure each graph’s utility instead of just
the Union and the Intersection graphs. Then we count the common nodes in these 100 nodes to
determine the number of most important nodes unaffected by the anonymization mechanism.

In Figure 12, we compute the mean of the common nodes counts for all the graphs in each
release. We consider this mean as a measure of utility for the set of released graphs. The number
of common important nodes of our algorithm for K = 3, 4, and 5 are incredibly close; then, we
choose to use the number of common important nodes for just K = 4. Figure 12(a) shows that our
algorithm highly preserves the most important nodes. Approximately more than 90% of the most
important nodes are preserved in our algorithm’s released graphs. While in Figure 12(b), we see
that the algorithm does not preserve most of the important nodes, especially for coe f = 0.5. That
changes when coe f increases, but in most cases, our utility is still much higher than the utility
provided by TmF. We can explain that difference in utility due to focusing just on manipulating



the edges related to particular subgraphs (in our experiments, the high correlated subgraphs) we
aim to protect, while the TmF mechanism is manipulating edges all over the graph.

8 CONCLUSION

This article has proposed, implemented, and evaluated a BP mechanism to provide privacy for se-
quentially released graphs. We have proved that DP cannot ensure strong privacy for subgraphs in
an intersection of several releases. Then we have proposed our solution based on the BP definition.
In the experiments, we have proposed a method for the data owners to help them calibrating the
tradeoff of privacy and utility of their graphs. We have proved that our mechanism preserves the
graphs’ utility better than a DP mechanism and provides strong privacy for subgraphs.

In our future work, we will focus on the online approach instead of the offline, where we have
to deal with each instance based on past instances without any info about future instances. We
will also study the online model’s robustness against other types of attacks than the background
knowledge represented in this article. The other types of attacks could be degree-trail or the sce-
nario that the attackers are presented in the graph and try to identify themselves and then identify
other related to their node in the graph.
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