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ABSTRACT Several fast algorithms are presented for computing functions defined on paths in trees under various 
assumpuons. The algorithms are based on tree mampulatton methods first used to efficiently represent equivalence 
relations. The algorithms have O((m + n)a(m + n, n)) running tunes, where m and n are measures of the problem 
size and a Is a functional reverse of Ackermann's function 

By usmg one or more of these algorithms m combination with other techniques, it is possible to solve the 
followmg graph problems m O(ma(m, n)) tnne, where m Is the number of edges and n Is the number of vertices 
m the problem graph 

A Venfymg a minimum spanning tree m an undirected graph (Best previously known time bound 
O(m log log n).) 

B Flndmg dominators in a flow graph (Best previously known tune bound O(n log n + m).) 
C Solvmg a path problem on a reducible flow graph. (Best previously known time bound. O(m log n) ) 
Application A is discussed 
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1. Introduction 

T h e r e  is a smal l  col lec t ion  o f  t echn iques  w h i c h  a re  useful  in  b u i l d i n g  eff ic ient  a lgo r i thms  
for  a wide  var ie ty  o f  g r a p h  p rob lems .  He re  we s tudy  one  such  t echn ique ,  p a t h  compre s s ion  
o n  b a l a n c e d  trees. T h e  t e c h n i q u e  was first used  for  eff ic ient ly  r ep re sen t ing  equ iva l ence  
re la t ions  a n d  was subs equen t l y  app l ied  to a va r ie ty  o f  p r o b l e m s  [2, 3, 8, 10, 15, 23, 24]. 

W e  ex tend  the  r ange  o f  app l i ca t ion  o f  the  t e c h n i q u e  b y  us ing  it  to c o m p u t e  func t ions  
d e f i e d  o n  pa ths  in  trees. 1 Let  (S, ®) be  a s e m i g r o u p  wi th  associa t ive  o p e r a t i o n  ®. C o n s i d e r  
a sequence  o f  ins t ruc t ions  o f  the  fo l lowing  th ree  kinds.  T h e s e  ins t ruc t ions  bu i ld  a n d  
m a n i p u l a t e  a forest  whose  ver t ices  are  l abe led  by  e l emen t s  in  S. 

EVAL(v)' Fmd the root of the tree currently contaming v, say r, and return the product of all labels on the path 
from r to v. 

LINK(v, w)" Combme the trees with roots v and w into a single tree by addmg an edge (v, w) (this makes v the 
parent of w). 

UPDATE(r, x)" l f r  ts the root of a tree and r has label l, replace I by x ® I 

W e  p resen t  a lgo r i thms  for  ca r ry ing  ou t  on- l ine  a n  a rb i t r a ry  s equence  o f  m E V A L ,  
L I N K ,  a n d  U P D A T E  ins t ruc t ions  o n  a forest  in i t ia l ly  cons is t ing  o f  n one -ve r t ex  trees. O u r  
first a n d  s imples t  a l g o r i t h m  uses  p a t h  compres s ion  to solve the  E V A L - L I N K - U P D A T E  
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problem in O((m + n).max{l ,  log2(nZ/(m + n))/log2(2(m + n)/n)}) time. 2 If  the forest 
built by the LINK mstrucuons is balanced (in a suitably defined sense), the algorithm is 
even faster, having a running time of  O((m + n)a(m + n, n)) where a(m + n, n) is a 
functional inverse of  Ackermann's function. If  the forest is not balanced, we can in certain 
situations modify it to make it balanced. We use this idea to obtain O((m + n)a(m + n, n))- 
time algorithms for the following special cases. 

1. Each element of  S is either a right zero or has a right inverse. 
2. S is a totally ordered set and ® is max. 
3. The sequence of  EVAL, LINK, and UPDATE instructions is given off-line except 

for the modifications to the vertex labels specified in the UPDATE instructions. 
These algorithms have several important applications. By using the appropriate EVAL- 

LINK-UPDATE method, we can solve the following graph problems in O(ma(m, n)) time, 
where m is the number of  edges and n is the number of  vertices in the problem graph. 

A. Verifying a minimum spanning tree in an undirected graph. (Best previously known 
time bound: O(m log log n) [6, 31].) 

B. Finding dominators in a directed flow graph. (Best previously known time bound: 
O(n log n + m) [22].) 

C. Solwng a path problem in a reducible flow graph. (Best previously known time 
bound: O(m log n) [4, 11, 13, 17, 30].) 

This paper is a revised and improved version of  [25]. It contains eight sections, Section 
2 describes the simple algorithm. Sections 3, 5, and 6 describe the more complicated but 
faster algorithms for handling special cases 1, 2, and 3, respectively. Section 4 surveys 
prewous work on the use of  path compression to maintain disjoint sets and to fred least 
common ancestors in trees. Section 7 applies the results in Sections 4, 5, and 6 to the 
problem of verifying minimum spanning trees. Section 8 contains some further remarks. 
Applications B and C require additional results that are beyond the scope of  this paper; 
companion papers discuss these applications [ 19, 26, 27]. 

2. A Simple Algorithm Using Path Compression 

In this section we present a simple algorithm for solving the EVAL-LINK-UPDATE 
problem. The algorithm uses the technique of  path compression to achieve an 
O((m + n).max{l,  log2(n2/(m + n))/logz(2(m + n)/n)} ) running time. The running time 
is even faster if the tree built by the LINK instructions is balanced. 

It is useful to have a little notation to represent products of  labels along tree paths. Let 
v be a descendant of  w in the forest built by the LINK instructions. Suppose the path from 
v to w is v = vo ~ Vl ~ " ° *  ~ Vk = W. We define 

(D(v, w) ffi label(vo) ® label(va) ® label(v2) ® ... ® label(vk). 

If  v is any vertex and r is the root o f  the tree containing v, we define E)(v) = (D(r, v). With 
this notation the value returned by EVAL(v) is E)(v). Henceforth we use "the value of  v" 
in a technical sense to mean ®(v). 

Consider the following very simple method of  carrying out EVAL and L I N K  instruc- 
tions. We represent the forest by two arrays, parent and label. For any vertex v, parent(v) 
is the parent of  v in the forest and label(v) is the label of  v. Initially parent(v) = 0 and 
label(v) is the imtlal label o f  v. 

To carry out LINK(v, w), we execute the assignment parent(w) :ffi v. To carry out 
UPDATE(r, x), we execute the assignment label(r) := x ® label(r). To carry out EVAL(v), 
we follow parent pointers to the root o f  the tree containing v, multiplying together the 
labels of  the vertices along the path. 

This algorithm is not very efficient; if the L I N K  instructions construct a tree consisting 

2 Iffand g are funcUons ofm and n, the notatton 'f(m, n) is O(g(ra, n))" means there is a positive constant c such 
that f(m, n) ~_ cg(m, n) for all but finitely many values ofm and n The notation 'if(m, n) is ~(g(m, n))" means 
g(m, n) Is O( f(m, n)). 
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of  one long path, then an EVAL instruction requires fl(n) time in the worst case, and m 
EVAL instructions require ~(mn) time. 

We can improve the efficiency of  the algorithm by using the associativity of®.  To carry 
out the EVALs properly, we need not explicitly represent the forest built by the LINKs 
(henceforth called the real forest). Instead, we use a virtual forest, which contains the same 
vertices as the real forest but different edges and labels. The virtual forest satisfies the 
following properties: 

(i) For each tree T of  the real forest, there is a corresponding tree VT of  the virtual 
forest which contains the same vertices as T. 

(i0 Corresponding trees T and VT have the same root with the same label. 
(in) If  v is any vertex, ®v(v) = ®w(v), where ®F denotes evaluation in the real forest 

and ®vv denotes evaluation in the virtual forest. 
In the virtual forest we can use the following compression operation: I f  u ~ v ~ w in a 

virtual tree, v has label 11, and w has label/2, replace the edge (v, w) by an edge (u, w) and 
replace the label of  w by 11 ® lz. It ts easy to see that this operation preserves properties 
(i)-(iii) under the assumption that ® is associative. 

The improved algorithm uses the arrays parent and label to represent the virtual forest. 
Inmally parent(v) = 0 and label(v) is the initial label of  v in the real forest. We carry out 
LINK(v, w) and UPDATE(r,  x) as before. We carry out EVAL(v) as follows. Let r be the 
root of  the vmual  tree containing v. I f  r = v, we return label(v). Otherwise, we compress 
the path from r to v using compression operations so that every vertex on the path except 
r becomes a child of  r (see Figure 1). Then we return label(r) @ label(v). 

The following Algol-like recursive procedure COMPRESS(v) carries out the required 
path compression. 

procedure COMPRESS(v) ,  
comment  this procedure assumes parent(v) ~ 0, 
if parent(parent(v)) ~ 0 then 

COMPRESS(parent(v)),  
label(v) = label(parent(v)) ® label(v), 
parent(v) = parent(parent(v)) fl, 

The following procedure implements EVAL using COMPRESS. (In any actual appli- 
cation~ the keyword suitable would be replaced by the data type of  S.) 

suitable procedure  EVAL(v), 
if parent(v) = 0 then EVAL ~ label(v) 

else COMPRESS(v) ,  EVAL = label(parent(v)) ® label(v) fi, 

Knuth [8] attributes the path compression idea to Tritter; independently, McIlroy and 
Morris used it in an algorithm for finding minimum spanning trees [14]. 

It is possible to modify COMPRESS in various ways to improve its efficiency and 
decrease its storage requirements. I f  running time is at a premium, we can rewrite 
COMPRESS as an ~terative instead o f a  recurstve procedure, using a stack to store vertices 
on the path from r to v. If  storage space is at a premium, we can avoid using an auxiliary 
stack. Instead, we carry out COMPRESS by following parent pointers from v to r, reversing 
their directions as we go. Then we follow pointers from r to v while compressing the path. 

The path compression method of  carrying out EVALs, LINKs, and UPDATEs requires 
constant ttme for each instruction plus time proportional to the length of  the path 
compressed for each of  the m or fewer executions of  COMPRESS. The following theorem 
bounds the total length of  all path compressions. Let F be an arbitrary forest. By a path 
compresswn on F we mean the following operation: For some pair of  vertices v, w such that 
v ~ w in F, modify F by making each vertex except v on the path from v to w a child of  
v (see Figure 2). Note that v need not be a tree root. 

TnlZOREM I. The total length of an arbitrary sequence of m path compressions in an 
arbttrary n-vertex forest is 

O((m + n).max (1, log2(n2/(m + n))/log2(2(m + n)/n)) ). 
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Paterson [20] proved Theorem 1 for the case m -- O(n); a proof  for arbitrary m appears 
in [24]. The bound in Theorem 1 is known to be tight for values of  m and n satisfying, for 
some positive constants c and ~, m _< cn [10] or m _> cn ~+" [24]. 

The effect of  m executions of  EVAL is to carry out m or fewer path compressions on the 
real forest budt by the entire sequence of  L I N K  instructions. Thus Theorem 1 gives a 
bound on the time required for m EVAL, LINK, and U P D A T E  instructions. 

I f  the forest built by the L I N K  instructions is balanced, the running time of  the path 
compression algorithm is faster than Theorem 1 indicates. Let F be any n-vertex forest. F 
is balanced for constants a > 1, c > 0 if  for all i the number  of  vertices in F of  height i does 
not exceed cn/a'. Intuitively, this means that most of  the vertices of  F have small height. 
Note that any path in a balanced forest has length O(log n). 

Let the function A(i, j )  on integers i, j _> 0 be defined by A(i, 0) ffi 0, A(0, j )  = 2 J for 
j_> 1, A(i, 1) = A(i - 1, 2) for t _> 1, and A( i , j )  = A ( i -  1, A ( i , j -  1)) for i_> l , j _ >  2. 
A0, j )  is a variant of  Ackermann's  function [1] slightly different from the version used in 
124]. Let a(m, n) = mm{i  _> 1 ]A(i, [2m/nJ) > log2n), where [xJ denotes the greatest integer 
not larger than x. For  n < 216 = 65,536, ct(m + n, n) = 1; for all larger feasible n, 
a(m + n, n) = 2. 

THEOREM 2 [24]. The total length of  an arbitrary sequence of  m path compressions in an 
n-vertex forest balanced for  a, c is O((m + n)a(m + n, n)), where the constant depends on a 
and c. 

Our goal is to devise an algorithm for the E V A L - L I N K - U P D A T E  problem which 
requires O((m + n)a(m + n, n)) time for any forest. We shall succeed in doing this in 
several important  special cases, although not in the general case. Our approach will be to 
modify the implementation of  the L I N K  instruction so that the virtual forest it builds is 
balanced. 

3. An Algortthm for  Semtgroups with lnverses and Zeros 

In this section we present an O((m + n)a(m, n))-time algorithm for the special ease in 
which each element of  S is either a right zero or has a right inverse. More precisely, we 
assume that for each element x ~ S, either 

(a) y ® x = x for all y E S (x is a right zero), or 
(b) there is an element x -1 such t h a t y  ® x ® x - I  = y for a l l y  E S (x has a right inverse). 
We shall ignore right zeros for the moment and assume that every element of  S has a 

right inverse. To carry out EVAL, LINK,  and U P D A T E  instructions, we maintain a 
virtual forest which satisfies properties 0) and (ni) o f  Section 2 but not property 0i). That 
is, to each tree T of  the real forest corresponds a tree VT of  the virtual forest, having the 
same vertices as T but not the same root. Furthermore vertex values in the real forest and 
in the virtual forest agree. When combining two trees in the virtual forest, we always make 
the root of  the smaller tree a chdd of  the root of  the larger tree. This guarantees that the 
virtual forest is balanced, and Theorem 2 gives an O((m + n)a(m + n, n)) time bound. 

The algorithm uses three arrays, parent, label, and size. Arrays parent and label represent 
the virtual forest as in Section 2. I f  v is the root o f  a virtual tree, size(v) is the number  o f  
vertices in the tree. Initially parent(v) = O, size(v) ffi 1, and label(v) is the initial label of  v 
in the real forest. 

We carry out EVAL(v) exactly as in the path compression algorithm; i.e., i f  parent(v) = 
0, we return label(v); otherwise we execute COMPRESS(v) and return label(parent(v)) ® 
label(v). We also carry out UPDATE(r ,  x) by using path compression. The desired effect 
of  UPDATE(r ,  x) is to multiply the value of  every vertex in the real tree containing r by 
x. We carry out this instruction by finding the root o f  the virtual tree containing r and 
multiplying its label in the virtual tree by x. The following procedure carries out UP- 
DATE(r,  x) by using the fact that if  r is not the root of  a virtual tree, COMPRESS(r)  
makes r a child of  the root. 
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(b) 

Last part of LINK(v, w) with balancing. Labels are in brackets. (a) size(r1) _> slze(r~); 
(b) s:z~r~) < s~ze(re) 

procedure UPDATE(r, x); 
if parent(r) = 0 then label(r) := x ® label(r) 

else COMPRESS(r); label(parent(r)) "= x ® label(parent(r)) fl; 

We carry out LINK(v, w) by using balancing.  The desired effect of  LINK(v, w) is to 
combine the real trees with roots v and w, and to mult iply the value of  each vertex in the 
real tree with root w by the value of  v. To carry out LINK(v, w), it suffices to update values 
m the virtual tree VT2 containing w and to combine VT2 with the virtual tree VT1 
containing v. In order to do this we need access to the roots r~, r2 of  VT~, VTe, respectively. 
I f  r~ # v, we execute COMPRESS(v),  making v a child o f  rl. I f  re # w, we execute 
COMPRESS(w), making w a child of  re. The value of  v is then l a b d ( r l )  i f  v = rl, l a b d ( r l )  
G label(v)  otherwise. I f  v # r~, we replace label(re) by label(v)  Q label(re). It remains for us 
to multiply vertex values in VT2 by label(r t )  and combine the trees. 

What  we do next depends on the relative sizes of  VT1 and VTe. Figure 3 illustrates the 
two cases. I f  VT~ contains at least as many vertices as VT2, we make r2 a child of  r~. This 
has the effect of  multiplying the value of  each vertex in VT2 by label(r~) and thus completes 
LINK(v, w) while preserving (i) and (iii). I f  VT~ has fewer vertices than VTe, we make rl 
a child of  re. In addition, we simultaneously replace label(r1) by label(re) -1 and label(rz) by 
label(r~) ® label(re). This has the effect o f  leaving the values o f  vertices in VT1 alone while 
multiplying the values of  vertices in VT2 by the old label(rO, thus completing LINK(v, w) 
while preserving (i) and (iii). 

The following procedure implements LINK.  Note that zero tes t  always takes the t r u e  

branch in the case we are considering, namely, when every element o f  S has a right inverse. 

procedure LINK(v. w), 
begin 

if parent(w) = 0 then r2 :ffi w 
else COMPRESS(w); re .= parent(w) fi; 

zerotesr if label(r2) has a right inverse then 
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if parent(v) = 0 then  rl ~ v, 

e lse  C O M P R E S S ( v ) ,  rl = parent(v), 
label(r2) = label(v) ® label(r2) fi, 

if saze(rO _> stze(r2) t hen  

parent(r2) = rb aze(rl) = szze(ra) + stze(rz) 
else  parent(r1) = r2, size(r2) .= stze(r 0 + szze(r2), 

label(r1), label(r~) = label(r2) -l ,  label(rO ® label(r2) fi fi 
end L I N K ,  

We call this implementation of  EVAL, LINK, and UPDATE path compression with 
balancing. Morris apparently originated the balancing idea [14]. It also appears in [12]. 

The t~me required to execute m instructions using path compression with balancing is 
O(m) plus the time to execute no more than 2m path compressions. Let U be the 
uncompressed virtual forest; 1.e., the virtual forest built by the LINKs, ignoring all 
compression. To obtain U, we construct a new edge (x, y) each time L I N K  assigns x := 
parent(y). It Is not hard to show that U Is balanced for constants a = 2, c = 1. (This is 
proved in [24]; see also Section 5.) Theorem 2 implies that path compression with balancing 
reqmres O((m + n)a(m + n, n)) time. 

If  necessary we can reduce the storage requirements of  this algorithm. Since size(v) is 
only useful If parent(v) = 0, we can store both sizes and parents in one array by using 
negative numbers to represent s~zes and positive numbers to represent parents. 

We now extend the algorithm to handle nght zeros. Such elements cause problems only 
in the LINK instruction. Note that if a fight zero appears in a product representing the 
value of  a vertex, all terms to the left of  the zero can be ignored. In other words, if the 
value of  w is a right zero, the instrucUon LINK(v, w) can be ignored because it, and 
subsequent LINKs and UPDATEs, cannot change the value of  any vertex in the tree 
containing w This means that the previous implementation of  L I N K  is still valid; if the 
value of  w is a right zero, zerotest will cause LINK to do nothing. Proving the validity of  
the Implementation requires the following lemma. 

LEMMA 1 I f  x ~ S and y ~ S have right mverses, then so do x ® y and x-1 
PROOF. z ® x ® y ® y - t  ® x - l  = z ® x ® x - l  = z, which means that y-~ ® x - l  is a 

right reverse for x ® y. Suppose x-1 has no fight inverse. Then x-1 is a right zero, which 
means x ® x -1 = x -1. But then x = x ® x ® x-1 = x ® x -1 = x -1, which contradicts the 
fact that x has a right inverse. []  

Lemma 1 and the tuner workings of  LINK, EVAL, and UPDATE guarantee that 
label(v) has no nght inverse only for vertices v which are virtual tree roots. Referring to 
LINK, it follows that label(r2) has a fight inverse ff and only if the value of  w does, and 
our implementation is correct. 

The algorithm of this section applies to any group, such as the real numbers under 
addition, and to the real numbers under multiplication. An algorithm for the real numbers 
under addition is useful to keep track of  vertex depths m a forest, and the algorithm we 
have presented here is based on Aho, Hopcroft, and Ullman's method of  solving the forest 
depth problem [2, 3]. An algonthm for the real numbers under multiplication is useful for 
solving systems of  linear equations defined on reducible flow graphs [27]. 

4. Disjomt Sets and Least Common Ancestors 

Path compression with balancing was originally developed to solve the following problem. 
Suppose we are given n disjoint sets, each containing one element, and each having a 
distinct name. We w~sh to carry out two types of  instructions on these sets. 

F I N D ( e )  re turn  the  n a m e  o f  the  set c o n t a i n i n g  e l emen t  e,  

U N I O N ( A ,  B) a d d  the  e l emen t s  m set B to set A, d e s t r o y m g  set A 

We can apply the algorithm of  Section 3 to solve this problem. (In this application the 
procedures for EVAL and LINK can be simplified somewhat.) We use a forest, each vertex 
of  whtch represents an element. The initial label of  a vertex is the name of  the set initially 
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containing the corresponding element. S is the collection of  set names, with operation 
x ® y = x. Note that each set name is its own right inverse. For each element e, let v(e) be 
the vertex representing e. For each set name A, let v(A) be the vertex initially labeled by 
A. We implement U N I O N  and F I N D  as follows: 

suitable procedure FIND(e), 
FIND = EVAL(v(e)), 

procedure UNION(A, B), 
LINK(v(A). v(B)), 

The time required for m instructions is O((m + n)cffm + n, n)). This set union algorithm 
is useful for handling EQUIVALENCE and C O M M O N  statements in Fortran [5, 12], 
finding minimum spanning trees [6, 31], and testing flow graphs for reducibility [23]. 

Aho, Hopcroft, and Ullman have used the set union algorithm to compute least common 
ancestors in a tree off-line [3]. We shall need an algorithm for this problem in Section 7, 
so we present a version of  their method here. They proceed by way of  an intermediate 
problem, called the off-line mm problem, but it is much cleaner to use the set union 
algorithm directly. Let T he  a tree with root r and letpairs = ((v,, w,)l I _< i _< m) be a set 
of m vertex pairs. We wish to compute LCA(v,, w,) for each pair. The following algorithm 
carries out the computation. 

procedure LCA, 
begin 

for each {v, w} Epalrs do unmark {v, w} od, 
for each v E Vdo create a set {v} named v od, 
SEARCH(r) 

end LCA, 

Recursive procedure SEARCH is defined by 

procedure SEARCH(v), 
begin 

for each w E chddren(v) do SEARCH(w); UNION(v, w) od; 
for each {v, w} ~ pairs do if {v, w} not marked then mark { v, w} 

else lea(v, w) = FIND(w) fi od 
end SEARCH, 

This algorithm assumes that V is the set of  tree vertices and that children(v) is the set o f  
children of  v for each vertex v. SEARCH carries out a depth-first search of  the tree. During 
the search, each pair {v, w} is examined twice, once when the search is at v and once when 
the search is at w. The second time (v, w} is examined, its least common ancestor is 
computed and stored in lca(v, w). It is not hard to prove the correctness of  this method by 
using properties of  depth-first search. See [2, 3, 21, 22]. The algorithm requires 
O((m + n)a(m + n, n)) time and O(m + n) space if the set pairs is represented so that for 
each vertex v the pairs {v, w} can be retrieved in constant time per pair. An adjacency 
structure [3, 21] is suitable for this purpose. 

5. An Algorithm for Totally Ordered Sets with Operation max 

There are important situations in which the algorithm of  Section 3 does not apply. For  
instance, if S is totally ordered under an ordering ~< and ® is max, only the minimum 
element of  S (if any) has an inverse. We shall devise a different and somewhat more 
complicated algorithm for this case. 

Our algorithm uses a virtual forest satisfying properties (i)-(iii) of  Section 2 and the 
following additional property: 

(iv) Each virtual tree VT consists of  a set of  subtrees ST0, ST1 . . . . .  STk with roots ro, r~, 
.... rk, respectively, joined by a path ro ~ rl ~ ... ~ rk. The subtree roots satisfy 
label(rj) ~ label(rj+~) for 0 _<j < k. (See Figure 4.) 

Suppose v is a vertex in some subtree STy. The value of  v does not depend on label(r,) for 
i < j ,  since label(r,) ~ label(r~) for any i < j .  This means that to compute the value of  v, we 
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need examine labels only of  vertices in STj. We can thus use path compression within the 
subtrees to compute values. By properly manipulating the subtrees, we shall be able to 
guarantee that they are balanced. In this way we achieve an O((m + n)~(m + n, n)) time 
bound. 

To represent the subtrees, we use two arrays, parent and label. For each vertex v, label(v) 
is the label of  v in the virtual forest; parent(v) is the parent of  v in the virtual forest unless 
v is the root of  a subtree, in which case parent(v) = 0. We implement EVAL(v) exactly as 
in Sections 2 and 3. 

To represent the way the subtrees fit together into virtual trees, we use two additional 
arrays, child and size. These arrays are defined only for subtree roots. Let VT be a virtual 
tree with subtrees STo, ST1 . . . . .  STk having roots r0, r~ . . . . .  rk, respectively. For any root rj, 
child(rj) denotes the child of  r~ (if any) that is a subtree root; i.e., child(r~) = rj+~ i f j  < k; 
child(rj) = 0 i f j  = k. For any root r~, size(rj) is the number of  descendants of  rj in VT; i.e., 
size(r~) = ~,~.~ I ST,]. For purposes of  analysis we shall denote [ ST, I, the number of  vertices 
in ST,, by subsize(r,). For convenience we assume that size(O) = 0; then subsize(r~) = size(rj) 
- size(child(rj)) for 1 _< j _< k. 

To carry out UPDATE(r,  x), we first replace label(r) by max {x, label(r)}. This preserves 
properties (i)-(iii) but may invalidate (iv). Let VT with subtrees STo, ST~ . . . . .  STk having 
roots r = ro, r~ . . . . .  rk be the virtual tree with root r. We determine the maximum value o f  
j such that label(r) > label(rj). We then combine subtrees ST,, ST2 . . . . .  STy into a single 
subtree, replacing the label of  the root of  this subtree by label(r). 

To combine the subtrees, we first replace ST~ by a combination of  ST~ and ST2, then 
replace the new ST1 by a combination of  ST~ and ST3, and so on, until all the subtrees ST,, 
for 2 _< i _<j, are combined with ST1. When combining ST, with ST~ to form the new STy, 
we make the root of  the larger subtree the parent of  the root o f  the smaller. (See Figure 5.) 
Note that this process leaves STo intact, thus preserving (ii). 

The following procedure implements this idea. For convenience, the procedure assumes 
that label(O) = o0, where oo is the maximum element of  S. (If S has no maximum element, 
we add one.) 

procedure UPDATE(r,  x), 
begin 

comment this procedure assumes size(O) = 0 and label(O) = oo, 
label(r) .~ max (x, label(r)}; 

labeltesti, if label(r) > label(child(r)) do 
rl := child(r), 

labeltest2: while label(r) > label(chlld(r~)) do 
slzetest: if szze(rl) + size(child(child(r1))) ~_ 2* stze(chtld(rl)) then 

parent(child(r1)) := rl, child(tO .~ chlld(chdd(r2)) 
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FIG. 5. Combination ofsubtrees STi, ST~ by UPDATE if/0 > I=. (a) substze(rj)  ~_ subsize(r2), (b) substze(rl)  < 
subslze(r~). This operatmn is repeated untd there are no more subtrees or the next subtree ST~+~ has 1o _</j+i 

else slze(chtld(rO) = stze(rO; 
rl := parent(r1) = child(r1) tl od; 

label(ri) = label(r), chdd(r) = rl fi 
end UPDATE, 

Note that the choice of  label(O) = oo guarantees that labeltest l  fails when child(r) = 0 
and that labeltest2 fails when child(r~) -- 0. Note also that sizetest succeeds exactly when 
size(rl) + size(child(child(r1))) _> 2* size(child(r1)), i.e., when subsize(rl)  -- size(r1) - 
size(child(r1)) >_ size(chiid(rl)) - size(child(child(r1))) = subsize(child(rl)).  It is easy to show 
that this procedure carries out UPDATE(r ,  x) correctly while maintaining (i)-(iv). 

To carry out LINK(v, w), we first perform UPDATE(w, label(v)). This correctly updates 
values in the virtual tree VT2 containing w. Let w = So, s~ . . . . .  s~ be the subtree roots in VT2 
after UPDATE(w, label(v)) is performed, and let VT~ with subtree roots v ffi ro, rt . . . . .  rk be 
the virtual tree containing v. After the UPDATE,  label(v) ~ label(w). I f  VT~ is larger than 
VT2, we combine all the snbtrees in VT2 with the subtree of  VT1 rooted at v by making v 
the parent of  so, sl . . . . .  st. This combines VT1 and VTz into a single virtual tree. I f  VT~ is 
smaller than VT2, we combine all subtrees of  VT~ into a single subtree by making v the 
parent of  rl, r2 . . . .  , r~. Then we combine VT1 and VTz into a single virtual tree by making 
w the child of  v. Figure 6 illustrates the two cases. The following procedure implements 
LINK. The operator "~--¢' denotes exchange o f  values. 
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procedure LINK(v, w), 

UPDATE(w, label(v)), 
s~ze(v) := s~ze(v) + size(w); 
S ~ W ;  

i f  size(v) < 2* size(w) then s ~ child(v) fl; 
while s # 0 do parent(g) ,ffi v; s .ffi child(s) od 

end LINK; 

Verifying that this implementation carries out LINK(v, w) whde preserving 0)-(iv) is 
straightforward. As m Section 3, it is possible to save an array by combining either child 
or size with parent, since chdd and size are needed only for subtree roots andparent is zero 
for subtree roots. 

It remains for us to show that the subtrees built by UPDATE and L I N K  are balanced. 
Let U be the uncompressed set of  subtrees built by L I N K  and UPDATE. To obtain U, we 
construct a new edge (x, y) each time either L I N K  or UPDATE assigns x := parent(y). 
Each such new edge joins a pair of  subtree roots. 

For any vertex v, let subsize(v) be the number of  descendants of  v in U. We call an edge 
(x, y) of  U good if subsize(x) _> 2. subsize( y). I f  (x, y) and (y, z) are edges of  U, we call 
(y, z) mediocre if subsize(x) _> 2.subaze(z). Once an edge becomes good (or mediocre) it 
stays good (or mediocre), since when (x ,y)  becomes an edge of  U, subsize(y) (and subsize(z) 
i fy  ~ z) is fixed, and subsize(x) can only increase. 

Each edge added to U by UPDATE is good. It is not hard to show that a forest 
consisting only of  good edges is balanced [24]. Unfortunately, L I N K  can add edges that 
are not good to U. We shall show, however, that such edges eventually become mediocre. 

LEMMA 2. [ f  x ~ y ~ Z in U, then (y, z) is mediocre. 
PROOF. I f (y ,  z) lS added to U by UPDATE (including the call on UPDATE in LINK), 

then subslze(y) _> 2. substze(z). Adding additional edges to U preserves this relationship, 
and when (x, y) is added to U, subsize(x) _> subsize(y) _> 2.subsize(z). Thus (y, z) is 
mediocre. A similar proof works if (x, y) is added to U by UPDATE. 

Suppose on the other hand that both (x, y) and (y, z) are added to U by LINK outside 
the call on UPDATE. An inspection of  L INK shows that when (y, z) is added to U, 
size(y) >_ 2.substze(z). This relationship is preserved until (x, y) is added to U, at which 
time all descendants o f y  in the virtual tree containing y become descendants of  x in the 
subtree containing x; i.e., subsize(x) _> 2.subsize(z). Thus (y, z) is mediocre. []  

THEOREM 3. A forest F ts balanced for  constants a = x/b, c ffi x/b i f  it satisfies the 
following property: I f  x ~ y ~ z m F, then d(x) _> b,d(z), where d(v) is the number o f  
descendants o f  vertex v in F. 

PROOF. We prove by induction that any vertex of  height h in F has at least b th/2j 
descendants. The result is obvious for h = 0, 1. Suppose the result holds for h - 2 and let 
x be a vertex of  height h. Then there are vertices y, z in F of  height h - 1, h - 2, 
respectively, such that x ~ y ~ z. By the induction hypothesis, z has at least b t(h-2)/zj 
descendants, and by the assumption of  the theorem, d(x) _> b. bt(h-2)/2J ffi b th/2J. This proves 
the result for h. 

Any two vertices of  the same height have disjoint sets of  descendants. Thus the number 
of  vertices of  height h m F is at most n/b th/zj _< n/b  (h-i)~2 = x/bn/(x/b) h . [] 

COROLLARY I. The forest U is balanced for  constants a = x/2, c = x/2. 
It follows from Corollary l and Theorem 2 that the algorithm of  this section performs 

its path compressions on a balanced forest. Thus the total time for m EVAL instructions 
is O((m + n)a(m + n, n)). The time for the LINK and UPDATE instructions is a constant 
per instruction plus time proportional to the number of  edges in U. Thus the L I N K  and 
UPDATE instructions require O(m + n) time, and the total time for m instructions is 
O((m + n)a(m + n, n)). The space required is O(n). 

6. An Off-Line Algorithm 

The algorithms of  Secuons 3 and 5 still do not cover all interesting cases of  the EVAL- 
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L I N K - U P D A T E  problem. For  instance, in global flow analysis it is necessary to implement 
EVAL, LINK, and UPDATE for a semigroup consisting of  a set of  bit vectors under an 
operation such as bitwise "and" or bitwise "or" [1 l, 13, 17, 30]. In this section we present 
an algorithm that solves the E V A L - L I N K - U P D A T E  problem for any  semigroup (S, ®), 
under the assumption that the sequence of  instructions is given off-line except  for the 
modifications to the vertex labels specified in the U P D A T E  instructions. (Henceforth we 
shall call this the half-line case.) 

We shall deal first with the somewhat simpler situation m which the sequence of  
instructions Is given completely off-line; i.e., the values for the EVAL(v) instructions need 
not be returned until the entire instruction sequence is scanned. The algorithm consists of  
two passes. The first pass resembles the method of  Section 5. We scan the instructions, 
maintaining a virtual forest to represent vertex values. The virtual forest satisfies properties 
(i)-(iii) of  Section 2, as well as the following property, which replaces property (iv) of  
Section 5. 

(v) Each virtual tree consists of  a set of  subtrees STo, STy, ST2 . . . . .  STk with roots ro, rl, 
. . . .  rk, respectively, joined by a path ro ~ rl --> ... ~ rk. The subtrees satisfy 2[ST, I 

_< IS'I~+~] for 0 _ < j <  k. (See Figure 7.) 
To represent the subtrees, we use arrays paren t  and label  as in Section 5. For  each vertex 

v, label(v) is the label of  v in the virtual forest; parent(v)  is the parent  o f  v in the virtual 
forest unless v is a subtree root, in which case parent(v)  = O. To represent the way the 
subtrees fit together into virtual trees, we use arrays child and stze as in Section 5. Let VT 
be a virtual tree with subtrees STo, ST1, ..., STk having roots ro, rl . . . . .  rk, respectively. For  
any root rj, child(rj) is the child of  rj (if any) which is a subtree root; i.e., child(rj) -- rj+l if  
j < k, child(rj) = 0 i f j  = k. For  any root rj, size(rj) is the number  of  descendants o f  re in VT; 
i.e., size(rj) = ~,~.j IST, I. As in Secuon 5, we shall denote IST, I by subsize(r,) and let 
subsize(O) = 0; then subsize(rj) = size(rj) - size(child(rj)) for 0 _< j _< k. 

To carry out UPDATE(r ,  x), we execute the assignment label(r) := x ® label(r). To 
carry out LINK(v, w), we use a method similar to that used in Section 5. Let VTi with 
subtree roots v = ro, rl, . . . ,  rk and VT2 with subtree roots w ffi so, sl, . . . ,  st be the virtual trees 
containing v and w, respectively. 

If  [ VT~ [ _> [ VT2 l, we combine each subtree of  VT2 with the subtree of  VT1 rooted at v, 
by making v the parent of  So, sl, . . . ,  st. In doing so, we modify the labels o f  sl, s2 . . . . .  st to 
preserve property (iii). Since this process increases the size of  the subtree rooted at v, 
property (v) may no longer hold. To restore (v), we combine the subtrees rooted at rl, r2, 
. . . ,  rj with the subtree rooted at v, by making v the parent of  rl, r2 . . . .  , r~, until we find a 
subtree root rj+~ whose subtree size is at least twice that of  the enlarged subtree rooted at 
v. In the process we modify the labels of  rl, r2 . . . . .  rj to preserve (iii). (See Figures 8 and 9.) 
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The process is similar if  I VTll  < [VT2]. First we replace rl as chi ld(v)  by s~. Then we 
combine the subtrees rooted at r~, r2 . . . .  , rk with the subtree rooted at v, by making v the 
parent o f  r~, r2 . . . . .  rk. In doing so, we modify the labels o f  rl, r2 . . . . .  rk to preserve (iii). 
Finally we combine the subtrees of  VT2 rooted at so, sl . . . . .  sj with the subtree rooted at v, 
by making v the parent o f  so, s~ . . . . .  st, until we find a subtree root s:.~ whose subtree size 
is at least twice that of  the enlarged subtree rooted at v. In doing so, we modify the labels 
of  so, s~ . . . . .  sj to preserve (iii). (See Figures 8 and 9.) 

Our implementation of  L I N K  updates three arrays, root ,  ver tex ,  a n d  e x t r a  label,  i n  
addition to paren t ,  label ,  child,  and size. These arrays are used in the evaluation process. 
The array root  allows easy access to the root of  a virtual tree from the roots o f  its subtrees. 
Let ro, rl . . . . .  rk be the subtree roots of  a virtual tree. I f 0  _<j  < k ,  root(r~) = rk; root(rk)  = 

ro. Thus from any subtree root we can reach the root of  its virtual tree m one or two steps. 
L I N K  numbers vertices consecutively from 1 as they cease to be virtual tree roots. (A 

vertex w ceases to be a tree root exactly when an instruction LINK(v, w) is executed.) 
Variable n u m b e r  o f  vert ices counts the number  o f  vertices so numbered; initially n u m b e r  o f  
vert ices = 0. Array ver tex  records the numbering; for each number  i, ver t ex ( i )  is the vertex 
receiving number  i. When a vertex w ceases to be a tree root, L I N K  saves its current label 
in  e x t r a  label(w).  

An Algol-like implementation of  LINK(v, w) appears below. The implementat ion uses 
the procedure PRODUCT(y ,  z) to compute y G z. Eventually we shall solve the half-line 
case by modifying PRODUCT.  

~ocedure LINK(v, w), 
begin 

comment this procedure assumes that szze(O) ~ 0; 
s*ze(v) "= s~ze(v) + stze(w), 
extra label(w) .= label(w), 
number of  vertices = number of  vertices + 1; 
vertex(number o f  verttces) "~ s "= w; 
if size(v) < 2* stze(w) then 

s ~ chdd(v), 
root(v) .= root(w), root(root(w)) m v fi, 

loop 1' if s # 0 then 
parent(s) = v; 
while chdd(s) # 0 do 

label(chdd(s)) := PRODUCT(label(s), label(chdd(s))), 
s "= chdd(s), parent(s) = vod, 

s = chdd(v), 
loop2, while 2* size(v) + SlZe(chdd(s)) > 3* size(s) do 

parent(s) .= v; child(v) = chdd(s); 
i f  chdd(s) = 0 then go to ex#t loop2 

else label(chdd(s)) .= PRODUCT(label(s), label(child(s))), 
s = chdd(s) fl od, exit loop2: 

end LINK, 
suitable procedure PRODUCT(y, z), 

PRODUCT .= y ® z; 

Note that at the beginning o f  each iteration o f  loop2  it is always the case that s = child(v) ,  
and that the test in loop2  succeeds exactly when 2 . s i z e ( v )  + s ize(chi ld(s))  _> 3 . s i ze ( s ) ,  i.e., 
when 2. s u b s t z e ( v ) =  2(size(v)  - s ize(s))  > s i z e ( s ) -  s i z e ( c h i l d ( s ) ) =  subsize(s) .  

The last instruction we must implement is EVAL(v). Let VT with subtree roots r = ro, 
rl . . . . .  rk be the virtual tree containing v, and let rj be the root of  the subtree containing v. 
We compute the value of  v in three parts: the label of  r (if  r # rj), the product  of  labels on 
the path of  subtree roots from r to rj (not including the labels of  r and rj), and the product  
of  labels on the path from r: to v. We compute the first part  by looking up the label of  r 

and the third part by using path compression on the subtree containing v. 
Computing the second part  of  the vertex value, namely, iabel (rO Q label(r2) Q ... Q 

label (r j -  O, Is more complicated. Here we use the fact that the sequence of  instructions is 
given off-line. We perform the evaluation in an a u x i l i a r y  f o r e s t  AF,  which is defined by 
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FIG I I lnvahd path compression on auxdtary forest (a) Original auxdlary tree. Paths to be evaluated are 
x, ~ y~ and x2---~ y2 (b) After compressmn of xj--~, y~ path In the new tree x2 ~s not an ancestor of  y2 

the values of  the child pointers as follows: Initially the auxiliary forest consists of  a set of  
single-vertex trees, one for each vertex in the virtual forest. While a vertex x is a tree root 
in the virtual forest, it remains a single-vertex tree in the auxiliary forest. When x ceases 
to be a tree root m the virtual forest, the vertex y = child(x) becomes the parent of  x in the 
auxiliary forest. (If  child(x) = 0 at this time, then x permanently remains a single-vertex 
tree in the auxiliary forest.) (See Figure 10.) Since child(x) is numbered smaller than x for 
any x, the auxiliary forest is indeed a forest. Note also that once a vertex x ceases to be a 
virtual tree root, additional LINKs and UPDATEs  do not change child(x). Furthermore 
after x ceases to be a virtual tree root, label(x) does not change until x ceases to be a 
subtree root. The array extra label(x), for each vertex x, thus records the value o f  label(x) 
during the time when x is a virtual subtree root but not a virtual tree root. 

If  xo ~ xl ~ ... ~ xk in the auxiliary forest, we define ®Av(X0, Xk) = extra label(xk) ® 
extra label(xk-~) ® ... ® extra label(xo). It follows from the observations above that the 
second part of  the vertex value, label(r]) ® label(r2) ® ... ® label(r]-l), is equal to 
®Av(r~-~, r~). We can thus compute the second part of  the vertex value for each EVAL(v) 
instruction by forming the product of  extra labels along a path in the auxiliary forest. (The 
order of  terms in the product is reversed from the usual order, however.) We would like to 
use path compression in the auxiliary forest to compute these products. Unfortunately, this 
requires reordering the products. (See Figure 11.) 

The following lemma expresses the ordering we need. 
LEMMA 3. Let F be a forest. Let (x,, y,) f o r  i = 1, 2 be a pair o f  vertex pairs such that 

x, ~ y, m F for  t = 1, 2 and x2 is not a proper descendant o f  x]. I f  we carry out a path 
compression m F by making each vertex except xl  on thepath f rom x~ to yl  a child o f  xz, then 
x2 remains an ancestor o f  y2. 

PROOF. Obvious. []  
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We compute the second parts of vertex values as follo~vs. For each EVAL(v) instruction, 
we determine a pair of vertices (x,, y,) such that the second part of the value to be returned 
by EVAL(v) is ®AF(X,, y,). We reorder the pairs so that, for any i < j, x, is not a proper 
ancestor of xj. Then, m a second pass, we compute GAy(X,, y,) for each pair by using path 
compression in the auxiliary forest. 

We carry out EVAL(v) by means of the following steps. First, we assign a number to the 
EVAL instrucuon. Next, we determine the root of the subtree containing v, and the third 
part of the vertex value, by using path compression in the subtree. We store the third part 
of the vertex value in array answer, which is indexed by instruction number. Next, we 
determine the root of the virtual tree containing v. Finally, if the second part of the vertex 
value requires later computation, we store a triple consisting of the instruction number, the 
label of the tree root, and the child of the tree root in a bucket associated with the subtree 
root. This triple contains enough information to allow the second pass to complete the 
computation of the vertex value. I f  the second part of the vertex value does not reqmre 
later computation (because the corresponding path is empty), we finish computing the 
vertex value and store the result in the answer array. The following procedure implements 
this method. 

procedure EVAL(v); 
begin 

comment r Is the root of the tree containing v, and s ,s the root of the subtree containing v, 

Instruction := mstructwn + l; 
if parent(v) = 0 then s .= v; answer(mstructwn) = label(v) 

else COMPRESS(v), s = parent(v), 
answer(mstructwn) = PRODUCT(label(s), label(v)) fi; 

r = if chdd(s) -- 0 then root(s) else root(root(s)); 
if (r # s) then 

if chdd(r) = s then 
answer(instruction) = PRODUCT(label(r), answer(mstructwn)) 

rise add (mstructwn, label(r), chdd(r)> to bucket(s) fi fi 
end EVAL, 

Recursive procedure COMPRESS, which carries out path compression m the subtrees, 
is defined by 

procedure COMPRESS(v), 
if parent(parent(v)) # 0 then 

COMPRESS(parent(v)); 
label(v) .-- PRODUCT(label(parent(v)), label(v)), 
parent(v) "= parent(parent(v)) fi, 

After carrying out EVAL, LINK, and UPDATE as described above, we must complete 
the computation of the vertex values. The procedure EXTRA__PASS appearing below 
does the job. For each triple (i, l, y) stored in the bucket of some vertex x, EXTRA__PASS 
computes, using path compression, the product of extra labels (excluding that of x) on the 
auxiliary tree path from x to y. This product is the second part of the vertex value for 
EVAL instruction i. EXTRA__PASS completes the computation of the vertex value and 
stores the result in answer(i). EXTRA__PASS unloads the buckets in decreasing order by 
vertex number. Since LINK numbers vertices in increasing order from the roots to the 
leaves in the auxiliary forest, EXTRA__PASS processes triples in an order which satisfies 
Lemma 3 and which is thus suitable for using path compression. 

procedure EXTRA__PASS, 
for j "= number of  vertices by -1  until I do 

for each 0, root label, v) E bucket(vertex(j)) do 
EXTRA COMPRESS(vertex(j), v), 
answerO ) ~- PRODUCT(extra label(v), answer(O); 
answerO ) -~ PRODUCT(root label, answer(O) od ed; 

EXTRA__PASS uses the following recursive procedure to compress paths in the 
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auxiliary forest. Recall that the order of terms in a product defining a value in the auxiliary 
forest is reversed from the normal order. 

procedure EXTRA__COMPRESS(r, v), 
i f  child(v) ~ r then 

EXTRA_.~OMPRESS(r, chtld(v)), 
extra label(v) .= P R O D U C T ( e x t r a  label(v), ex tra  label(chtld(v))), 
chtld(v) = chdd(chtld(v)) fi, 

This completes our description of the algorithm except for initialization of the variables. 
Initially parent(v) = chtld(v) -- O, size(v) = 1, root(v) -- v, bucket(v) = ~ ,  and label(v) is the 
ininal label of v. Also number o f  vertices = instrucuon -- O. 

The time required by this algorithm is O(n + m) plus time for one path compression in 
the subtrees and one path compression in the auxiliary forest for each EVAL. If we can 
prove that both the set of subtrees and the auxiliary forest are balanced, then Theorem 2 
gives an O((m + n)a(m + n, n)) running time for the algorithm. 

Consider first the subtrees. Let U be the uncompressed set of subtrees. To form U, we 
add an edge (x, y) to U when LINK assigns parent(  y )  := x .  For any vertex x, let subsize(x) 
be the number of descendants of x in U. 

LI~MMA 4. I f  x ~ y ~ Z in U, then subsize(x) > 3 subsize(z). - - 2  
PROOF. This proof resembles that of Lemma 2 in Section 5. LINK has only two ways 

to add edges to U. If (y, z) is added to U by loop2 of LINK, subsize(y)  _> ~ subsize(z) just 
after the addition. Adding more edges to U preserves this relationship, and when (x, y) is 
added to U, subsize(x) _> subsize(y)  _> ~ subsize(z). Thus the lemma holds. A similar proof 
works if (x, y) is added to U by loop2. 

Suppose, on the other hand, that both (x, y) and (y, z) are added to U by loopl.  Just 
after (y, z) is added, s ize(y)  _> 2.subsize(z).  As long as y remains a subtree root, s ize(y)  
cannot change. When (x, y) is added to U by loopl,  all descendants o fy  in the virtual tree 
become descendants of x in the subtree. Thus subsize(x) _> 2.subsize(z)  just after the 
addition of (x, y). Hence the lemma holds. [] 

COROLLARY 2. The fores t  U is balanced f o r  constants a = 3 ~ ,  c -- ~ / ~ .  
PROOV. Immediate from Lemma 4 and Theorem 3. [] 
Now consider the auxihary forest. Let A be the auxiliary forest as it exists after all the 

EVALs, LINKs, and UPDATEs have been carried out but before the extra pass is 
executed. 

THEOREM 4. The fores t  A is balanced f o r  constants a = 2, c .~- 2. 
PROOF. Consider a fixed height h _> 1. We must show that A contains no more than 

n/2  h-1 vertices of height h. To accomplish this, we use a charging argument. Let v be a 
vertex of height h in A. Consider the time at which v first attains height h. Just before this 
time the virtual tree VT containing v has subtree roots ro, r~, . . . ,  rn -- v . . . . .  rk. The height 
of v increases to h when ro ceases to be a virtual tree root, which occurs because a LINK(x, 
ro) operation is initiated. When this happens, we assign a charge of 2 h-~ to the subtree with 
root v. Subtrees retain their charges as EVALs, LINKs, and UPDATEs are executed; when 
execution of a LINK combines two subtrees, the charge of the new subtree is the sum of 
the charges of the component subtrees. 

We shall show that no subtree ever has charge exceeding the number of vertices in it, 
which implies that the total charge is at most n and that the number of vertices of height 
h does not exceed n /2  h-~. We call a subtree ST good if charge(ST) = 0 or I ST[ - charge(ST) 
_> 2 h-l, bad otherwise. We claim that new charge can only be assigned in a tree all of 
whose subtrees are good. We prove the claim by induction on the sequence of EVAL, 
LINK, and UPDATE instructions. 

The claim is certainly true before any charge is assigned. Consider a LINK that causes 
a new charge to be assigned for which the claim holds. Let r be the vertex about to attain 
height h in A and let ro, rl . . . . .  rh = v, . . . ,  rk be the sequence of subtrc¢ roots in the virtual 
tree containing v. Let STh-~ and STh be the subtrees with roots rh-~, r^, respectively. By (v), 
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]STh-1[ >- 2 h-1 and ISTh[ _> 2 h. Since the claim holds at this time, IST^-11 - charge(STh-O 
_> 2 h-1 and I ST^[ - charge(STh) >_ 2 h-l. After the charge for v is assigned, [STh-~] -- 
charge(STh-O >- 2 h-l and ISThl - charge(STh) _> O. It may now be the case that STh is bad. 

No two vertices o f  height h in A are related in A. Thus no virtual tree can contain two 
different vertices of  height h in A as subtree roots, unless one of  them is the root of  the 
virtual tree. It follows that no new charge can be assigned to the virtual tree containing 
STh until STh becomes a component of  a larger subtree. Such a subtree must also contain 
STh-~ and hence must be good. Thus no new charge can be assigned to the tree containing 
ST^ until all its subtrees are again good. The claim follows by induction, and the theorem 
follows from the claim. []  

Theorem 2, Corollary 2, and Theorem 4 imply that the running time of  the off-line 
algorithm is O((m + n)o~(m + n, n)). The storage space is O(m + n), which exceeds the O(n) 
storage requirements o f  the algorithms in the previous sections. It is possible to save a 
small constant factor in storage by combining arrays; we leave this as an exercise. 

We now modify the algorithm to handle the half-line case. The modified algorithm 
consists of  two stages. The information available to the first stage consists of  the complete 
sequence of  EVAL, LINK, and UPDATE instructions, excluding the initial vertex labels 
and the modifications to the vertex labels specified in the UPDATE instructions. After the 
first stage does a certain amount of  preprocessing, the second stage must execute the 
sequence of  instructions on-line. 

The first stage does not actually compute vertex values. Instead, it constructs a straight- 
line program, consisting o f  a set of  assignments of  the form x *--y G z, which specifies how 
to compute the desired vertex values. The second stage executes the straight-line program, 
thereby computing the answers to all the EVALs. 

For convenience we shall assume that the set of  vertices m the forest is {v] 1 _< v _< n}. 
We shall use an array value(i) to represent the values to be computed by the straight-line 
program. For 1 _< i _< n, i is an input index; value(i) will, during the second stage, be the 
label of  vertex i in the real forest. For i > n, value(i) will be defined by an assignment 
value(i) ~- value(j) ® value(k); each noninput index will appear on the left side of  exactly 
one such assignment. Associated with each EVAL(v) instruction will be an output index i 
such that value(i) is the value to be returned by the EVAL instruction. Some indices may 
be both input and output indices; if v is the root of  a real tree when EVAL(v) is executed, 
then the index associated with EVAL(v) will be v. An output index which is not also an 
input index will appear on the right side of  no assignment. To represent assignments, we 
shall use two arrays, first and second. I f  value(i) ~-- value(j) Q value(k) is an assignment, 
then first(r) -- j and second(i) = k. 

The first stage o f  the algorithm is identical to the off-line algorithm, except that instead 
of  computing values the algorithm constructs the arrays first and second representing the 
straight-line program for computing values. The first stage also ignores all UPDATE 
instructions. Each label(v) now specifies not an element o f  S, but rather a position in the 
value array where the appropriate element o f  S will be stored during the second stage. 
Similarly, answer(i), for each EVAL instruction i, specifies not the appropriate vertex value 
but instead a position in value where the vertex value will be stored during the second 
stage. 

To convert the off-line algorithm into the first stage o f  the half-line algorithm, all we 
must do is change the initialization and change the definition of  P R O D U C T  to the 
following. 

integer procedure PRODUCT(y, z); 
begin 

new index = new index + 1; 
first(new index) := y; 
second(new index) "= z; 
PRODUCT := new index 

end PRODUCT; 
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During the second stage we ignore the LINK instructions and use the following 
procedures to carry out UPDATE and EVAL. 

procedure UPDATE2(r, x), 
value(r) = x ® value(r), 

suitable procedure EVAL2(v), 
begin 

mstrucnon = mstructwn + 1, 
EVAL = COMPUTE(answer(mstructwn)) 

end EVAL2, 

Recurswe procedure COMPUTE, which actually computes the vertex values, is defined 
by 

suitable procedure COMPUTE(t), 
if value(t) ~ undefined then COMPUTE = value (i ) 

else COMPUTE =value(O = COMPUTE(first(O) ® COMPUTE(second(i)) fi; 

The complete half-line algorithm, including initiahzatlon, consists of the following steps. 

FIRST STAGE 
Step 1 Imtlahze parent(v) = chdd(v) = O, size(v) = !, bucket(v) = (~, root(v) .= label(v) :ffi v for every vertex v 
Intuahze number of vertices = mstructzon = O, new index = n 

Step 2 Carry out the EVAL and LINK instructions using the off-line procedures with the new version of 
PRODUCT Ignore all UPDATE mstructions 

Step 3 Execute EXTRA_PASS using the new Version of PRODUCT 

SECOND STAGE 
Step 4 Inmahze value(v) = the initial label of v for every vertex v, value(t) = undefined for n < i _< new index, 

where undefined is a value dlstmgmshable from every element of S 

Step 5 Carry out the EVAL and UPDATE instructions on-hne usmg procedures EVAL2 and UPDATE2 
Ignore all LINK mstructlons 

There is one tricky point in this algorithm, involving the question of when  the assignments 
value(i)  ~ -  va lue ( j )  ® value(k)  are actually carried out. For i > n, the second stage computes 
value( i )  only once. However, value( t )  for i _< n can change as UPDATEs are carried out, 
which might make value( i )  obsolete for some indices i > n. 

Fortunately this is not the case. Consider the ith EVAL(v) instruction. The value to be 
returned by this instruction is the product of the labels of the vertices r = vo, vl .. . .  , vk = 
v on the tree path from the root r of the tree containing r to v. At the time of the EVAL, 
the labels of v~, ..., vk cannot be affected by subsequent UPDATE instructions. The first 
stage defines the value that EVAL(v) returns by an assignment va lue(answer( i ) )  . -  value(r)  
® va lue ( j ) ,  where va lue ( j )  is defined by a set of asstgnments as the product of the labels of 
Vl . . . .  vk. It follows that each assignment executed by EVAL2(v) while computing v a l u e ( j )  
involves values that cannot be affected by subsequent UPDATEs. Thus value( i )  for each 
nonlnput, nonoutput index i need only be computed once. 

The rnnnmg ttme of the half-hne algorithm is O ( ( m  + n ) a ( m  + n, n)). Tho storage space 
required is also O ( ( m  + n ) a ( m  + n, n)), since the total number  of assignments that the first 
stage must encode is proporuonal to the total length of all the path compressions. 

7. Ver i fy ing  M i n i m u m  S p a n n i n g  Trees  

In this section we consider a simple apphcation of the results in Sections 4, 5, and 6. Let 
(S, ®) be a commutative semigroup and let Tbe  an unrooted n-vertex tree with an element 
of S, label(v,  w), associated wtth each edge (v, w). Given a set o f m  vertex pairs ({v, w,} I 1 
_< l _< m}, we wish to compute for each pair {v,, w,) the product of labels on the path in T 
joining v, and w~. 

We can solve this problem by using the least common ancestors algorithm of Section 4 
and an appropriate EVAL-LINK-UPDATE method. First we arbitrarily choose a root r 



712 R.E. TAR JAN 

for the tree T. Next, we compute u, = LCA(v,, w,) for each pair {v,, w,). Finally, we 
compute the product o f  labels on the paths from u, to v, and from u, to w,, and combine 
these products to give the answer for each pair {v,, w,}. The following procedure uses 
EVAL, LINK, and UPDATE to carry out this computation. 

procedure EVALUATE_PATHS; 
begin 

for each v ~ V - {r) do 
create a tree with vertex v having label(parent(v), v) as its label, 
bucket(v) "= 0 od, 

for each (v, w} Epalrs do add {v, w) to bucket(LCA(v, w)) od, 
SEARCH(r) 

end EVALUATE_PATHS; 

Recursive procedure SEARCH is defined by 

procedure SEARCH(u), 
begin 

for v ~ children(u) do SEARCH(v) od, 
for {v, w} ~ bucket(u) do 

answer(v, w) = if u = v then EVAL(w) 
else if u = w then EVAL(v) 
else EVAL(~) G EVAL(w) od; 

for v ~ children(u) do LINK(u, v) od 
end SEARCH, 

This algorithm requires O((m + n)a(m + n, n)) time. It is not hard to combine the 
computations of  least common ancestors and of  path values into a single traversal of  the 
tree; we leave this as an exercise. 

We shall give three applications of  this algorithm. The first is to determine maximum 
flow values in a multiterminal network. Gomory and Hu [16] have given a method of  
constructing, for any undirected graph G with nonnegative edge capacities, an unrooted 
tree T with edge capacities such that T has the same vertices as G and the value o f  the 
maximum flow from v to w in G is equal to the minimum capacity of  an edge on the path 
joining v and w in T, for any vertices v and w. 

Assume that such a cut tree T is given for some graph G. I f  we let (S, ®) be the real 
numbers under minimization and we use the algorithm above in combination wtth the 
EVAL-LINK-UPDATE method of  Section 5, we can compute maximum flow values for 
m pairs of  vertices in O((m + n)a(m + n, n)) time. 

A second application is to verify minimum spanning trees. Suppose G = (V, E)  is a 
graph with real values c(v, w) on its edges and that T is a spanning tree of  G. T is a 
minimum spanning tree if ~(o. w)~e' e(v, w) is minimum among all spanning trees of  G. We 
can verify that a spanning tree is minimum by using the following weB-known lemma. 

LEMMA 5. T is minimum if  and only ~ for  each edge (v, w) E E - E', c(v, w) _> 
max{c(x, y)](x, y)  is on the tree path joining v and w}. 

If  we let (S, ®) be the real numbers under maximization and we use the algorithm above 
in combination with the EVAL-LINK-UPDATE method of  Section 5, we can compute 
the maximum cost o f  an edge along the tree path joining v and w for each nontree edge 
(v, w). We can then apply Lemma 5 to test whether Tis minimum. This algorithm requires 
O(mct(m, n)) time if G has m edges. It is interesting to note that the fastest known 
algorithms for actually f indmg a mimmum spanning tree [6, 31] require O(m log log n) 
time. 

Our third application is to a problem of  updating minimum spanning trees considered 
by Chin and Houck [7]. Before addressing this problem, we make a seemingly unrelated 
observation. If  we use the first stage of  the half-line algorithm in Section 6 to carry out the 
EVAL and LINK instructions in EVALUATE__PATHS,  we can build a straight-line 
program for computing label products. We can visualize this program as a directed acyclic 
graph, with one node of  in-degree zero for each edge of  T, one node of  in-degree two for 
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each ® operation to be performed, and one node of  out-degree zero for each pair 
{v,, w~}. This graph contains O((m + n)a(m + n, n)) nodes, and there is a path from a node 
of in-degree zero representing an edge (x, y) to a node of  out-degree zero representing a 
pair {v,, w,} if  and only if (x, y) is on the path joining v, and w, in T. 

Normally we would run this straight-line program forward, assigning initial values to 
the nodes of  in-degree zero and combining these values using ® operations until assigning 
a value to each node of  out-degree zero. We shall solve the problem of  updating mimmum 
spanning trees by what amounts to running the straight-line program backward. 

Suppose G = (V, E) is a graph with edge values c(v, w), and that T = (V, E ' )  is a 
minimum spanning tree of  G. For  each edge (v, w) of  T, we wish to determine a nontree 
edge (x, y)  by which (v, w) should be replaced to create a new minimum spanning tree if  
(v, w) is deleted from the graph. The proper replacement edges are specified by the 
following lemma. 

LEMMA 6. I f (v ,  W) is a tree edge, then any nontree edge (x, y)  o f  minimum cost such that 
(v, w) is on the tree path joining x and y ts a suitable replacement for  (v, w). 

Chin and Houck give an O(n 2)-time algorithm for finding replacement edges. We can 
find replacement edges in O(ma(m, n)) time, as follows. 

Step 1 Using the algorithm of thts section m combmaUon wtth the first stage of the half-hne EVAL.LINK- 
UPDATE method of SecUon 6, construct a dtrected acychc graph D with the following properties. 

(a) D has O(ma(m, n)) nodes and edges 
(b) Each tree edge (v, w) corresponds to a node a(v, w) of m-degree zero m D 
(c) Each nontree edge (x, y) corresponds to a node b(x, y) of out-degree zero in D 
(d) There is a path from a(v, w) to b(x,y) m D If and only if(v, w) ts on the tree path joining x andy 

Step 2 Label each node b(x, y) of out-degree zero tn D by the corresponding edge (x, y) Process the remaining 
nodes of D m reverse topological order To process a node c, examme the edges labehng the successors of c 
Choose such an edge of minimum cost, and let this edge be the label of c 

After step 2 is completed, each node a(v, w) of in-degree zero will be labeled by a nontree 
edge suitable for replacing tree edge (v, w). Step 1 of  the algorithm requires O(ma(m, n)) 
time; step 2 requires time proportional to the size of  D [18, 22], which is O(ma(m, n)). Thus 
the total running time is O(mc~(m, n)). The space required is also O(ma(m, n)). 

8. Remarks 

The algorithms we have presented for the E V A L - L I N K - U P D A T E  problem can easily be 
adapted to handle somewhat more general instruction types, such as the following. 

GLINK(v, w) Combine the tree containing v with the tree having root w by making v the parent of w (This 
mstructmn differs from LINK(v, w) m that v need not be a tree root ) 

RELABEL(r, x) If x is the root of a tree, replace the label of r by x 

All  our algorithms have a running time of  O((m + n)a(m + n, n)) or worse. It is natural  
to ask whether there ~s a faster, perhaps even linear-time algorithm. Such is not the case. 
For  certain choices of  (S, ®) it is impossible to find an algorithm that runs faster than 
O((m + n)a(m + n, n)), assuming m is ~(n) [291. Furthermore the disjoint set union 
problem, when solved by any of  a large class of  pointer manipulat ion methods, requires 
~((m + n)a(m + n, n)) time if m is f~(n) 128]. 

The remaining major open problem is to find an algorithm that will solve the on-line 
EVAL-LINK-UPDATE problem, for any semigroup (S, ®), in O((m + n)a(m + n, n)) 
time. Recently Farrow [9] has presented an O((m + n)log*n)-time algorithm for this 
problem, where 

i tlmes 

log*n = min{tllog log ... log n _< 1). 

The author is presently developing an O((m + n)a(m + n, n))-time algorithm, but it is 
substantially more complicated than the algorithms presented here. 
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In practice, the simple algorithm of  Section 2 seems to be the best. Lengauer and the 
author [19] have used the algorithms of  Section 2 and Section 5 to compute dominators in 
flow graphs. Our experiments comparing the two methods were inconclusive; the sophis- 
ticated algorithm was about 10 percent faster than the simple algorithm on small problems 
and about 20 percent faster on large problems. This small gain in speed is offset by the 
added complexity of  the algorithm. 

Appendix. Graph-Theoretic Terminology 

A graph G ffi (V, E) consists of  a finite set V of  vertices and a set E o f  edges. Either the 
edges are ordered pairs (v, w) of  distinct vertices (the graph is directed) or the edges are 
unordered pairs of  distinct vertices, also represented as (v, w) (the graph is undirected). I f  
(v, w) is an undirected edge, v and w are adjacent. I f  (v, w) is a directed edge, v is a 
p~edecessor of  w and w is a successor of  v. A graph G1 -- (V1, El)  is a subgraph of  G if  
Vi C V and E~ C E. A path of  length k from v to w in G is a sequence of  vertices v ffi v0, v~, 
. . . .  vk = w such that (v, v~+l) E E for 0 _< i < k. The path contains the edges (v,, v~+~) for 
0 _< i < k as well as the vertices v, for 0 _< i _< k. The path is simple i f  v0 . . . . .  vk are distinct 
(except possibly v0 ffi vk) and the path is a cycle i f  Vo = vk. By convention there is a path o f  
no edges from every vertex to itself, but a cycle must contain at least two edges. An 
undirected graph is connected i f  there is a path joining every pair  of  vertices. A graph is 
acyclic i f  it contains no cycles. A topological ordering of  the vertices of  an acyclic directed 
graph is an ordering such that, for any edge (v, w), v appears before w in the ordering. 

An unrooted tree T- -  (V, E) is an undirected, connected, acyclic graph. I f  an unrooted 
tree T is a subgraph of  a graph G with the same vertex set as T, then T is a spanning tree 
of G. In a tree Tthere  is a unique simple path between any two vertices v and w; we denote 
this path by T(v, w). 

A rooted tree (T, r) is a tree with a distinguished vertex r, called the root. A forest is a set 
o f  vertex-disjoint rooted trees. I f  v and w are vertices in a rooted tree (T, r), we say v is an 
ancestor of  w and w is a descendant of  v (denoted by v ~ w) if  v is on the path from r to 
w. By convention v ~ v for all vertices v. I f  v --~ w and (v, w) is an edge of  T (denoted 
by v ~ w), we say v is the parent of  w and w is a child of  v. In a rooted tree each vertex has 
a unique parent (except the root, which has no parent). Any  two vertices v and w in a 
rooted tree have a unique vertex u, called the least common ancestor of  v and w (denoted 
by u ffi LCA(v, w)), such that u is on T(v, w), u--~ v, and u--~ w. The path T(v, w) 
consists of  two parts, a path joining v and u containing descendants of  u and ancestors of  
v, and a path joining u and w containing descendants of  u and ancestors of  w. A leaf of a 
rooted tree is a vertex with no children. The height of  a vertex v in a rooted tree is the 
length of  the longest path from v to a leaf. 

ACKNOWLEDGMENTS. I would like to thank Andrew and Frances Yao for several stimu- 
lating discussions on the minimum spanning tree problem which sparked the writing of  
this paper, Adr ian  Bondy and Ron Graham for constructive criticism, Mark  Wegman for 
many long and rewarding talks about algorithms for global flow analysis, and Jeff Barth 
for providing stimulus for this research. 

REFERENCES 

1. AC~RMANN, W Zum Hdbershen Autbau der reellen Zahlen. Math. Ann 99 (1928), 118-133 
2 AHO, A.V, HOPCROFr, J.E., AND ULLMAN, J.D The Design and Analysts of Computer Algorithms. Addison- 

Wesley, Reading, Mass., 1974 
3 Aao, A.V, HOPCROFT, J.E, AND ULLMAN, J.D On computing least common ancestors in trees SIAM J. 

Comping. 5 (1976), 115-132. 
4 Aao, AV., AND ULLMAN, J D. Node listings for reducible flow graphs. J Comptr gyst Sci. 13 (1976), 286- 

299 
5. ARDEN, B.W., GALLER, B A., AND GRAHAM, R.M. An algorithm for equivalence declarations. Comm. ACM 

4, 7 (July 1961), 310--314 



Applications o f  Path  Compression on Balanced  Trees 715 

6 CHERITON, D,  AND TARJAN, R E Finding minimum spanning trees SIAM J Comping. 5 (1976), 724--742 
7 CHIN, F Y, AND HOUCK, D J Algorithms for updating minimal spanning trees. J. Comptr Syst Sci 16 

(1978), 333-344 
8. CHVATAL, V., KLARNER, D.A., AND KNUTH, D E Selected combinatorial research problems STAN-CS-72- 

292, Comptr Scl Dept, Stanford U ,  Stanford, Cahf, 1972 
9 FARROW, R Efficient on-line evaluation of functions defined on paths m trees. Tech. Ree. 476-093-17, Dept 

Math Scl, Rice U ,  Houston, Tex, 1977 
10. FISCHER, M J. Efficiency of equivalence algorithms. In Complexity of Computations, R E Miller and J W 

Thatcher, Eds, Plenum Press, New York, 1972, pp 153-168 
! 1 FONG, A., KAM, J ,  AND ULLMAN, J D Application oflatUce algebra to loop optimization. Conf. Rec Second 

ACM Symp. Pnnclples of Programming Languages, Palo Alto, Cahf., 1975, pp 1-9 
12 GALLER, B A., AND FISCHER, M J An improved equivalence algorithm Comm. ACM 7, 5 (May 1964), 301- 

303. 
13 GRAHAM, S L,  AND WEGMAN, M A fast and usually linear algorithm for global flow analysis. J. ACM 23, 

1 (Jan 1976), 172-202 
14. HOPCROFT, J E Private communication. 
15. HOPCROFT, J E., AND ULLMAN, J D Set-merging algorithms. SIAM J Comping 2 (1973), 294-303 
16. Hu, T C Integer Programming and Network Flows. Addison-Wesley, Reading, Mass., 1969, pp 129-150. 
17. KENNEI)Y, K.W Node hstmgs applied to data flow analysis Conf Rec. Second ACM Syrup Pnnclples of 

Programming Languages, Palo Alto, Cahf, 1975, pp 10--21. 
18 KNUTH, D E The A rt of Computer Programming, Vol l. Fundamental Algorithms, Addison-Wesley, Reading, 

Mass., 1968 
19. LENGAUER, T., AND TARJAN, R E A fast algorithm for finding dominators in a flow graph. To appear m 

A CM Trans Programming Languages and Syst. 
20. PATERSON, M Unpubhshed report, U. of Warwick, Conventry, England, 1972. 
21. TA~AN, R.E Depth-first search and linear graph algorithms SlAM J. Comptng. 1 (1972), 146-160. 
22 TARJAN, R.E Finding dominators m dtrected~raphs. SIAM J. Comping 5 (1974), 62-89. 
23. TARJAN, R.E. Testing flow graph reductbdlty J Comptr and Syst. Scl 9 (1974), 355-365 
24 TAPaAN, R E Efficiency of a good hut not hnear set union algorithm J. ACM 22, 2 (April 1975), 215-225. 
25. T^POAN, R E. Apphcatlons of path compression on balanced trees Tech Rep. STAN-CS-75-512, Comptr. 

Scl Dept, Stanford U ,  Stanford, Cahf., 1975 
26 TAPJAN, R.E Solving path problems on directed graphs Tech Rep STAN-CS-75-528, Comptr. SCL Dept, 

Stanford U ,  Stanford, Cahf, 1975 
27 TA~AN, R.E. Graph theory and Gaussmn ehmmaUon In Sparse Matrix Computations, J R. Bunch and D.J. 

Rose, Eds., Academic Press, New York, 1976, pp. 3-22 
28. TA~AN, R E A class of algorithms which reqmre non-hnear ume to maintain disjoint sets TO appear m J. 

Comptr and Syst. Scl 
29 TA~AN, R.E Complexity of monotone networks for computing conjuncnons Annals Discrete Math. 2 

(1978), 121-133 
30. ULLMAN, J.D. A fast algonthm for the ehmmauon of common subexpresslons. Acta Informauca 2 (1973), 

191-213. 
31. YAO, A.C. An O([E[ log log [ V]) algonthm for finding minimum spanning trees. Inform. Processing Letters 

4 (1975), 21-23 

RECEIVED SEPTEMBER 1975; REVISED NOVEMBER 1978 

Journal of the Association for Computing Machinery, Vol. 26, No 4, October 1979 


