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Good tools can bring mechanical verification to programs written in mainstream functional languages. We use

hs-to-coq to translate significant portions of Haskell’s containers library into Coq, and verify it against

specifications that we derive from a variety of sources including type class laws, the library’s test suite, and

interfaces from Coq’s standard library. Our work shows that it is feasible to verify mature, widely-used, highly

optimized, and unmodified Haskell code. We also learn more about the theory of weight-balanced trees, extend

hs-to-coq to handle partiality, and ś since we found no bugs ś attest to the superb quality of well-tested

functional code.
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1 INTRODUCTION

What would it take to tempt functional programmers to verify their code?
Certainly, better tools would help. We see that functional programmers who use dependently-

typed languages or proof assistants, such as Coq [The Coq development team 2016], Agda [Bove
et al. 2009], Idris [Brady 2017], and Isabelle [Nipkow et al. 2002], do verify their code, since their
tools allow it. However, adopting these platforms means rewriting everything from scratch. What
about the verification of existing code, such as libraries written in mature languages like Haskell?

Haskell programmers can reach for LiquidHaskell [Vazou et al. 2014] which smoothly integrates
the expressive power of refinement types with Haskell, using SMT solvers for fully automatic
verification. But some verification endeavors require the full strength of a mature interactive proof
assistant like Coq. Our hs-to-coq tool [Spector-Zabusky et al. 2018] translates Haskell types,
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functions, and type classes into equivalent Coq code ś a form of shallow embedding ś which can
be verified just like normal Coq definitions.
But can this approach be used for more than the small, textbook-sized examples it has been

applied to so far? Yes, it can! In this work, we use hs-to-coq to translate and verify the two finite
set data structures from Haskell’s containers package.1 This codebase is not a toy. It is decades
old, highly tuned for performance, type-class polymorphic, and implemented in terms of low-level
features like bit manipulation operators and raw pointer equality. It is also an integral part of the
Haskell ecosystem. This work makes the following contributions:

• We demonstrate that hs-to-coq is suitable for the verification of unmodified, real-world
Haskell libraries. By łreal-worldž, we mean code that is up-to-date, in common use, and
optimized for performance. In Section 2 we describe the containers library in more detail
and discuss why it fits this description.

• We present a case study not just of verifying a popular Haskell library, but also of developing
a good specification of that library. This process is worth consideration because it is not at all
obvious what we mean when we say that we have łverifiedž a library. Section 4 discusses the
techniques that we have used to construct a rich, two-sided specification; one that draws
from diverse, cross-validated sources and yet is suitable for verification.

• As part of this work, we needed to extend hs-to-coq and its associated standard libraries
to support our verification goal. In Section 5 we describe the challenges that arise when
translating the Data.Set and Data.IntSet modules and our solutions. Notably, we drop the
restriction in previous work [Spector-Zabusky et al. 2018] that the input of the translation
must be intrinsically total. Instead, we show how to safely defer reasoning about incomplete
pattern matching and potential nontermination to later stages of the verification process.

• We use testing to increase confidence in the hs-to-coq translation. In one direction, proper-
ties of the Haskell test suite turn into Coq theorems that we prove. In the other direction, the
translated code, when extracted back to Haskell, passes the original test suite.

Our work provides a rich specification for Haskell’s finite set libraries that is directly and
mechanically connected to the current implementation. As a result, Haskell programmers can be
assured that these libraries behave as expected. Of course, there is a limit to the assurances that we
can provide through this sort of effort. We discuss the verification gap and other limitations of our
approach in Section 6.

Wewould like to claim that this effort found bugs in containers, but thismature codewas already
functionally correct. Still, our efforts resulted in improvements to the containers library. First,
an insight during the verification process led to an optimization that makes the Data.Set.union
function 4% faster. Second, we discovered an incompleteness in the specification of the validity
checker used in the test suite.

The tangible artifacts of this work have been incorporated into the hs-to-coq distribution and
are available as open source tools and libraries.2 Furthermore, an extended version of this report is
available [Breitner et al. 2018].

1Specifically, we target version 0.5.11.0, which was released on January 22, 2018 and was the most recent release of this

library at the time of publication; it is available at https://github.com/haskell/containers/tree/v0.5.11.0.
2https://github.com/antalsz/hs-to-coq.
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data Set a = Bin {-# UNPACK #-} !Size !a !(Set a) !(Set a)

| Tip

type Size = Int

member :: Ord a => a -> Set a -> Bool

member = go

where go !_ Tip = False

go x (Bin _ y l r) = case compare x y of

LT -> go x l

GT -> go x r

EQ -> True

Fig. 1. The Set data type and its membership function5

2 THE containers LIBRARY

We selected the containers library for our verification efforts because it is a critical compo-
nent of the Haskell ecosystem. With over 4000 publicly available Haskell packages depending on
containers, it is the third-most used package in Hackage, after base and bytestring.3

The containers library is mature and highly optimized. It has existed for over a decade and has
undergone many significant revisions for improving its performance. It contains seven container
data structures, covering support for finite sets (Data.Set and Data.IntSet), finitemaps (Data.Map
and Data.IntMap), sequences (Data.Sequence), graphs (Data.Graph), and trees (Data.Tree).
However, most of the uses are only of the map and set modules.4 Moreover, the map modules are
essentially analogues of the set modules. Therefore, we focus on Data.Set and Data.IntSet.

2.1 Weight-Balanced Trees and Big-Endian Patricia Trees

The Data.Set module implements finite sets using weight-balanced binary search trees. The
definition of the Set datatype in this module, along with its membership function, is given in
Figure 1. These sets and operations are polymorphic over the element type and require only that
this type is linearly ordered, as expressed by the Ord constraint on the member function. The member
function descends the ordered search tree to determine whether it contains a particular element.

The Size component stored with the Bin constructor is used by the operations in the library to
ensure that the tree stays balanced. The implementation maintains the balancing invariant

s1 + s2 ≤ 1 ∨ (s1 ≤ 3s2 ∧ s2 ≤ 3s1),

where s1 and s2 are the sizes of the left and right subtrees of a Bin constructor. This definition
is based on the description by Adams [1992], who modified the original weight-balanced tree
proposed by Nievergelt and Reingold [1972]. Thanks to this balancing, operations such as insertion,
membership testing, and deletion take time logarithmic in the size of the tree.

This type definition has been tweaked to improve the performance of the library. The annotations
on the Bin data constructor instruct the compiler to unpack the size component, removing a level
of indirection. The ! annotations indicate that all components should be strictly evaluated.

The Data.IntSet module also provides search trees; specifically, ones which have been special-
ized hold Ints in order to provide more efficient operations, especially union. This implementation

3http://packdeps.haskellers.com/reverse
4We calculated that 78% of the packages on Hackage that depend on containers use only sets and maps.
5From http://hackage.haskell.org/package/containers-0.5.11.0/docs/src/Data.Set.Internal.html#Set.

All code listings in this paper are manually reformatted and may omit module names from fully qualified names.
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is based on big-endian Patricia trees, as proposed by Morrison [1968] and adapted to a functional
setting by Okasaki and Gill [1998].

This data structure uses the bits of a stored value for deciding in which subtree the value should
be placed. Instead of storing a single value at a leaf of the tree, this implementation improves
performance by storing the membership information of consecutive numbers as a word-size bitmap.

2.2 A History of Performance Tuning

The Data.Set module can be traced back to 2004, when a number of competing search tree
implementations were debated in the łTree Warsž thread on the Haskell libraries mailing list.
Benchmarks showed that Daan Leijen’s implementation had the best performance, and it was
added to containers in 2005 as Data.Set.6 The code was later refactored by Straka [2010], who
thoroughly evaluated and tweaked the library for performance.7 Adams [1992] describes two
algorithms for union, intersection, and difference: łhedge unionž and łdivide and conquerž.
Originally containers used the former, but in 2016 its maintainers switched to the latter8 based
on performance measurements.
The module Data.IntSet (and Data.IntMap) has been around even longer. Okasaki and Gill

mention in their 1998 paper that GHC had already made use of IntSet and IntMap for several
years. In 2011, the Data.IntSet module was re-written to use machine-words as bitmaps in the
leaves of the tree.9 This moved the containers library further away from the literature on Patricia
trees and introduced a fair number of low-level bit twiddling operations.

3 OVERVIEW OF OUR VERIFICATION APPROACH

In order to verify Set and IntSet, we use hs-to-coq to translate the unmodified Haskell modules
to Gallina and then use Coq to verify the translated code. For example, consider the excerpt from
the implementation of Set in Figure 1. The hs-to-coq tool translates this input to the following
Coq definitions.10 The strictness and unpacking annotations are ignored, as they do not make sense
in Coq, and the type name Set is renamed to Set_ to avoid clashing with the Coq keyword.

Definition Size := GHC.Num.Int%type.

Inductive Set_ a : Type

:= Bin : Size -> a -> (Set_ a) -> (Set_ a) -> Set_ a

| Tip : Set_ a.

Definition member {a} `{GHC.Base.Ord a} : a -> Set_ a -> bool :=

let fix go arg_0__ arg_1__

:= match arg_0__, arg_1__ with

| _, Tip => false

| x, Bin _ y l r => match GHC.Base.compare x y with

| Lt => go x l

| Gt => go x r

| Eq => true

end

end

in go.

6https://github.com/haskell/containers/commit/bbbba97c
7https://github.com/haskell/containers/commit/3535fcbe
8https://github.com/haskell/containers/commit/c3083cfc
9https://github.com/haskell/containers/pull/3
10In the file examples/containers/lib/Data/Set/Internal.v
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These definitions rely on hs-to-coq’s pre-existing translated version of base, GHC’s standard
library. We use the translation of Haskell’s Int type, the Ord type class, and Ord’s comparemethod.
In this way, we use hs-to-coq to translate Set and IntSet into Gallina code which we then

verify. Section 4 details the properties that we prove about the two data structures.
To test the Haskell to Coq translation, we use Coq’s extraction mechanism to translate the

generated Gallina code, like that seen above, back to Haskell. This process converts the implicitly-
passed type class dictionaries to ordinary explicitly-passed function arguments, but otherwise
preserves the structure of the code. By providing an interface that restores the type-class based
types, we can run the original containers test suite against this code. This process allows us to
check that hs-to-coq preserves the semantics of the original Haskell program during translation.
The set modules of the containers library contain 149 functions and 22 type class instances,

written in 2207 lines of code (excluding comments and blank lines). Out of these, 15 functions and
11 type class instances (270 loc) were deemed łout of scopež and not translated.11 Our translation
produces 2587 lines of Gallina code.
The Set and IntSet data structures come with extensive APIs. We specify and verify a repre-

sentative subset of commonly used functions covering 68% of the Set API and 49% of the IntSet
API. This verified API is complete enough to instantiate Coq’s specification of finite sets, along
with many other specifications at varying levels of abstraction; for more detail, see Section 4.

As Coq is not an automated theorem prover, verification of these complex data structures requires
significant effort. In total, we verified 1234 lines of Haskell; the verification of Set and IntSet

required 8.6 lines of proof per lines of code. This factor is noticeably higher for IntSet (10.0×) than
for Set (7.4×), as the latter is conceptually simpler to reason about and allowed us to achieve a
higher degree of automation using Coq tactics.
Our proofs also require the formalization of several background theories (not counted in the

proof-to-code ratio above), including: integer arithmetic and bits (1265 loc): lists and sortedness
(1489 loc); dyadic intervals, which are used for verifying IntSet (1169 loc); and support for working
with lawful Ord instances, including a complete decision procedure (453 loc).

4 SPECIFYING Set AND IntSet

The phrase łwe have verified this piece of softwarež on its own is meaningless: the particular
specification that a piece of software is verified against matters. Good specifications are rich, two-
sided, formal, and live [Appel et al. 2017]. A specification is rich if it łdescrib[es] complex behaviors
in detailž. It is two-sided if it is łconnected to both implementations and clientsž. It is formal if it
is łwritten in a mathematical notation with clear semanticsž. And it is live if it is łconnected via
machine-checkable proofs to the implementationž.
All specifications of Set and IntSet that we use are formal and live by definition. They are

formal because we express the desired properties using Gallina, the language of the Coq proof
assistant; and they are live because we use hs-to-coq to automatically convert containers to
Coq where we develop and check our proofs. But how can we ensure that our specifications of
Set and IntSet are two-sided and rich? How do we know that the specifications are not just facts
that happen to be true, but are actually useful for the verification of larger systems? What complex
behaviors of the data structures should we specify?
To ensure that our specifications are two-sided, we use specifications that we did not invent

ourselves. Instead, we draw our specifications from a variety of diverse sources, as described below.
This way, we also ensure that our specifications are rich because they describe the data structures
at varying levels of abstraction. Furthermore, by using multiple disparate specifications, we not

11More explanation of these choices and further statistics can be found in the extended version [Breitner et al. 2018].
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only increase the assurance that we captured all the important behaviors of Set and IntSet, but
we also cross-validate the specifications against each other.

4.1 Implementation Invariants

Set and IntSet are two examples of abstract types whose correctness depends on invariants.
Therefore, we define well-formedness predicates WF: Set_ e -> Prop and WF : IntSet -> Prop

and show that the operations preserve these properties.

Well-formed weight-balanced trees. Our definition of WF for Set is derived from the valid function
defined in the containers library. This function checks whether the input (1) is a balanced tree, (2)
is an ordered tree, and (3) has the correct values in its size fields. It is not part of the user-facing API
of containers (since all exported functions preserve well-formedness), but it is used internally by
the developers for debugging and testing. For us, it is valuable as an executable specification, with
less room for ambiguity and interpretation than comments and documentation.
However, rather than using valid directly, we define well-formedness WF as an inductive pred-

icate, because we find it more useful from a proof engineering perspective. To be sure that our
predicate is correct, we relate the WF predicate to the valid function found in containers:

Lemma Bounded_iff_valid : forall s, WF s <-> valid s = true.

Well-formed Patricia trees. Our well-formedness definition for IntSet is derived from the com-
ments in the IntSet data type. In this case, our predicate is stronger than the corresponding valid
function from the implementation ś the Haskell version was missing some necessary conditions.
We reported this to the library authors,12 who have since fixed valid.

This fix is an example of using verification to cross-validate specifications. Here, the comments
were correct and the code was wrong. However, sometimes we discover that it is the comments
that are incomplete. For example, the comment describing the precondition for balanceL in the
Data.Setmodule was misleading and too vague; for more detail, see the extended version [Breitner
et al. 2018].

4.2 Property-based Testing

Next, we show that the implementations of Set and IntSet are correct according to the implemen-
tors of the module. In other words, we specify correctness by deriving a specification directly from
the property-based test suite that is distributed with the containers library.
This test suite contains many properties expressed using QuickCheck [Claessen and Hughes

2000]. For example, one such property states that the union operation is associative:

prop_UnionAssoc :: IntSet -> IntSet -> IntSet -> Bool

prop_UnionAssoc t1 t2 t3 = union t1 (union t2 t3) == union (union t1 t2) t3

which we can interpret as a theorem about union:13

Theorem thm_UnionAssoc:

forall t1, WF t1 -> forall t2, WF t2 -> forall t3, WF t3 ->

union t1 (union t2 t3) == union (union t1 t2) t3 = true.

We do not have to write these theorems by hand: as we describe in Section 5.5, we use hs-to-coq
in a nonstandard way to automatically turn these executable tests into Gallina propositions (i.e.,
types). We have translated IntSet’s test suite in this manner and have proven that all QuickCheck

12https://github.com/haskell/containers/issues/522
13In the file examples/containers/theories/IntSetPropertyProofs.v
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properties about verified IntSet functions are theorems (with one exception due to our choice of
integer representation ś see Section 5.3).

4.3 Numeric Overflow in Set

There is one way in which we have diverged from the specification of correctness given by the
comments of the containers library. The Data.Set module states:14

Warning: The size of the set must not exceed maxBound::Int. Violation of this condi-
tion is not detected and if the size limit is exceeded, its behavior is undefined.

In practice, it makes no difference whether the Ints used to store sizes are bounded or not, as a set
with (263 − 1) elements would require at least 368 exabytes of storage. However, using fixed-width
integers would add preconditions to all our lemmas to avoid integer overflow, greatly complicating
the proofs, with little verification insight to be gained. Furthermore, such a specification would be
difficult to use by clients, who themselves would need to prove that they satisfy such preconditions.
Instead, we translate Haskell’s Int type to Coq’s type of unbounded integers (called Z). This

mapping avoids the problem of integer overflow altogether and is arguably consistent with the
comment, as this choice replaces undefined behavior with concrete behavior. (The situation is
slightly different for IntSet; see Section 5.3.)

4.4 Rewrite Rules

So far, we have only been concerned with specifying the correctness of the data structures using
the definition of correctness that is present in the original source code; the comments, the valid
functions and the QuickCheck properties. However, to be able to claim that our specifications are
two-sided, we need to show that the properties that we prove are useful to clients of the module.

One source of such properties is rewrite rules [Peyton Jones et al. 2001]. The containers library
includes a small number of such rules. These annotations instruct the compiler to replace any
occurrence of the pattern on the left-hand side in the rule by the expression on the right hand side.
The standard example is

{-# RULES "map/map" forall f g xs. map f (map g xs) = map (f . g) xs #-}

which fuses two adjacent calls to map into one, eliminating the intermediate list.
The program transformation list fusion [Peyton Jones et al. 2001] is implemented completely in

terms of rewrite rules, and the rules in the containers library set its functions up for fusion; an
example is

{-# RULES "Set.toAscList" forall s . toAscList s = build (\c n -> foldrFB c n s) #-}

which transforms the toAscList function into an equivalent representation in terms of build.
We can view these rewrite rules as a direct specification of properties that the compiler assumes

are true during compilation. Rewrite rules are used by GHC during optimization; if any of these
properties are actually false, GHC will silently produce incorrect code. Therefore, any proof about
the correctness of GHC’s compilation of these files depends on a proof of these properties. We have
manually translated all the rules into Coq ś there are only few of them, so manual translation is
viable ś and have proved that the translated operations satisfy this specification.15

14http://hackage.haskell.org/package/containers-0.5.11.0/docs/Data-Set.html
15In the files examples/containers/theories/SetProofs.v and examples/containers/theories/IntSetProofs.v
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4.5 Type Classes with Laws

Many Haskell type classes come with laws that all instances of the type class should satisfy, which
provides another source of external specification that we can use. For example, an instance of
Eq is expected to implement an equivalence relation, an instance of Ord should describe a linear
order, and an instance of Monoid should be, well, a monoid. We reflect these laws using type classes
whose members are the required properties. For example, we have defined EqLaws, OrdLaws, and
MonoidLaws. These classes can only be instantiated if the corresponding instance is lawful.
However, nailing down the precise form of the type class laws can be tricky. Consider the case

of a Monoid instance for a type T. The associativity law can be stated as łfor all elements x, y and z
of T, we have that x <> (y <> z) is equal to (x <> y) <> z.ž But in order to write this down as part
of MonoidLaws in Coq, we need to make two decisions:

(1) What do we mean by łequalž? To make sure that we can make Set_ with (<>) as union an
instance of the MonoidLaws type class, we require that the two expressions be equal accord-
ing to their Eq instance:(x <> (y <> z) == (x <> y) <> z) = true. Alternatively, we could
parameterize the MonoidLaws class by a separate (potentially undecidable) equality predicate,
which would allow us to prove the MonoidLaws for the function instance MonoidLaws b ->

MonoidLaws (a -> b).
(2) What do we mean by łFor all elements of Tž? The obvious choice is universal quantification

over all elements of T. But this approach again is insufficient for Set: the union operation
only works correctly on well-formed sets. Therefore, our approach is to define an instance of
this and other classes not for the type Set_ e, but for the type of well-formed sets, {s : Set_

e | WF s}, where type class laws hold universally. This instance reflects the łexternal viewž
of the data structure ś clients should only have access to well-formed sets. Alternatively, we
could constrain MonoidLaws’s theorems to hold only on members of T that are well-formed
in some general way.

In both cases, we have designed our specifications to be only as complex as necessary for the
verification of the Set_ and IntSet data structures. In future work, we may generalize these classes
to accommodate more structures.

4.6 Specifications from the Coq Standard Library

Because we are working in Coq, we have access to a standard library of specifications for finite sets,
which we know are two-sided because they have already appeared in larger Coq developments. The
Coq.FSets.FSetInterfacemodule16 provides module types that cover many common operations
and their properties. Instantiating these interfaces runs into two small hiccups. The first is that
they talk about all sets, not simply all well-formed sets. Therefore, as in the previous section, we
instantiate these interfaces with the subset type {s : Set_ e | WF s}. The second is that Coq’s
module system does not interact with type classes, while Set_ requires its element type to be an
instance of the Ord type class. We solve this impedance mismatch with a module that generates an
Ord instance from the appropriate OrderedType module.

By successfully instantiating this module interface, we obtain two benefits. First, we must prove
theorems that cover many of the main functions provided by containers; these theorems are
particularly valuable, as the interface itself is heavily used by Coq users. Second, by instantiating
this interface, we connect our injected Haskell code to the Coq ecosystem, enabling Coq users to
easily use the containers-derived data structures in their developments, should they so desire.

16https://coq.inria.fr/library/Coq.FSets.FSetInterface.html
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4.7 Abstract Models as Specifications

Tests, type classes and the other sources of specifications do not fully describe the intended behavior
of all functions. We therefore have to also come up with specifications on our own. We do this by
relating a concrete search tree to the abstract set that it represents; that is, we provide a denotational
semantics. We denote a set with elements of type e as its indicator function of type e -> bool;
for Set e, we provide a denotation function sem : forall {e} `{Eq_ e}, Set_ e -> (e -> bool),
and for IntSet, we provide a denotation relation Sem : IntSet -> (N -> bool) -> Prop.

This approach allows us to abstractly describe the meaning of operations like insert. For Set_,
we do this by providing a theorem like

Theorem insert_sem:

forall {a} `{OrdLaws a} (s : Set_ a) (x : a), WF s ->

forall (i : a), sem (insert x s) i = (i == x) || sem s i.

(For IntSet, some technical details differ.)
An alternative abstract model for finite sets is the sorted list of their elements, i.e. the result of

toAscList. The meaning of certain operations, like foldr, take or size, can naturally be expressed
in terms of toAscList, but would be very convoluted to state in terms of the indicator function,
and we use this denotation ś or both ś where appropriate.

5 PRODUCING VERIFIABLE CODEWITH hs-to-coq

Identifying what to prove about the code is only half of the challenge ś we also need to get the
Haskell code into Coq. Ideally, the translation of Haskell code into Gallina using hs-to-coq would
be completely automatic and produce code that can be verified as easily as code written directly in
Coq ś and for textbook-level examples, this is the case [Spector-Zabusky et al. 2018]. However,
working with real-world code requires adjustments to the translation process to make sure that the
output is both accepted by Coq and amenable to verification.
A core principle of our approach is that the Haskell source code does not need to be modified in

order to be verified. This principle ensures that we verify łthež containers library (not a łverified
forkž) and that the verification can be ported to a newer version of the library.

The crucial feature of hs-to-coq that enables this approach is the support for edits: instructions
to treat some code differently during translation. Edits are specified in plain text files, which also
serve as a concise summary of our interventions. The hs-to-coq tool already supported many
forms of edits; for example, specifying when names need to be changed, when parts of the module
should be ignored or replaced by some other term, when Haskell types should be mapped to existing
Coq types, or when a recursive function definition needs an explicit termination proof. In the
course of this work, we added new features to hs-to-coq ś such as the ability to apply rewrite
rules, to handle partiality and to defer termination proofs to the verification stage ś and extended
the provided base library.
In this section we demonstrate some of the challenges posed by translating real-world code,

and show how hs-to-coq’s flexibility allowed us not only to overcome them, but also to facilitate
subsequently proving the input correct.

5.1 Unsafe Pointer Equality

An example of a Haskell feature that we cannot expect to translate without intervention is unsafe
pointer equality. GHC’s runtime provides the scarily named function reallyUnsafePtrEqualty#,
which the containers library wraps as ptrEq :: a -> a -> Bool. If this function returns True,
then both arguments are represented in memory by the same pointer. If this function returns False,
we know nothing ś this function is underspecified and may return False even if the two pointers
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are equal. This operation is used, for example, in Set.insert x s when x is already a member of s:
If ptrEq indicates that the subtree is unchanged, the function skips the redundant re-balancing
step ś which enhances performance ś and returns the original set rather than constructing a
semantically equivalent copy ś which increases sharing.

Coq does not provide any way of reasoning about memory, so when we use hs-to-coq, we must
replace ptrEq with something else. But what?

One option is to replace the definition of ptrEqwith a definition that does not do any computation
and simply always returns False. However, the code in the True branch of an unsafe pointer equality
test would be dead code in Coq, and our verification would miss bugs possibly lurking there.
Consequently, we capture the semantics of ptrEq more faithfully by making the definition of

ptrEq opaque and partially specifing its behavior.17

Definition ptrEq_spec :

{ptrEq : forall a, a -> a -> bool | forall a (x y : a), ptrEq _ x y = true -> x = y}.

Proof. apply (exist _ (fun _ _ _ => false)). intros; congruence. Qed.

Definition ptrEq : forall {a}, a -> a -> bool := proj1_sig ptrEq_spec.

Lemma ptrEq_eq : forall {a} (x:a)(y:a), ptrEq x y = true -> x = y.

Proof. exact (proj2_sig ptrEq_spec). Qed.

Here, we define the ptrEq function together with a specification as ptrEq_spec. Although the
function in ptrEq_spec also always returns false, the Qed at the end of its definition hides this
implementation of ptrEq. While the specification ptrEq_eq is vacuously true, the opaque definition
forces verification to proceed down both paths.

We must still trust that GHC’s definition of pointer equality has this specification, but given this
assumption, we can soundly verify that pointer equality is used correctly.

5.2 Partiality in Total Functions

Some functions on Sets use partiality in their implementation in ways that cannot be triggered
by a user of the public API. In particular, they may use calls to Haskell’s error function when an
invariant is violated, but be total for well-formed Sets.

For example, the central balancing functions for Sets, balanceL and balanceR, may call error
when passed an ill-formed Set. Because our proofs only reason about well-formed sets, this code is
actually dead. It does not matter how we translate error ś any term that is accepted by Coq is
good enough. However, error in Haskell has the type error :: String -> a, which means that a
call to error can inhabit any type. We cannot define such a function in Coq and adding it as an
axiom would be glaringly unsound.
Therefore, we extended hs-to-coq to use the following definition for error:

Class Default (a :Type) := { default : a }.

Definition error {a} `{Default a} : String -> a.

Proof. exact (fun _ => default). Qed.

The type class enforces that we use error only at non-empty types, ensuring logical consistency.
Yet we will notice that something is wrong when we have to prove something about it. Just as with
ptrEq (Section 5.1), by making the definition of error opaque using Qed, we are prevented from
accidentally or intentionally using the concrete default value of a given type in a proof about
error. When we extract the Coq code back to Haskell for testing, we translate this definition back
to Haskell’s error function, preserving the original semantics.

17In the file examples/containers/lib/Utils/Containers/Internal/PtrEquality.v
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There is one caveat to this technique: we remove the first argument to Haskell’s seq function
during translation, as it cannot affect the value of the expression (seq is only used to control
evaluation order). Therefore, we cannot reason about errors that occur in this position.
This encoding of partiality is inspired by Isabelle, where all types are inhabited and there is a

polymorphic term undefined :: a that denotes an unspecified element of any type.

5.3 Translating the Int in IntSet

As discussed in Section 4.1, we map Haskell’s finite-width integer type Int to Coq’s unbounded
integer type Z in the translation of Data.Set in order to match the specification that integer
overflow is outside the scope of the specified behavior.
For IntSet, however, this choice would cause problems. Big-endian Patricia trees require that

two different elements have a highest differing bit. This is not the case for Z, where negative
numbers have an infinite number of bits set to 1; for instance, -1 is effectively an infinite sequence
of set bits. Fortunately, hs-to-coq is flexible enough to allow us to make a different choice when
translating IntSet; we can pick any suitable type where all elements have a finite number of bits
set, such as Coq’s binary representation of natural numbers (N) or a fixed width integer type.
In this project, we choose to use N as the element type for IntSet. This choice is suitable for

applications that do not wish to reason about overflow (although overflow is not an issue for the
library itself). This simplifies our proofs, as Coq’s standard library provides a fairly comprehensive
library of lemmas about N and decision procedures (omega and lia) that work with it.
Using N also required making hs-to-coq more powerful. Although the N is a binary represen-

tation of natural numbers, the IntSet code uses a few bit-level operations, like complement and
negate, that do not exist for N. To deal with this, we extended hs-to-coq with support for rewrite
edits such as

rewrite forall x y, (x .&. complement y) = (xor x (x .&. y))

which instruct it to replace any expression that matches the left-hand side by the right hand side.
For signed or bounded integer types, both sides are equivalent. For unbounded unsigned types, like
Coq’s type N, the left hand side is undefined (values in N have no complement in N), while the right
hand side is perfectly fine.
We can translate most of the highly tuned bit-twiddling algorithms used by IntSet. However,

there are some that are beyond the current capabilities of hs-to-coq. For example, the function
indexOfTheOnlyBit, which was contributed by Edward Kmett,18 takes a number with exactly one
bit set and calculates the index of said bit. It does so by unboxing the input, multiplying it by a
magic constant, and using the upper 6 bits of the product as an index into a table stored in an
unboxed array literal. We currently cannot translate this code because hs-to-coq does not yet
support unboxed arrays or unboxed integers. We therefore replace it with a simple definition based
on a integer logarithm function provided by Coq’s standard library. Similarly, we provide simpler
definitions for the low-level bit-twiddling functions branchMask, mask, zero and suffixBitMask.

5.4 Non-trivial Recursion

In order to prove the correctness of Set and IntSet, we must deal with termination. There are
two reasons for this. First, we intrinsically want to prove that none of the functions provided by
containers go into an infinite loop. Second, Coq requires that all defined functions are terminating,
as unrestricted recursion would lead to logical inconsistencies. Depending on how involved the
termination argument for a given function is, we use one of the following approaches.

18https://github.com/haskell/containers/commit/e076b33f

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 89. Publication date: September 2018.

https://github.com/haskell/containers/commit/e076b33f


89:12 Breitner, Spector-Zabusky, Li, Rizkallah, Wiegley, and Weirich

Obvious structural recursion. By default, hs-to-coq implements recursive functions directly using
Coq’s fix keyword. This works smoothly for primitive structural recursion; indeed, a majority of
the recursive functions that we encountered, such as member in Figure 1, were of this form and
required no further attention.

Well-founded recursion. Another common recursion pattern can be found in binary operations
such as link in Set. In this function, every recursive call shrinks either or both of its arguments to
immediate subterms of the originals, leaving the others unchanged, and is beyond the capabilities
of Coq’s termination checker. Other functions recurse in a non-structural way; for example, the
foldlBits on IntSets recurses on the input after clearing its least-significant set bit. We there-
fore use edits to instruct hs-to-coq to use Coq’s Program Fixpoint command to translate these
functions in terms of well-founded recursion.
Coq’s Program Fixpoint only supports top-level functions, but we frequently encounter local

recursive functions. Therefore, we needed to extend hs-to-coq to translate local recursive functions
using the same well-founded-recursion-based fixed-point combinator as Program Fixpoint.

Deferred recursion. Finally, we encounter some functions that require elaborate termination
arguments, such as fromDistinctAscList in Set. This function uses two local recursive functions,
go and create, that require subtle reasoning about their termination behavior.

For hard cases like these, we added deferred termination checking to hs-to-coq. This translation
allows us to defer all reasoning about the function until after it is defined. To defer this reasoning,
we use the following axiom as a permissive fixed-point combinator and translate the code of
fromDistinctAscList essentially unchanged:

Axiom deferredFix: forall {a r} `{Default r}, ((a -> r) -> (a -> r)) -> a -> r.

On its own, deferredFix does not do anything; it merely sits in the translated code applied to
the original function body. It is consistent, since its type could be implemented by a function
that always returns default (see Section 5.2). And it does not prevent the user from running
extracted code ś we can extract this axiom to the target language’s unrestricted fixpoint operator
(e.g., Data.Function.fix in Haskell), although this costs us the guarantee that the extracted code
is terminating.
When we verify fromDistinctAscList, we need to reason about deferredFix. We do so

using a second axiom, deferredFix_eq_on, which states that for any well-founded relation R

(well_founded R), if the recursive calls in f are always at values that are strictly R-smaller than
the input (recurses_on R), then we may unroll the fixpoint of f:

Definition recurses_on {a b}

(P : a -> Prop) (R : a -> a -> Prop) (f : (a -> b) -> (a -> b))

:= forall g h x, P x -> (forall y, P y -> R y x -> g y = h y) -> f g x = f h x.

Axiom deferredFix_eq_on: forall {a b}

`{Default b} (f : (a -> b) -> (a -> b)) (P : a -> Prop) (R : a -> a -> Prop),

well_founded R -> recurses_on P R f ->

forall x, P x -> deferredFix f x = f (deferredFix f) x.

The predicate P : a -> Prop allows us to restrict the domain to inputs for which the function is
actually terminating ś crucial for go and create.

The predicate recurses_on P R f characterizes the recursion pattern of f, but does so in a very
extensional way and only considers recursive calls that can actually affect the result of the function.
For instance, it would consider a recursive function defined by f n = if f n then true else true

to be terminating.
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These axioms are consistent with Coq.We can implement deferredFix and deferredFix_eq_on
in terms of classical logic and the axiom of choice (as provided by the Coq standard library module
Coq.Logic.Epsilon).19 We do not know if deferredFix_eq_on is strictly weaker than classical
choice, so users of hs-to-coq who want to combine the output of hs-to-coq with developments
known to be inconsistent with classical choice (e.g., homotopy type theory) should be cautious.
Pragmatically, working with deferredFix is quite convenient, as we can prove termination

together with the other specifications about these functions. The actual termination proofs them-
selves are not fundamentally different from the proof obligations that Program Fixpoint would
generate for us and ś although not needed in this example ś can be carried out even for nested
recursion through higher-order functions like map.
This extensional approach to defining recursive functions was inspired by Isabelle’s function

package [Krauss 2006]. It is also an instance of the recursion schemes described by Charguéraud
[2010].

5.5 Translating Haskell Tests to Coq Types

When we translate code, we usually want to preserve the semantics of the code as much as possible.
Things are very different when we translate the QuickCheck tests defined in the containers test
suite, as we discussed in Section 4.2: whereas the semantics of the test suite in Haskell is a program
that creates random input to use as input for testing executable properties, we want to re-interpret
these properties as logical propositions in Coq. Put differently, we are turning executable code into
types.

QuickCheck’s API provides types and type classes for writing property-based tests. In particular,
it defines an opaque type Property that describes properties that can be checked using randomized
testing, a type class Testable that converts various testable types into a Property, and a type
constructor Gen that describes how to generate a random value. These are combined, for instance,
in the QuickCheck combinator

forAll :: (Show a, Testable prop) => Gen a -> (a -> prop) -> Property

which tests the result of a function on inputs generated by the given generator.
Since we want to prove, not test, these properties, we do not convert the QuickCheck implementa-

tion to Coq. Instead, we write a small Coq module that provides the necessary pieces of the interface
of Test.QuickCheck, but interprets these types and functions in terms of Coq propositions. In
particular:

• We use Coq’s non-computational type of propositions, Prop, instead of QuickCheck’s com-
putational Property;

• Gen a is simply a wrapper around a logical predicate on a; and
• forAll quantifies (using Coq’s forall) over the type a, and ensures that the given function
ś now a predicate ś holds for all members of a that satisfy the given łgeneratorž.

Concretely, this leads to the following adapted Coq code:

Record Gen a := MkGen { unGen : a -> Prop }.

Class Testable (a : Type) := { toProp : a -> Prop }.

Definition forAll {a prop} `{Testable prop} (g : Gen a) (p : a -> prop) : Prop :=

forall (x : a), unGen g x -> toProp (p x).

We provide similar translations for QuickCheck’s operators ===, ==>, .&&. and .||., and we replace
generators such as choose :: Random a => (a, a) -> Gen a with their corresponding predicates.

19In the file base/GHC/DeferredFixImpl.v
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With this module in place, hs-to-coq translates the test suite into a łproof suitež. As we saw in
Section 4.2, a test like prop_UnionAssoc is now a definition of a Coq proposition, that is to say a
type, and can be used as the type of a theorem:

Theorem thm_UnionAssoc : toProp prop_UnionAssoc.

6 THE FORMALIZATION GAP

We have shown a way to make mechanically checked, formal statements about existing Haskell
code, and have applied this technique to verify parts of the containers library. But are the theorems
that we prove actually true? And if they are, how useful is this method?

As always, when a theorem is stated about an object that is not purely mathematical, its validity
depends on a number of assumptions. First, we have to assume that Coq behaves as documented
and is consistent. This is particularly relevant because we rely on fine details of Coq’s machinery
(e.g., opacity, Section 5.2) and optionally add consistent axioms (see Section 5.4).

The biggest assumption is that the semantics of a Gallina program models the behavior of a
running Haskell program in a meaningful way. At this time, we cannot even attempt to close this
gap, as there is no formal semantics for Haskell. We know that łFast and Loose Reasoning is Morally
Correctž [Danielsson et al. 2006], which says that theorems about the total fragment of a non-total
language carry over to the full language. But since we relate two very different languages, this
argument alone is not enough to bridge the gap.
Similarly, we rely on hs-to-coq translating Haskell code into the correct Gallina code. The

translator itself is a sizable piece of code, which is unverified (not least because there is no formal
semantics of Haskell). We get some confidence in it by manually inspecting its output and observing
that it is indeed what we would consider the łrightž translation from Haskell into Gallina, and
gain more from the fact that we were actually able to prove the specifications, which would not be
possible if the translated code behaved differently than intended. Moreover, extracting the translated
code back to Haskell and running the test suite (Section 3) also stress-tests the translation.

Finally, the translation was not completely automatic and required manual edits. With each edit,
we add another assumption (for example, that our underspecification of pointer equality matches
the actual behavior of GHC). We list and justify our manual interventions in Section 5.

The formalization gap in our work is relatively large compared to, say, the gap for the verification
of programs written in Gallina in the first place. But for the purpose of ensuring the correctness
of the Haskell code, this is less critical. Even if one of our assumptions is flawed, it is much more
likely that the flaw will stop us from completing the proofs, rather than allowing us to conclude
the proofs without noticing a bug. Incomplete proofs can uncover bugs, too.

7 RELATED WORK

Purely functional data structures, such as those found in Okasaki’s book [1999] are frequent targets
of mechanical verification. That said, we believe that we are the first to verify the Patricia tree
algorithms that underlie Data.IntSet.

Similarly to hs-to-coq, LiquidHaskell [Vazou et al. 2014] can be used to verify existing Haskell
code. LiquidHaskell allows users to annotate their code with refinement types, and then it discharges
the proof obligations described by these types using SMT solvers. Vazou et al. [2017] compared the
experience of using LiquidHaskell vs. that of using plain Coq, and found that both have advantages.

Vazou et al. [2013] used LiquidHaskell to verify Data.Map. This code shares the same underlying
data structure (weight-balanced trees) to Data.Set. Similar to our work, they also use unbounded
integers as the number representation and leave functions like showTree unspecified. However,
we develop a richer specification, which includes a semantic description of each operation we
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verify, constraints about the tree balance, and the ordering of the elements in the tree. In contrast,
Vazou et al. limit their specifications to ordering only. Although it might be possible to replicate
our specifications by relying on theories of finite sets and maps in SMT [Kröning et al. 2009] using
refinement types in LiquidHaskell, this approach has not been explored.

Furthermore, our specification includes type class laws, and we verify that Set and IntSet have
lawful instances of the Eq, Ord, Semigroup, and Monoid type classes. When Vazou et al.’s original
work was developed in 2013, LiquidHaskell did not have the capability to state and prove these
properties. Since then, there have been new developments in LiquidHaskell, particularly refinement
reflection [Vazou et al. 2018], which could make it possible to specify and prove type class laws.

Both LiquidHaskell and hs-to-coq check for termination of Haskell functions. In LiquidHaskell,
the termination check is an option that can be deactivated, allowing the sound verification of
nonstrict, non-terminating functions [Vazou et al. 2014]. In contrast, a proof of termination is
a requirement for verifying functions using hs-to-coq [Spector-Zabusky et al. 2018]. However,
hs-to-coq is able to take advantage of many options available in Coq for proving termination of
non-trivial recursion, including structural recursion, Program Fixpoint and our own approach
based on deferredFix. This latter approach alowed us to reason about fromDistinctAscList
(see Section 5.4) and prove that it is indeed terminating; on the other hand, Vazou et al. deactivate
the termination check for this function.
Outside of Haskell, Hirai and Yamamoto [2011] implemented a weight-balanced tree similar

to Haskell’s Data.Set library (albeit using the balancing condition of Nievergelt and Reingold
[1972]) and verified its balancing properties in Coq. Nipkow and Dirix [2018] extended this work by
formalizing similar trees in Isabelle and verifying the functional correctness of insert and delete.
Hirai and Yamamoto defined the union, intersection, and difference functions based on

the łhedge unionž algorithm, but containers has since changed to use łdivide and conquerž.
Moreover, Hirai and Yamamoto specify only the balancing constraints, whereas we develop a
richer specification that also includes a semantic description of each operation we verified and the
ordering of the elements in the tree. The extended version [Breitner et al. 2018] also describes the
new insights about the balancing conditions that we gained through our verification effort.

8 CONCLUSIONS AND FUTURE WORK

We verified the two finite set modules that are part of the widely used and highly-optimized
containers library. Our efforts provide the deepest specification and verification of this code to
date, covering more of the API and proving stronger, more descriptive properties than prior work.

In future work, there is yet more to verify in containers. For example, we plan to add a version of
IntSet that uses 64-bit ints as the element type in addition to our current version with unbounded
natural numbers. That way users could choose the treatment of overflow that makes the most sense
for their application. We have also started to verify Data.Map and Data.IntMap. Because these
modules use the same algorithms as Data.Set and Data.IntSet, we already adapted some of our
existing proofs to this setting.

The fact that we did not find bugs says a lot about the tools that are already available to Haskell
programmers for producing correct code, such as a strong, expressive type system and a mature
property-based testing infrastructure. However, few would dare to extrapolate from these results to
say that all Haskell programs are bug free! Instead, we view verification as a valuable opportunity
for functional programmers and an activity that we hope will become more commonplace.
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