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ABSTRACT

Context: Researchers from different groups and institutions are col-
laborating towards the construction of groups of interrelated repli-
cations. Applying unsuitable techniques to aggregate interrelated
replications’ results may impact the reliability of joint conclusions.

Objectives: Comparing the advantages and disadvantages of the
techniques applied to aggregate interrelated replications’ results in
Software Engineering (SE).

Method: We conducted a literature review to identify the tech-
niques applied to aggregate interrelated replications’ results in SE.
We analyze a prototypical group of interrelated replications in SE
with the techniques that we identified. We check whether the ad-
vantages and disadvantages of each technique—according to mature
experimental disciplines such as medicine—materialize in the SE
context.

Results: Narrative synthesis and Aggregation of p-values do
not take advantage of all the information contained within the
raw-data for providing joint conclusions. Aggregated Data (AD)
meta-analysis provides visual summaries of results and allows as-
sessing experiment-level moderators. Individual Participant Data
(IPD) meta-analysis allows interpreting results in natural units and
assessing experiment-level and participant-level moderators.

Conclusion: All the information contained within the raw-data
should be used to provide joint conclusions. AD and IPD, when
used in tandem, seem suitable to analyze groups of interrelated
replications in SE.
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1 INTRODUCTION

Experimentation is common nowadays in SE [13, 23, 48]. However,
two main threats to validity impact the suitability of individual
experiments to generate reliable results!: the small sample sizes
commonly gathered [13], and the lack of representativeness of the

!Even though both qualitative results (e.g., text transcripts) and quantitative results
(e.g., productivity scores in a percentage scale) can be collected in experiments, here
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experimental settings to real-life contexts [48]. To overcome the
previous weaknesses and to improve the generalizability of results,
researchers from different groups and institutions are collaborat-
ing towards the construction of groups of interrelated replications
[6, 17, 33, 38]. Collaborating with each other (e.g., by sharing the
experimental material, cooperating during the design, execution
or analysis phases of the experiments, etc.), researchers are able to
increase the sample size gathered at the overall level, and at the
same time, check the effects of the technology under assessment
in different settings. Eventually, this should improve the reliability
of results and their generalizability towards different contexts [30].
These groups of replications (i.e., groups of interrelated replications
or simply, interrelated replications from now onwards) provide cer-
tain advantages over groups of experiments gathered by means of
Systematic Literature Reviews (SLRs) [26].

For example, researchers conducting interrelated replications
have access to the raw-data of all the replications. This allows them
to apply consistent analysis techniques and in turn, ensure that
differences across replications’ results do not emerge due to the
different techniques applied to analyze each replication, but instead,
due to real differences in the data gathered [9]. On the contrary,
ensuring that differences across experiments’ results are just due
to the differences in the data gathered is unfeasible in SLRs, as in
principle, different pre-processing or analysis techniques may have
been followed to analyze each experiment.

Besides, as researchers conducting interrelated replications have
first-hand knowledge of the settings of all the replications, they
can ensure that, in case replications’ results diverge, they are either
due to genuine variability of results, or due to the specific changes
introduced across replications—and thus, it is possible to elicit mod-
erators, either at the participant-level (e.g., subjects’ programming
experience, etc.) or at the experiment-level (e.g., programming lan-
guage). On the contrary, if experimental settings or populations
are not fully described in research papers (what may happen due
to length restrictions or reporting inconsistencies), this may limit
SLRs’ opportunities to identify moderators (as they may pass un-
noticed), and at the same time, lower the reliability of SLRs’ joint
results or moderator effects (because of the potential existence of
unacknowledged sources of variability impacting results [9]).

Even though meta-analysis of effect sizes is the de facto statis-
tical method in SE to aggregate experiments’ results in SLRs [26],
several techniques (i.e., Narrative synthesis, Aggregated Data (AD)
meta-analysis, Individual Participant Data (IPD) meta-analysis, and
Aggregation of p-values) have been applied to aggregate interre-
lated replications’ results according to a Systematic Mapping Study
(SMS) that we conducted in 2017 [39]. Aggregating interrelated

we just focus on quantitative results, and the techniques that have been applied to
aggregate them in SE.
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replications’ results with unsuitable aggregation techniques may
impact the reliability of the joint findings and eventually, to miss a
valuable opportunity to obtain in-depth insights from experiments’
results.

In this paper we aim to answer a main research question:

o What are the advantages and disadvantages of the techniques
used to aggregate interrelated replications’ results in SE?

To answer this question, we first select a representative group
of interrelated replications according to the results of our SMS
[39]. Specifically, here we select a group of four interrelated replica-
tions on Test-Driven Development (TDD) with small and dissimilar
sample sizes, heterogeneous results, different subject types (i.e.,
professionals and students), and identical experimental designs and
response variable operationalizations. Then, we analyze our group
of interrelated replications with all the aggregation techniques that
we identified along our SMS [39]. Finally, we check whether the
advantages and disadvantages of each technique—according to ma-
ture experimental disciplines such as medicine or pharmacology—
materialize when analyzing our group of interrelated replications.
Along this study we made several findings:

o Narrative synthesis and Aggregation of p-values fail to quan-
tify the relevance of results, and do not take advantage of the
full information contained within the raw-data to provide
joint conclusions.

e IPD and AD complement to each other to aggregate inter-
related replications’ results and identify experiment-level
moderators. However, IPD seems more suitable than AD to
identify participant-level moderators.

In view of this, we suggest:

IPD and AD seem suitable to be used in tandem to analyze groups
of interrelated replications in SE.

This paper makes two main contributions:

o A description and compilation of the advantages and disad-
vantages of the aggregation techniques applied to analyze
groups of interrelated replications in SE.

o The first comparison of the findings obtained on the same
group of interrelated replications with the different aggrega-
tion techniques used in SE.

As a secondary contribution, we provide a brief list of suggestions
to analyze groups of interrelated replications—based on the findings
that we obtained from applying the techniques on a representative
group of interrelated replications.

Paper organization. In Section 2 we provide the background
of this study. In Section 3 we outline the research method followed.
In Section 4 we provide a description of our group of interrelated
replications. Next, in Section 5, Section 6, Section 7 and Section 8 we
analyze our group of replications by means of Narrative synthesis,
AD, IPD and Aggregation of p-values, respectively. In Section 9 we
discuss the results achieved with each technique. Then, we outline
the threats to validity of our study in Section 10. Finally, we provide
the conclusions of this article in Section 11.

2 BACKGROUND

In this section, we first report on the importance of effect sizes
and p-values to extract knowledge from interrelated replications’
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results (Section 2.1). Then, we provide an introduction to the ag-
gregation techniques that have been used in SE to analyze groups
of interrelated replications according to our SMS [39]. We go over
them from the most, to the least used in SE: Narrative synthesis
(Section 2.2), AD (Section 2.3), IPD (Section 2.4) and Aggregation
of p-values (Section 2.5).

2.1 Effect Sizes and p-values

According to the latest recommendations provided by statistical
reformers and associations [10, 32, 46], and those of interest groups
on data analysis in medicine and pharmacology [29, 43], data analy-
ses should quantify both the practical significance and the statistical
significance of results.

Practical significance is usually quantified in terms of effect sizes
and 95% confidence intervals (i.e., 95% CIs) [10, 46]. Effect sizes in-
form on the magnitude and sign of the relationship between two
groups (or more generally, between two variables [7]). 95% Cls are
commonly used as a quantifier on the precision of the effect size
provided: the smaller the 95% CI, the larger the precision of the ef-
fect size and viceversa. Effect sizes can be conveyed in standardized
units (i.e., units designed to rule out differences across experiments’
response variables) or in unstandardized units (i.e., natural units).
Examples of commonly used standardized effect sizes are Cohen’s
d and Hedges’ g (i.e., Cohen’s d small samples correction [4]). Com-
monly used unstandardized effect sizes are the parameter estimates
of traditional statistical tests (e.g., the difference between the means
of the two groups in a t-test, or the parameter estimates of linear
regressions [4]).

Statistical significance is usually quantified in terms of p-values.
p-values inform on the probability of obtaining the effect size
observed—or a larger one—if there was no effect in the popula-
tion (i.e., the effect size was equal to 0 in reality [8]). If the p-value
is smaller than a certain threshold (e.g., 0.05 [8]), then results are
declared as statistically significant. Put simply, if results are sta-
tistically significant, there is a genuine effect in the population
according to the evidence collected (i.e., the raw-data). Unfortu-
nately, one main shortcoming threatens the validity of p-values
to inform on the relevance of results: p-values confound sample
size and effect size [8]. Put differently, small p-values (and thus,
significant results) may emerge not just because of the relevance of
the effect size, but instead because of the presence of a large sample
size—and perhaps a not so relevant effect size. Thus, some authors
suggest replacing p-values by effects sizes and their corresponding
95% Cls instead [10, 32, 46], as they serve also to quantify the statis-
tical significance of results (if the 95% CI does not cross 0, then the
effect size is statistically significant), and they can be used either to
quantify the precision of results.

In the following, we go over the aggregation techniques that
have been used to analyze groups of interrelated replications in SE.

2.2 Narrative Synthesis

According to our SMS [39], Narrative synthesis was used to analyze
46% of the groups of interrelated replications. In Narrative synthe-
sis, experiments’ results—either in p-value or effect size terms—are
"combined" together to provide a textual summary of results. For
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example, if Narrative synthesis is to be applied, first each experi-
ment needs to be analyzed individually with a suitable statistical
test (e.g., t-test, Wilcoxon test etc. [18]). Afterwards, all experiment’
results are synthesized together, commonly following a "template"
such as: while results seem ’statistically significant/large/negative’ in
experiments X, Y and Z, results are not in experiment M. This differ-
ence of results could be due to H, N or K moderator variable. The main
advantage of Narrative synthesis is that it only needs experiment’
effect sizes or p-values to provide joint results. Besides, Narrative
synthesis allows to combine the results of experiments with wildly
different designs and response variables into a joint conclusion (as
it only requires either the p-values or the effect sizes [37]). How-
ever, Narrative synthesis fails to provide a quantitative summary
of results (such as a joint effect size or a p-value [4]), and involves
subjective judgment when providing joint results [35] (should all ex-
periments be treated equally towards the joint conclusion? should
experiments with practitioners be weighted more—as after all, they
are more representative of reality?). Thus, different analysts may
reach to disparate conclusions given the same raw-data [4].

23 AD

According to our SMS [39], AD was used to analyze 38% of the
groups of interrelated replications. AD is commonly known as meta-
analysis of effect sizes in SE [26]. To use AD, first all experiments’
effect sizes need to be calculated—from either experiment-level
summary statistics (e.g., mean, standard deviations, etc.), or from
statistical tests’ results (e.g., Pearson correlation [18]). Afterwards,
effect sizes need to be combined into a joint effect size by means of
a meta-analysis model. Two types of meta-analysis models can be
fitted with AD [4]: fixed-effects models and random-effects models.
Fixed-effects models rely on the assumption that differences across
experiments’ results are just due to random-sampling. Put differ-
ently, fixed-effects models assume that a common underlying effect
size is being estimated across all the experiments. Random-effects
models assume that differences across experiments’ results are due
to both random-sampling and real heterogeneity of effects. Put differ-
ently, instead of a common underlying effect size, in random-effects
models, a distribution of effect sizes is being estimated. Generally
speaking, in AD each experiment is weighted towards the overall re-
sult depending upon its sample size—if a fixed-effects model is used
[4]—or depending upon its sample size and the total heterogeneity
of results—if a random-effects model is used [4].2 Finally, visual
summaries of results such as forest-plots are usually provided to
ease the understanding of results [4].

Figure 1 shows the corresponding forest-plot of an hypothetical
group of four toy-replications.

At a simple glance at Figure 1, it can be seen that Experiment 3’s
results are remarkably different than those of Experiment 1, 2 and
4. Besides, the weight of each experiment towards the joint result
(i.e., the stretched diamond at the bottom) can be assessed just by
looking at the size of each black square (the larger the square, the
larger the weight). In addition, the precision of the effect sizes can
be simply ascertained by looking at their respective 95% Cls (the
lines that cross the squares). Finally, heterogeneity of results can
be assessed either visually (by observing the relative position of

2 Assuming a common variance term across experiments.
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Figure 1: Forest-plot for toy-replications.

experiments’ effect sizes and 95% Cls) or by means of the I? statistic
or the Q-test: in this case, the heterogeneity of results is statistically
significant (i.e., p-value<0.001) and large (as I> = 87.4, I? is larger
than 75% [4]).

If heterogeneity of results is identified with AD, "post-hoc" anal-
yses should be conducted with the aim of eliciting moderator vari-
ables [4]. Sub-group meta-analyses and meta-regression (a general-
ization of sub-group meta-analysis) can be used for such ends [4].
Meta-regression is a special case of weighted regression where all
experiments’ effect sizes are regressed on either experiment-level
moderators (e.g., programming language or testing tool), or on av-
eraged participant-level moderators (e.g., participants’ averaged
programming experience in each experiment) [4].

Summarizing, the main advantages of AD are the appeal of forest-
plots for summarizing results, and the availability of straightfor-
ward statistics for interpreting heterogeneity. AD’s ability to com-
bine the results of experiments with different response variable
operationalizations and designs [4], and its suitability to assess
experiment-level moderators [9, 21] are worth mentioning either.
However, among AD’s main shortcomings are its over-reliance
on standardized effect sizes and thus, its lowered informativeness
for conveying results (e.g., How small is a small Cohen’s d of
0.23?). In addition, AD has a reduced statistical power for detect-
ing participant-level moderators [28] and may also be affected by
ecological bias (i.e., the presence of an averaged effect that may not
be representative of the effect in the population) when identifying
participant-level moderators [3].

24 IPD

IPD involves the central collection, processing and analysis of all
experiments’ raw-data into a joint conclusion [9]. IPD comes in two
flavours: IPD mega-trial and IPD stratified [2]. According to the
results of our SMS [39], IPD mega-trial and IPD stratified were used
to analyze 33% and 15% of the groups of interrelated replications,
respectively. In IPD mega-trial, the raw-data of all experiments
are pooled together, and then analyzed as if data were coming
from a single "big" experiment (e.g., by means of a ¢-test, or a U-
Mann Whitney test [18]). IPD mega-trial may provide biased results
if data are unbalanced across experiments and treatment groups
[27]—what may happen in groups of interrelated replications with
dissimilar sample sizes and missing data. IPD mega-trial may also
have low statistical power if subjects resemble more to each other
within experiments than across experiments [24]—what may hap-
pen in groups of interrelated replications with different types of
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subjects (e.g., professionals or students). Thus, IPD mega-trial shall
be avoided by default [2, 16].

In IPD stratified, the raw-data of all experiments are analyzed
jointly, but contrary to IPD mega-trial, in IPD stratified, the analysis
is stratified by experiment -by including a factor accounting for "Ex-
periment” within the statistical model fitted (e.g., an ANOVA model
with the factors "Treatment” and "Experiment" [4]). IPD stratified
models can be either fixed-effects models or random-effects models.
Generally speaking, and as in AD, in IPD stratified models each
experiment contributes towards the joint result depending upon its
sample size3—if a fixed-effects model is used [16]—or depending
upon its sample size and the total heterogeneity of results—if a
random-effects model is used [16]. Typically used IPD fixed-effects
models are ANOVA or ANCOVA—from the Generalized Linear
Model family [18]. Typical IPD random-effects models are Linear
Mixed Models (LMM)—from the Generalized Linear Mixed Models
family [5].

For illustrative purposes, Table 1 shows the results of the group
of four toy-replications presented in Section 2.3, analyzed now with
a LMM.

Table 1: LMM analysis for toy-replications.

Factor Estimate 95% CI p-value
Treatment A 49.93 (47.02,52.85)  <0.001
Treatment B 51.82 (41.66,61.97)  <0.001

MDiff 1.88 (-5.22, 8.99) 0.601

SdDiff 6.71

As it can be seen in Table 1, the difference in performance be-
tween Treatment B (M = 51.82) and Treatment A (M = 49.93) is
small (i.e, Mg;rr = 1.88). Besides, in comparison with the rela-
tively small difference in performance, a large standard deviation
of treatment effects is observed (sdp;ry = 6.708). Put differently,
treatment effects span widely along a negligible mean effect. Thus,
heterogeneity of treatment effects seems to have materialized.

If heterogeneity is detected, "post-hoc" analyses shall be con-
ducted with the aim of eliciting moderator variables [47]. Sta-
tistical models with interaction terms between treatment and ei-
ther experiment-level, or participant-level moderators shall be per-
formed for such ends [20].

Among the main advantages of IPD are its increased statisti-
cal flexibility for accommodating missing-data (e.g., LMMs allow
missing data—as long as data are missing at random [5]) and the
possibility of interpreting results in natural units (instead of in
standardized units as it is typical with AD). Besides, IPD allows
assessing the effect of both experiment-level and participant-level
moderators on results [20, 28]. However, among the main disad-
vantages of IPD are its reliance upon identical response variable
scales across experiments [44], the unsuitability of some statistical
models (e.g., repeated-measures ANOVAs) for analyzing together
experiments with different designs [19], and the unavailability of
straightforward statistics to interpret heterogeneity of results [5].

3Making the assumption that no interaction term between treatment and experiment is
included within the statistical model, and that experiments share an identical variance
term [16].
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2.5 Aggregation of p-values

Aggregation of p-values was used to analyze just 7% of the groups
of replications according to our SMS [39]. In Aggregation of p-
values, each experiment is first analyzed by means of a suitable
statistical model (e.g., such as a t-test, a Wilcoxon test etc. [19]),
and then the one-tailed p-values of each experiment are combined
into a joint p-value by means of either the Fisher’s or Stouffer’s
method [4]. The main advantage of Aggregation of p-values is that
it can combine the p-values of experiments with different designs or
response variables into a joint result [35]. However, one of its main
shortcomings is that Aggregation of p-values weights identically
each experiment towards the joint conclusion regardless of their
sample size, experimental design or quality [35]—even though more
sophisticated versions of Aggregation of p-values also exist [47]. In
addition, Aggregation of p-values does not provide a joint effect
size, and thus, does not allow to quantify the relevance of results

[4].

3 RESEARCH METHOD

We conducted a SMS in 2017 with the aim of identifying the tech-
niques that had been used to aggregate interrelated replications’ re-
sults in SE [39]. We also conducted a literature review to learn about
the advantages and disadvantages of the aggregation techniques
according to the literature of mature experimental disciplines such
as medicine and pharmacology. Along our research, we came across
numerous resources on meta-analysis [4, 47], statistical techniques
to analyze multicenter clinical trials [11, 20, 41] and linear mixed
models [5, 22].

After identifying all the techniques applied in SE, and learning
about their advantages and disadvantages, in this study we wanted
to assess whether such advantages and disadvantages would mate-
rialize in the SE context. For this, here we select a representative
group of interrelated replications according to the results of our
SMS [39]. Specifically, here we select a group of interrelated repli-
cations with the following characteristics: (1) four replications (i.e.,
the median number of replications within groups of replications)
with small and dissimilar sample sizes; (2) an observable hetero-
geneity of results; (3) identical experimental designs and response
variable operationalizations across replications (as in 85% and 77%
of the groups of replications identified, respectively); (4) different
subject types (as in 97% of the groups of replications).

Then, we analyze our group of replications with Narrative Syn-
thesis, AD, IPD and Aggregation of p-values. We follow a similar
Narrative synthesis procedure to that followed in the groups of
replications that we identified along our SMS [39]. We follow Boren-
stein et al.’s procedures [4] for analyzing our group of replications
with AD. We follow Whitehead et al’s suggestions [47] and Fisher et
al’s recommendations [20] for analyzing our group of replications
and identifying participant-level moderators, respectively. We use
Fisher’s method [4] to analyze our group of replications by means
of Aggregation of p-values.

Once we analyze our group of replications with all the tech-
niques, we compare the findings that we obtained with each one.
Finally, we asses the extent to which the advantages and disadvan-
tages of the techniques materialize in the SE context.
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4 INTERRELATED REPLICATIONS ON TDD

A group of four interrelated replications has been conducted to
evaluate the effects of TDD on quality. Three replications were con-
ducted at F-Secure -a multi-national security and digital company-
and one at UPV -Technical University of Valencia. The threats to
validity of F-Secure’s experimental design, experiment protocol,
instruments and experimental tasks were published elsewhere [45].
UPV is a close replication of F-Secure.

4.1 Dependent and independent variables

The independent variable across all the replications is develop-
ment approach, with TDD and Iterative-Test Last (ITL) as treat-
ments. ITL is defined as the reverse-order approach of TDD follow-
ing Erdogmus et al. [14].

The dependent variable across all the experiments is functional
correctness. Functional correctness is a sub-characteristic of qual-
ity according to ISO 25010. It is defined as the degree to which a
system provides the correct results with the needed degree of precision
[1]. We measure functional correctness as the percentage of test
cases that successfully pass from a battery of test cases that we
built for testing participants’ solutions. Specifically, we measured
functional correctness as:

_ #Test Cases(Pass)

100
#Test Cases(All) *

All replications have an identical experimental design: an AB
within-subjects design [23] (i.e., a repeated measures design where
each subject first applies ITL and then TDD).

4.2 Subjects

Subjects were handed a survey in each replication. The survey
contained a series of ordinal-scale (i.e., inexperienced, novice, inter-
mediate and expert) self-assessment questions with regard to their
experience in programming, Java, unit testing and JUnit.*

Table 2: Mean experiences across replications.

Experiment N Programming Java Unit JUnit
F-Secure H 6 3.67 233 2.17 2.17
F-Secure K 11 2.91 1.82 1.64 1.27
F-Secure O 7 3.29 271 2.7 2
UPV 33 2.36 1.88 1.04 1

Table 2 shows the mean experiences (Programming, Java, Unit
and JUnit) of the participants’ across replications (i.e., 1-4, for inex-
perienced, novice, intermediate and experts, respectively).> As it
can be seen in Table 2, the most senior developers are those at F-
Secure O and F-Secure H, while those at UPV are the ones with the
lowest experience. As a summary, our group of replications is
comprised by an heterogeneous population of TDD novices.

4The survey and its results were published elsewhere [12].
SFor simplicity’s sake, we consider the ordinal variables along this study as continuous.
This approach is commonly followed in other areas [34].
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4.3 Descriptive Statistics

Table 3 shows the descriptive statistics (i.e., sample size, mean,
standard deviations, and medians) for ITL and TDD’s FC scores
across all the replications.

Table 3: Descriptive statistics: ITL vs. TDD.

Mean SD Median
ITL 30.71 36.58 24.16
TDD 40.23 33.43 35.34
ITL 11 22.17 20.44 17.98

Experiment Treat. N
F-Secure H 2

FSecure Ky 11 3542 3540 2241

TTL 7 1605 2081  7.87
FSecureO 1y 7 6897 3153 81.03
B~ ITL 31 3338 39.79 674

TDD 29 77.16 21.04 83.93

Figure 2 shows the profile-plot of each experiment’s ITL and
TDD mean FC scores.

1001

754 EXPERIMENT

F-Secure H

Q 50 L+ F-Secure K

- F-Secure O

259 UPv
D ) T T
ITL TOD
Treatment

Figure 2: Profile-plot: ITL vs. TDD.

As it can be seen in Figure 2, the mean FC scores achieved with
ITL are clumped together around 25, while the mean FC scores of
TDD vary largely across experiments. Besides, the difference in
performance between TDD and ITL (i.e., the slope of the lines) varies
largely across experiments: while F-Secure K’s line is almost flat
(and thus, ITL behaves similarly to TDD), F-Secure O’s line looks
much steeper (TDD outperforms ITL to a large extent). At first
glance, heterogeneity of results seems to have materialized.

Next, we analyze the group of replications with all the techniques
that have been applied in SE [39].

5 NARRATIVE SYNTHESIS

To analyze a group of replications with Narrative synthesis, first,
each replication needs to be analyzed individually. As all replica-
tions have an identical AB within-subjects design, we analyze each
of them with a dependent ¢-test [19]. The dependent ¢-tests’ results
are shown in Table 4.

In Narrative synthesis, after analyzing each replication individu-
ally, the p-values—or the signs or magnitudes—of the effect sizes
(this is, the treatment estimates of the dependent ¢-tests) are com-
pared to provide a textual summary of results. For example: as it
can be seen in Table 4, TDD seems to outperform ITL across all the
replications (i.e., as all the effect sizes are positive). However, as
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Table 4: Individual analyses: ITL vs. TDD.

Experiment Estimate 95% CI p-value
F-Secure H 9.52 (-19.58, 38.62) 0.483
F-Secure K 13.26 (-7.26, 33.77) 0.193
F-Secure O 52.91 (30.44,75.39)  <0.001
UPV 42.31 (29.02,55.62)  <0.001

just results are statistically significant at F-Secure O and UPV, and
not att F-Secure H or F-Secure K (and thus, an identical number
of experiments point in different directions), we cannot draw a
definite conclusion about the significance of results. Finally, hetero-
geneity seems to have materialized: effect sizes vary largely across
replications (i.e., from M = 52.91 at F-Secure O to M = 9.52 in
F-Secure H). Thus, differences across replications’ effect sizes may
be due to experiment-level moderators (e.g., subject type), or due to
participant-level moderators (i.e., participants’ experiences). How-
ever, we cannot observe any pattern on results: TDD outperforms
ITL to a large extent for both students (i.e., UPV) and profession-
als (F-Secure O). Besides, participants’ mean experiences seem not
much informative either (UPV’s participants seem to outperform
those of F-Secure H and F-Secure K, despite being novices). In view
of this, what we conclude by means of Narrative synthesis is that
more replications are needed to assess the significance of results
and understand the circumstances that favour TDD over ITL.

6 AD
6.1 Main Analysis

To analyze a group of replications by means of AD, first, all replica-
tions’ effect sizes—and their corresponding standard errors—need
to be computed. Then, all replications’ effect sizes need to be com-
bined by means of a meta-analysis model. Finally, results are usually
represented in a forest-plot.

First, we calculate all replications’ Hedges’ g—and their corre-
sponding standard errors—by means of summary statistics (i.e.,
mean, standard deviations, sample size per treatment group, and
correlations between ITL and TDD’s FC scores [4]). As five subjects
at UPV had missing data, their data had to be removed to calculate
the effect size (as they could not contribute towards the estimation
of the correlation term required by the standard error formulae
[4]). Afterwards, we fitted a random-effects model to pool all the
effect sizes together. Figure 3 shows the forest-plot corresponding
to analyzing the group of replications with AD.

Experiment TDD<ITL TDD=ITL Effect Size [95% CI]
F-Secure H — - 0.23 [-0.40, 0.85]
F-Secure K — 0.40[-0.21,1.02]
F-Secure O 1.65[059,2.71]
UPV —— 1.12[063, 1.60]
RE Model (Q = 8.87, p = 0.03; I* = 66.9%) ————— 078[021,1.35]

T T T 1

-1 0 1 2 3

Effect Size

Figure 3: Forest-plot: ITL vs. TDD.
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As it can be seen in Figure 3, F-Secure O and UPV effect sizes
are large (i.e., larger than 0.8 [4]), and statistically significant (i.e.,
their confidence intervals do not cross 0). However, F-Secure H and
F-Secure K effect sizes are small (i.e., lower than 0.5 [4]). Combining
all effect sizes together (see the stretched black-diamond at the
bottom), TDD outperforms ITL to an—almost—large extent (M =
0.78;95% CI = (0.21, 1.35)). However, an observable and statistically
significant heterogeneity of results materialized (I> = 66.9%, Q =
8.87;p = 0.03). Thus, moderator variables—either at the experiment-
level or at the participant-level—shall be uncovered with AD with
the aim of explaining the differences across replications’ results.

6.2 Moderators Analysis

Sub-group meta-analyses are usually performed with AD to identify
experiment-level moderators. Table 5 shows the results of perform-
ing a sub-group meta-analysis on the influence of subject type (i.e.,
professionals vs. students) on results.

Table 5: Sub-group meta-analysis: experiment-level moder-
ator.

Variable | Group N | Estimate | 95% CI I?
Professionals | 3 | 0.65 (-0.10, 1.41) | 68.07%

Subject | Students 1] 112 (0.63,1.60) | 0
Difference - | 047 (-0.44, 1.36) | -

As it can be seen in Table 5, students obtain more benefit than
professionals with TDD (M = 1.12 and M = 0.65 for students and
professionals, respectively). Even though the difference in perfor-
mance between students and professionals is noticeable (M = 0.47),
this is not statistically significant (i.e., the 95% CI of the difference
crosses 0). As a summary, and in view that relevant differences
across sub-groups are not statistically significant, we conclude,
our group of replications seems under-powered for uncovering
experiment-level moderators with AD.

Finally, with the aim of identifying participant-level modera-
tors, we performed a meta-regression with each of the experience
variables that we measured along the survey (experience with pro-
gramming, Java, unit testing and JUnit). In meta-regression, the
average experiences of all the subjects within each experiment
(X-axis) are regressed against the effect sizes of the experiments
(Y-axis). Figure 4 shows the results of the meta-regressions that we
performed. Table 6 shows the estimates of the interaction terms
according to meta-regression.

Table 6: Meta-regression: participant-level moderators.

Interaction  Estimate 95% CI p-value
Programming -0.4 (-1.68, 0.84) 0.51
Java 0.61 (-1.38,2.60)  0.55
Unit testing 0.12 (-1.08,1.32)  0.84
JUnit -0.16 (-1.60, 1.28) 0.82

As it can be seen in Figure 4, the performance with TDD de-
creases the larger the average experience with programming or
JUnit (as it can be seen by the negative slope of the lines). Besides,
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Figure 4: Meta-regression plot: participant-level moderators.

while the experience with unit testing seems to have almost no
impact on results (i.e., the line is almost flat along all the experience
levels), the larger the experience with Java, the larger the benefit
with TDD. Thus, we hypothesize, subjects knowledgeable in Java
may focus more on the TDD process itself and less on syntax-related
problems while coding. This way, they manage to obtain larger qual-
ity scores than those without any previous experience with Java.
However, as the experience with Java is not statistically significant,
we conclude that further experiments shall be conducted to elicit
participant-level moderators with AD.

7 IPD
7.1

To analyze a group of interrelated replications with IPD, the raw-
data of all replications need to be analyzed together by means of a
statistical test. Table 7 shows the results of analyzing our group of
replications with a LMM.

Main Analysis

Table 7: LMM analysis for the group of replications.

Factor Estimate 95% CI p-value
ITL 27.44 (13.08, 41.79)  <0.001
TDD 56.27 (22.12,90.42)  <0.001
MDiff 28.83 (9.72, 47.93) 0.004
SdDiff 16.09

As it can be seen in Table 7, the difference in performance be-
tween TDD (M = 56.27) and ITL (M = 27.44) is large (Mp; sy =
28.83)—at least compared to the mean of the ITL group. Put dif-
ferently, TDD seems to double the performance of ITL. Besides,
the standard deviation of the differences between TDD and ITL
(sdpiff = 16.09) is large when compared to the difference between
the means (16.09/28.75, around a 60% variation around the mean).
Thus, an observable heterogeneity of treatment effects materialized
in the group of replications. Moderator variables shall be identified
with IPD to explain the heterogeneity of results.

7.2 Moderators Analysis

To assess moderator effects with IPD, statistical models with inter-
action terms need to be fitted [20]. As previously done with AD,
here we first assess the effects of subject type (i.e., professionals vs.

students) on results. To do so, we fit an LMM with the interaction
term between treatment and subject type. Table 8 shows the results
of the interaction term in the LMM fitted.

Table 8: LMM results: experiment-level moderators.

95% CI
(-37.16, 69.55)

p-value
0.545

Estimate
16.32

Interaction
Subject:Students

As it can be seen in Table 8, the difference in performance be-
tween students and professionals with TDD seems relevant (M =
16.32), at least when compared to the difference in performance
between TDD and ITL previously identified without the interac-
tion term (M = 28.83). In other words, students seem to obtain an
increase of around a 60% in FC scores (16.32/28.83) when compared
to professionals. However, the difference in performance between
students and professionals is not statistically significant. Thus, ac-
cording to IPD, the group of replications seems under-powered for
detecting experiment-level moderators.

Finally, we assess the effect of participants’ experiences on re-
sults by fitting four different LMMs (one per experience variable).
The parameter estimates of the interaction terms are presented in
Table 9. Figure 5 shows the corresponding regression lines of the
interaction terms.

1004
75 EXPERIENCE
Programming
9 50 -~ - Java
/ <+ Unit Testing
25 // JUnit
N D/D’/D/_’G

1 2 3 4
Experience

Figure 5: LMM interactions: participant-level moderators.

As it can be seen in Figure 5, the larger the subjects’ experi-
ences with either programming, Java, unit testing or JUnit, the
larger the difference in performance between TDD and ITL. For
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Table 9: LMM: participant-level moderators.

Interaction  Estimate 95% CI p-value
Programming 15.76 (0.49, 31.04) 0.04
Java 3.85 (-8.13,15.83)  0.52
Unit testing 11.79 (-5.95, 29.54) 0.18
JUnit 11.07 (-6.26, 28.41) 0.20

example, while the differences between TDD and ITL in mean FC
scores among novice programmers are relatively small (see the red
line when Experience equals to 1), the difference in performance
increases to a considerable extent when subjects are very experi-
enced (up to a difference of around 60 points in FC scores). Besides,
the effect of programming experience seems relevant (M = 15.76)
and statistically significant. As a conclusion, according to IPD, the
larger the experience with programming, the larger the benefit
with TDD in comparison with ITL. In addition, according to IPD,
we achieved enough statistical power to detect participant-level
moderators within the group of replications.

8 AGGREGATION OF p-VALUES

To analyze a group of replications by means of Aggregation of p-
values, first, each experiment has to be analyzed individually with a
statistical test (e.g., by means of the dependent ¢-test). Afterwards,
the one-tailed p-values need to be combined by means of the Fisher’s
method. Thus, to analyze our group of replications, we first analyze
each replication individually with a one-tailed dependent t-test
and then we combine all the p-values by means of the Fisher’s
method. A statistically significant difference between TDD and
ITL was obtained (7%=47.13; df=8; p<0.001). Thus, by means of
Aggregation of p-values, we conclude that in at least one experiment,
TDD outperforms ITL.

9 DISCUSSION

Table 10 shows a summary of the findings that we made with each
technique in our group of replications.

As it can be seen in Table 10, we obtained different insights with
each technique. Besides, different advantages and disadvantages
materialized with each technique. For example, with Narrative syn-
thesis it was possible providing joint results in a straightforward
fashion without worrying about replications’ designs or response
variables’ scales (as just a textual summary of results had to be
provided). However, it was unfeasible providing any quantitative
summary of results (e.g., an effect size or p-value). Thus, in our
group of replications we could not quantify the extent to which
TDD outperformed ITL at the group level. Besides, contradicting
results emerged in our group of replications: two replications pro-
vided non-significant results and two others provided significant
results. Shall these be considered as contradicting evidence? Or
instead, shall industrial experiments’ results overtake those of aca-
demic experiments? After all, industrial experiments may be more
representative of reality. Thus, subjective judgment may affect
the conclusions reached with Narrative synthesis. Finally, one last
shortcoming of Narrative synthesis emerged: we could not find any
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"pattern” on results, and thus, we were not able to identify modera-
tors that may explain why TDD outperformed ITL that differently
across experiments.

Contrary to Narrative synthesis, AD allowed to provide a joint
effect size and p-value: TDD outperformed ITL to an almost large
(according to Hedges’ g rules of thumb [4]) and statistically signifi-
cant extent. Besides, AD allowed to visualize the extent to which
TDD outperformed ITL across the replications (by simply looking at
the forest-plot). AD also allowed to quantify the heterogeneity of re-
sults in easy-to-interpret statistics such as the I?: an observable and
almost large heterogeneity of results emerged. Finally, it was pos-
sible evaluating the extent to which experiment-level moderators
affected results: a small—but close to medium—and not statistically
significant difference in performance between students and profes-
sionals was identified. However, we could not interpret results in a
straightforward fashion: How small was the effect of subject type?
How large were joint results? Even though rules of thumb exist for
interpreting results, we could not convey results in natural units
of difference between the performance of TDD and ITL. Besides,
ecological bias emerged while eliciting participant-level moder-
ators: experiment-averaged programming experience seemed to
influence negatively to the performance achieved with TDD (the
larger the experience, the smaller the effect size). This result was the
opposite of what we found with IPD. This misleading conclusion
emerged with AD as one of the experiments with the larger effect
sizes (i.e., UPV) was comprised by subjects with a low experience
on-average, and besides, experiments with lower effect sizes (i.e.,
F-Secure H or F-Secure K) were comprised by subjects with larger
experiences on-average. Thus, in view of the evidence available
at the experiment-level, AD fitted a meta-regression line with a
negative relationship between effect size and average programming
experience. Finally, neither experiment-level nor participant-level
moderators could be identified: our group of replications seemed
under-powered for detecting moderators according to AD.

As with AD, with IPD it was possible providing a joint effect
size (i.e., treatment estimate) and a p-value: the difference in perfor-
mance between TDD and ITL was relevant and statistically signifi-
cant. However, contrary to AD, with IPD it was possible interpreting
joint results in natural units: subjects doubled their performance with
TDD compared to ITL (as the mean of the TDD group was twice
as large as that of the ITL group). IPD offered an extra advantage
over AD: subjects with missing data (i.e., 5 subjects in the UPV
experiment) could still be analyzed with IPD—as a LMM was used
[5]—contrary to AD, where their data had to be discarded to cal-
culate the standard error of the Hedges’ g—as the data of such
subjects could not contribute towards the calculation of the correla-
tion between the TDD and ITL groups [4]. Despite we experienced
some of the advantages of IPD, we also experienced some of its
shortcomings: the assessment of heterogeneity was not straightfor-
ward (as the standard deviation of the differences between TDD and
ITL’s means had to be compared with the mean effect). Where is
the limit to claim heterogeneous results? Finally, even though IPD
and AD seemed equally suitable to assess the influence of subject
type of results, IPD was superior to AD to identify participant-level
moderators: a relevant and statistically significant influence of pro-
gramming experience on TDD’s performance was identified with
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Table 10: Findings with each technique in our group of interrelated replications.

Technique Result Effect Size p-value Moderators Comments

Narrative TDD>ITL ? ? ? Conflicting p-values. No patterns in moderators.
AD TDD>ITL Large v Under-powered Standardized units. Ecological bias.

IPD TDD>ITL Large v Programming experience

Agg. p-values TDD>ITL ? v ? Significance was already known.

IPD. Thus, according to IPD our group of replications was adequately
powered to identify participant-level moderators.

Finally, Aggregation of p-values provided a joint p-value as con-
clusion. As the p-value was statistically significant, at least the
results of one replication are statistically significant. However, that
was already known before aggregating results (as UPV and F-Secure
H results were already significant). Besides, no effect size was pro-
vided by Aggregation of p-values. This impacts the interpretation
of results: how relevant was the overall effect?

To wrap-up, and based on our findings when applying the tech-
niques to a representative group of replications in SE, we provide a
series of recommendations:

e AD and IPD seem more suitable than Narrative synthesis and
Aggregation of p-values to analyze groups of interrelated
replications, specially for identifying moderators.

e AD and IPD seem to complement to each other for aggre-
gating experiments’ results and assessing experiment-level
moderators.

o If all replications have identical response variable opera-
tionalizations, there is no need to use standardized units
with AD. Go ahead and use AD with natural units or use IPD
instead. This may increase the interpretability of results.

o Groups of interrelated replications may be under-powered to
detect experiment-level moderators. The possibility of assess-
ing participant-level moderators can be seen as a strength
of groups of interrelated replications. IPD seems suitable to
identify participant-level moderators.

10 THREATS TO VALIDITY

One group of replications, can we generalize? Due to length restric-
tions we could just apply all the aggregation techniques on a sole
group of interrelated replications. However, we selected a represen-
tative group of interrelated replications according to the results of
our SMS [39]. Even though our findings are not conclusive, they
seem to agree with those achieved in medicine and pharmacology.
Specifically, IPD seems to provide similar results as AD for assessing
treatment effects or experiment-level moderators [9, 21], and IPD
seems superior to AD for assessing participant-level moderators
[20, 28].

One statistical method per aggregation technique, how limited
are the findings? Due to length restrictions we could just use a
single statistical method (i.e., t-test, random-effects meta-analysis,
linear mixed model, and Fisher’s method) per aggregation technique
(i.e., Narrative synthesis, AD, IPD and Aggregation of p-values,
respectively). Even though we acknowledge this limitation, we tried
to use commonly used statistical tests in SE (i.e., the t-test [13]),
random-effects meta-analysis models and Linear Mixed Models

as they are the ones that shall be used whenever heterogeneity
materializes [4, 5]—as it is commonly the case in SE experiments
[36, 42]—and Fisher’s method as it is the Aggregation of p-values
method most used to aggregate interrelated replications’ results in
SE [39].

Parametric tests and effect sizes, are there any threats to the analysis
approach? Parametric statistical tests and effect sizes (e.g., t-test,
LMMs, Cohen’s d, etc.) may be unsuitable to analyze non-normal
data [48]. However, along this study we relied upon parametric
statistical tests as they are robust to departures from normality, even
in smaller data-sets than those typical in SE experiments [15, 34].
Besides, the larger the sample size—as it happens when pooling
together the raw-data of all replications—the larger their robustness
to departures from normality [31]. We relied upon parametric effect
sizes as they are by far, the most used in SE [25].

One analyst, how biased are results? The measurement of the
adequacy of each technique to analyze groups of replications may be
sensitive to plausible bias due to researchers’ preferences. In order to
address this issue, we adopted similar procedures to those followed
in medicine and pharmacology to provide joint conclusions [4, 47],
and to assess experiment-level and participant-level moderators
with either AD [4, 40] and IPD [20]. Researchers were triangulated
to counteract the subjectivity of the main analyst (i.e., the first
author) during the data analysis phase.

11 CONCLUSION

Narrative synthesis, Aggregation of p-values, Aggregated Data (AD)
and Individual Participant Data (IPD) have been used to analyze
groups of interrelated replications in SE [39]. If access to the raw-
data is guaranteed, all the information contained within the raw-
data should be used to provide joint conclusions.

Narrative synthesis does not provide a quantitative summary of
results and involves subjective judgment when yielding joint conclu-
sions or identifying moderator variables. Aggregation of p-values
fails to quantify the relevance of results and weights identically each
experiment towards the joint conclusion. AD and IPD seem suit-
able to analyze groups of replications and assess experiment-level
moderators. AD and IPD allow providing quantitative summaries
of results, weight transparently each experiment towards the joint
conclusion, and in case results differ, assess the effect of modera-
tors on results. AD seems suitable because of its intuitiveness and
appealing visual summaries. IPD should seems suitable because of
its adequacy for handling missing data and offering joint results
in natural units. The possibility to assess participant-level modera-
tors is an advantage in groups of interrelated replications (as the
raw-data are available). IPD seems superior to AD for this.
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