
Synchronizing Game and AI Design in PCG-Based Game
Prototypes

Henri Bomström
henri.bomstrom@oulu.fi

University of Oulu
Oulu, Finland

Markus Kelanti
markus.kelanti@oulu.fi
University of Oulu

Oulu, Finland

Jouni Lappalainen
jouni.lappalainen@oulu.fi

University of Oulu
Oulu, Finland

Elina Annanperä
elina.annanpera@oulu.fi

University of Oulu
Oulu, Finland

Kari Liukkunen
kari.liukkunen@oulu.fi
University of Oulu

Oulu, Finland

ABSTRACT
Procedural content generation (PCG)-based game design aims to
reach a new way of playing games by focusing gameplay around
algorithmic game content generation. However, positioning inter-
action with PCG systems and generated content to the center of
player experience poses design challenges for both game design
and AI design. In order to create the wanted affordances, rich con-
textual information is required to make informed decisions on the
generated content. While previous research has presented excellent
developments on PCG’s possibilities, further considering context
and affordances in the early stages of prototyping may aid designers
reach these possibilities in a more consistent manner. This study
is set to discuss how context, affordances and the game’s overall
design can be considered during the prototyping process of PCG-
based games. Misaligned game context and affordances can result in
deeply rooted design issues that may later manifest as subpar game-
play experiences and increased development effort. These emergent
issues are examined through a post-mortem case study to produce
an extended PCG-based design process, featuring actionable steps,
that takes context, affordances, and the game’s overall design into
account through meaningful play.

CCS CONCEPTS
• Applied computing→ Computer games.

KEYWORDS
PCG, PCG-based game design, Prototyping, Video games, Video
game design

ACM Reference Format:
Henri Bomström, Markus Kelanti, Jouni Lappalainen, Elina Annanperä,
and Kari Liukkunen. 2020. Synchronizing Game and AI Design in PCG-
Based Game Prototypes. In International Conference on the Foundations of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FDG ’20, September 15–18, 2020, Bugibba, Malta
© 2020 Association for Computing Machinery.
ACM ISBN xxx-x-xxxx-xxxx-x
https://doi.org/10.1145/1234567.8901234

Digital Games (FDG ’20), September 15–18, 2020, Bugibba, Malta. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3402942.3402989

1 INTRODUCTION
Procedural content generation (PCG) refers to automatic content
creation with algorithms [34]. Commercial digital games have fea-
tured PCG in limited roles of design throughout the history of
digital games [37]. Early motivations for PCG, such as variability
in content, replayability and assistance in human creativity, remain
accurate to this day [23]. Moreover, content generation can provide
unique benefits that would otherwise be unfeasible to implement,
such as an aesthetic of exploring an endless world. However, by
utilizing PCG in a narrow design role the player’s core gameplay
experience generally stays the same [25].

PCG-based game design is an iterative design process that aims
to reach a new way of playing games by focusing gameplay around
content generation. By allowing players to control aspects of con-
tent generation through game mechanics, they are able to form
strategies around content generation, making gameplay revolve
around it. [6, 25] However, binding content generation to game
mechanics causes design challenges for both game design and AI
design as the act of designing games shifts from hand authoring
player experiences to creating ranges of meaningful content with
algorithms [25]. The challenge in content generation remains to
produce content that is both novel and valuable, matching the
design task at hand [3, 19, 32].

Game design, a part of game development, usually begins with
an idea that is refined into a prototype [2, 8, 11, 16–18]. Prototypes
are used to evaluate a game’s concept by creating mock-ups that
demonstrate core game mechanics and functionality. PCG-based
games can be challenging to prototype as their core gameplay, per
definition [25], revolves around content generation. Instead of de-
signing the game and its AI system in vacuum, the design phases
are tightly coupled through the context provided by game design
– in which the AI system’s decisions need to make sense in – and
the affordances based on the AI system’s capabilities that would
otherwise be unattainable [6, 25]. However, disjointed context and
affordances can result in catastrophic failures [16] that leave the
game in an unplayable state and result in a greater overall develop-
ment effort.

Affordances, context and the game’s overall design should be
taken into account when designing PCG systems [19, p. 2]. However,

https://doi.org/10.1145/3402942.3402989
https://doi.org/10.1145/3402942.3402989


it is not clear how they should be taken into account. Furthermore,
there is a void in detailing the process of formalizing designer
knowledge in PCG-based game design. This paper i) provides an
initial proposition for taking context and affordances into account
during the design process and ii) extends the PCG-based game
design process with actionable steps. This paper is organized as a
case study [38], where the emergent problems of a PCG-based game
prototyping process are used to frame the question of how context
and affordances should be taken into account through practice. An
initial version of the extended design process was created during
the prototyping case, which was further modified to include the
proposed solutions for considering affordances and context during
design. Furthermore, theories such as meaningful play [17, chapter
3, p. 1-6] and essential experience [18, p. 20-21] were used to propose
additional steps in order to better consider affordances and context
during the design process.

The rest of this paper is structured as follows. First, the rele-
vant background for prototyping PCG-based games is introduced,
followed by the case study section describing the methods used,
the design process behind the PCG-based game prototype, and the
emergent problems raised. These problems are then discussed by
focusing on the role of context and affordances in PCG-based game
design. Afterwards, the results of this study are presented and dis-
cussion provided on the lessons learned, limitations, and the need
for future research. Finally, conclusions are presented.

2 BACKGROUND
2.1 Procedural content generation
Content generation has deep roots in analog games and the early
motivations of replayability and assisting creativity map well to
contemporary PCG [23]. Earlier digital games such as Elite [1]
and .kkrieger [31] used PCG to great effect in circumventing hard-
ware restrictions through deterministic PCG [34] by expanding
content from minimal representations. Determinism in PCG refers
to the relationship between the inputs and outputs of an algorithm
– whether it always produces the same output with the same in-
puts. Stochastic PCG on the other hand produces varying content
between runs. Varying game content has been used to improve
replayability [23, 34] and to create an aesthetic of exploring endless
worlds in games such as Rogue [7], Diablo [4], and Minecraft [14].
However, these algorithms are not random, despite PCG sometimes
being synonymized with random generation. The produced content
still has structure and is in some way selected as purely random
content would be unplayable [33].

Sometimes the produced content is undesirable or not even
playable. Producing coherent and playable content is crucial for
player experience [34] and producing unplayable content has been
aptly regarded as a catastrophic failure [39]. However, some content
is more tolerant to failures than others. The necessity of content,
whether the player needs the specified content to progress, can be
used to gauge whether failures are tolerated and to what extent.
Similarly, the selected approach, such as constructive or generate-
and-test, affects how generation itself is viewed. Constructive ap-
proaches create content instances in one pass, making sure the
output is correct. Generate-and-test approaches on the other hand
create content instances and test them against some criteria based

on the instance’s properties. [34] Furthermore, generate-and-test
approaches can be further divided into more popular and novel
approaches such as search-based [34], utilizing evolutionary algo-
rithms, and experience-driven PCG [36], employing player models
to guide generation. The selection of approach depends on how the
selected algorithm should behave as a constructive approach trades
novelty for predictability and performance. With this on mind, PCG
algorithms can be further divided into online and offline methods
depending on whether generation occurs during gameplay [34].
Search-based approaches are preferred for offline generation when
execution time is not as big of issue, while other approaches are
preferred for online generation [37].

Most search-based solutions utilize evolutionary algorithms to
optimize content, where a population of solutions is evaluated
against some criteria. Each content class is processed via its geno-
type, the genetic structures which are operated on by the algorithm,
and phenotypes, the end result of how a genotype "looks" when
evaluated. Genotypes can be though of as the instructions from
which a level is built and the phenotype can be thought of as the
complete level. Content representation is an important issue as
it shapes the algorithm’s search space, the group of its possible
solutions. [34] Next, evaluation functions assign fitness to each
instance and the algorithm ranks them according to it. Afterwards,
the population starts to reproduce with operators such as selection,
crossover and mutation and the population is replaced with the
newly created one. [13, p. 8-9] This process is repeated as many
times as needed or until some criteria is met. However, search-
based methods cannot guarantee a completion time or the quality
of the result. Evaluation functions consume most of the algorithm’s
runtime, and evaluation methods such as simulation can be costly.
[34, 36]

From a design point of view, content generators themselves can
be seen to fall into optimization, constraint satisfaction, grammatic
generation, content selection or constructive approaches, and se-
lecting the correct one is an important design choice [22]. Each
approach usually presents at least some kind of constraints over
content generation to represent designer knowledge on playabil-
ity and player experience. Constraint satisfaction in itself is also
a relatively popular approach as it allows the designers to specify
content in logical statements, resulting in a space of solutions that
fulfils the criteria set for content. Examples of constraint driven
approaches can be seen in the Variations Forever game [20] and
the Tanagra [27] mixed-initiative level generation tool. Finally, a
grammar based approach can be seen in Launchpad [28], the con-
tent generator used by games such as Rathenn [24] and Endless
Web [25].

Content generators should be evaluated to understand the gener-
ator’s capabilities and whether it actually produces content match-
ing the designer’s intent [19, p.215-217]. Evaluating generators can
be challenging as most of the existing PCG-systems are tailored
to the needs of individual games [32]. However, generator eval-
uation mostly focuses on generative space, the eventual outputs
that the generator will produce given certain parameters [21], and
expressive range, the style and variety of level the generator can
produce [26]. A generator’s expressive range can be evaluated by
determining the appropriate metrics, generating content, visualiz-
ing its generative space, and by analyzing the impact of parameter



changes [26]. Furthermore, there are multiple positive attributes
shared by all generators: speed, reliability, controllability, expressiv-
ity and diversity, and creativity and believability [19, p. 6-7]. Lastly,
it should be made sure that the generator is both interfaceable and
controllable [32] for both players and designers, depending on the
selected approach on control over the generator [22].

2.2 Procedural content generation-based game
design

PCG-based games closely tie their core game mechanics to the
underlying content generator in a way that profoundly affects the
game’s dynamics and aesthetics [25]. Currently, there are only a
few famous examples of PCG-based games. As an example, Galactic
Arms Race [9] utilizes online content generation to create arma-
ments for combating space ships through player statistics, allowing
players to steer generation through behaviour. However, the indi-
rect control over content generation limits how deeply players can
utilize generation for different strategies. A different approach is
selected for Endless Web [25], perhaps the most famous example
in PCG-based games, as players are provided direct control over
generated content while providing visibility on the generator’s in-
ternal state. In this way players are able to steer content generation
to a favorable direction and form strategies around it in order to
reach their goals.

The PCG-based game design loop (figure 1) describes an iterative
design process where game design and AI design are worked in
tandem. Entering the design process can be done from either side
as AI design affords possible core game mechanics, while game
design provides the necessary contextual information for the AI
system’s decisions. Game design provides the context in which the
AI system’s decisions need to make sense in and the AI system in
return creates affordances to be used through game mechanics in
order to form player strategies around content generation. Both
game design and AI design are affected by domain knowledge such
as AI architectures, game design convenientions and knowledge
domains. Early iterations are encouraged as both design activities
need to be fleshed out as they feed each other. [6, 25] PCG systems
afford unique game dynamics when leveraged to a high enough
degree [22] and can lead to a new way of playing games or to
new game genres [6]. However, in order to leverage PCG to its
full degree, the AI being utilized must support player exploration
without merely creating an illusion of intelligence. [6]

Figure 1: The PCG-based game design process [6, 25] is an
iterative practice that combines game design and AI design.

The mechanics, dynamics and aesthetics (MDA) framework [10]
specifies that designers approach games throughmechanics, dynam-
ics and aesthetics. Players on the other hand experience gameplay
in reverse order through the game’s aesthetics, dynamics and me-
chanics (figure 2), making game design an indirect way of creating
experiences. Game mechanics represent the game’s components at
the level of data structures and algorithms. When players interact
with these rules, or the rules interact with each other, dynamics arise
to represent the system’s behaviour during play. Finally, aesthet-
ics depict the "desired emotional responses" elicited by the player
during interaction with the game system [10] – representing how
players experience the game and whether they found it meaningful
[6]. This paper uses the design lense of essential experience [18,
p. 20-21] as a tool to derive what experience the player is to have,
what is essential to that experience, and how can that experience
be captured.

Figure 2: The mechanics, dynamics and aesthetics frame-
work [10].

The indirect nature of designing PCG-based games is further
emphasized by the lack of authorial control over player experiences.
When compared to traditional game design, designing experiences
via hand authored content shifts to creating ranges of meaning-
ful content with algorithms as interaction with generated content
is in the centre of the player’s experience [6, 22, 25]. There are
also several different trade-offs that can be made, such as how de-
signer knowledge is represented in the generator, in which stage
the generation occurs, how players interact with the generator and
whether the generator purposefully generates certain experiences
[22]. However, there are design metaphors such as the tool, mate-
rial, designer and expert that help choose the correct approach for
utilizing PCG in game design [12].

2.3 Context, interactivity and meaning
Creating meaningful content is challenging. Meaningfulness is a
concept that is often discussed with content generation as it helps
to understand generated content in terms of gameplay experiences.
Without meaning provided by context, games can feel empty and
hollow, despite being filled with interactivity and varying generated
content [3, 32]. In Super Mario [15], for example, the player may
complete the level while jumping constantly. However, the act of
jumping in itself is not very exciting without gaps and enemies [29].
By providing context for actions, content can change the meaning
behind jumping.

A game’s design manifests as a space of possibility that defines all
the possible actions andmeanings that can emerge during gameplay.
This interactive space provides a context where meaning is created.
The relationship between the player’s action and the system’s re-
sponse assigns meaning to the action. Meaningful play occurs when



this relationship is both discernable and integrated to the game’s
overall context. Player actions can be seen to be discernable when
the game system communicates the outcome of a player’s action
in an understandable way. Similarly, player actions are integrated
when the system communicates their effects on the rest of the game.
[17, chapter 3, p. 1-6]

Together game design and AI design, with their context and
affordances, form the game’s system and its space of possibility,
fromwhich meaning and gameplay experiences are formed through
interaction. Designed interaction has an internal structure and a
context that assigns meaning by providing a choice for the player,
who in turn takes action, which turns into an outcome [17, chapter
6, p. 1-14]. Furthermore, game systems consist of objects, attributes,
actions, relationships and spaces. Objects refer to the system’s
parts and attributes describe their properties. Objects can perform
certain actions within the system and affect each other through
relationships. Lastly, the system operates in a certain space. [8, 17,
18]

Both context and the relation between player action and sys-
tem outcome shape the meaning conveyed during gameplay. As
interaction with AI systems is in the heart of PCG-based games,
it is essential that various parameters for different generative al-
gorithms are meaningfully based on player actions [32] and that
players are able to understand the effect they have on the game
world [25]. Additionally, player engagement with PCG offers ways
for changing the meaning conveyed by games such as directly ma-
nipulating a game’s context [5] or allowing players to find different
approaches through challenges by navigating the game’s generative
space [24].

2.4 Digital prototypes
Game design processes begin by stating an idea or a solution to
a design problem that the designer wishes to explore. The second
step is to formalize said idea or solution by writing it down or
creating a prototype in order to realize the idea closer to practice.
Once the idea has been formalized, it needs to be tested based on
various criteria if it solves the design problem at hand or needs to be
discarded. This is done by evaluating test results and determining
whether the proposed solution is good enough – if not, then start
again. [8, 17, 18]

Game design is a distinct part of the whole game development
process. The game development life cycle (GDLC) features three
main phases: pre-production, production, and post-production [2,
11, 16]. However, Ramadan & Widyani [16] provide a finer-grained
approach (figure 3) that also considers prototype maturity. The
authors present six steps: initiation, pre-production, production,
testing, beta, and release. The steps are divided into production
cycles that consist of pre-production, production and testing phases.
The goal of initiation is to produce a rough concept of the game,
followed by a prototype for assessing the proposed concept in the
pre-production step. The prototypes are further refined in the pro-
duction step, where formal details and refinement into a complete
prototype take place. The testing, beta, and release steps focus on
ensuring usability and playability and delivering the final product to
the public. Their model situates game design to the pre-production
phase of game development. This paper is scoped to the initiation

and pre-production phases of the GDLC where design concepts are
formed and digital prototypes built to assess game design concepts.

Figure 3: The game development life cycle [16] consists
of six steps: initiation, pre-production, production, testing,
beta, and release. Prototypematurity stages, the foundation,
structure, formal details and refinement, are represented un-
der their respective steps.

3 CASE STUDY: ACTIONABLE STEPS IN
PCG-BASED GAME DESIGN

This study is conducted as a post-mortem case study [38] to high-
light the emergent problems faced during a PCG-based game proto-
typing process. The original goal of this study was to help designers
formalize their ideas into prototypes during the first steps of the
GDLC [16] by extracting actionable steps for the PCG-based game
design process. Preliminary extensions were made to the PCG-
based game design process (figure 1) based on previous literature,
e.g. [6, 10, 17–19, 25, 34] and further modifications included the
"design lense" of essential experience [18, p. 20-21] and the theory
of meaningful play [17, chapter 3, p. 1-6].

The resulting artefact was evaluated by using it to create a proto-
type PCG-based game. An artificial evaluation setting was selected
with unreal users, real systems and real problems [30] to achieve a
summative view of the artefact’s efficacy. Evaluation with real users
was deemed unfeasible with the artefact’s level of maturity and the
availability of game designers, but real problems and real systems
could be used by prototyping a PCG-based game. The evaluation
observed the design process itself – while remaining indifferent to
what is being designed.

The prototype is a simple dungeon crawler that mimics Endless
Web’s [25] portal mechanics, allowing transitions in generative
space through game mechanics. In this case, the player transitions
through portals that affect the number of enemies spawned, en-
vironmental hazards, number of rooms, corridor tiles, amount of
available food, and impassable terrain. The player is encouraged to
navigate the game’s expressive range to find goals hidden to certain
combinations of generator parameters. The game’s AI system uses
online search-based methods to create 2D levels that are evaluated
by utilizing the portal controlled parameters in combination with
designer specific metrics such as level traversability, average room
size, map grid cell usage and room density.

The prototype was constructed over two iterations by follow-
ing the preliminary version of the extended design process. The
first iteration focused on conceptualizing the game’s idea and de-
sign in the form of mechanics, dynamics and aesthetics, while
employing the design lense of essential experience. The game’s
PCG system was integrated during the second iteration and the
content generation-based mechanics were implemented alongside



it. However, most of the produced levels resulted either in cata-
strophic failures or otherwise subpar level instances. During AI
design, sensible ranges for individual generation parameters had to
be tweaked iteratively so that the produced content supported the
wanted aesthetics. In practice, designer specific evaluation func-
tions were written to ensure that content fulfils the requirements
presented in the game design phase. The generator’s controllability
was adjusted by visualizing its expressive range through measuring
each level by its leniency and linearity similarly to how expressive
range was visualized for the Launchpad generator [26, 28]. In order
to reach a playable state, the levels produced by the AI system had
to be playtested shortly. Gameplay feedback was found to be crucial
during the design process, as the need to test the current design
arose during both the game design and AI design phases.

An early stage prototype was completed by utilizing the ex-
tended design process. However, emergent problems were faced
during transitions between game design and AI design that could
not be resolved solely by redesigning existing parts of the process.
By following the proposed process as is, the game’s context and
affordances were not taken into account well enough, causing is-
sues with parameterizing algorithms, catastrophic failures, and mis-
matching content. While the levels were playable and fulfilled their
requirements on paper, they did not produce the wanted gameplay
experiences and felt disconnected from the players actions. Correc-
tive measures were taken to restructure the generated content by
examining the relationships between different level elements.

As an example, the prototype was designed to elicit an aesthetic
of discovery and a dynamic of opponent play. To put it simply,
the player would explore an endless selection of different levels
and fight monsters while at it. However, it was discovered that the
produced content lacked meaning. A higher level of structure was
missing from produced content as level elements were not con-
nected in any meaningful way. Evaluation functions were revised
to promote exploration by taking into account average walking
distance between starting location and portals, placing beneficial
items in further away rooms, positioning environmental hazards to
create chokepoints, and by having enemies guard items and portals.
However, this approach is not optimal as it focuses on content at-
tributes directly, without taking into account the larger context of
the game. Instead, content can be designed and evaluated through
the meaning it creates and the experience it produces. Nelson &
Smith experienced a similar problem [19, p. 153-156] with produced
levels and note that the overall design goal can be approached
through player experience instead of focusing multiple evaluations
on specific content instances. Furthermore, the authors note that
content’s properties can be expressed through their intended usage,
for example through the gameplay a level produces.

The problems presented in this paper are not claimed to be new,
as the development of games such as Mismanor and Prom Week
present examples of mismatching affordances and game design re-
quirements. Furthemore, it has been explicitly noted that AI design
and game design should be iterated early on as content genera-
tion based mechanics cannot be implemented without designing
AI, which in turn cannot be designed without a rough concept of
the game system. [6] However, in this case, the aspect of interest
becomes when these problems surface and how they can be ad-
dressed. When designers begin creating prototypes, they can run

into problems with context and affordances at the very first stage
of prototyping and addressing them as soon as possible would be
beneficial in preventing escalated design issues further down the
line.

4 SYNCHRONIZING GAME DESIGN AND AI
DESIGN

There is no silver bullet for in-depth consideration of context and
affordances for every possible design process – yet. However, the
meaning created through interaction with the resulting game sys-
tem makes it possible to validate whether context and affordances
have been taken into account well enough and to constrain gen-
eration to fit the game’s overall frame of reference. The extended
PCG-based game design process (figure 4) visualizes how game con-
text and AI affordances can be synchronized. On a high level, the
proposed design process can be thought to operate on two levels.
On the first level, game design and AI design are used to construct
the game’s system. The second level examines the resulting sys-
tem’s behaviour and the meaning it produces. The proposed design
process is based on the existing PCG-based game design process
(figure 1) and features additions and changes, indicated with a gray
color, that aim to help designers create early stage prototypes.

The steps on the game design side (figure 4) are presented through
the MDA framework. As a modification, the "design lense" of es-
sential experience [18, p. 20-21] has been added to the aesthetics
component. The lense is used to set a goal for the player’s expe-
rience and can be used to guide the overall gameplay experience
towards this goal. In this case, the lense operates by determining
the aesthetics that contribute to the wanted experience, which in
turn further drive the search for supportive dynamics and mechan-
ics. An example of this would be to set the essential experience as
exploration and derive an aesthetic of discovery out of it. Discovery
can be supported by the dynamic of building strategies around
content generation, which in turn can be achieved through online
and directly controllable approaches to PCG [22].

The initial game design derived through mechanics, dynamics
and aesthetics serves as context for AI-afforded mechanics. The
boxes containing context and affordances have been expanded to
describe what game design and AI design provide for each other.
The explanations serve as a reminder that the counterparts share
a common goal of creating a coherent whole. In this way context
informs AI design of what should be generated and within which
constraints. Affordances on the other hand provide an explanation
on how generation occurs within constraints.

The steps for AI design side (figure 4) represent a search-based ap-
proach. Based on the provided game context, content representation
and data structures are created, evaluation functions designed, and
solutions searched. After a generation pipeline has been established,
the generator should be evaluated to determine whether produces
content matching the designer’s intent. The selected approach to
PCG doesn’t have to be search-based and can be substituted with
other approaches as long as the resulting generator provides the
necessary inputs and outputs, can be controlled to a reasonable
degree, and, at least preferably, supports evaluating its attributes.

When the produced game system reaches a playable maturity
level, it becomes increasingly important to study its behaviour and



Figure 4: The extended PCG-based game design process features additions and changes, indicated with a gray color, that aim
to help designers create early stage prototypes.

the resulting gameplay experience. The first stage prototype, the
foundation, can be reached by first utilizing mockup content to
ensure the game is mostly playable. When transitioning to the
second prototyping stage, the structure, a functioning PCG-system
is required to demonstrate core gameplay and core game mechanics.
However, interaction with the resulting system should also support
the wanted gameplay experience and produce meaning.

Meaning can be used to bring the afforded game mechanics
closer to the game’s context. As an example, the levels created by
the prototype in section 3 suffered from a lack of meaning as they
seemed disconnected from the game’s overall frame of reference.
The prototype featured a mechanic of stepping through colored
portals that alter generator parameters affecting the structure of
generated levels. The portals took the player to another level but it
was not clear why a specific portal should be chosen or if the action

had any effect due to the natural variance of generated levels. As an
example of establishing meaning, the portal mechanic can be made
more discernable – to better communicate the outcome of an action
– by changing the color of floor, wall and enemies based on current
location in the generator’s search space [25]. Since all generated
levels differ from each other slightly, the change in the system’s
state can be explicitly communicated by changing content coloring
or through other suitable means. Additionally, the portal mechanic
can be made more integrated – to better communicate how the
action affects the rest of the game – by having the portals indicate
how close the player is to the next goal, allowing players to gauge
whether progress has been made. Furthermore, the goal indication
would also assure the player that the goal will be eventually reached
when enough portals have been traversed.



To summarize, the prototyped game system may consist of any
configuration of generated content as long as interaction with it
produces meaningful play and supports the wanted gameplay expe-
rience. Game design and AI design can be thought of as two parts
that form a whole. Interaction with the created game system can be
used as a validating mechanism as it should result in meaningful
play and support the wanted gameplay experience. The more ma-
ture the prototype becomes, the more the system’s behaviour and
meaningful play matters. If the system does not support the wanted
gameplay experience or create meaning, the two design counter-
parts can be reiterated and the generated content constrained to fit
the game’s overall frame of reference.

5 DISCUSSION
Inspired by the emergent problems of a PCG-based game proto-
typing process, this paper has presented actionable steps that may
better allow designers to consider game context and AI affordances
during prototyping efforts of PCG-based games. The results are
presented as an extended version of the PCG-based game design
process that attempts to explicate the first steps taken between the
initiation and pre-production phases of game development, and
provides a way to consider game context and AI affordances during
prototyping efforts.

Traditional prototyping approaches can be ill-fitting for PCG-
based games as integrating content generators can change the way
prototypes are played [3]. The first prototyping stage, the foun-
dation, aims to validate whether the current idea provides a good
foundation for a game and is tested via mockups [8, 16], and may
not yet require a functioning AI system. However, this approach
serves to validate secondary gameplay, such as combat with ene-
mies, without realizing the unique design affordances of PCG. The
second prototyping stage, the structure, validates whether the func-
tioning implementation works as intended. However, it might not
be enough to only strive for functioning prototypes. Despite the
prototype in section 3 working as intended on paper, the prototype
did not support the wanted aesthetics and overall gameplay experi-
ence as the game’s context and the provided affordances did not
match. In addition to aiming for a functional prototype, an extra
step should be taken towards synchronizing the game’s context
and the provided AI affordances.

The act of generating content in itself can be seen as some-
what trivial as the real challenge remains in generating meaningful
content [3, 32]. Unless the generated content matches the game’s
overall frame of reference, it may feel disconnected from the rest of
the game and negatively impact player experience. With PCG-based
games, players take actions to influence content generation through
game mechanics. The outcomes of these actions are experienced
through the generated content instances. However, generated con-
tent is likely to better match the game’s context when the core
mechanics are designed to be both discernable and integrated. In
other words, game context and AI affordances may be synchronized
by communicating the effect of player’s action in an understandable
way and by communicating the action’s outcome on the rest of the
game.

The proposed extensions (figure 4) in the PCG-based game de-
sign process were added to help traverse the path from an idea to an

implementation and to take the additional step towards meaning-
ful play. Game design, providing context, and AI design, affording
new mechanics, have a common goal to form the game’s system.
Interaction with this system through mechanics results in dynam-
ics [10] and creates meaning through the relationship between
player actions and the system’s outcomes [17, chapter 3, p. 1-6].
After constructing a functional prototype, meaningful play acts as
a validating mechanism for the resulting game system’s behaviour.
Through this mechanism, designers can constrain content gener-
ation to fit the game’s overall frame of reference and help weigh
the technical choices for different design approaches. By consider-
ing context and affordances through meaning early on, gameplay
and design issues may be avoided further down the development
process.

This paper takes part in the discussion on how game design
practices can be examined in further detail through the relationship
between game context and deeply integrated AI components. The
proposed solution differs from previous research in both perspective
and relation to the GDLC as a whole. Despite previous research’s
excellent work with PCG-based games and more mature prototypes,
providing concrete tools for early stage prototypes might still pro-
vide additional insight on how traditional prototyping approaches
fit PCG-based games. Furthermore, previous research has provided
laudable discussion on meaningful content (e.g. [6, 24, 25]). How-
ever, meaningless content has been mostly discussed as a problem.
In this paper, meaning has been seen as a tool that can be used to
strive for better prototypes.

The problems presented in this paper are not claimed to be new or
specific to PCG-based games. However, the presented problemsmay
also be encountered in this domain early on during the prototyping
process. Demonstrating core game mechanics and functionality in
PCG-based prototypes is challenging as mockups fail to provide
the necessary support required for player engagement with PCG.
In the presented case, the design processes’ open ended steps were
found to be effective in guiding the first design iterations and vali-
dating the resulting system’s behaviour through meaningful play.
However, further empirical evidence is required to draw stronger
conclusions.

For future research, the proposed extensions to the PCG-based
game design process must be subjected to further evaluation as
the artefact is a socio-technical solution and requires human inter-
action to prove its effectiveness [35] in solving problems. In the
presented case, the design processes’ open ended steps were found
to be effective in guiding the first design iterations and validating
the resulting system’s behaviour through meaningful play. How-
ever, the next step in future research is to subject the proposed
extensions to further empirical evaluation in a practical context.
Further evaluation should determine how the extended process
performs in PCG-based game prototyping and whether it helps
in working with PCG during the design process. Additionally, the
resulting prototypes should be used to study player engagement
with prototype PCG systems and determine the role of meaning on
improving player experience in PCG-based games. Lastly, further
studies should be conducted on how traditional prototyping models
fit PCG-based games and how meaning affects these games during
the different stages of the GDLC. Despite limitations, this paper
has offered insight on prototyping PCG-based games and on how



context, affordances and meaning can affect prototyping during the
first steps of the GDLC.

6 CONCLUSIONS
PCG-based game design poses unique challenges for both game
design and AI design. Originally, this paper’s goal was to extract
actionable steps for the PCG-based game design process. However,
emergent design issues were faced during prototyping that regarded
the unalignment of game design and AI design. This paper set out
to explore these issues through the concept of meaningful play.
The key discussion point of this study is that during prototyping
game design and AI design can be thought to form a whole, and
by interacting with the resulting game system, its functionality
can be validated through meaningful play. This paper contributes
to the discussion around PCG’s role in game design by examin-
ing it from a non-traditional perspective. The results of this paper
are presented as an extended version of the PCG-based game de-
sign process that features actionable steps and addresses the need
to consider game context, affordances, and the game’s overall de-
sign. The proposed solution can lower the required PCG-literacy
for designers and enthusiasts alike in translating their ideas into
functioning prototypes. However, the preliminary nature of the
proposed solution calls for further and varied evaluations before
being subjected to real world problems. Finally, this paper aids in
facilitating discussion on the nuanced relationship between game
design and deeply integrated AI elements, and how designers can
formalize their ideas to prototypes in practice.

ACKNOWLEDGMENTS
This study is supported by the ITEA3 VISDOM project and Business
Finland. The authors are grateful for this support as this study
would not have been possible without it. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
ITEA3 or Business Finland.

REFERENCES
[1] Acornsoft. 1984. Elite.
[2] Saiqa Aleem, Luiz Fernando Capretz, and Faheem Ahmed. 2016. Game devel-

opment software engineering process life cycle: a systematic review. Journal of
Software Engineering Research and Development 4, 1 (2016), 6.

[3] Calvin Ashmore and Michael Nitsche. 2007. The Quest in a Generated World.. In
DiGRA Conference.

[4] Blizzard Entertainment. 1997. Diablo.
[5] Michael Cook and Simon Colton. 2014. A rogue dream: Automatically generating

meaningful content for games. In Tenth Artificial Intelligence and Interactive
Digital Entertainment Conference.

[6] Mirjam P Eladhari, Anne Sullivan, Gillian Smith, and Josh McCoy. 2011. AI-based
game design: Enabling new playable experiences. UC Santa Cruz Baskin School
of Engineering, Santa Cruz, CA (2011).

[7] Epyx. 1980. Rogue.
[8] Tracy Fullerton. 2008. Game design workshop: a playcentric approach to creating

innovative games. (2008).
[9] Erin Jonathan Hastings, Ratan K Guha, and Kenneth O Stanley. 2009. Automatic

content generation in the galactic arms race video game. IEEE Transactions on
Computational Intelligence and AI in Games 1, 4 (2009), 245–263.

[10] Robin Hunicke, Marc LeBlanc, and Robert Zubek. 2004. MDA: A formal approach
to game design and game research. In Proceedings of the AAAI Workshop on
Challenges in Game AI, Vol. 4. 1722.

[11] Christopher M Kanode and Hisham M Haddad. 2009. Software engineering chal-
lenges in game development. In 2009 Sixth International Conference on Information
Technology: New Generations. IEEE, 260–265.

[12] Rilla Khaled, Mark J Nelson, and Pippin Barr. 2013. Design metaphors for proce-
dural content generation in games. In Proceedings of the SIGCHI conference on
human factors in computing systems. 1509–1518.

[13] Melanie Mitchell. 1998. An introduction to genetic algorithms. MIT press.
[14] Mojang. 2011. Minecraft.
[15] Nintendo. 1985. Super Mario Bros.
[16] Rido Ramadan and Yani Widyani. 2013. Game development life cycle guidelines.

In 2013 International Conference on Advanced Computer Science and Information
Systems (ICACSIS). IEEE, 95–100.

[17] Katie Salen and Eric Zimmerman. 2004. Rules of play: Game design fundamentals.
MIT press.

[18] Jesse Schell. 2008. The Art of Game Design: A book of lenses. CRC press.
[19] Noor Shaker, Julian Togelius, and Mark J Nelson. 2016. Procedural content gener-

ation in games. Springer.
[20] AdamM Smith and Michael Mateas. 2010. Variations forever: Flexibly generating

rulesets from a sculptable design space of mini-games. In Proceedings of the 2010
IEEE Conference on Computational Intelligence and Games. IEEE, 273–280.

[21] Adam M Smith and Michael Mateas. 2011. Answer set programming for pro-
cedural content generation: A design space approach. IEEE Transactions on
Computational Intelligence and AI in Games 3, 3 (2011), 187–200.

[22] Gillian Smith. 2014. Understanding procedural content generation: a design-
centric analysis of the role of PCG in games. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems. 917–926.

[23] Gillian Smith. 2015. An Analog History of Procedural Content Generation.. In
FDG.

[24] Gillian Smith, Elaine Gan, Alexei Othenin-Girard, and JimWhitehead. 2011. PCG-
based game design: enabling new play experiences through procedural content
generation. In Proceedings of the 2nd International Workshop on Procedural Content
Generation in Games. 1–4.

[25] Gillian Smith, Alexei Othenin-Girard, Jim Whitehead, and Noah Wardrip-Fruin.
2012. PCG-based game design: creating Endless Web. In Proceedings of the
International Conference on the Foundations of Digital Games. 188–195.

[26] Gillian Smith and Jim Whitehead. 2010. Analyzing the expressive range of a level
generator. In Proceedings of the 2010 Workshop on Procedural Content Generation
in Games. 1–7.

[27] Gillian Smith, Jim Whitehead, and Michael Mateas. 2011. Tanagra: Reactive plan-
ning and constraint solving for mixed-initiative level design. IEEE Transactions
on computational intelligence and AI in games 3, 3 (2011), 201–215.

[28] Gillian Smith, Jim Whitehead, Michael Mateas, Mike Treanor, Jameka March, and
Mee Cha. 2010. Launchpad: A rhythm-based level generator for 2-d platformers.
IEEE Transactions on computational intelligence and AI in games 3, 1 (2010), 1–16.

[29] Adam Summerville and Michael Mateas. 2016. Super mario as a string: Platformer
level generation via lstms. arXiv preprint arXiv:1603.00930 (2016).

[30] Ying Sun and Paul B Kantor. 2006. Cross-Evaluation: A newmodel for information
system evaluation. Journal of the American Society for Information Science and
Technology 57, 5 (2006), 614–628.

[31] .theprodukkt. 2004. .kkrieger.
[32] Julian Togelius, Alex J Champandard, Pier Luca Lanzi, Michael Mateas, Ana

Paiva, Mike Preuss, and Kenneth O Stanley. 2013. Procedural content generation:
Goals, challenges and actionable steps. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik.

[33] Julian Togelius, Emil Kastbjerg, David Schedl, and Georgios N Yannakakis. 2011.
What is procedural content generation? Mario on the borderline. In Proceedings
of the 2nd international workshop on procedural content generation in games. 1–6.

[34] Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and Cameron Browne.
2011. Search-based procedural content generation: A taxonomy and survey. IEEE
Transactions on Computational Intelligence and AI in Games 3, 3 (2011), 172–186.

[35] John Venable, Jan Pries-Heje, and Richard Baskerville. 2012. A comprehensive
framework for evaluation in design science research. In International Conference
on Design Science Research in Information Systems. Springer, 423–438.

[36] Georgios N Yannakakis and Julian Togelius. 2011. Experience-driven procedural
content generation. IEEE Transactions on Affective Computing 2, 3 (2011), 147–161.

[37] Georgios N Yannakakis and Julian Togelius. 2014. A panorama of artificial
and computational intelligence in games. IEEE Transactions on Computational
Intelligence and AI in Games 7, 4 (2014), 317–335.

[38] Robert K Yin. 2017. Case study research and applications: Design and methods.
Sage publications.

[39] Adeel Zafar and Hasan Mujtaba. 2012. Identifying catastrophic failures in offline
level generation for mario. In 2012 10th International Conference on Frontiers of
Information Technology. IEEE, 62–67.


	Abstract
	1 Introduction
	2 Background
	2.1 Procedural content generation
	2.2 Procedural content generation-based game design
	2.3 Context, interactivity and meaning
	2.4 Digital prototypes

	3 Case study: Actionable steps in PCG-based game design
	4 Synchronizing game design and AI design
	5 Discussion
	6 Conclusions
	Acknowledgments
	References

