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ABSTRACT
This study discusses measurement of well-being in the con-
text of smart environments. We propose an experimental
design which induces variation in an individual’s flow, stress,
and affect for testing different measurement methods. Both
qualitative and quantitative measuring methods are applied,
with a variety of wearable sensors (EEG sensor, smart ring,
heart rate monitor) and video monitoring. Preliminary re-
sults show significant agreement with the test structure in
the readings of wearable stress and heart rate sensors. Self-
assessments, on the contrary, fail to show significant evi-
dence of the experiment structure, reflecting the difficulty of
subjective estimation of short-term stress, flow and affect.

CCS CONCEPTS
• Human-centered computing → Ubiquitous comput-
ing; Empirical studies in ubiquitous and mobile com-
puting; Empirical studies in HCI .
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1 INTRODUCTION
Smart environments have become popular for gameplay,
leisure, education, and work. When becoming more common
and regularly used, developing tools, measurement proto-
cols, and experimental designs to study well-being in such
environments becomes a critical research field. Further, it be-
comes crucial to understand definitions for well-being when
designing experiments and tools that can reliably capture
user’s experiences and feelings.
As smart environments may rely on various sources, un-

derstanding the quality and correlations of the different mea-
surement methods becomes important. In this study, to reach
on more comprehensive construction of well-being, our aim
was thus to design an experiment to 1) induce variation in
an individual’s flow, stress, and affect, and 2) measure those
variations with number of subjective and objective meth-
ods. We choose a gameplay as a experimental scenario due
to its suitability for the short-time measurements. In this
paper, we present a preliminary experimental design to di-
rectly capture user’s reactions and mental, emotional and
physiological states in a smart environment.

Related work. Well-being comprises a long-term evo-
lution of mental, emotional, physical, social, material and
professional dimensions, all measured with both qualitative
and quantitative methods [5, 16]. Lovén et al. [9] give the
following definition: "Well-being in smart environments is a
latent feature of an individual, manifesting as her immediate
mental, physical and emotional states". Further, a desirable
state of well-being is characterized by: "1) a flow state of
mind, 2) low levels of stress and 3) a balance between neg-
ative and positive affect" [9]. Given the above definition of
well-being, it is possible to test how well various types of
quantitative (self-assessment forms) and qualitative measure-
ment methods (wearable sensors, video or audio analysis)
are able to capture the changes in an individual’s stress, flow
and affect. Mental states [1], such as flow, have been detected
from neural activity [11, 19].
For observing flow, also heart rate variability, skin con-

ductance level, and cortisol reactivity are proposed as valid
methods [21]. Stress has been detected with skin conduc-
tivity observations [7, 12] and heart rate variability [4, 10].
Further, positive and negative affect are acknowledged as
components of a person’s well-being [2]. Video analysis is

https://doi.org/10.1145/3341162.3344839
https://doi.org/10.1145/3341162.3344839
https://doi.org/10.1145/3341162.3344839


suggested for detecting affect [20], pulse [13] and, conse-
quently, flow and stress.

In context of smart environments, the common approach
is to detect activities [15] and number of people in the space
[18] by using motion sensors and/or cameras. The usual use
cases for such applications are to count visitors in the space,
deliver timely services, or provide tracking mechanism i.e.
to serve elderly care. Camera-based image data has also
been used to detect emotions [6]. With arising number of
pervasive sensors [8], like wearables and smartphones, we
can consider various target areas for smart environment
sensing. However, more extensive validation is required for
such systems to suit to well-being related conclusions. This
is where we have positioned this paper.

2 EXPERIMENTAL DESIGN
The aim of the experiment is to induce changes in the stress
level, flow and affect of the test subjects. We build the experi-
ment around gameplay. The test subject is given a video game
to play while the game environment is adjusted to induce
reactions in the test subject, which are subsequently mea-
sured. Video games offer a controlled environment for rich
and interactive game play experiences, which can be mea-
sured by various means [14]. We selected the Bubbleshooter
game1 as it is intuitive as well as easy to learn and adjust to
induce variation in the test subjects’ stress, flow and affect
by modifying the speed, difficulty and the strategy settings
of the game.

Setting. In a test space, the test subject is placed in front
of a gaming set consisting of a large screen and a mouse
for control, and instructed to play a video game. Two re-
searchers, situated behind the subject, are monitoring the
sensor devices. One researcher is instructing the test subject
and adjusting the game settings while the other researcher
collects user feedback with queries. One camera is placed in
front of the subject, recording all the facial expressions. A
second camera is positioned right behind the researchers.
Before the test, researchers explain and give a written

material of the experiment procedure to the test subject. The
test subjects also have the opportunity to ask questions.

Test procedure. The tests include in total six phases (0-5),
refer to Table 1. In phase 0, player is able to get familiar with
the game by freely playing it. Immersion in the game, as
well as flow, is induced with easy game settings. In phase 1,
gameplay is interrupted with a Skype call, aimed at reducing
flow. During the following phases (2, 3 and 4), we increase
the difficulty by adjusting the settings and introduce further
interruptions (external control over the mouse) to reduce
flow, increase stress and induce negative affect. To further
increase stress in phases 3 and 4, the player is instructed to

1https://www.bubbleshooter.net/original-bubble-shooter/

win, while we adjust the game settings to make it so difficult
that the user will certainly lose. Finally, phase 5 allows the
subject to cool off with an easy game setting.

Table 1: Experiment phasing

Phase Time (min) Stress Flow Affect Comments

0 3-5 low + neutral easy game, warm-up
1 8-10 low - neutral easy game, Skype call while playing
2 8-10 + - - easy game, external control of mouse
3 5-10 + - - difficult game, losing
4 3-8 + - - difficult game, losing
5 5-10 - + + easy game, winning, cool-off

Quantitative measurement. An electroencephalograph
(EEG) sensor, a smart ring with a skin conductivity (SC),
electrodermal activity (EDA) galvanic skin response (GSR)
sensors, and a heart rate (HR) monitor were used to directly
capture reactions and mental, emotional, and physiological
states. Also a video recording system and the EEG measure-
ments were used for measuring the pose of head and body
combined with video. The data sets are detailed in Table 2.
A system developed by Valossa company 2 detected the

emotional states (neutral, happiness, fear, pain, surprise,
anger, sadness and disgust) on the test subject faces in the
recorded videos. Valossa’s analysis method is based on a
computational, trainable machine learning model, that uses
certain reference points on the three-dimensional surface of
human face.

Qualitativemeasurement.Various self-assessment ques-
tionnaires are used at multiple stages of the experiment to
find the subjective values of stress, flow and affect). The
queries include the PANAS [17] (positive, negative affect),
and the Self-Assessment Manikin (SAM) (arousal, valence)
[3]. Further, we designed a simple self-assessment question-
naire (SSAQ) consisting of three elements (scale indicating
overall happiness; stress, flow, negative affect and attention;
and flow-related questions).

Synchronization. For time synchronization, a same mo-
bile phone device was used for both MoodMetric ring and
heart rate measurements as they share the same time refer-
ence. We use tilts of the mobile phone to facilitate the syn-
chronization of the EEG-data and the measurements from
the wearables. When an event happens, we tilt the mobile
phone to touch an electrode of the EEG cap. This produces
two different effects simultaneously: a glitch in the EEG and
a marker in the wearables data. Moreover, each marker is
numbered consecutively and shown in the mobile screen in
order to assist in the synchronization with the video as well.
Therefore, the beginning and end of the experiment and the
different test phases and interruptions are marked by means
of tilts of the mobile phone, in addition to created markers
in raw EEG-data with the EmotivPRO software.
2https://valossa.com/



Table 2: Sensor data sets.

Data type Target Source Sample rate Comments

EEG stress, flow, affect EPOC Flex 128 SPS 32 channels, gel sensors, EmotivPRO control software
SC, EDA, GSR stress MoodMetric ring 3 SPS 1 channel, continuous range in [1.0, 100.0]
HR stress Polar OH1 heart rate sensor 1 SPS
Video stress, affect Valossa video analysis 1 SPS heart rate, emotions by facial expression

Finally, video recordings of game activities, gamer’s fa-
cial expressions and EEG measurements were synchronized
within the Open Broadcaster Software (OBS) environment.

3 PRELIMINARY RESULTS AND DISCUSSION
Overall, test was conducted with 18 test subjects (N=18). We
analyzed all the self-assesments before, during and after the
tests, as well as the last 60 seconds of each test phase on the
MoodMetrics stress sensor data. Further, we glanced at the
EEG and the heart rate readings of individual test subjects.
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Figure 1: Wearable sensor readings from one test subject.
Colored sections in the stress and EEG readings indicate the
6 test phases, with red denoting interruptions or difficulty
and blue easiness.

Figure 2, depicting the change in four different affect di-
mensions from before to after the tests, suggests the test
subjects did experience variation in their affect. Figure 1 de-
tails the readings from some wearable sensors on one test
subject, further suggesting a correspondence between the
test structure and the stress readings: as the colored sections
in the stress and EEG readings of 1 indicate the 6 test phases,
with red denoting interruptions or difficulty and blue easi-
ness, we see a rise in stress over the warm-up period and the
difficult phases, and a downward trend during cool-off.

A similar pattern is reflected in the wearable sensor read-
ings in Figure 5 (a). Fitting a linear model with MoodMetrics
stress as the response and phase as the categorical covariate
results in highly significant estimates of the MoodMetrics
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Figure 2: Change in qualitative assessment of affect.

stress values for each phase as seen in Figure 3 (a). Start of
the test (phase 0) is with high stress, followed by a sharp
drop, after which there is a steep upward trend as phases
get more difficult and interruptions are introduced. Whereas
an identical linear model for heart rate also results in highly
significant estimates for each phase (Figure 3 (b)), the pat-
tern follows a generally lowering trend, with phase 3 as the
exception with a higher heart rate than previous or next
phases.

48 50 52 54

phase0
phase1
phase2
phase3
phase4
phase5

(a)

67 68 69 70

phase0
phase1
phase2
phase3
phase4
phase5

(b)

Figure 3: Estimates of (a) MoodMetrics stress values and (b)
Polar heart rate for each phase.

Test self-assessments show a mixed result. Subjective flow
appears to exhibit a roughly similar pattern to the Mood-
Metrics. Subjective stress has a lot of variation, with peaks
coinciding with the difficult phases (3, 4). Negative affect
appears also to peak during the increasingly difficult and
annoying parts of the test (phases 2–4). Attention appears to
follow a downward trend from initially high values. However,
none of these changes turned out significant in statistical
testing.
Interestingly, there appeared also no linear correlation

between the self-assessment of stress and the MoodMetrics
stress value. This could be caused by the relatively low num-
ber of test subjects, by a failure in either the MoodMetrics
stress values, the self-assessments, or any combination of
these. However, as the pair-wise differences of MoodMetrics
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Figure 4: Subjective assessment of flow, stress, and affect.
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Figure 5: Averages of MoodMetrics stress and heart rates.

stress values for each phase were significant, while those of
the self-assessments were not, the lack of correlation sug-
gests that self-assessment of short-term stress is not feasible.

4 CONCLUSION
In this paper, we have identified the research question and
outlined a test procedure for examining well-being in smart
environments. Further, we have conducted user tests with
the proposed gameplay experiment to collect data for fur-
ther analysis. Preliminary analysis showed the test structure
was significantly reflected in the readings of the wearable
MoodMetrics and Polar sensors. However, self-assessment
questionnaires failed to indicate significant differences be-
tween the phases of the experiment, reflecting the difficulty
of self-assessment of short-term stress, flow and affect.
In further studies, detailed analysis combining the multi-

modal measurements will be conducted. The focus of analy-
sis will be on the correlations between the self-assessment
concerning the test users’ own evaluation of flow, positive
and negative affect during game play, as well as the data
collected through wearable sensors and the video analysis.
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