

This is a pre-print of the original paper that appeared in EASE2020. Please cite the original

paper as Woubshet Behutiye, Pertti Seppänen, Pilar Rodríguez and Markku Oivo. 2020. Documentation of Quality Requirements in

Agile Software Development. In Evaluation and Assessment in Software Engineering (EASE’ 20). April 15–17, 2020, Trondheim, Norway.

ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3383219.3383245

Documentation of Quality Requirements in Agile Software

Development

Woubshet Behutiye†

M3S research unit

University of Oulu

Oulu Finland

woubshet.beutiye@oulu.fi

Pertti Seppänen

M3S research unit

University of Oulu

Oulu Finland

pertti.seppanen@oulu.fi

Pilar Rodríguez

M3S research unit

University of Oulu

Oulu Finland

 pilar.rogriguez@oulu.fi

Markku Oivo

M3S research unit

University of Oulu

Oulu Finland

 markku.oivo@oulu.fi

ABSTRACT

Context: Quality requirements (QRs) have a significant role in the

success of software projects. In agile software development (ASD),

where working software is valued over comprehensive

documentation, QRs are often under-specified or not documented.

Consequently, they may be handled improperly and result in

degraded software quality and increased maintenance costs.

Investigating the documentation of QRs in ASD, would provide

evidence on existing practices, tools and aspects considered in ASD

that other practitioners might utilize to improve documentation and

management of QRs in ASD. Although there are some studies

examining documentation in ASD, those that specifically

investigate the documentation of QRs in depth are lacking.

Method: we conducted a multiple case study by interviewing 15

practitioners of four ASD cases, to provide empirical evidence on

documentation of QRs in ASD. We also run workshops with two

of the cases, to identify important aspects that ASD practitioners

consider when documenting QRs in requirements management

repositories.

Result and conclusions: ASD companies approach documentation

of QRs to fit the needs of their context. They used tools, backlogs,

iterative prototypes, and artifacts such as epic, and stories to

document QRs, or utilized face-face communication without

documenting QRs. We observed that documentation of QRs in

ASD is affected by factors such as context (e.g. product domain,

and size) and the experience of practitioners. Some tools used to

document QRs also enhanced customer collaboration, enabling

customers report and document QRs. Aspects such as levels of

abstraction, the traceability of QRs, optimal details of information

of QRs and verification and validation are deemed important when

CCS CONCEPTS

Software and its engineering →Software creation and management

KEYWORDS

Quality requirement, documentation, agile software development,

non-functional requirements

1. Introduction

Quality requirements (QRs), also referred as non-functional

requirements, are prominent for the success of software projects

[11]. QRs define requirements regarding quality concerns that are

not covered by functional requirements (FRs) [24]. They describe

the quality properties required by a system to be developed such as

usability, reliability, portability and maintainability [36]. In agile

software development (ASD), where late changes in requirements

are welcomed to meet dynamic demands of businesses, QRs are

usually underspecified or undocumented, and not considered early

enough in the software development cycle as functional

requirements [26]. In such cases, their mistreatment may result in

project failure or loss [27].

 W. Behutiye et al.

The scientific literature of requirements engineering in ASD

reveals challenges regarding the documentation of QRs. For

instance, ASD user stories are insufficient to specify and document

QRs [9,17,20,22], and writing acceptance criteria of QRs is

challenging [25]. Approaches for documenting QRs in ASD are

limited [1]. Alsaqaf et al. [2] found that ASD teams face trouble in

writing Definition of Done (DoD) of QRs and that the lack of

understanding of QRs created a challenge for writing the DoDs.

Behutiye et al. [7], identified that documenting QRs improperly

(e.g. unclear specifications, outdated and missing QRs

documentation) is one of the challenges of managing QRs in ASD.

ASD advocate the continuous delivery of valuable software and

minimal documentation [5], and usually favors FRs over QRs [26].

Additionally, its focus on close collaboration with customers may

encourage developers to under-specify QRs [32]. Consequently,

when underspecifying or not documenting QRs, ASD teams face

challenges in the scalability of software [10], and the traceability of

QRs [6]. Moreover, missing and insufficient documentation of QRs

incur technical debt [8], forcing ASD teams experience

deteriorating software quality and growing maintenance cost in the

long run [10]. In certain cases, the ill treatment of QRs may even

result in faulty systems that may require rework [3]. In this regard,

investigating the state of the practice of documentation of QRs in

ASD is beneficial as it may provide insight into how ASD

companies approach documentation of QRs.

Although there are studies that investigate either QRs or

documentation in ASD, those that specifically examine the

documentation of QRs in ASD are few. For instance, Mendez et al.

[21] examined the impact of documentation debt (i.e., technical

debt that is caused by incomplete and insufficient requirements

artifacts) in ASD. Robiolo et al. [28] explored the indicators of

potential technical debt (identifying QRs that have not been

documented although marked as important) and waste (identifying

QRs documented but marked as not important), by surveying

practitioners. Behutiye et al. [6], examined the challenges and

practices of documentation of QRs in ASD. However, the paper did

not provide in depth investigation of the documentation practices

(e.g. stakeholders involved in the documentation of QRs, tools, and

aspects considered in documenting QRs), or examine whether the

practices for documenting QRs were similar to those of FRs. In this

regard, in depth investigation of documentation of QRs and the key

aspects considered in documenting QRs would help enrich the

limited evidence on documentation of QRs in ASD.

Investigating the documentation of QRs in ASD, in companies that

operate in different domains would provide a better insight into the

QR documentation practices that ASD teams adopt to minimize the

risk of inappropriate handling of QRs. Therefore, we empirically

examined the documentation of QRs in ASD, to get an in-depth

understanding of the existing practices and identify aspects that

practitioners consider important when documenting QRs in their

requirements management repositories. Hence, our research

answers the following research questions:

RQ1. What are the practices for documenting QRs in ASD

projects?

We investigate the documentation of QRs in ASD cases, and

present their QR documentation practices, including associated

tools, activities and roles responsible for documentation of QRs.

RQ2. What are the aspects that ASD practitioners consider

important when documenting QRs in their requirements

management repositories?

We explore the important aspects that ASD practitioners

consider while documenting QRs in their requirements

management repositories.

Our results show that ASD teams adopt QR documentation

practices that fit their contexts. Their practices involved utilizing

backlogs, iterative prototypes, and artifacts such as epics, user

stories, acceptance criteria, and DoDs. Experiences of the

developers, and the context (e.g. product domain and size)

influenced how ASD companies document QRs. Varying

stakeholders were responsible for documenting QRs (e.g. product

owners, project managers, and usability designers). ASD

practitioners identified that traceability of QRs, levels of

abstraction, details of information and verification and validation

are important aspects while documenting QRs in their requirements

management repository.

The remaining sections are structured as follows: Section 2

presents related work. Section 3 presents the research approach

followed in the study and Section 4 provides the answers to our

research question. Section 5 discusses the findings of our work.

Finally, Section 6 concludes the paper.

2. Related work

Regarding their capability for rapid delivery of working software

and responding to changing requirements, ASD approaches have

been popular and widely adopted in the software industry [29].

Nevertheless, studies reveal that ASD approaches have limitations

regarding the specification and documentation of QRs

[2,7,9,14,20]. For instance, the capability of ASD user stories to

specify and document QRs is limited [7,9,20,22]. ASD’ value of

‘working software over comprehensive documentation” is seen to

encourage minimal documentation and favoring functionality over

QRs, which may lead to the under-specification and neglect of QRs.

This may result in customer dissatisfaction, since customers may

be unaware of what the developers are doing and could not easily

trust the development process [16].

QRs have elusive characteristic and are hard to define and

measure [18]. These characteristics exacerbate the challenges in

specifying and documenting QRs in ASD. Alsaqaf et al. [2],

investigating the challenges of QRs in large scale distributed ASD,

identified that ASD teams experience difficulties in specifying

DoDs of QRs, writing test specifications of QRs, and in precisely

specifying QRs. According to their findings, unclear conceptual

understanding of QRs may lead to ambiguously specifying QRs in

user stories and DoDs. Additionally, they found that minimal

documentation might result in missing the rationales behind QR

tradeoffs and architecture decisions taken earlier. In a recent

systematic mapping study of management of QRs in ASD and rapid

software development, we [7] identified that QR documentation

challenges may arise from unclear and missing QR

Documentation of quality requirements in agile software

development

documentations, and the difficulty in ensuring end-to-end

documentation of QRs.

Although there are studies that investigate documentation in

ASD [6,15,21,28,33–35], those that specifically examine the

documentation of QRs are few. Additionally, detailed investigation

of practices of documentation of QRs in ASD is missing. For

instance, Hoda et al. [15], investigated documentation practices in

ASD. They found that ASD teams apply electronic backups of

physical paper artifacts, document change decisions made by

customers, business terminologies and functional specifications

and customers’ feedback. They also revealed that ASD teams that

relied on paper artifacts (user stories written in cards, and post it

notes), experienced challenges (e.g. losing data and time).

However, their study did not address the documentation of QRs.

Stettina et al. [34] examined the impact of documentation

formalism on developers’ documentation practice in ASD. They

found out that documentation was seen as intrusive task and was

often assigned to less qualified team members. They also found that

iterative documentation practices and following formal document

templates enabled capturing detailed development knowledge.

On the other hand, some studies investigating documentation of

QRs in ASD, focused on documentation debt. Soares et al. [33]

examined the difficulties of user stories in ASD and analyzed

whether the difficulties were related to documentation debt. They

reported eight difficulties, among which the lack of information and

identification of QRs, were causes of documentation debt. Mendez

et al. [22] investigated the impact of documentation debt in ASD.

They identified that the lack of QRs identification and the lack of

information were related to high proportions of documentation

debt. Robiolo et al. [28], explored the indicators of technical debt

and waste resulting from QR documentation based on survey

findings.

Behutiye et al. [6] identified that ASD companies applied

varying practices to document QRs. For instance, ASD teams in

small and medium sized companies favored face-face

communication and kept the need for documentation of QRs

minimal, while in large sized companies, ASD teams utilized

multiple and complex backlog structure to document QRs.

However, the study did not provide detailed analysis of the

practices regarding documentation of QRs, or the key aspects

practitioners consider during QR specification. Therefore,

regarding the significance of QRs and the limited evidence on how

QRs are documented in ASD, we aim to explore the existing

practices of ASD companies in documenting QRs.

3. Research approach

Our study focuses on examining the state of the practice of

documentation of QRs in the context of ASD. We adopted the

guidelines for conducting and reporting case studies by Runeson

and Höst [30], to investigate the QR documentation practices in

ASD through multiple case study of four cases. Case study is best

suited for investigating a specific phenomenon in its context [30].

For the purpose of the study, we developed and applied a case study

design protocol, which has been reviewed by experienced

researchers prior to starting the study. The protocol formulated the

study objectives, research questions, data collection methods and

selection strategies.

In the following sections, we describe the steps followed in

designing and executing the study. Section 3.1 presents the case and

participant selection. Section 3.2 provides the data gathering

procedures. Section 3.3 presents the data analysis process.

3.1. Case and participant selection

We selected four cases that employ ASD, in order to gather

information on QR documentation practices in ASD. These cases

varied in terms of their sizes, products and geographical location,

providing us an opportunity for examining the state of the practice

of documentation of QRs in a wider context. Table 1, presents the

summary of the cases in our study.

Table 1. Summary of the cases

Case Software

development

approach

Product domain Company size in

terms of

employees

A ASD Modelling tool Over 900

B Scrum based ASD Telecommunication and

embedded systems

Over 600

C Large scale

distributed ASD

Telecommunication Over 100,000

D Scrum based ASD Web application Less than 100

We used the key informant technique [19], in order to recruit

the participants in our study. The key informant technique provides

a means for collecting quality data by using experts as sources of

information on a topic [19]. For this purpose, we contacted the

champions of the four cases, and informed them about the objective

of our study and potential roles that might be participants of our

study. While proposing the potential roles, we consulted ASD

literature and as well as baseline stakeholders in requirements

engineering suggested by Sharp et al. [31]. We proposed

practitioners (those who are involved in the development process

such as developers, testers, quality assurance engineers), and

decision makers within the organization (e.g. project managers,

product owners, analysts, and release engineers). Our rationale in

proposing the roles was to get rich and relevant information on the

topic, as they are involved and affected by the requirements

engineering process. Following this, the champions selected and

helped us in recruiting subjects with relevant skills and knowledge

to be participants in our study.

3.2. Data gathering

We used semi-structured interviews to collect data for answering

RQ1. Furthermore, we conducted a workshop with cases B &C to

get an in depth understanding of the important aspects they consider

while documenting QRs in requirements management repositories,

to answer RQ2.

 W. Behutiye et al.

3.2.1 Semi structured interviews. We collected data regarding

documentation of QRs through semi-structured interviews. There

were 15 interviewees, from the four cases. We asked the

interviewees questions regarding the QR documentation practices

employed in their company, also including tools, artifacts and roles

involved in documenting QRs. The interviews were audio recorded

and later on transcribed for data analysis purpose. Table 2

summarizes the participants’ role and experience.

Table 2. Interview participants

ID Interviewee role Case Experience

(years)

ASD experience

(years)

1 Project manager A 20 10

2 Software developer and

architect

A 11 11

3 Executive manager A 30 13

4 Production test lead B 25 5

5 Technical lead B 15 15

6 Project manager B 19 12

7 Process coach B 15 6

8 Line manager C 3 3

9 Quality lead C 24 12

10 Transformation expert C 1.5 < 1year

11 Quality manager C 25 10

12 Software engineer C 6 6

13 Quality manager C 18 10

14 Software engineer C 16 6

15 Product owner and chief

software architect

D 10 5.5

3.2.2 Workshop. We conducted follow-up workshops with cases

B and C, in order to get in depth understanding of the significant

aspects ASD practitioners consider while documenting QRs in their

requirements management repositories and as well complement our

initial findings on QR documentation practices. This was done after

the semi-structured interviews, which provided insights into the QR

documentation practices of the cases. Table 3, summarizes number

of the participants and duration of the workshop sessions.

Table 3. Summary of workshop sessions

Case Participants Participant roles Duration of workshop

B 2 Tech lead, Senior engineer 90 minutes

C 3 Project manager, Software

engineer, Transformation

expert

85 minutes

The workshops were conducted face-to-face with the

participants, who are agile practitioners in the companies, as

follows:

1. First, we presented the objective of the workshop to the

participants. The objective was to determine the

significant aspects considered by ASD practitioners

when documenting QRs in their requirements

management tools and as well as corroborating our

understanding of their QR documentation practices.

2. As Jira was a requirement management repository used

in both cases, a generic Jira template for documenting

QRs, was presented to the participants to initiate

discussions on how QRs are documented at different

levels of abstraction. The generic Jira template was

prepared based on a consultation with a process coach in

case B and the first author, before conducting the

workshop.

3. Participants were asked to discuss and reflect up on

important aspects they identify when documenting QRs

in their requirement management tool. These were the

important aspects that they considered mandatory for

optimal documentation of QRs at the respective level of

abstraction (e.g. Epic, story, task).

We recorded audio of the workshop sessions and transcribed the

recordings for the purpose of analysis.

3.3. Data analysis

As we had collected data in two steps for the two RQs, we applied

the data analysis separately. We explain the data analysis steps for

analyzing the data from the semi-structured interviews and

workshops as follows.

3.3.1 Data analysis of semi-structured interview data. In order

to analyze the data, we first coded the transcribed documents in

NVivo, a qualitative data analysis tool. We applied deductive and

inductive coding approaches [12] and labeled the transcriptions.

Then, the related labels with similar concepts were categorized

together to identify themes. Thus, we applied thematic analysis to

determine the QR documentation practices in the cases [12].

3.3.2 Data analysis of workshop data. To master the wide-

ranging research data collected during the workshop, we opted for

conducting a qualitative analysis using in parallel the thematic

synthesis and narrative synthesis methods presented by Cruzes et

al. in [13]. The narrative synthesis method highlighted the case

specific variations, while the thematic synthesis helped us to

identify commonalities and draw conclusions.

The narrative synthesis was started by reading through the

transcriptions and labeling the sections containing data relevant to

answering the research question, with codes. This resulted in a set

of case-specific findings. The narrative sections were copied to

Excel spreadsheets along with the codes without modifying the

content of the narratives. These findings were further cross-

analyzed in order to identify common themes, providing the basis

to answer RQ2. The analysis was first conducted by the second

author, and the results were reviewed and refined by the first author.

4. Result

4.1. Practices for documenting QRs in ASD

Case A applies ASD and is as well experienced in model-driven

development. Practices for documenting QRs in the case varied

depending on the context and the need. For instance, while planning

features during release planning meetings, the executive manager

together with the product manager and project managers discuss

and document QRs such as performance, and user experience in

word documents. A response from the executive manager shows

the flexible approach regarding the documentation of QRs. He

stated that when it comes to documentation, “There is no single

practice. The practice may vary according to, the target and the

Documentation of quality requirements in agile software

development

context. It could be whiteboard meetings or other practice. On

some evolutions, the technology and the solution may be unclear

and, what we should expect from it may be unclear. So we may have

an iterative prototype process, which helps us, both to discover

what will be the best architecture to, adopt and also what we can

expect, as performance, as quality aspects, as usability, before we

can write any reasonable set of requirements. Sometimes we are,

accurate enough to do a specification document with a requirement

list, in a precise way, in order to implement properly the solution.”

The case also applies models (e.g. UML models), which serve as a

means for communicating QRs. Moreover, team members’

interaction and minimal documentation are also a focus in the case.

As a result, while discussing implementation of features, the teams

rely on face-to-face and white board meetings and document

decisions regarding QRs in word documents. While there are not

templates for documenting QRs, developers can document QRs as

user stories in word documents or in other formats, based on their

decision during the white board meetings.

Developers, project managers, product managers, development

managers and sales team document QRs during the software

development lifecycle. Project managers and developers document

QRs related to maintenance issues in Redmine, which is an issue

tracker tool used internally in the case. Similarly, customers report

and document QRs and other quality issues in Mantis tool.

Case B follows Scrum based ASD approach. It uses QR

documentation practices such as using an issue tracker tool to

document QRs, documenting QRs in ASD artifacts, and applying

guidelines to help with documentation of QRs. The case applies a

requirements management guideline that provides detailed

information on QRs and recommendations on how to document

them in the backlogs. The guideline lists types of QR (e.g. security,

usability, testability) and provides examples on how to document

them. Depending on the type of the QR, the case applies additional

guidelines when specifying and documenting QRs. For instance,

specifying and documenting security requirements requires

considering security standards and certifications.

The case uses Jira, an issue tracker tool, to document both QR

and FRs. It also uses an agile playbook that describes recommended

practices for developing software, including practices in using Jira

to document both QRs and FRs. In general, it uses artifacts such as

epics, stories, and tasks, to represent the levels of abstraction of

QRs and document them in backlogs, in Jira. QRs documented as

tasks are linked to stories and the stories are linked to epics.

Additionally, it documents QRs resulting from legacy errors with

error labels in issue trackers. Jira templates for documenting both

QRs and FRs are similar. Documenting the QRs in these templates

covers aspects such as describing the QR, the verification method

for the QR and a DoD, which defines an exit criterion for the QR.

Specifying the DoD for the QRs at epic level may comprise many

exit criteria that apply to multiple stories. For instance, it may

include stating that stability testing to be done, and meeting a

specific percentage of test coverage. On the other hand, specifying

QRs in DoD at story and task levels may follow a recommended

structure in the form of “Given/when/then” to fulfil the needs of the

specific user story or task. For instance, a DoD for reliability QR

can be specified as follows at story level, “Given that the system is

in a non-functioning state, when applying the fixes, then the system

should reach a normal steady state”.

Product managers, product owners and developers are involved

in documenting QRs during the software development process and

use Jira, word documents and prototypes to document QRs.

Additionally, being a telecommunication and embedded systems

development company, the case applies separate organizations that

are responsible for documenting specific QR types. This was

explained by one of the interviewees: “We have some kind of

categorization of those, and the organization is somewhat also

split, based on the focuses we have. The security domain who work

for multiple projects, they are in charge of the security architecture

of multiple products and produce the relevant documentation for

those. For the performance, it goes maybe to more on the test

automation side but even there we have the specific people who are,

just checking the performance”.

Case C applies large scale, distributed ASD. It has varying

practices to document QRs within the software development

process depending on the organizational level and the type of QR

(e.g. security, performance). In general, there are multiple backlogs

to document both QRs and FRs. The case documented QRs in

requirement management tools like Focal Point, DOORS,

Accept360, and in pronto, a bug tracker tool and within backlogs in

Jira. Some development teams at lower level also utilized offline

post it notes as requirements backlogs to document both QRs and

FRs. Generally, the backlogs at the case were structured in such a

way that there were multiple lower level backlogs which were

documented in multiple tools, being independent of upper level

backlogs. However, the case is in transition towards a backlog

structure where lower level backlogs are inherited from one main

upper level backlog with Jira. In addition, the case follows

additional standards while specifying and documenting QRs like

security and performance.

In Jira, the case applies levels of abstraction: features, system

items, entity items, competence area items, epics, tasks, and sub-

tasks while documenting QRs. QRs are also documented as DoDs

of tasks describing the exit criteria. However, while DoDs are

applicable in cases where the task is mainly dependent on software,

they are not used in cases where implementation of the task is

dependent on hardware requirements.

During the development process, the case also utilizes a special

backlog, “improvement backlog”, where improvement ideas during

the development process are documented and tracked. QRs are also

documented in the improvement backlogs, as shown in the response

from the quality lead, “We have improvements of all kind in this

improvement backlog. There we have ideas from anyone.

Everybody can put an improvement idea in the backlog. It is

everything else but not the feature. We have not limited anything so

it can be something like, I don’t like this color, I like the red one or,

it can be something like we need to improve our unit testing code

coverage from 50 percent to 95 percent, or whatever”. However,

the improvement backlogs are separated from product backlogs’

 W. Behutiye et al.

items. As a result, implementation of QRs, documented as

improvement backlog items, depends on how teams handling the

improvement backlog are pushing the improvement actions to

product backlogs.

Depending on the level of the organization, roles like managers,

product owners, scrum teams and dedicated teams specify and

document QRs. For instance, dedicated teams are responsible for

the system level specification of FRs and QRs, whereas product

owners document and handle QRs as sprint backlog items.

Additionally, customers also report and document QRs, FRs and

feature requests in Focal point.

Case D applies Scrum based ASD approach. In general, the case

documents QRs together with FRs. It uses word documents,

mockups and software development repositories to document QRs.

For instance, it uses Sketch tool to specify and handle usability and

user experience aspects. It also documents QRs as DoDs or

acceptance criteria of FRs, which are written as user stories.

Moreover, the product owner and scrum teams work closely

which facilitates clear communication on both QR and FRs. When

experienced developers are involved in these interactions during

development, the need for strict specifications of QRs may not be

necessary as they are aware of the QRs, and specify them. The

product owner reflects this in a response, “for example if you work

in a project for half a year or for three or four months, there’s

always an initial phase that you need to describe for example how

the tool should look like. In addition, you give the developers the

UX design and so on, using Sketch and other tools like that, and

they specify for example the paddings and the margins of the

specific elements of your user interface. But afterwards, for further

user interface, for further, I don’t know, models and views, you

don’t have to specify each time the paddings and margins and so

on.” The product owner is mainly responsible for handling the

specification and documentation of QRs. However, the input from

sales team, developers and analytics team support his decisions

when specifying and documenting requirements (both FRs and

QRs). For instance, the analytic teams provide a requirements

specification document, which specifies the FRs and how these FRs

should be working, and the higher level QRs. The Product owner

further analyzes and uses the document to specify QRs. Table 4

summarizes the documentation of QRs in the cases.

Table 4. Summary of documentation of QRs in the cases

Case Tools and artifacts

used to document

QRs

Practice overview Roles

documenting

QRs

A Mantis, Redmine,

Word document,

iterative prototypes,

models, whiteboards

Minimal

documentation, relied

on face-face

communication

Product manager,

project

managers,

developers, sales

team, customers

B Jira, epics, stories

and tasks, DoDs,

acceptance criteria,

verification methods

Agile play book,

guidelines to document

QRs, separate

organizations handling

specific QRs

product owner,

product

managers,

developers

C Jira, Focal point,

DOORS, Accept 360

customer feature,

Distinct practices based

on organizational level

and type of QR (e.g.

Managers,

product owners,

scrum teams and

change request,

internal system

feature, DoDs

separate organizations

documenting QRs,

using post it notes at

lower level)

dedicated teams

and customers

D Word document,

mockups, Sketch,

DoDs of FR

QRs as DoDs of FRs,

No need to document

QRs if there are

experienced developers

Product owner

4.2. Important aspects when documenting QRs in

requirements management repositories in

ASD

The findings from the workshops with cases B and C, reveal four

important aspects that agile practitioners consider while

documenting QRs in their requirements management repository.

These are the levels of abstraction, the traceability of QRs, optimal

details of information of the QR and verification and validation

aspects. We present these aspects as follows.

4.2.1 Levels of abstraction. Employing levels of abstraction

while documenting QRs is an important aspect considered in both

cases, B and C. The levels of abstraction refer to the granularity

levels used to represent the requirement. Case B applies levels of

abstraction while documenting requirements (both QRs and FRs).

The case documents QRs in multiple backlogs. In general, at higher

levels, QRs are documented in the main requirements backlog. This

is further refined in the product requirements, as product

requirement epics. Within the product backlog, QRs are

represented at three levels of abstractions as epics, stories and sub-

tasks. An epic represents higher levels of requirements and it is a

grouping of several stories, which in turn are split into multiple

tasks. For instance, a participant reflects up on how QRs can be

split from epics to stories as follows: “Let’s say we have code

quality or code style epic and you have a QR that points out that

this area in the code should be documented better. Then you might

have a testing epic and then things like increased unit test coverage

goes below that, or you might use to have a QR, very big epic that

all the QRs fit in under somewhere, in that you have probably some

way of organizing them between the story and the epic”. Similarly,

Case C applies levels of abstraction for documenting QRs.

However, due to the large size, complexity and variety of backlogs

and as well as the large-scale distributed nature of company, the

levels of abstraction for documenting QRs and FRs differ

depending on the selected backlog. For instance, Feature items

(consisting of both QRs and FR items) are documented in the

feature backlog, in Jira. Then, features from the feature backlog are

refined and specified into system item, entity item and competence

area items in decreasing order of level of abstraction, within the

product backlog, where items from all products are stored in a

single project in Jira. On the other hand in competence area

backlogs, the competence area items (QRs and FRs) are specified

following Epics, story (task) and sub-task hierarchy. Both cases

apply the levels of abstraction while documenting QRs and FRs.

4.2.2 Traceability of QRs. Ensuring the traceability of QRs is an

important aspect while documenting QRs. Since QRs are

documented at different levels of abstraction, keeping the link

between these levels is important to ensure the traceability of QRs.

Documentation of quality requirements in agile software

development

Case B documents the links between levels of abstraction of

QRs (e.g. Epics are linked to product requirement themes, stories

linked to epics, and tasks are linked to stories) to keep traceability.

One of the participants highlighted the importance of traceability

among the levels of abstraction as follows: “For the story I have

always created tasks. Because, if I am not creating tasks for a story

type and I am creating just technical tasks then I need to manually

add the link, but either way I will add the link. Because the

hierarchy needs to be there for traceability.”

In Case C the traceability of QRs is established by linking

requirements at varying levels of hierarchies among distinct

backlogs and within each of the backlogs. For instance, traceability

among epics, stories and subtasks, within a competence area

backlog is ensured by linking subtasks to stories, and linking the

stories to epics. Additionally, an epic in one backlog can be linked

to epics in other projects when they are related, and the access and

visibility to the backlogs of other projects is possible. One of the

participants highlighted the importance of traceability as follows:

“And also if you think that, in the project, we have discussed about

tracing back, meaning that if we are able to trace back from the

certain backlogs to requirement documentation to features to

whatever. So basically if in the development phase, we violate

something, some quality requirement we already have, we should

be able to trace back what requirement we are violating with

certain choices. So for that reason we would also need the ID.”

4.2.3 Optimal details of information on the QR. Another

important aspect that received attention within the two cases is the

level of detail of information conveyed in the artifacts (e.g. Epics,

stories and tasks). The cases adopt Jira templates, which are tailored

for specifying QRs at different levels of abstraction.

In Case B, the Jira templates consist of mandatory fields that

developers and product owners must fill while specifying QRs, to

ensure optimal documentation. These fields may vary depending

on the level of abstraction. For instance, specifying QRs at Epic

level requires specifying the method of verification (e.g. customer

review, design review, test case) besides other properties (e.g.

description, priority, DoDs and linked issues). However, this is not

necessary while specifying QRs at story level. A participant reflects

up on the variations of the fields as follows: “Yeah because the

product requirement level is about, it is about the product owners,

like Mr. X, was saying that we need to see a list, have we done

everything so that is why there is a field to check that, in what phase

did we do the check. But, for this story level which is already about

the team, about the implementation, then we trust our DevOps

process, we trust the process, in the process we use Gerrit, Jenkins,

code reviews, the quality is already built in. We don’t need to say

that, verification method is, during coding with your partner, no, it

is, whatever method, but it needs to happen during development.”

Table 5 presents an example of maintainability QR specified at

story level. As shown in the table, the case, for instance, enforces

specifying summary of the story, its description, related

components, DoD, linked epics and priority.

While specifying stories, the case applies a user story template,

which focuses on communicating the relevant stakeholder, the

required task, and the expected outcome. For instance, a participant

provides a user story about the reliability of asset tracking (i.e.,

reliability of different software components that handle data) as

follows: “As a user I want to avoid accidentally sending emergency

messages”. Moreover, while specifying DoDs, practitioners may

use the ‘Given/when/then’ template to convey the exit criteria

required for QRs to be marked as done. However, although the

template is recommended practice it is not strictly followed.

Table 5. QR specification at story level

Field Description

Project XYZ

Issue type Story

Summary Complexity of files should be below 20%

Component SW component Y

Reporter Mr. Z

Priority Minor, Medium, Major

Description The Q analysis found that the percentage of complex files was

above 34%

Definition

of Done

The amount of complex files should be below 20%.

Epic link The linked epic e.g. epic_code_quality

Due date 28.12.2019

In Case C items in Jira are configured depending on the needs

of the specific backlogs. While the general level of abstraction for

QRs as epic, story and subtask is followed, QRs can also be

documented as, “features, change requests, internal features,

system items, system technical analyses, entity items, entity

technical analyses, competence area items and epics”, as noted by

one of the participants. Jira templates in the case, consist of distinct

fields that need to be filled in while documenting QRs as epics,

tasks and sub-tasks. For instance, fields at epic level comprise the

related project, epic name, summary, and description, specifying

priorities (business level, product management level), assignee and

reporters, DoDs, and QA fields (whether API review, code review

and CI tests have been done/not done). In addition, in some teams

it is possible to add new fields that complement the default ones.

However, one participant pointed out the importance of ensuring

that the new fields will not duplicate properties of already existing

fields, as follows: “of course if you have a great number of special

fields, because Jira anyway has to support like default fields and

then if you duplicate all the fields, you can imagine that you can get

some kind of performance issues with the tool. Especially if the

number of issues are also, a lot. Let’s say so. You are measuring

those in hundreds of thousands of issues, recorded in Jira I would

say.”

4.2.4 Verification and validation aspects. Another important

aspect in specifying and documenting QRs in JIRA backlogs within

the cases, is verification and validation. We observed that both

cases incorporate fields that help ensure including aspects of

verification and validation for the QRs. The details and options of

verification fields varied in each of the two cases, as their processes

vary. Moreover, the methods for verification and validation

differed along the levels of abstraction of the QRs.

In Case B, specifying QRs at Epic level requires filling in the

verification method for fulfilling the epic requirement (e.g. design

 W. Behutiye et al.

review, customer review) and specifying the DoD which define the

exit criteria of the epic. On the other hand, at story and task levels,

the DoD is used for validating the related QRs.

Case C adopts distinct fields that support verification and

validation of the QRs at different levels of abstraction. At Epic

level, methods for verifying the QRs (e.g. API review, code review,

and continuous integration tests) need to be filled in and serve as

verification method. Similarly, DoDs provide a means of validating

QRs at epic level. At story and subtask levels, QRs are documented

in DoDs, and similar to case B, details regarding the verification

method do not have to be specified at these levels.

5. Discussion

5.1. QR documentation practices in ASD

We observed that the cases apply practices that they deem suitable

for their context while documenting QRs. For instance, the cases

operating in the telecommunications domain applied separate

internal organizations that are responsible to document and handle

specific QRs (e.g. security). Such structure may affect the agility of

the process, as it enforces additional documentation needs.

However, it is essential in order to meet the regulatory requirements

needs in the domain. On the other hand, in the cases operating in

web and modeling application domains, the need for the separate

organization was less. These cases did not have separate

organizations handling specific QRs. However, they had small

ASD teams working closely, and used face-to-face communication

and utilized whiteboards and flipcharts instead of formal

documentation of QRs. This was suitable in the contexts as there

were not strict regulatory needs.

In our study, two cases documented QRs in Jira. Additionally,

we found tools such as Accept 360, DOORS, Redmine and Mantis,

for documenting QRs. These tools served the need for documenting

and managing QRs from all available sources and stakeholders. For

instance, customers reporting QR issues used Mantis to document

QRs. Developers used Redmine to document and track issues,

including QRs. The distinction of tools used for documenting QRs

in the cases, may arise from their specific needs, e.g. context, the

scale and size of their products. For instance, Focal point, Accept

360, Pronto, and DOORS were used in the large scale distributed

software company, which is in the telecommunications domain. We

also observed that the tools in the cases support ASD. For instance,

customer collaboration is enhanced by using Focal point and

Mantis tools, helping customers to report and document QRs and

other issues. ASD teams can adopt these tools to support

documentation and management of QRs. They can also learn the

importance of covering QR documentation needs of multiple

stakeholders (e.g. developers, and customers). Regarding the use of

‘improvement backlog’ to document QRs, we noticed that the

likelihood of implementing QRs documented in such backlogs,

which are separated from the main product backlog, is dependent

on how the ASD teams were pushing for the improvement actions.

Therefore, when adopting similar practices, it is important to

consider the implementation actions.

The cases applied artifacts such as epics, stories, user stories,

tasks and DoDs for documenting QRs. We found practices such as

‘Given/why/then’ structure for writing the DoD of QRs. This

practice can be beneficial to ASD practitioners as the difficulty of

writing DoDs of QRs is a challenge in ASD [2]. We also noticed

that writing DoD for QRs might not be applicable in cases where

the tasks are dependent on hardware requirements. Practitioners

may also apply iterative prototypes to discover and document

evolving QRs in ASD, as indicated in one of the cases. This practice

aligns with ASD’ nature of responding to changing requirement

needs and minimal upfront planning of requirements.

One of the cases in our study applied guidelines to support the

documentation and management of QRs. Such guidelines provide

a means for clarifying QRs, their significance and the way to

document and manage them. We believe that companies may

benefit from such guidelines, considering challenges in managing

QRs in ASD reported in the literature (e.g. the lack of awareness of

QRs, difficulty in specifying and documenting QRs).

Inexperienced and new ASD developers may also find such

guidelines for documenting and managing QRs, beneficial.

We observed that the experience of developers might affect the

documentation of QRs. For instance, a product owner in case D

reported that QRs may not need to be specified while working with

small sized, and collaboratively working team of experienced

developers. Experienced developers were assumed to know the QR

needs (e.g. usability and security). On the other hand, when there

are new and inexperienced developers within the team. QRs had to

be specified and documented.

We identified that the stakeholders (e.g. developers, product

owners, software architects, project managers, product managers,

customers) may document QRs in various stages of the software

development lifecycle. However, in the case of a smaller company

only the product owner was responsible for documenting QRs. In

this case, other stakeholders (e.g. sales team and developers) only

provided inputs on QR aspects but were not documenting QRs.

In our study, two cases approach the documentation of QRs in

a similar fashion as FRs, and they explicitly document the QR

details. This varied from the practices reported in the other two

cases, where QRs were either not documented, or documented less

compared to FRs. The context (e.g. team composition, team size,

product size, and product domain) may have influenced the way

QRs are documented and treated in the cases.

5.2. Important aspects when documenting QRs in

requirements management repositories in

ASD

Applying the levels of abstraction while documenting requirements

is important in improving the communication and understanding of

the requirement problem [23]. In our study, it was one key aspect

that practitioners considered while documenting QRs. We found

that the levels of abstraction were applied and that they differed

depending on the details of information of QR needed at the

Documentation of quality requirements in agile software

development

specific stage of the software development cycle and as well

according to the needs of the stakeholders in the corresponding

software development stages.

The lack of traceability of QRs is a challenge in ASD [4]. In our

study, keeping the traceability of QRs, either among the levels of

abstraction or dependent backlogs was one key aspect in

documenting them, according to the practitioners. The finding is

interesting, as it may also help address the challenge arising from

the lack of traceability of QRs in ASD.

Another key aspect when documenting QRs in ASD is optimal

details of information on the QR. We observed that the detail of the

information varies depending on the level of abstraction of the QR.

The QR detail was also corresponding to the needs of stakeholders

involved in documenting QRs. We find optimal details of

information regarding QRs important, as it may also help address

documentation debt resulting from the lack of information of QRs

in ASD [33].

The verification and validation aspect was also identified

important in documenting QRs. This is interesting, as verification

of QRs is a challenge in ASD [7]. We believe that considering such

aspects while documenting QRs may help in addressing the

challenge of verifying QRs in ASD.

We observe that in both cases JIRA have been used to document

both FRs and QRs. The finding reveal applicability of the tool to

document and manage QRs in ASD.

5.3. Threats to validity

Construct validity: we applied operational measures to ensure

common understanding on concepts included in our study. During

the interviews, we clarified concepts and our questions to the

participants to minimize threats from misunderstanding. For

instance, when referring to QRs we clarified to the practitioners that

we were referring to non-functional requirements, and provided

examples such as usability, maintainability, and security.

Internal validity: In order to mitigate threats from internal

validity, we applied triangulation through multiple data sources

(e.g. workshop and additional documents from the cases) to

corroborate and complement our findings.

External validity: although our findings reflect practices

regarding the documentation of QR in ASD, it is difficult to

generalize to other contexts. However, we believe that the findings

can be extended to similar contexts applying ASD. Regarding the

important aspects in documenting QRs in requirements

management repositories, our findings relied on discussion

initiated by using JIRA templates. Selecting another requirements

management tool and template may have had different outcome.

Conclusion validity: we collected data systematically using

interview scripts and audio recordings in workshops. Additionally,

a second researcher reviewed and refined the data analysis results

to minimize threats from subjective evaluation.

6. Conclusion

The paper explored and presented empirical findings on QR

documentation practices in ASD companies. We identified that

documentation of QRs in ASD differed depending on the chosen

context (e.g. domain, team composition, size of product). We

observed that cases in small sized companies applied whiteboards

and flipcharts, or documented QRs as part of DoD of user stories

of FRs and relied on face-face communications. In larger

companies, QRs and FRs were documented in a similar way in the

requirements management repository. The cases in our

investigation applied artifacts (e.g. epics, stories and tasks,

prototypes), and tools (e.g. Jira, DOORS, Focal point) to document

QRs. Different roles were also responsible for specifying and

documenting QRs. Additionally, the experience of developers

influenced the documentation of QRs in ASD.

ASD practitioners valued the traceability of QRs, levels of

abstractions, optimal detail of information on QRs, and verification

and validation aspects, when documenting QRs. The study supports

the findings from scientific literature that reveal the importance of

QRs and the need for optimal documentation of QRs. In the future,

we would like to expand our work by investigating in detail other

factors affecting documentation of QRs in ASD and provide

recommendations for optimal documentation of QRs in ASD.

ACKNOWLEDGMENTS

This work is partially funded by the Q-Rapids project, European

Union’s Horizon 2020 research and innovation funded program

under grant agreement N° 732253. We would also like to

acknowledge champions in the case companies for facilitating the

studies.

REFERENCES
[1] Bahiya M. Aljallabi and Abdelhamid Mansour. 2015. Enhancement

approach for non-functional requirements analysis in Agile environment.

In Proceedings - 2015 International Conference on Computing, Control,

Networking, Electronics and Embedded Systems Engineering, ICCNEEE

2015,IEEE,428–433.

DOI:https://doi.org/10.1109/ICCNEEE.2015.7381407

[2] Wasim Alsaqaf, Maya Daneva, and Roel Wieringa. 2019. Quality

requirements challenges in the context of large-scale distributed agile: An

empirical study. Inf. Softw. Technol. 110, (2019), 39–55.

DOI:https://doi.org/10.1016/j.infsof.2019.01.009

[3] Felix Bachmann, Robert L. Nord, and Ipek Ozkaya. 2012. Architectural

tactics to support rapid and agile stability. CrossTalk 25, 3 (2012), 20–25.

[4] Steffen Bartsch. 2011. Practitioners’ perspectives on security in agile

development. In Proceedings of the 2011 6th International Conference on

Availability, Reliability and Security, ARES 2011, 479–484.

DOI:https://doi.org/10.1109/ARES.2011.82

[5] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward

Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew

Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C Martin, Steve

Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas. 2001.

Manifesto for Agile Software Development. The Agile Alliance. Retrieved

December 10, 2019 from http://agilemanifesto.org/

[6] Woubshet Behutiye, Pertti Karhapää, Dolors Costal, Markku Oivo, and

Xavier Franch. 2017. Non-functional Requirements Documentation in

Agile Software Development: Challenges and Solution Proposal. In

Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics). 515–522.

DOI:https://doi.org/10.1007/978-3-319-69926-4_41

[7] Woubshet Behutiye, Pertti Karhapää, Lidia López, Xavier Burgués,

Silverio Martínez-Fernández, Anna Maria Vollmer, Pilar Rodríguez,

Xavier Franch, and Markku Oivo. 2019. Management of quality

requirements in agile and rapid software development: A systematic

mapping study. Inf. Softw. Technol. (November 2019),23 pages.

 W. Behutiye et al.

DOI:https://doi.org/10.1016/j.infsof.2019.106225

[8] Woubshet Nema Behutiye, Pilar Rodríguez, Markku Oivo, and Ayşe

Tosun. 2017. Analyzing the concept of technical debt in the context of agile

software development: A systematic literature review. Inf. Softw. Technol.

82, (2017), 139–158. DOI:https://doi.org/10.1016/j.infsof.2016.10.004

[9] Åsa Cajander, Marta Larusdottir, and Jan Gulliksen. 2013. Existing but not

explicit - The user perspective in scrum projects in practice. In Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics). 762–779.

DOI:https://doi.org/10.1007/978-3-642-40477-1_52

[10] Lan Cao and Balasubramaniam Ramesh. 2008. Agile requirements

engineering practices: An empirical study. IEEE Softw. 25, 1 (2008), 60–

67. DOI:https://doi.org/10.1109/MS.2008.1

[11] Lawrence Chung and Brian A. Nixon. 1995. Dealing with non-functional

requirements. In Proceedings of the 17th international conference on

Software engineering - ICSE ’95, ACM Press, New York, New York, USA,

25–37. DOI:https://doi.org/10.1145/225014.225017

[12] Daniela S. Cruzes and Tore Dyba. 2011. Recommended Steps for Thematic

Synthesis in Software Engineering. In Empirical Software Engineering and

Measurement (ESEM), 2011 International Symposium on, 275–284.

DOI:https://doi.org/10.1109/ESEM.2011.36

[13] Daniela S. Cruzes, Tore Dybå, Per Runeson, and Martin Höst. 2015. Case

studies synthesis: a thematic, cross-case, and narrative synthesis worked

example. Empir. Softw. Eng. 20, 6 (December 2015), 1634–1665.

DOI:https://doi.org/10.1007/s10664-014-9326-8

[14] Gencer Erdogan, Per Håkon Meland, and Derek Mathieson. 2010. Security

testing in agile web application development - A case study using the

EAST methodology. In Lecture Notes in Business Information Processing.

14–27. DOI:https://doi.org/10.1007/978-3-642-13054-0_2

[15] Rashina Hoda, James Noble, and Stuart Marshall. 2012. Documentation

strategies on agile software development projects. Int. J. Agil. Extrem.

Softw.Dev.1,1 (2012), 23. DOI:https://doi.org/10.1504/ijaesd.2012.048308

[16] Marja Käpyaho and Marjo Kauppinen. 2015. Agile requirements

engineering with prototyping: A case study. In 2015 IEEE 23rd

International Requirements Engineering Conference, RE 2015 -

Proceedings, 334–343. DOI:https://doi.org/10.1109/RE.2015.7320450

[17] Rashidah Kasauli, Grischa Liebel, Eric Knauss, Swathi Gopakumar, and

Benjamin Kanagwa. 2017. Requirements Engineering Challenges in

Large-Scale Agile System Development. In 2017 IEEE 25th International

Requirements Engineering Conference (RE), IEEE, 352–361.

DOI:https://doi.org/10.1109/RE.2017.60

[18] Barbara Kitchenham and Shari Lawrence Pfleeger. 1996. Software quality:

the elusive target. IEEE Softw. 13, 1 (1996), 12–21.

DOI:https://doi.org/10.1109/52.476281

[19] M. N. Marshall. 1996. The key informant technique. Fam. Pract. 13, 1

(1996), 92–97. DOI:https://doi.org/10.1093/fampra/13.1.92

[20] Aias Martakis and Maya Daneva. 2013.Handling requirements

dependencies in agile projects: A focus group with agile software

development practitioners. In Proceedings - International Conference on

Research Challenges in Information Science.

DOI:https://doi.org/10.1109/RCIS.2013.6577679

[21] Thiago Souto Mendes, Mário André de F. Farias, Manoel Mendonça,

Henrique Frota Soares, Marcos Kalinowski, and Rodrigo Oliveira Spínola.

2016. Impacts of agile requirements documentation debt on software

projects. In Proceedings of the 31st Annual ACM Symposium on Applied

Computing-SAC’16,1290–1295.

DOI:https://doi.org/10.1145/2851613.2851761

[22] Jerzy Nawrocki, Mirosław Ochodek, Jakub Jurkiewicz, Sylwia

Kopczyńska, and Bartosz Alchimowicz. 2014. Agile requirements

engineering: A research perspective. In Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 40–51. DOI:https://doi.org/10.1007/978-3-319-

04298-5_5

[23] Shelly Park and Frank Maurer. 2008. The Requirements Abstraction in

User Stories and Executable Acceptance Tests. In Research-inprogress

track, Agile Conference.

[24] Klaus Pohl. 2016. Requirements engineering fundamentals: a study guide

for the certified professional for requirements engineering exam-

foundation level-IREB compliant. Rocky Nook, Inc.

[25] Abdallah Qusef and Andrea De Lucia. 2010. Requirements Engineering in

Agile Software Development Article in Journal of Emerging Technologies

in Web Intelligence. In Journal of Emerging Technologies in Web

Intelligence, 212–220. DOI:https://doi.org/10.4304/jetwi.2.3.212-220

[26] Balasubramaniam Ramesh, Lan Cao, and Richard Baskerville. 2010. Agile

requirements engineering practices and challenges: an empirical study. Inf.

Syst. J. 20, 5 (2010), 449–480. DOI:https://doi.org/10.1111/j.1365-

2575.2007.00259.x

[27] Aneesa Rida, Shahid Nazir, Atika Tabassum, Zainab Sultan, and Rabiya

Abbas. 2016. Role of Requirements Elicitation & Prioritization to

Optimize Quality in Scrum Agile Development. Int. J. Adv. Comput. Sci.

Appl. 7, 12 (2016). DOI:https://doi.org/10.14569/IJACSA.2016.071239

[28] Gabriela Robiolo, Ezequiel Scott, Santiago Matalonga, and Michael

Felderer. 2019. Technical Debt and Waste in Non-functional Requirements

Documentation: An Exploratory Study. In International Conference on

Product-Focused Software Process Improvement. 220–235.

DOI:https://doi.org/10.1007/978-3-030-35333-9_16

[29] Pilar Rodríguez, Jouni Markkula, Markku Oivo, and Kimmo Turula. 2012.

Survey on agile and lean usage in finnish software industry. In

International Symposium on Empirical Software Engineering and

Measurement, 139–148. DOI:https://doi.org/10.1145/2372251.2372275

[30] Per Runeson and Martin Höst. 2009. Guidelines for conducting and

reporting case study research in software engineering. Empir. Softw. Eng.

(2009). DOI:https://doi.org/10.1007/s10664-008-9102-8

[31] Helen Sharp, Anthony Finkelstein, and Galal H. Galal. 1999. Stakeholder

identification in the requirements engineering process. In Proceedings.

Tenth International Workshop on Database and Expert Systems

Applications.DEXA99,IEEE,387–391.

DOI:https://doi.org/10.1109/DEXA.1999.795198

[32] Alberto Sillitti and Giancarlo Succi. 2005. Requirements engineering for

agile methods. In Engineering and Managing Software Requirements.

Springer-Verlag,Berlin/Heidelberg,309–326.

DOI:https://doi.org/10.1007/3-540-28244-0_14

[33] Henrique F. Soares, Nicolli S.R. Alves, Thiago S. Mendes, Manoel

Mendonca, and Rodrigo O. Spinola. 2015. Investigating the Link between

User Stories and Documentation Debt on Software Projects. In

Proceedings - 12th International Conference on Information Technology:

NewGenerations,ITNG2015,385–

390.DOI:https://doi.org/10.1109/ITNG.2015.68

[34] Christoph Johann Stettina, Werner Heijstek, and Tor Erlend Fægri. 2012.

Documentation work in agile teams: The role of documentation formalism

in achieving a sustainable practice. In Proceedings - 2012 Agile

Conference, Agile 2012. DOI:https://doi.org/10.1109/Agile.2012.7

[35] Stefan Voigt, Detlef Huttemann, and Andreas Gohr. 2016. SprintDoc:

Concept for an agile documentation tool. In Iberian Conference on

Information Systems and Technologies, CISTI, IEEE, 1–6.

DOI:https://doi.org/10.1109/CISTI.2016.7521550

[36] Karl Wiegers and Joy Beatty. 2013. First things first: Setting requirement

priorities. In Software Requirements,Microsoft Press,Redmond,

Washington. DOI:https://doi.org/10.3362/9781780449357

