
Security-Driven Information Flow Modelling for Component
Integration in Complex Environments

Veronika Kupfersberger
University of Vienna

Vienna, Austria
veronika.kupfersberger@univie.ac.at

Thomas Schaberreiter
University of Vienna

Vienna, Austria
thomas.schaberreiter@univie.ac.at

Gerald Quirchmayr
University of Vienna

Vienna, Austria
gerald.quirchmayr@univie.ac.at

ABSTRACT
Conceptualising and developing a new software solution is always
a daunting task, even more so when existing technologies of inter-
national partners are to be integrated into a unique and holistic
product, as is the case in many international research and innova-
tion projects. The individual requirements not only of each tool,
but of the resulting solution as a whole, must be considered as
well as the problem domain. The approach presented in this paper
uniquely combines existing structuring and modelling techniques,
resulting in an information flow model and interface definition
specifications appropriate for international projects. It is based on
an approach developed for an EU cybersecurity project and for its
specific requirements, but due to its flexibility seen as appropriate
for other domains as well. Complex systems consisting of different
existing software solutions are represented in a conceptual model
of their internal processes and the connecting information flows,
thereby facilitating further software development and adaptations.
Additionally, the exact identification and accounting of all infor-
mation flows are essential requirements for modelling according
to security and privacy by design principles, as for example pre-
scribed by privacy and impact assessment guides and required by
the General Data Protection Regulation (GDPR).

KEYWORDS
Security by Design, Complex Systems, Security Model, Information
Flow Model, Framework Design, Software Component Integration

1 MOTIVATION AND BACKGROUND
Good software architecture design is the base of any successful
information technology application [2]. When designing a new
software solution, the preconditions vary based on the objectives as
well as the environment in which it is to be developed and deployed.
Possibilities include, but are not limited to projects designed from
scratch, adapted legacy systems or systems combining existing
solutions. A new combination of existing solutions is the main
focus of this paper.

The approach presented in this paper is based on the following
setting of the EU project during which it was developed:

• An international consortium of acedemic and industry part-
ners

• New European legislations to consider (GDPR, NIS)
• The general socio-technological nature of the cybersecurity
problem domain

• The complexity of component integration in amulti-stakeholder
context

This environment has strongly influenced the choices made re-
garding the selection of the analysis and modelling methods, all of
which will be described in more detail in the following chapter.

According to Saitta [18], complex systems are defined as systems
including multiple components which do not influence the system
itself, but their interactions do, and are typically a concept used in
physics and art. They can be easily traversed into a construct in
computer science as well and are further detailed in Section 2. Due
to the complexity and variety of software architecture development
processes, the procedure of abstraction, particularly when dealing
with complex systems, is crucial to produce a cohesive model [10].
A new factor influencing the complexity of such systems are the reg-
ulations on Data Protection (GDPR) [12] and Network Information
Security (NIS) [13] in the European Union, which strongly influence
the requirements to information flows in complex systems.

Two concepts that are enforced by this new legislation are secu-
rity and privacy by design and by default, which shifts and expands
many of the requirements for software security from the opera-
tional phase to the design phase of products. For the first time
secure software design becomes a legal requirement, which in turn
leads to a re-thinking of currently practiced design methodologies,
where security and privacy are often only an afterthought. Due to
the complexity imposed by security and privacy on software design,
a purely technological approach to design seems increasingly inad-
equate. That is why a socio-technological approach is needed that
is able to capture the complex social and technological interactions
that contribute to the security of software. In security by design,
the main incentive is to identify the weak or vulnerable points a
malicious actor can use to compromise the system and identify a
more robust design. In privacy by design, the main incentive needs
to be to determine and specify the information flows of personal
and sensitive data through the system, to identify weak points that
would allow unintended use of personal/sensitive data, and account
for adequate data protection mechanisms in the design. We argue
that this identification can only be achieved if all the stakeholders
of a complex system (e.g. customers/users, designers, implementers,
security/privacy experts) work together in order to elicit and ad-
dress the security/privacy related aspects of the system and thus
achieve security and privacy by design.

The approach to modelling complex system and their informa-
tion flows presented in this paper was advanced during the con-
ceptualization of the CS-AWARE information flow model and the
definition of the respective interfaces as described in Section 4.
CS-AWARE is an EU-funded Horizon 2020 project for innovative
actions aimed at developing a cybersecurity awareness solution
for local public administrations (LPA) in the European Union and



IAIT 2018, December 10–13, 2018, Bangkok, Thailand V. Kupfersberger et al.

provides the case study examples for this paper. The solution com-
bines existing tools developed by various partners, which required
a well-structured and coherent model of information flows as an
implementation and software development basis to facilitate the
subsequent work packages. The result of the project is a monitoring
tool, which analyses various input data and raises awareness in
regards to incidents and potential threats among the IT administra-
tors. While the approach was designed specifically for the cyberse-
curity domain, the socio-technical analysis and the modelling of
the information flow can be easily used for software component
integration.

When designing a meaningful software solution based on exist-
ing tools, the first step is to identify the capabilities and responsibil-
ities of each component and how they are linked before integrating
them to receive a new software solution. This is particularly impor-
tant when developing monitoring software, because the monitored
entities do not only perform different tasks but also provide various
types of data. The final product can be divided into two sub-entities:
the monitoring tools and the technologies to be monitored, the
latter of which need to be integrated into the final model as well.
The relevance of specifying information flows to ensure security of
the system has been discussed and incorporated in other modelling
approaches [17]. This is especially challenging when combining
technologies by international providers from various sectors. The
optimal information flow between the respective software entities
must be thoroughly analysed and defined before continuing with
the technical adaptations and the software development. Security
and privacy by design are ensured by carrying out detailed specifi-
cations of information flows only after a thorough analysis of the
domain.

The selected analysis and design methods are described in the
Section 2 on related work. Section 3.1 covers the conceptualization
strategies relevant for constructing an information flow model
useful to the software architecture. In the subsequent Section 3.2,
a modelling technique for information flow models of complex
systems will be described in detail, after which a brief introduction
to the case study on which this approach was first applied is given
in Section 4. The paper ends with a conclusion on the presented
approach to modelling complex systems and the outlook on future
works in Section 5.

2 RELATEDWORK
When developing a new software it is essential to have a holistic
idea of the problem it aims to solve and the respective domain.
When dealing with a socio-technical domain, such as cybersecurity,
where human actions and tasks are as relevant as any technical
process, Soft Systems Methodology (SSM) [3] is an appropriate
choice. Other structuring methods, such as cognitive mapping,
casual loop diagrams [15] or a combination of stakeholder analysis
and cognitive mapping as suggested by Ferretti [6], would have
been an alternative. SSM was chosen for this particular approach
due to the existing knowledge in the consortium and the explicit
socio-technical nature of the methodology.

With SSM, the problem definition is supported by the various
stakeholders who create rich pictures describing different aspects
of the domain in a guided workshop. This allows a much deeper

insight into the domain and its issues, since it combines different
views and experiences. The seven steps of the SSM are:

• Entering the problem situation,
• Expressing the problem situation,
• Formulating root definitions of the systems behaviour,
• Building conceptual models of the systems,
• Comparing models to real-life situations,
• Defining possible changes and
• Taking action to improve the problem situation [3].

The result of these workshops are evaluated by the analyst and
potentially external experts and used as input for the conceptuali-
sation of the model. This method helps to simplify complex inte-
grations of different components into one new software. Complex
systems in software engineering are systems where components
function independently but are strongly influenced by results of
others [8] [18]. According to Jiang et al. [8], these complex software
systems typically involve encapsulated software components that
interact with each other. When combining existing software solu-
tions into one, this can often be the case. Therefore, these complex
systems must be simplified and abstracted in such a way that a use-
ful, coherent and holistic model can be generated. Since there is no
definition of abstraction widely recognized that covers more than
’... the generic idea of distilling the essential’ [18], also approaches in
the disciplines vary. Abstraction in software engineering can occur
in two ways, according to Sokolowski et. al [19] either by limit-
ing the information covered by the model to only the components
which are relevant and ignoring the remaining or by reproducing
a minimized version of the real-world concept. This procedure of
abstraction is critical and sometimes considered one of the most
important capabilities of a software engineer [10].
As the communication between the components is such an integral
part of a complex system, the model can be considered an infor-
mation flow model of such a system. Information flows can cover
multiple granularities of interconnections between components,
but on a high-level can be classified in three catagories [4]:

• Direct information flow
Component A communicates with component B directly
with no other components involved.

• Indirect information flow
Component A and component B share information and data
via component C. All communication shared between A and
B go through C, which means A and B indirectly communi-
cate with C as well.

• General information flow
Either one of the two options exist between two components,
so any type of information flow is possible.

The modelling of the information flow is based on the Data
Flow Diagram (DFD) language defined by Chen [11] but adapted to
suit the domains needs. The types of data flows have been altered,
while types of activities were added to ensure that the diversity
of the system can be modelled easily. This approach was chosen
due to the strong focus and importance of the information flow



Security-Driven Information Flow Modelling IAIT 2018, December 10–13, 2018, Bangkok, Thailand

in the CS-AWARE solution as well as the need for individualised
entities. While UML (Unified Modelling Language) activity and
class diagrams are superior for modelling architectural components,
information flow modelling has its own characteristics. That is why
we chose to build an extension to the DFD language allowing us
to represent certain aspects of the information flows in a more
comfortable way, especially when modelling complex systems.

When dealing with complex systems, all types of the above in-
formation flows are likely to occur and must be identified before
constructing the model of the system. Next to abstraction, the ab-
straction level on which to design such software models needs to be
identified. In the field of software design and simulation modelling
conceptual modelling can be defined as "... the process of abstracting
a model from a real or proposed system [14]" . It is essential to design
conceptual models as broadly as possible, in an iterative and con-
tinuing approach [16]. Lacking alternate guidelines to conceptual
modelling, Robinson [14] [15] defined four requirements of a con-
ceptual model (validity, credibility, utility and feasibility) as well as
a framework for applying conceptual modelling.

The problem domain influences the model repetitively, but itself
receives input from the model. Defining general objectives of the
project and the model are important tasks before collecting relevant
input and output factors, since the latter are strongly influenced
by the goals of the model. Input factors are of either qualitative or
quantitative nature and the means with which the models’ objec-
tives can be achieved, while output factors are values with which to
measure the efficiency and quality of the conceptual model. Finally,
the scope of the model where any assumptions made are defined.

The modelling approach documented in this paper is a new
way of conceptually modelling complex systems with a strong
focus on their components’ information flow, especially relevant
for security and data protection issues and the diversity of such
systems. For simplification purposes, multiple hierarchical views
are created: a high-level overview of the components and their
interactions of information and data as well as more detailed views
for each of the sub-layers. Additionally, the interfaces between the
components are defined on a high-level basis to facilitate further
software architecture development.

A few strategies for analysing problem domains and organising
complex systems into simplified models have been introduced, but
do not offer a holistic approach for internationally co-produced
software solutions, according to the problem domain defined in
the Introduction in Section 1. Integrating technologies by different
companies from various countries poses challenges that are more or
less unique to international research projects. While the approach
to modelling complex systems presented in this paper combines
multiple existing strategies, the combination is uniquely adapted to
suit the complexity of international software-integration projects,
and account for security and privacy by design in such complex
environments.

3 DEVELOPMENT OF A CONCEPTUAL
INFORMATION FLOWMODEL

Integrating existing systems, often including legacy software, poses
unique challenges. This section introduces a procedure to design
information flow models based on using a soft systems thinking

approach and combining it with specific modelling techniques,
allowing for the required flexibility to cover all aspects of such a
conceptual model.

Figure 1: Approach to designing a conceptual information
flow model

Figure 1 outlines each step to developing a holistic information
flow model of a complex system using the proposed modelling
technique. The first step is to analyse the system and its’ compo-
nents using Soft Systems thinking workshops, the results of which
are depicted in the model structured in three layers: Extraction,
Transformation and Provisioning. Each of the layers includes all
components with their relevant information flows between them-
selves and the other layers’. Section 3.1 gives an overview of the
conceptual ideas and approaches the presented modelling strategy
is based on. Additionally, in Section 3.2 the entities used to visualise
the conceptual model, generated by strategies introduced before,
are presented.

3.1 Approach to Conceptualization
When developing a system from existing software components,
identification and typification of information flows is an essential
task. This can be achieved by defining what information is required
and the state of each of the existing tools in terms of services,
technologies and data. The information flow of the system will
depend on which components it comprises of and which type of
data they process. Therefore the first step when conceptualizing
such a complex system must be the definition of which components
are to be included. Each component is then analysed thoroughly
by collecting answers to the following questions:

• Which internal processes take place?
• What data do they require?
• How can this component communicate with the necessary
input and output components?



IAIT 2018, December 10–13, 2018, Bangkok, Thailand V. Kupfersberger et al.

The gathered information will influence the layout of the system
as well as the interfaces between the components. These interfaces
require a detailed definition as early as possible during the software
development process, since this ensures all technology providers
involved in the final software solution know exactly how and what
to communicate with the other components. Interface definition
standards are diverse and the chosen approach will be described in
detail in Section 3.2.

When designing a monitoring system such as CS-AWARE, the
strategy should be to first look at the monitoring tools and the ser-
vices to be monitored separately, but in the end consider the system
as a whole entity of a complex system. This approach will ensure a
holistic analysis of the problem domain and a final model covering
all particularities of the domain. For the approach presented in this
paper, workshops applying the Soft Systems Methodology were
chosen to offer more detailed information on the requirements to
the new system. In particular for cybersecurity related software,
such workshops offer insights into potential threat vectors or spe-
cific, potentially undocumented, information flows, known only
subconsciously by the stakeholders of the problem domain. As
described in Section 2 this type of structuring method allows the
participants to create rich pictures (free-form visualisations), which
creatively visualize certain aspects of a problem domain. These
pictures not only allow the stakeholders to illustrate their percep-
tion to their colleagues, but also simplify the following structuring
process of the SSM analyst. SSM proves to be a powerful approach,
since connecting different types of stakeholders of a single prob-
lem domain typically shows how different perceptions of a system
and its domain can be. The confrontation of the participants and
their views allows a holistic result. Additionally, such stakeholder
workshops can disclose issues of the domain that have previously
been unknown to stakeholders and analysts alike by uncovering
tacit knowledge of the participants.

The conceptualization of such a complex system and its infor-
mation flows requires a high-level and abstract approach to include
all relevant information. For the purpose of modelling a complex
system of software components and their information flows, a
conceptual modelling approach was considered appropriate. The
approach of conceptual modelling is used in many domains and
across multiple disciplines, the specific definition of which therefore
varies. Especially in a security context this can include knowledge
and information not initiating from SSM workshops but external
experts. Ideally such domain experts would be part of the SSM ses-
sions to guide train of thoughts of the participants in the relevant
directions.
When constructing a conceptual model of a complex system the
identification of the components and their information flows, as
well as a holistic view of the problem domain is essential not only
for architecture but also for security purposes.

The first steps of the SSM were applied during the SSM-like
interviews and user workshops - entering the problem situation,
expressing the problem situation and formulating the root definitions
of the systems behavior. When beginning to model the first drafts of
the information flowmodel the next steps of SSM were taken: build-
ing conceptual models and comparing model to real-life situations.
Based on the last observations possible changes were defined and

the model revised accordingly. The final model is currently used
as a guideline for the systems development and implementation
and has therefore satisfied the last step of the SSM - improving the
problem sitation by guiding implementation decisions.

3.2 Modelling the Information Flow
Once a conceptual model is established, modelling the information
flow is an essential aspect of understanding the interactions be-
tween components in great detail. So these methods can be applied
to any new software system comprising multiple existing software
tools, a strategy which will be clearly outlined in this Section. After
analysing the problem domain in stakeholder workshops using
SSM, the environment of the new systems and its requirements
should be identifiable as well as the components to be included
after a prior analysis. Additionally, SSM-like sessions with the tech-
nology partners must be scheduled, during which the specifications
of each existing software, and the requirements it has with respect
to the connected technology, are to be identified.

To further facilitate the development of the information flow
model, three logical layers can be included, which are based on the
ETL model [9] - extraction, transformation and load - a standard for
database processes in data warehouses. Extraction stands for the
gathering of the data from various sources, transform for cleaning
and manipulation of data to ensure integrity and completeness and
load for transferring the data into its target space [1]. This model
was adapted by changing the load layer to data provisioning layer,
since generated knowledge and information are provided to the
end users in this layer. This is applicable for any software solution
that provides a service based on data to their end-user. Each of
the layers include components responsible for handling steps in
the respective layer, structuring them and their interactions clearly.
This does not only simplify further specification in the software
development process but also prior communication between the
technology providers.

A more detailed view of each of the layers is recommended,
the concept of which is presented in Figure 2. This representation,
where the other two connected layers are visualized as black boxes,
shows a more detailed view of the processes occurring in the respec-
tive layer and the information flows between them. This illustration
helps clarify which sub-components require what information and
how this can be provided. The following images in Table 1 show the
different visual modelling entities used in this conceptual modelling
approach.

Information flows as shown in Figure 3 can be either of con-
trolling, data transmitting or guiding nature - each of which has
an individual graphical representation and can be either uni- or
bidirectional.

Additionally, the information flows can be classified as either
manual (m), automated (a) or semi-automated information flow,
the latter representing flows of data that might require manual
adaptations or at least the users approval before sending. Another
existing model used to simplify the information flow is the I/P/O
model [7] - input, process, output - and was mainly used to describe
high-level interfaces between the components. First the data format
and type of the input is defined, followed by the processes that take



Security-Driven Information Flow Modelling IAIT 2018, December 10–13, 2018, Bangkok, Thailand

Figure 2: Example Transformation Layer

Table 1: Visual entities information flow model

Entity Description

An external component represents any data source or receiving entity
that is connected to one of the internal components and shares a type
of information flow as mentioned in Section 2.

Manual tasks are typically analysis tasks, such as holding SSM work-
shops or conducting an expert analysis of certain aspects of the problem
domain.

Subcomponent and component entities can not only represent
technologies as a whole in a high-level representation, but also their
subcomponents when looking at a single layer.

Static data represents data bases or configurations that are static and
defined prior to implementation by experts or analysts. Since software
development is an iterative process, these lists and data bases can be
updated if required.



IAIT 2018, December 10–13, 2018, Bangkok, Thailand V. Kupfersberger et al.

Table 2: Interface Definition Schema

Input Name of Component

Source Module Name of Component
Data Format Data format used by the component
Description any information required, but must include type of incoming flow
Output Name of Component

Destination Module Name of Component
Data Format Data format used by the component
Description any information required, but must include type of incoming flow
Process Name of Process

Module/s A Name of input components
Module/s B Name of output components
Process Name of process
Definition Description of what happens in subcomponent
Data Input Format Data format used by input components
Data Output Format Data format used by output components

Figure 3: Types of information flow

place in each of the components and finally which format the output
is provided in. The categories Input, Process and Output are defined
for all components as can be seen in Table 2, each of which can
include multiple instances of the categories.

This structure facilitates the alignment of the existing technolo-
gies immensely and clearly structures communication between the
components. Also the responsibilities of data adaptations can be
specified this way, aligning the data formats used throughout the
system. One of the topics analysed for this model were the relations
between the components and what defines them, it became clear
that while all can be summarized under the term information flow
they differ in content. The differentiation was made between data
and control flow, where they first describe actual data transfer for
analysis purposes and the latter conceptual and logical information
which has influence on the execution of the receiving component.
The last relation, that of guidance, represents a relation where
one component has an extensive effect on another. While the first
does not actually send data, it provides information to define the
construction and/or processes of the latter.

4 CASE STUDY
The case study presented in this paper depicts the information
flow model for the cybersecurity awareness solution realized in the
European H2020 project CS-AWARE. The project aims to improve
cybersecurity in local public administrations (LPAs) by providing
an online monitoring and awareness system that is able to detect se-
curity incidents by monitoring the complex organizational systems
at key locations, and set it in context with information collected
from external sources like cybersecurity information sharing com-
munities or network and information security (NIS) competent

authorities, as specified by the European cybersecurity strategy [5].
This allows to classify suspicious events and incidents to concrete
threats and attacks, as well as applicable strategies for prevention
or mitigation. CS-AWARE can act as a decision support system by
visualizing the incidents and their classifications in order to allow
an administrator or system operator to take informed prevention or
mitigation decisions. Additionally, CS-AWARE can act as a system
self-healing solution if purely technical solutions to a specific threat
or attack could be derived from the analysis of available information.
Furthermore, CS-AWARE is designed to interact with cybersecurity
information sharing communities to share information about newly
discovered incidents that could not be classified, in order to allow
the community to analyze those events and potentially help others
affected by the same incident.

Figure 4 shows the high-level model of the information flow of
the CS-AWARE solution. Each of the components is the responsi-
bility of one of the projects technology partners and consists of
multiple sub-processes. One of which includes the elements of the
monitored LPA system as an integral part of the architecture. These
are described further in more detailed models of each individual
layer, divided according to the concept introduced in Figure 2, to be
able to model the data transformations in each sub-component. As
mentioned above, the identification of the capabilities of each com-
ponent was performed during SSM-like sessions with the project
partners as well as workshops with LPA partners to be able to
understand the most critical information flows in the monitored
systems. The results of these analyses are shown in Figure 4. The
Data Extraction Layer covers the components for System Depen-
dency Analysis, Data Collection as well as the static components
of Public Information Sources and Local Public Administration
Specific Internal Information Sources. The Transformation Layer
includes all components responsible for adaptation and analysis of
the collected data: Multi-Language Support, Data Pre-Processing
and Data Analysis and Pattern Recognition. Finally, the Provision-
ing Layer consists of all components that provide data to users or



Security-Driven Information Flow Modelling IAIT 2018, December 10–13, 2018, Bangkok, Thailand

Figure 4: CS-AWARE Information Flow Model

other external entities. These are the Visualisation, Information
Sharing and Self-Healing component.

The aim of the information flow model is to provide a unified
understanding of which components interact with each other and
in what way this interaction is made possible. The model provides
a high-level overview of the main components, most of which are
represented by one of the technology partners, as well as a more
detailed view of the main subcomponents or processes each of them
consist of. Additionally, the relations between these components
are defined as well as, in the case of data flows, the data format in
which the exchange takes place. The detailed software architecture
is based on the conceptual information flowmodel and the interface

specifications. This will ensure all partners share the same under-
standing of responsibilities and requirements of their components
during the development and implementation phase.

The design approach presented in this paper solves the problem
of complex system component integration in a security sensitive
setting. Proof of work is provided by the hands-on application of the
method in the CS-AWARE information flow model, where multiple
technologies, monitoring systems and systems to be monitored
were integrated.

5 CONCLUSION AND FUTUREWORK
The presented approach for modelling a complex system created
by merging existing software technologies offers new approaches



IAIT 2018, December 10–13, 2018, Bangkok, Thailand V. Kupfersberger et al.

to structuring such models. Even though the strategy was devel-
oped based on the problem domain of CS-AWARE, it is expected
to prove useful to other projects involving the fusion of existing
technologies to create a new solution. Especially since we have seen
the importance of having a clear structure and defined model in
such complex projects. This way of designing a conceptual model
of the information flow of a complex system provides a detailed
basis for software adaptation and integration. Especially for interna-
tional projects, the approach described in this paper allows for the
consideration of cultural and organisational differences, as well as
technological preconditions of the existing technologies. In addition
it provides a basis for security and privacy by design, by clarifying
the information flow of the system and therefore allowing a better
basis for design decisions. Future work in regards to this approach
will be part of the CS-AWARE project and further provide insight
on the quality of the presented conceptual modelling of information
flows in complex systems.

ACKNOWLEDGEMENTS
The authors would like to thank the EU H2020 project CS-AWARE
(grant number 740723) for supporting the research presented in
this work.

REFERENCES
[1] Srividya K Bansal and Sebastian Kagemann. 2015. Integrating big data: A semantic

extract-transform-load framework. Computer 48, 3 (2015), 42–50.
[2] Jan Bosch. 2004. Software architecture: The next step. In European Workshop on

Software Architecture. Springer, 194–199.
[3] Peter Checkland. 1981. Systems thinking, systems practice. (1981).
[4] Patrice Clemente, Jonathan Rouzaud-Cornabas, and Christian Toinard. 2010.

From a generic framework for expressing integrity properties to a dynamic mac
enforcement for operating systems. In Transactions on computational science XI.
Springer, 131–161.

[5] European Commission and High Representative of the European Union for
Foreign Affairs and Security Policy. 2013. Cybersecurity Strategy of the European
Union: An Open, Safe and Secure Cyberspace. JOIN(2013) 1 final. (2013).

[6] Valentina Ferretti. 2016. From stakeholders analysis to cognitive mapping and
Multi-Attribute Value Theory: An integrated approach for policy support. Euro-
pean Journal of Operational Research 253, 2 (2016), 524–541.

[7] Jeffrey O Grady. 1995. System engineering planning and enterprise identity. Vol. 7.
CRC Press.

[8] JC Jiang, JY Yu, and JS Lei. 2015. Finding influential agent groups in complex
multiagent software systems based on citation network analyses. Advances in
Engineering Software 79 (2015), 57–69.

[9] Anastasios Karagiannis, Panos Vassiliadis, and Alkis Simitsis. 2013. Scheduling
strategies for efficient ETL execution. Information Systems 38, 6 (2013), 927–945.

[10] Jeff Kramer. 2007. Is abstraction the key to computing? Commun. ACM 50, 4
(2007), 36–42.

[11] Qing Li and Yu-Liu Chen. 2009. Modeling and Analysis of Enterprise and Informa-
tion Systems: from requirements to realization. Springer.

[12] THE EUROPEAN PARLIAMENT and THE COUNCIL OF THE EUROPEAN
UNION. 2008. COUNCIL DIRECTIVE 2008/114/EC of 8 December 2008 on the
identification and designation of European critical infrastructures and the assess-
ment of the need to improve their protection. Official Journal of the European
Union L 345/75. (2008).

[13] THE EUROPEAN PARLIAMENT and THE COUNCIL OF THE EUROPEAN
UNION. 2016. DIRECTIVE (EU) 2016/1148 OF THE EUROPEAN PARLIAMENT
AND OF THE COUNCIL of 6 July 2016 concerning measures for a high common
level of security of network and information systems across the Union. Official
Journal of the European Union L 194/1. (2016).

[14] Stewart Robinson. 2008. Conceptual modelling for simulation Part I: definition
and requirements. Journal of the operational research society 59, 3 (2008), 278–290.

[15] Stewart Robinson. 2008. Conceptual modelling for simulation Part II: a framework
for conceptual modelling. Journal of the Operational Research Society 59, 3 (2008),
291–304.

[16] Ric Roca, Dale Pace, Stewart Robinson, Andreas Tolk, and Levent Yilmaz. 2015.
Paradigms for conceptual modeling. In Proceedings of the 48th Annual Simulation
Symposium. Society for Computer Simulation International, 202–209.

[17] Najah Ben Said, Takoua Abdellatif, Saddek Bensalem, and Marius Bozga. 2014.
Model-driven information flow security for component-based systems. In Joint
European Conferences on Theory and Practice of Software. Springer, 1–20.

[18] Lorenza Saitta and Jean-Daniel Zucker. 2013. Abstraction in artificial intelligence
and complex systems. Vol. 456. Springer.

[19] John Sokolowski, Charles Turnitsa, and Saikou Diallo. 2008. A conceptual mod-
eling method for critical infrastructure modeling. In Simulation Symposium, 2008.
ANSS 2008. 41st Annual. IEEE, 203–211.


	Abstract
	1 Motivation and Background
	2 Related Work
	3 Development of a Conceptual Information Flow Model
	3.1 Approach to Conceptualization
	3.2 Modelling the Information Flow

	4 Case Study
	5 Conclusion and Future Work
	References

