
Applications of Path Compression on Balanced Trees

ROBERT ENDRE TARJAN

Stanford University, Stanford, Califorma

ABSTRACT Several fast algorithms are presented for computing functions defined on paths in trees under various
assumpuons. The algorithms are based on tree mampulatton methods first used to efficiently represent equivalence
relations. The algorithms have O((m + n)a(m + n, n)) running tunes, where m and n are measures of the problem
size and a Is a functional reverse of Ackermann's function

By usmg one or more of these algorithms m combination with other techniques, it is possible to solve the
followmg graph problems m O(ma(m, n)) tnne, where m Is the number of edges and n Is the number of vertices
m the problem graph

A Venfymg a minimum spanning tree m an undirected graph (Best previously known time bound
O(m log log n).)

B Flndmg dominators in a flow graph (Best previously known tune bound O(n log n + m).)
C Solvmg a path problem on a reducible flow graph. (Best previously known time bound. O(m log n))
Application A is discussed

KEY WORDS AND PHRASES balanced tree, dominators, equivalence relation, global flow analysis, graph algonthm,
mmnnum spanning tree, path compression, path problem, tree

CR CAT~60~mS: 4.12, 4.34, 5.25, 5.32

1. Introduction

T h e r e is a smal l col lec t ion o f t echn iques w h i c h a re useful in b u i l d i n g eff ic ient a lgo r i thms
for a wide var ie ty o f g r a p h p rob lems . He re we s tudy one such t echn ique , p a t h compre s s ion
o n b a l a n c e d trees. T h e t e c h n i q u e was first used for eff ic ient ly r ep re sen t ing equ iva l ence
re la t ions a n d was subs equen t l y app l ied to a va r ie ty o f p r o b l e m s [2, 3, 8, 10, 15, 23, 24].

W e ex tend the r ange o f app l i ca t ion o f the t e c h n i q u e b y us ing it to c o m p u t e func t ions
d e f i e d o n pa ths in trees. 1 Let (S, ®) be a s e m i g r o u p wi th associa t ive o p e r a t i o n ®. C o n s i d e r
a sequence o f ins t ruc t ions o f the fo l lowing th ree kinds. T h e s e ins t ruc t ions bu i ld a n d
m a n i p u l a t e a forest whose ver t ices are l abe led by e l emen t s in S.

EVAL(v)' Fmd the root of the tree currently contaming v, say r, and return the product of all labels on the path
from r to v.

LINK(v, w)" Combme the trees with roots v and w into a single tree by addmg an edge (v, w) (this makes v the
parent of w).

UPDATE(r, x)" l f r ts the root of a tree and r has label l, replace I by x ® I

W e p resen t a lgo r i thms for ca r ry ing ou t on- l ine a n a rb i t r a ry s equence o f m E V A L ,
L I N K , a n d U P D A T E ins t ruc t ions o n a forest in i t ia l ly cons is t ing o f n one -ve r t ex trees. O u r
first a n d s imples t a l g o r i t h m uses p a t h compres s ion to solve the E V A L - L I N K - U P D A T E

Permission to copy without fee all or part of this matenal is granted provided that the copies are not made or
dlstnbuted for direct commercial advantage, the ACM copyright notice and the title of the pubhcatton and its
date appear, and notice is given that copying is by permission of the Associauon for Computmg Machmery. To
copy otherwise, or to republish, requires a fee and/or specific permission
This research was pamally supported by a Miller Research Fellowship at the University of Cahfornm, Berkeley,
by the Office of Naval Research, Contract N00014-76-C-0688, and by the National Science Foundation, Grant
MCS75-22870
Author's address. Department of Computer Science, Stanford University, Stanford, CA 94305
1 The appendLx contams the graph-theoretic defuntlons used m this paper
© 1979 ACM 0004-5411/79/1000-0690 $00 75

Journal of the Assoctauon for Compuung Machmery, Vol 26, No 4, October 1979, pp 690-715

http://crossmark.crossref.org/dialog/?doi=10.1145%2F322154.322161&domain=pdf&date_stamp=1979-10-01

Applications of Path Compression on Balanced Trees 691

problem in O((m + n).max{l , log2(nZ/(m + n))/log2(2(m + n)/n)}) time. 2 If the forest
built by the LINK mstrucuons is balanced (in a suitably defined sense), the algorithm is
even faster, having a running time of O((m + n)a(m + n, n)) where a(m + n, n) is a
functional inverse of Ackermann's function. If the forest is not balanced, we can in certain
situations modify it to make it balanced. We use this idea to obtain O((m + n)a(m + n, n))-
time algorithms for the following special cases.

1. Each element of S is either a right zero or has a right inverse.
2. S is a totally ordered set and ® is max.
3. The sequence of EVAL, LINK, and UPDATE instructions is given off-line except

for the modifications to the vertex labels specified in the UPDATE instructions.
These algorithms have several important applications. By using the appropriate EVAL-

LINK-UPDATE method, we can solve the following graph problems in O(ma(m, n)) time,
where m is the number of edges and n is the number of vertices in the problem graph.

A. Verifying a minimum spanning tree in an undirected graph. (Best previously known
time bound: O(m log log n) [6, 31].)

B. Finding dominators in a directed flow graph. (Best previously known time bound:
O(n log n + m) [22].)

C. Solwng a path problem in a reducible flow graph. (Best previously known time
bound: O(m log n) [4, 11, 13, 17, 30].)

This paper is a revised and improved version of [25]. It contains eight sections, Section
2 describes the simple algorithm. Sections 3, 5, and 6 describe the more complicated but
faster algorithms for handling special cases 1, 2, and 3, respectively. Section 4 surveys
prewous work on the use of path compression to maintain disjoint sets and to fred least
common ancestors in trees. Section 7 applies the results in Sections 4, 5, and 6 to the
problem of verifying minimum spanning trees. Section 8 contains some further remarks.
Applications B and C require additional results that are beyond the scope of this paper;
companion papers discuss these applications [19, 26, 27].

2. A Simple Algorithm Using Path Compression

In this section we present a simple algorithm for solving the EVAL-LINK-UPDATE
problem. The algorithm uses the technique of path compression to achieve an
O((m + n).max{l, log2(n2/(m + n))/logz(2(m + n)/n)}) running time. The running time
is even faster if the tree built by the LINK instructions is balanced.

It is useful to have a little notation to represent products of labels along tree paths. Let
v be a descendant of w in the forest built by the LINK instructions. Suppose the path from
v to w is v = vo ~ Vl ~ " ° * ~ Vk = W. We define

(D(v, w) ffi label(vo) ® label(va) ® label(v2) ® ... ® label(vk).

If v is any vertex and r is the root o f the tree containing v, we define E)(v) = (D(r, v). With
this notation the value returned by EVAL(v) is E)(v). Henceforth we use "the value of v"
in a technical sense to mean ®(v).

Consider the following very simple method of carrying out EVAL and L I N K instruc-
tions. We represent the forest by two arrays, parent and label. For any vertex v, parent(v)
is the parent of v in the forest and label(v) is the label of v. Initially parent(v) = 0 and
label(v) is the imtlal label o f v.

To carry out LINK(v, w), we execute the assignment parent(w) :ffi v. To carry out
UPDATE(r, x), we execute the assignment label(r) := x ® label(r). To carry out EVAL(v),
we follow parent pointers to the root o f the tree containing v, multiplying together the
labels of the vertices along the path.

This algorithm is not very efficient; if the L I N K instructions construct a tree consisting

2 Iffand g are funcUons ofm and n, the notatton 'f(m, n) is O(g(ra, n))" means there is a positive constant c such
that f(m, n) ~_ cg(m, n) for all but finitely many values ofm and n The notation 'if(m, n) is ~(g(m, n))" means
g(m, n) Is O(f(m, n)).

692 R.E. TAR.JAN

of one long path, then an EVAL instruction requires fl(n) time in the worst case, and m
EVAL instructions require ~(mn) time.

We can improve the efficiency of the algorithm by using the associativity of®. To carry
out the EVALs properly, we need not explicitly represent the forest built by the LINKs
(henceforth called the real forest). Instead, we use a virtual forest, which contains the same
vertices as the real forest but different edges and labels. The virtual forest satisfies the
following properties:

(i) For each tree T of the real forest, there is a corresponding tree VT of the virtual
forest which contains the same vertices as T.

(i0 Corresponding trees T and VT have the same root with the same label.
(in) If v is any vertex, ®v(v) = ®w(v), where ®F denotes evaluation in the real forest

and ®vv denotes evaluation in the virtual forest.
In the virtual forest we can use the following compression operation: I f u ~ v ~ w in a

virtual tree, v has label 11, and w has label/2, replace the edge (v, w) by an edge (u, w) and
replace the label of w by 11 ® lz. It ts easy to see that this operation preserves properties
(i)-(iii) under the assumption that ® is associative.

The improved algorithm uses the arrays parent and label to represent the virtual forest.
Inmally parent(v) = 0 and label(v) is the initial label of v in the real forest. We carry out
LINK(v, w) and UPDATE(r, x) as before. We carry out EVAL(v) as follows. Let r be the
root of the vmual tree containing v. I f r = v, we return label(v). Otherwise, we compress
the path from r to v using compression operations so that every vertex on the path except
r becomes a child of r (see Figure 1). Then we return label(r) @ label(v).

The following Algol-like recursive procedure COMPRESS(v) carries out the required
path compression.

procedure COMPRESS(v) ,
comment this procedure assumes parent(v) ~ 0,
if parent(parent(v)) ~ 0 then

COMPRESS(parent(v)),
label(v) = label(parent(v)) ® label(v),
parent(v) = parent(parent(v)) fl,

The following procedure implements EVAL using COMPRESS. (In any actual appli-
cation~ the keyword suitable would be replaced by the data type of S.)

suitable procedure EVAL(v),
if parent(v) = 0 then EVAL ~ label(v)

else COMPRESS(v) , EVAL = label(parent(v)) ® label(v) fi,

Knuth [8] attributes the path compression idea to Tritter; independently, McIlroy and
Morris used it in an algorithm for finding minimum spanning trees [14].

It is possible to modify COMPRESS in various ways to improve its efficiency and
decrease its storage requirements. I f running time is at a premium, we can rewrite
COMPRESS as an ~terative instead o f a recurstve procedure, using a stack to store vertices
on the path from r to v. If storage space is at a premium, we can avoid using an auxiliary
stack. Instead, we carry out COMPRESS by following parent pointers from v to r, reversing
their directions as we go. Then we follow pointers from r to v while compressing the path.

The path compression method of carrying out EVALs, LINKs, and UPDATEs requires
constant ttme for each instruction plus time proportional to the length of the path
compressed for each of the m or fewer executions of COMPRESS. The following theorem
bounds the total length of all path compressions. Let F be an arbitrary forest. By a path
compresswn on F we mean the following operation: For some pair of vertices v, w such that
v ~ w in F, modify F by making each vertex except v on the path from v to w a child of
v (see Figure 2). Note that v need not be a tree root.

TnlZOREM I. The total length of an arbitrary sequence of m path compressions in an
arbttrary n-vertex forest is

O((m + n).max (1, log2(n2/(m + n))/log2(2(m + n)/n))).

Applicatzons of Path Compression on Balanced Trees 693

®

®

0

694 R. E. TAR JAN

1'

6

Applicatwns of Path Compresszon on Balanced Trees 695

Paterson [20] proved Theorem 1 for the case m -- O(n); a proof for arbitrary m appears
in [24]. The bound in Theorem 1 is known to be tight for values of m and n satisfying, for
some positive constants c and ~, m _< cn [10] or m _> cn ~+" [24].

The effect of m executions of EVAL is to carry out m or fewer path compressions on the
real forest budt by the entire sequence of L I N K instructions. Thus Theorem 1 gives a
bound on the time required for m EVAL, LINK, and U P D A T E instructions.

I f the forest built by the L I N K instructions is balanced, the running time of the path
compression algorithm is faster than Theorem 1 indicates. Let F be any n-vertex forest. F
is balanced for constants a > 1, c > 0 if for all i the number of vertices in F of height i does
not exceed cn/a'. Intuitively, this means that most of the vertices of F have small height.
Note that any path in a balanced forest has length O(log n).

Let the function A(i, j) on integers i, j _> 0 be defined by A(i, 0) ffi 0, A(0, j) = 2 J for
j_> 1, A(i, 1) = A(i - 1, 2) for t _> 1, and A(i , j) = A (i - 1, A (i , j - 1)) for i_> l , j _ > 2.
A0, j) is a variant of Ackermann's function [1] slightly different from the version used in
124]. Let a(m, n) = mm{i _> 1]A(i, [2m/nJ) > log2n), where [xJ denotes the greatest integer
not larger than x. For n < 216 = 65,536, ct(m + n, n) = 1; for all larger feasible n,
a(m + n, n) = 2.

THEOREM 2 [24]. The total length of an arbitrary sequence of m path compressions in an
n-vertex forest balanced for a, c is O((m + n)a(m + n, n)), where the constant depends on a
and c.

Our goal is to devise an algorithm for the E V A L - L I N K - U P D A T E problem which
requires O((m + n)a(m + n, n)) time for any forest. We shall succeed in doing this in
several important special cases, although not in the general case. Our approach will be to
modify the implementation of the L I N K instruction so that the virtual forest it builds is
balanced.

3. An Algortthm for Semtgroups with lnverses and Zeros

In this section we present an O((m + n)a(m, n))-time algorithm for the special ease in
which each element of S is either a right zero or has a right inverse. More precisely, we
assume that for each element x ~ S, either

(a) y ® x = x for all y E S (x is a right zero), or
(b) there is an element x -1 such t h a t y ® x ® x - I = y for a l l y E S (x has a right inverse).
We shall ignore right zeros for the moment and assume that every element of S has a

right inverse. To carry out EVAL, LINK, and U P D A T E instructions, we maintain a
virtual forest which satisfies properties 0) and (ni) o f Section 2 but not property 0i). That
is, to each tree T of the real forest corresponds a tree VT of the virtual forest, having the
same vertices as T but not the same root. Furthermore vertex values in the real forest and
in the virtual forest agree. When combining two trees in the virtual forest, we always make
the root of the smaller tree a chdd of the root of the larger tree. This guarantees that the
virtual forest is balanced, and Theorem 2 gives an O((m + n)a(m + n, n)) time bound.

The algorithm uses three arrays, parent, label, and size. Arrays parent and label represent
the virtual forest as in Section 2. I f v is the root o f a virtual tree, size(v) is the number o f
vertices in the tree. Initially parent(v) = O, size(v) ffi 1, and label(v) is the initial label of v
in the real forest.

We carry out EVAL(v) exactly as in the path compression algorithm; i.e., i f parent(v) =
0, we return label(v); otherwise we execute COMPRESS(v) and return label(parent(v)) ®
label(v). We also carry out UPDATE(r , x) by using path compression. The desired effect
of UPDATE(r , x) is to multiply the value of every vertex in the real tree containing r by
x. We carry out this instruction by finding the root o f the virtual tree containing r and
multiplying its label in the virtual tree by x. The following procedure carries out UP-
DATE(r, x) by using the fact that if r is not the root of a virtual tree, COMPRESS(r)
makes r a child of the root.

696

/ / ~ [LI]

(a)

R. E. TAR JAN

• LLll

• [J~2]

FIG 3.

• 21

(b)

Last part of LINK(v, w) with balancing. Labels are in brackets. (a) size(r1) _> slze(r~);
(b) s:z~r~) < s~ze(re)

procedure UPDATE(r, x);
if parent(r) = 0 then label(r) := x ® label(r)

else COMPRESS(r); label(parent(r)) "= x ® label(parent(r)) fl;

We carry out LINK(v, w) by using balancing. The desired effect of LINK(v, w) is to
combine the real trees with roots v and w, and to mult iply the value of each vertex in the
real tree with root w by the value of v. To carry out LINK(v, w), it suffices to update values
m the virtual tree VT2 containing w and to combine VT2 with the virtual tree VT1
containing v. In order to do this we need access to the roots r~, r2 of VT~, VTe, respectively.
I f r~ # v, we execute COMPRESS(v), making v a child o f rl. I f re # w, we execute
COMPRESS(w), making w a child of re. The value of v is then l a b d (r l) i f v = rl, l a b d (r l)
G label(v) otherwise. I f v # r~, we replace label(re) by label(v) Q label(re). It remains for us
to multiply vertex values in VT2 by label(r t) and combine the trees.

What we do next depends on the relative sizes of VT1 and VTe. Figure 3 illustrates the
two cases. I f VT~ contains at least as many vertices as VT2, we make r2 a child of r~. This
has the effect of multiplying the value of each vertex in VT2 by label(r~) and thus completes
LINK(v, w) while preserving (i) and (iii). I f VT~ has fewer vertices than VTe, we make rl
a child of re. In addition, we simultaneously replace label(r1) by label(re) -1 and label(rz) by
label(r~) ® label(re). This has the effect o f leaving the values o f vertices in VT1 alone while
multiplying the values of vertices in VT2 by the old label(rO, thus completing LINK(v, w)
while preserving (i) and (iii).

The following procedure implements LINK. Note that zero tes t always takes the t r u e

branch in the case we are considering, namely, when every element o f S has a right inverse.

procedure LINK(v. w),
begin

if parent(w) = 0 then r2 :ffi w
else COMPRESS(w); re .= parent(w) fi;

zerotesr if label(r2) has a right inverse then

Applicattons o f Path Compression on Balanced Trees 697

if parent(v) = 0 then rl ~ v,

e lse C O M P R E S S (v) , rl = parent(v),
label(r2) = label(v) ® label(r2) fi,

if saze(rO _> stze(r2) t hen

parent(r2) = rb aze(rl) = szze(ra) + stze(rz)
else parent(r1) = r2, size(r2) .= stze(r 0 + szze(r2),

label(r1), label(r~) = label(r2) -l , label(rO ® label(r2) fi fi
end L I N K ,

We call this implementation of EVAL, LINK, and UPDATE path compression with
balancing. Morris apparently originated the balancing idea [14]. It also appears in [12].

The t~me required to execute m instructions using path compression with balancing is
O(m) plus the time to execute no more than 2m path compressions. Let U be the
uncompressed virtual forest; 1.e., the virtual forest built by the LINKs, ignoring all
compression. To obtain U, we construct a new edge (x, y) each time L I N K assigns x :=
parent(y). It Is not hard to show that U Is balanced for constants a = 2, c = 1. (This is
proved in [24]; see also Section 5.) Theorem 2 implies that path compression with balancing
reqmres O((m + n)a(m + n, n)) time.

If necessary we can reduce the storage requirements of this algorithm. Since size(v) is
only useful If parent(v) = 0, we can store both sizes and parents in one array by using
negative numbers to represent s~zes and positive numbers to represent parents.

We now extend the algorithm to handle nght zeros. Such elements cause problems only
in the LINK instruction. Note that if a fight zero appears in a product representing the
value of a vertex, all terms to the left of the zero can be ignored. In other words, if the
value of w is a right zero, the instrucUon LINK(v, w) can be ignored because it, and
subsequent LINKs and UPDATEs, cannot change the value of any vertex in the tree
containing w This means that the previous implementation of L I N K is still valid; if the
value of w is a right zero, zerotest will cause LINK to do nothing. Proving the validity of
the Implementation requires the following lemma.

LEMMA 1 I f x ~ S and y ~ S have right mverses, then so do x ® y and x-1
PROOF. z ® x ® y ® y - t ® x - l = z ® x ® x - l = z, which means that y-~ ® x - l is a

right reverse for x ® y. Suppose x-1 has no fight inverse. Then x-1 is a right zero, which
means x ® x -1 = x -1. But then x = x ® x ® x-1 = x ® x -1 = x -1, which contradicts the
fact that x has a right inverse. []

Lemma 1 and the tuner workings of LINK, EVAL, and UPDATE guarantee that
label(v) has no nght inverse only for vertices v which are virtual tree roots. Referring to
LINK, it follows that label(r2) has a fight inverse ff and only if the value of w does, and
our implementation is correct.

The algorithm of this section applies to any group, such as the real numbers under
addition, and to the real numbers under multiplication. An algorithm for the real numbers
under addition is useful to keep track of vertex depths m a forest, and the algorithm we
have presented here is based on Aho, Hopcroft, and Ullman's method of solving the forest
depth problem [2, 3]. An algonthm for the real numbers under multiplication is useful for
solving systems of linear equations defined on reducible flow graphs [27].

4. Disjomt Sets and Least Common Ancestors

Path compression with balancing was originally developed to solve the following problem.
Suppose we are given n disjoint sets, each containing one element, and each having a
distinct name. We w~sh to carry out two types of instructions on these sets.

F I N D (e) re turn the n a m e o f the set c o n t a i n i n g e l emen t e,

U N I O N (A , B) a d d the e l emen t s m set B to set A, d e s t r o y m g set A

We can apply the algorithm of Section 3 to solve this problem. (In this application the
procedures for EVAL and LINK can be simplified somewhat.) We use a forest, each vertex
of whtch represents an element. The initial label of a vertex is the name of the set initially

698 R . E . TARJAN

containing the corresponding element. S is the collection of set names, with operation
x ® y = x. Note that each set name is its own right inverse. For each element e, let v(e) be
the vertex representing e. For each set name A, let v(A) be the vertex initially labeled by
A. We implement U N I O N and F I N D as follows:

suitable procedure FIND(e),
FIND = EVAL(v(e)),

procedure UNION(A, B),
LINK(v(A). v(B)),

The time required for m instructions is O((m + n)cffm + n, n)). This set union algorithm
is useful for handling EQUIVALENCE and C O M M O N statements in Fortran [5, 12],
finding minimum spanning trees [6, 31], and testing flow graphs for reducibility [23].

Aho, Hopcroft, and Ullman have used the set union algorithm to compute least common
ancestors in a tree off-line [3]. We shall need an algorithm for this problem in Section 7,
so we present a version of their method here. They proceed by way of an intermediate
problem, called the off-line mm problem, but it is much cleaner to use the set union
algorithm directly. Let T he a tree with root r and letpairs = ((v,, w,)l I _< i _< m) be a set
of m vertex pairs. We wish to compute LCA(v,, w,) for each pair. The following algorithm
carries out the computation.

procedure LCA,
begin

for each {v, w} Epalrs do unmark {v, w} od,
for each v E Vdo create a set {v} named v od,
SEARCH(r)

end LCA,

Recursive procedure SEARCH is defined by

procedure SEARCH(v),
begin

for each w E chddren(v) do SEARCH(w); UNION(v, w) od;
for each {v, w} ~ pairs do if {v, w} not marked then mark { v, w}

else lea(v, w) = FIND(w) fi od
end SEARCH,

This algorithm assumes that V is the set of tree vertices and that children(v) is the set o f
children of v for each vertex v. SEARCH carries out a depth-first search of the tree. During
the search, each pair {v, w} is examined twice, once when the search is at v and once when
the search is at w. The second time (v, w} is examined, its least common ancestor is
computed and stored in lca(v, w). It is not hard to prove the correctness of this method by
using properties of depth-first search. See [2, 3, 21, 22]. The algorithm requires
O((m + n)a(m + n, n)) time and O(m + n) space if the set pairs is represented so that for
each vertex v the pairs {v, w} can be retrieved in constant time per pair. An adjacency
structure [3, 21] is suitable for this purpose.

5. An Algorithm for Totally Ordered Sets with Operation max

There are important situations in which the algorithm of Section 3 does not apply. For
instance, if S is totally ordered under an ordering ~< and ® is max, only the minimum
element of S (if any) has an inverse. We shall devise a different and somewhat more
complicated algorithm for this case.

Our algorithm uses a virtual forest satisfying properties (i)-(iii) of Section 2 and the
following additional property:

(iv) Each virtual tree VT consists of a set of subtrees ST0, ST1 STk with roots ro, r~,
.... rk, respectively, joined by a path ro ~ rl ~ ... ~ rk. The subtree roots satisfy
label(rj) ~ label(rj+~) for 0 _<j < k. (See Figure 4.)

Suppose v is a vertex in some subtree STy. The value of v does not depend on label(r,) for
i < j , since label(r,) ~ label(r~) for any i < j . This means that to compute the value of v, we

Applications of Path Compression on Balanced Trees 699

/s,o\

FIO. 4 Structure of vmua l trees for operation max Labels satisfy l0 ~_ h -~/2 _~/3

need examine labels only of vertices in STj. We can thus use path compression within the
subtrees to compute values. By properly manipulating the subtrees, we shall be able to
guarantee that they are balanced. In this way we achieve an O((m + n)~(m + n, n)) time
bound.

To represent the subtrees, we use two arrays, parent and label. For each vertex v, label(v)
is the label of v in the virtual forest; parent(v) is the parent of v in the virtual forest unless
v is the root of a subtree, in which case parent(v) = 0. We implement EVAL(v) exactly as
in Sections 2 and 3.

To represent the way the subtrees fit together into virtual trees, we use two additional
arrays, child and size. These arrays are defined only for subtree roots. Let VT be a virtual
tree with subtrees STo, ST1 STk having roots r0, r~ rk, respectively. For any root rj,
child(rj) denotes the child of r~ (if any) that is a subtree root; i.e., child(r~) = rj+~ i f j < k;
child(rj) = 0 i f j = k. For any root r~, size(rj) is the number of descendants of rj in VT; i.e.,
size(r~) = ~,~.~ I ST,]. For purposes of analysis we shall denote [ST, I, the number of vertices
in ST,, by subsize(r,). For convenience we assume that size(O) = 0; then subsize(r~) = size(rj)
- size(child(rj)) for 1 _< j _< k.

To carry out UPDATE(r, x), we first replace label(r) by max {x, label(r)}. This preserves
properties (i)-(iii) but may invalidate (iv). Let VT with subtrees STo, ST~ STk having
roots r = ro, r~ rk be the virtual tree with root r. We determine the maximum value o f
j such that label(r) > label(rj). We then combine subtrees ST,, ST2 STy into a single
subtree, replacing the label of the root of this subtree by label(r).

To combine the subtrees, we first replace ST~ by a combination of ST~ and ST2, then
replace the new ST1 by a combination of ST~ and ST3, and so on, until all the subtrees ST,,
for 2 _< i _<j, are combined with ST1. When combining ST, with ST~ to form the new STy,
we make the root of the larger subtree the parent of the root o f the smaller. (See Figure 5.)
Note that this process leaves STo intact, thus preserving (ii).

The following procedure implements this idea. For convenience, the procedure assumes
that label(O) = o0, where oo is the maximum element of S. (If S has no maximum element,
we add one.)

procedure UPDATE(r, x),
begin

comment this procedure assumes size(O) = 0 and label(O) = oo,
label(r) .~ max (x, label(r)};

labeltesti, if label(r) > label(child(r)) do
rl := child(r),

labeltest2: while label(r) > label(chlld(r~)) do
slzetest: if szze(rl) + size(child(child(r1))) ~_ 2* stze(chtld(rl)) then

parent(child(r1)) := rl, child(tO .~ chlld(chdd(r2))

7OO

r3[r2/~T~/~Tr~ ~ (a)

R. E. TAR JAN

r3[~3] r2[~2 jr1 [~ S'I'O\

/ STo\

(b)

FIG. 5. Combination ofsubtrees STi, ST~ by UPDATE if/0 > I=. (a) substze(rj) ~_ subsize(r2), (b) substze(rl) <
subslze(r~). This operatmn is repeated untd there are no more subtrees or the next subtree ST~+~ has 1o _</j+i

else slze(chtld(rO) = stze(rO;
rl := parent(r1) = child(r1) tl od;

label(ri) = label(r), chdd(r) = rl fi
end UPDATE,

Note that the choice of label(O) = oo guarantees that labeltest l fails when child(r) = 0
and that labeltest2 fails when child(r~) -- 0. Note also that sizetest succeeds exactly when
size(rl) + size(child(child(r1))) _> 2* size(child(r1)), i.e., when subsize(rl) -- size(r1) -
size(child(r1)) >_ size(chiid(rl)) - size(child(child(r1))) = subsize(child(rl)). It is easy to show
that this procedure carries out UPDATE(r , x) correctly while maintaining (i)-(iv).

To carry out LINK(v, w), we first perform UPDATE(w, label(v)). This correctly updates
values in the virtual tree VT2 containing w. Let w = So, s~ s~ be the subtree roots in VT2
after UPDATE(w, label(v)) is performed, and let VT~ with subtree roots v ffi ro, rt rk be
the virtual tree containing v. After the UPDATE, label(v) ~ label(w). I f VT~ is larger than
VT2, we combine all the snbtrees in VT2 with the subtree of VT1 rooted at v by making v
the parent of so, sl st. This combines VT1 and VTz into a single virtual tree. I f VT~ is
smaller than VT2, we combine all subtrees of VT~ into a single subtree by making v the
parent of rl, r2 , r~. Then we combine VT1 and VTz into a single virtual tree by making
w the child of v. Figure 6 illustrates the two cases. The following procedure implements
LINK. The operator "~--¢' denotes exchange o f values.

Applications of Path Compression on Balanced Trees 701

Y

v

^1

g~

P~

z

d~

d~

O

702 R.E. TARJAN

procedure LINK(v, w),

UPDATE(w, label(v)),
s~ze(v) := s~ze(v) + size(w);
S ~ W ;

i f size(v) < 2* size(w) then s ~ child(v) fl;
while s # 0 do parent(g) ,ffi v; s .ffi child(s) od

end LINK;

Verifying that this implementation carries out LINK(v, w) whde preserving 0)-(iv) is
straightforward. As m Section 3, it is possible to save an array by combining either child
or size with parent, since chdd and size are needed only for subtree roots andparent is zero
for subtree roots.

It remains for us to show that the subtrees built by UPDATE and L I N K are balanced.
Let U be the uncompressed set of subtrees built by L I N K and UPDATE. To obtain U, we
construct a new edge (x, y) each time either L I N K or UPDATE assigns x := parent(y).
Each such new edge joins a pair of subtree roots.

For any vertex v, let subsize(v) be the number of descendants of v in U. We call an edge
(x, y) of U good if subsize(x) _> 2. subsize(y). I f (x, y) and (y, z) are edges of U, we call
(y, z) mediocre if subsize(x) _> 2.subaze(z). Once an edge becomes good (or mediocre) it
stays good (or mediocre), since when (x ,y) becomes an edge of U, subsize(y) (and subsize(z)
i fy ~ z) is fixed, and subsize(x) can only increase.

Each edge added to U by UPDATE is good. It is not hard to show that a forest
consisting only of good edges is balanced [24]. Unfortunately, L I N K can add edges that
are not good to U. We shall show, however, that such edges eventually become mediocre.

LEMMA 2. [f x ~ y ~ Z in U, then (y, z) is mediocre.
PROOF. I f (y , z) lS added to U by UPDATE (including the call on UPDATE in LINK),

then subslze(y) _> 2. substze(z). Adding additional edges to U preserves this relationship,
and when (x, y) is added to U, subsize(x) _> subsize(y) _> 2.subsize(z). Thus (y, z) is
mediocre. A similar proof works if (x, y) is added to U by UPDATE.

Suppose on the other hand that both (x, y) and (y, z) are added to U by LINK outside
the call on UPDATE. An inspection of L INK shows that when (y, z) is added to U,
size(y) >_ 2.substze(z). This relationship is preserved until (x, y) is added to U, at which
time all descendants o f y in the virtual tree containing y become descendants of x in the
subtree containing x; i.e., subsize(x) _> 2.subsize(z). Thus (y, z) is mediocre. []

THEOREM 3. A forest F ts balanced for constants a = x/b, c ffi x/b i f it satisfies the
following property: I f x ~ y ~ z m F, then d(x) _> b,d(z), where d(v) is the number o f
descendants o f vertex v in F.

PROOF. We prove by induction that any vertex of height h in F has at least b th/2j
descendants. The result is obvious for h = 0, 1. Suppose the result holds for h - 2 and let
x be a vertex of height h. Then there are vertices y, z in F of height h - 1, h - 2,
respectively, such that x ~ y ~ z. By the induction hypothesis, z has at least b t(h-2)/zj
descendants, and by the assumption of the theorem, d(x) _> b. bt(h-2)/2J ffi b th/2J. This proves
the result for h.

Any two vertices of the same height have disjoint sets of descendants. Thus the number
of vertices of height h m F is at most n/b th/zj _< n/b (h-i)~2 = x/bn/(x/b) h . []

COROLLARY I. The forest U is balanced for constants a = x/2, c = x/2.
It follows from Corollary l and Theorem 2 that the algorithm of this section performs

its path compressions on a balanced forest. Thus the total time for m EVAL instructions
is O((m + n)a(m + n, n)). The time for the LINK and UPDATE instructions is a constant
per instruction plus time proportional to the number of edges in U. Thus the L I N K and
UPDATE instructions require O(m + n) time, and the total time for m instructions is
O((m + n)a(m + n, n)). The space required is O(n).

6. An Off-Line Algorithm

The algorithms of Secuons 3 and 5 still do not cover all interesting cases of the EVAL-

Appl ica twns o f Path Compression on Ba lanced Trees

r 0

FiG 7 Structure of virtual trees for off-hne algorithm Subtrees sausfy 2.subsize(rj) _< subsize(rj+l)

703

L I N K - U P D A T E problem. For instance, in global flow analysis it is necessary to implement
EVAL, LINK, and UPDATE for a semigroup consisting of a set of bit vectors under an
operation such as bitwise "and" or bitwise "or" [1 l, 13, 17, 30]. In this section we present
an algorithm that solves the E V A L - L I N K - U P D A T E problem for any semigroup (S, ®),
under the assumption that the sequence of instructions is given off-line except for the
modifications to the vertex labels specified in the U P D A T E instructions. (Henceforth we
shall call this the half-line case.)

We shall deal first with the somewhat simpler situation m which the sequence of
instructions Is given completely off-line; i.e., the values for the EVAL(v) instructions need
not be returned until the entire instruction sequence is scanned. The algorithm consists of
two passes. The first pass resembles the method of Section 5. We scan the instructions,
maintaining a virtual forest to represent vertex values. The virtual forest satisfies properties
(i)-(iii) of Section 2, as well as the following property, which replaces property (iv) of
Section 5.

(v) Each virtual tree consists of a set of subtrees STo, STy, ST2 STk with roots ro, rl,
. . . . rk, respectively, joined by a path ro ~ rl --> ... ~ rk. The subtrees satisfy 2[ST, I

_< IS'I~+~] for 0 _ < j < k. (See Figure 7.)
To represent the subtrees, we use arrays paren t and label as in Section 5. For each vertex

v, label(v) is the label of v in the virtual forest; parent(v) is the parent o f v in the virtual
forest unless v is a subtree root, in which case parent(v) = O. To represent the way the
subtrees fit together into virtual trees, we use arrays child and stze as in Section 5. Let VT
be a virtual tree with subtrees STo, ST1, ..., STk having roots ro, rl rk, respectively. For
any root rj, child(rj) is the child of rj (if any) which is a subtree root; i.e., child(rj) -- rj+l if
j < k, child(rj) = 0 i f j = k. For any root rj, size(rj) is the number of descendants o f re in VT;
i.e., size(rj) = ~,~.j IST, I. As in Secuon 5, we shall denote IST, I by subsize(r,) and let
subsize(O) = 0; then subsize(rj) = size(rj) - size(child(rj)) for 0 _< j _< k.

To carry out UPDATE(r , x), we execute the assignment label(r) := x ® label(r). To
carry out LINK(v, w), we use a method similar to that used in Section 5. Let VTi with
subtree roots v = ro, rl, . . . , rk and VT2 with subtree roots w ffi so, sl, . . . , st be the virtual trees
containing v and w, respectively.

If [VT~ [_> [VT2 l, we combine each subtree of VT2 with the subtree of VT1 rooted at v,
by making v the parent of So, sl, . . . , st. In doing so, we modify the labels o f sl, s2 st to
preserve property (iii). Since this process increases the size of the subtree rooted at v,
property (v) may no longer hold. To restore (v), we combine the subtrees rooted at rl, r2,
. . . , rj with the subtree rooted at v, by making v the parent of rl, r2 , r~, until we find a
subtree root rj+~ whose subtree size is at least twice that of the enlarged subtree rooted at
v. In the process we modify the labels of rl, r2 rj to preserve (iii). (See Figures 8 and 9.)

704 R. E. TARJAN

o

V

^1

8

Apphcattons of Path Compression on Balanced Trees 705

" 5

0

'z

r2l

"D

o
P~

~a2

0

Ya

706 R.E. TAP.JAN

The process is similar if I VTll < [VT2]. First we replace rl as chi ld(v) by s~. Then we
combine the subtrees rooted at r~, r2 , rk with the subtree rooted at v, by making v the
parent o f r~, r2 rk. In doing so, we modify the labels o f rl, r2 rk to preserve (iii).
Finally we combine the subtrees of VT2 rooted at so, sl sj with the subtree rooted at v,
by making v the parent o f so, s~ st, until we find a subtree root s:.~ whose subtree size
is at least twice that of the enlarged subtree rooted at v. In doing so, we modify the labels
of so, s~ sj to preserve (iii). (See Figures 8 and 9.)

Our implementation of L I N K updates three arrays, root , ver tex , a n d e x t r a label, i n
addition to paren t , label , child, and size. These arrays are used in the evaluation process.
The array root allows easy access to the root of a virtual tree from the roots o f its subtrees.
Let ro, rl rk be the subtree roots of a virtual tree. I f 0 _<j < k , root(r~) = rk; root(rk) =

ro. Thus from any subtree root we can reach the root of its virtual tree m one or two steps.
L I N K numbers vertices consecutively from 1 as they cease to be virtual tree roots. (A

vertex w ceases to be a tree root exactly when an instruction LINK(v, w) is executed.)
Variable n u m b e r o f vert ices counts the number o f vertices so numbered; initially n u m b e r o f
vert ices = 0. Array ver tex records the numbering; for each number i, ver t ex (i) is the vertex
receiving number i. When a vertex w ceases to be a tree root, L I N K saves its current label
in e x t r a label(w).

An Algol-like implementation of LINK(v, w) appears below. The implementat ion uses
the procedure PRODUCT(y , z) to compute y G z. Eventually we shall solve the half-line
case by modifying PRODUCT.

~ocedure LINK(v, w),
begin

comment this procedure assumes that szze(O) ~ 0;
s*ze(v) "= s~ze(v) + stze(w),
extra label(w) .= label(w),
number of vertices = number of vertices + 1;
vertex(number o f verttces) "~ s "= w;
if size(v) < 2* stze(w) then

s ~ chdd(v),
root(v) .= root(w), root(root(w)) m v fi,

loop 1' if s # 0 then
parent(s) = v;
while chdd(s) # 0 do

label(chdd(s)) := PRODUCT(label(s), label(chdd(s))),
s "= chdd(s), parent(s) = vod,

s = chdd(v),
loop2, while 2* size(v) + SlZe(chdd(s)) > 3* size(s) do

parent(s) .= v; child(v) = chdd(s);
i f chdd(s) = 0 then go to ex#t loop2

else label(chdd(s)) .= PRODUCT(label(s), label(child(s))),
s = chdd(s) fl od, exit loop2:

end LINK,
suitable procedure PRODUCT(y, z),

PRODUCT .= y ® z;

Note that at the beginning o f each iteration o f loop2 it is always the case that s = child(v) ,
and that the test in loop2 succeeds exactly when 2 . s i z e (v) + s ize(chi ld(s)) _> 3 . s i ze (s) , i.e.,
when 2. s u b s t z e (v) = 2(size(v) - s ize(s)) > s i z e (s) - s i z e (c h i l d (s)) = subsize(s) .

The last instruction we must implement is EVAL(v). Let VT with subtree roots r = ro,
rl rk be the virtual tree containing v, and let rj be the root of the subtree containing v.
We compute the value of v in three parts: the label of r (if r # rj), the product of labels on
the path of subtree roots from r to rj (not including the labels of r and rj), and the product
of labels on the path from r: to v. We compute the first part by looking up the label of r

and the third part by using path compression on the subtree containing v.
Computing the second part of the vertex value, namely, iabel (rO Q label(r2) Q ... Q

label (r j - O, Is more complicated. Here we use the fact that the sequence of instructions is
given off-line. We perform the evaluation in an a u x i l i a r y f o r e s t AF, which is defined by

Applications o f Path Compression on Balanced Trees

15

1 2 . . . 1 t] i I ""

10~ ~ 13

3 5 (a)

1

707

i. ./ x / \

/ \ \

14

(b)

FIG. 10 Virtual and auxdiary forests after the instruction sequence L1NK(2, 1), LINK(3, 2) LINK(15, 14)
is executed. (a) Virtual forest (one tree): Sohd edges denote subtrees (b) Auxihary forest. Note that vertex 15 is

still a tree root in the virtual forest, thus it ~s stall a single-vertex tree m the auxdiary forest

x 1

Yl Y2

• x 1

Yl x 2

Ca) (h)

FIG I I lnvahd path compression on auxdtary forest (a) Original auxdlary tree. Paths to be evaluated are
x, ~ y~ and x2---~ y2 (b) After compressmn of xj--~, y~ path In the new tree x2 ~s not an ancestor of y2

the values of the child pointers as follows: Initially the auxiliary forest consists of a set of
single-vertex trees, one for each vertex in the virtual forest. While a vertex x is a tree root
in the virtual forest, it remains a single-vertex tree in the auxiliary forest. When x ceases
to be a tree root m the virtual forest, the vertex y = child(x) becomes the parent of x in the
auxiliary forest. (If child(x) = 0 at this time, then x permanently remains a single-vertex
tree in the auxiliary forest.) (See Figure 10.) Since child(x) is numbered smaller than x for
any x, the auxiliary forest is indeed a forest. Note also that once a vertex x ceases to be a
virtual tree root, additional LINKs and UPDATEs do not change child(x). Furthermore
after x ceases to be a virtual tree root, label(x) does not change until x ceases to be a
subtree root. The array extra label(x), for each vertex x, thus records the value o f label(x)
during the time when x is a virtual subtree root but not a virtual tree root.

If xo ~ xl ~ ... ~ xk in the auxiliary forest, we define ®Av(X0, Xk) = extra label(xk) ®
extra label(xk-~) ® ... ® extra label(xo). It follows from the observations above that the
second part of the vertex value, label(r]) ® label(r2) ® ... ® label(r]-l), is equal to
®Av(r~-~, r~). We can thus compute the second part of the vertex value for each EVAL(v)
instruction by forming the product of extra labels along a path in the auxiliary forest. (The
order of terms in the product is reversed from the usual order, however.) We would like to
use path compression in the auxiliary forest to compute these products. Unfortunately, this
requires reordering the products. (See Figure 11.)

The following lemma expresses the ordering we need.
LEMMA 3. Let F be a forest. Let (x,, y,) f o r i = 1, 2 be a pair o f vertex pairs such that

x, ~ y, m F for t = 1, 2 and x2 is not a proper descendant o f x]. I f we carry out a path
compression m F by making each vertex except xl on thepath f rom x~ to yl a child o f xz, then
x2 remains an ancestor o f y2.

PROOF. Obvious. []

708 R.E. TARJAN

We compute the second parts of vertex values as follo~vs. For each EVAL(v) instruction,
we determine a pair of vertices (x,, y,) such that the second part of the value to be returned
by EVAL(v) is ®AF(X,, y,). We reorder the pairs so that, for any i < j, x, is not a proper
ancestor of xj. Then, m a second pass, we compute GAy(X,, y,) for each pair by using path
compression in the auxiliary forest.

We carry out EVAL(v) by means of the following steps. First, we assign a number to the
EVAL instrucuon. Next, we determine the root of the subtree containing v, and the third
part of the vertex value, by using path compression in the subtree. We store the third part
of the vertex value in array answer, which is indexed by instruction number. Next, we
determine the root of the virtual tree containing v. Finally, if the second part of the vertex
value requires later computation, we store a triple consisting of the instruction number, the
label of the tree root, and the child of the tree root in a bucket associated with the subtree
root. This triple contains enough information to allow the second pass to complete the
computation of the vertex value. I f the second part of the vertex value does not reqmre
later computation (because the corresponding path is empty), we finish computing the
vertex value and store the result in the answer array. The following procedure implements
this method.

procedure EVAL(v);
begin

comment r Is the root of the tree containing v, and s ,s the root of the subtree containing v,

Instruction := mstructwn + l;
if parent(v) = 0 then s .= v; answer(mstructwn) = label(v)

else COMPRESS(v), s = parent(v),
answer(mstructwn) = PRODUCT(label(s), label(v)) fi;

r = if chdd(s) -- 0 then root(s) else root(root(s));
if (r # s) then

if chdd(r) = s then
answer(instruction) = PRODUCT(label(r), answer(mstructwn))

rise add (mstructwn, label(r), chdd(r)> to bucket(s) fi fi
end EVAL,

Recursive procedure COMPRESS, which carries out path compression m the subtrees,
is defined by

procedure COMPRESS(v),
if parent(parent(v)) # 0 then

COMPRESS(parent(v));
label(v) .-- PRODUCT(label(parent(v)), label(v)),
parent(v) "= parent(parent(v)) fi,

After carrying out EVAL, LINK, and UPDATE as described above, we must complete
the computation of the vertex values. The procedure EXTRA__PASS appearing below
does the job. For each triple (i, l, y) stored in the bucket of some vertex x, EXTRA__PASS
computes, using path compression, the product of extra labels (excluding that of x) on the
auxiliary tree path from x to y. This product is the second part of the vertex value for
EVAL instruction i. EXTRA__PASS completes the computation of the vertex value and
stores the result in answer(i). EXTRA__PASS unloads the buckets in decreasing order by
vertex number. Since LINK numbers vertices in increasing order from the roots to the
leaves in the auxiliary forest, EXTRA__PASS processes triples in an order which satisfies
Lemma 3 and which is thus suitable for using path compression.

procedure EXTRA__PASS,
for j "= number of vertices by -1 until I do

for each 0, root label, v) E bucket(vertex(j)) do
EXTRA COMPRESS(vertex(j), v),
answerO) ~- PRODUCT(extra label(v), answer(O);
answerO) -~ PRODUCT(root label, answer(O) od ed;

EXTRA__PASS uses the following recursive procedure to compress paths in the

Applications o f Path Compression on Balanced Trees 709

auxiliary forest. Recall that the order of terms in a product defining a value in the auxiliary
forest is reversed from the normal order.

procedure EXTRA__COMPRESS(r, v),
i f child(v) ~ r then

EXTRA_.~OMPRESS(r, chtld(v)),
extra label(v) .= P R O D U C T (e x t r a label(v), ex tra label(chtld(v))),
chtld(v) = chdd(chtld(v)) fi,

This completes our description of the algorithm except for initialization of the variables.
Initially parent(v) = chtld(v) -- O, size(v) = 1, root(v) -- v, bucket(v) = ~ , and label(v) is the
ininal label of v. Also number o f vertices = instrucuon -- O.

The time required by this algorithm is O(n + m) plus time for one path compression in
the subtrees and one path compression in the auxiliary forest for each EVAL. If we can
prove that both the set of subtrees and the auxiliary forest are balanced, then Theorem 2
gives an O((m + n)a(m + n, n)) running time for the algorithm.

Consider first the subtrees. Let U be the uncompressed set of subtrees. To form U, we
add an edge (x, y) to U when LINK assigns parent(y) := x . For any vertex x, let subsize(x)
be the number of descendants of x in U.

LI~MMA 4. I f x ~ y ~ Z in U, then subsize(x) > 3 subsize(z). - - 2
PROOF. This proof resembles that of Lemma 2 in Section 5. LINK has only two ways

to add edges to U. If (y, z) is added to U by loop2 of LINK, subsize(y) _> ~ subsize(z) just
after the addition. Adding more edges to U preserves this relationship, and when (x, y) is
added to U, subsize(x) _> subsize(y) _> ~ subsize(z). Thus the lemma holds. A similar proof
works if (x, y) is added to U by loop2.

Suppose, on the other hand, that both (x, y) and (y, z) are added to U by loopl. Just
after (y, z) is added, s ize(y) _> 2.subsize(z). As long as y remains a subtree root, s ize(y)
cannot change. When (x, y) is added to U by loopl, all descendants o fy in the virtual tree
become descendants of x in the subtree. Thus subsize(x) _> 2.subsize(z) just after the
addition of (x, y). Hence the lemma holds. []

COROLLARY 2. The fores t U is balanced f o r constants a = 3 ~ , c -- ~ / ~ .
PROOV. Immediate from Lemma 4 and Theorem 3. []
Now consider the auxihary forest. Let A be the auxiliary forest as it exists after all the

EVALs, LINKs, and UPDATEs have been carried out but before the extra pass is
executed.

THEOREM 4. The fores t A is balanced f o r constants a = 2, c .~- 2.
PROOF. Consider a fixed height h _> 1. We must show that A contains no more than

n/2 h-1 vertices of height h. To accomplish this, we use a charging argument. Let v be a
vertex of height h in A. Consider the time at which v first attains height h. Just before this
time the virtual tree VT containing v has subtree roots ro, r~, . . . , rn -- v rk. The height
of v increases to h when ro ceases to be a virtual tree root, which occurs because a LINK(x,
ro) operation is initiated. When this happens, we assign a charge of 2 h-~ to the subtree with
root v. Subtrees retain their charges as EVALs, LINKs, and UPDATEs are executed; when
execution of a LINK combines two subtrees, the charge of the new subtree is the sum of
the charges of the component subtrees.

We shall show that no subtree ever has charge exceeding the number of vertices in it,
which implies that the total charge is at most n and that the number of vertices of height
h does not exceed n /2 h-~. We call a subtree ST good if charge(ST) = 0 or I ST[- charge(ST)
_> 2 h-l, bad otherwise. We claim that new charge can only be assigned in a tree all of
whose subtrees are good. We prove the claim by induction on the sequence of EVAL,
LINK, and UPDATE instructions.

The claim is certainly true before any charge is assigned. Consider a LINK that causes
a new charge to be assigned for which the claim holds. Let r be the vertex about to attain
height h in A and let ro, rl rh = v, . . . , rk be the sequence of subtrc¢ roots in the virtual
tree containing v. Let STh-~ and STh be the subtrees with roots rh-~, r^, respectively. By (v),

710 R.E. TARJAN

]STh-1[>- 2 h-1 and ISTh[_> 2 h. Since the claim holds at this time, IST^-11 - charge(STh-O
> 2 h-1 and I ST^[- charge(STh) > 2 h-l. After the charge for v is assigned, [STh-~] --
charge(STh-O >- 2 h-l and ISThl - charge(STh) _> O. It may now be the case that STh is bad.

No two vertices o f height h in A are related in A. Thus no virtual tree can contain two
different vertices of height h in A as subtree roots, unless one of them is the root of the
virtual tree. It follows that no new charge can be assigned to the virtual tree containing
STh until STh becomes a component of a larger subtree. Such a subtree must also contain
STh-~ and hence must be good. Thus no new charge can be assigned to the tree containing
ST^ until all its subtrees are again good. The claim follows by induction, and the theorem
follows from the claim. []

Theorem 2, Corollary 2, and Theorem 4 imply that the running time of the off-line
algorithm is O((m + n)o~(m + n, n)). The storage space is O(m + n), which exceeds the O(n)
storage requirements o f the algorithms in the previous sections. It is possible to save a
small constant factor in storage by combining arrays; we leave this as an exercise.

We now modify the algorithm to handle the half-line case. The modified algorithm
consists of two stages. The information available to the first stage consists of the complete
sequence of EVAL, LINK, and UPDATE instructions, excluding the initial vertex labels
and the modifications to the vertex labels specified in the UPDATE instructions. After the
first stage does a certain amount of preprocessing, the second stage must execute the
sequence of instructions on-line.

The first stage does not actually compute vertex values. Instead, it constructs a straight-
line program, consisting o f a set of assignments of the form x *--y G z, which specifies how
to compute the desired vertex values. The second stage executes the straight-line program,
thereby computing the answers to all the EVALs.

For convenience we shall assume that the set of vertices m the forest is {v] 1 _< v _< n}.
We shall use an array value(i) to represent the values to be computed by the straight-line
program. For 1 _< i _< n, i is an input index; value(i) will, during the second stage, be the
label of vertex i in the real forest. For i > n, value(i) will be defined by an assignment
value(i) ~- value(j) ® value(k); each noninput index will appear on the left side of exactly
one such assignment. Associated with each EVAL(v) instruction will be an output index i
such that value(i) is the value to be returned by the EVAL instruction. Some indices may
be both input and output indices; if v is the root of a real tree when EVAL(v) is executed,
then the index associated with EVAL(v) will be v. An output index which is not also an
input index will appear on the right side of no assignment. To represent assignments, we
shall use two arrays, first and second. I f value(i) ~-- value(j) Q value(k) is an assignment,
then first(r) -- j and second(i) = k.

The first stage o f the algorithm is identical to the off-line algorithm, except that instead
of computing values the algorithm constructs the arrays first and second representing the
straight-line program for computing values. The first stage also ignores all UPDATE
instructions. Each label(v) now specifies not an element o f S, but rather a position in the
value array where the appropriate element o f S will be stored during the second stage.
Similarly, answer(i), for each EVAL instruction i, specifies not the appropriate vertex value
but instead a position in value where the vertex value will be stored during the second
stage.

To convert the off-line algorithm into the first stage o f the half-line algorithm, all we
must do is change the initialization and change the definition of P R O D U C T to the
following.

integer procedure PRODUCT(y, z);
begin

new index = new index + 1;
first(new index) := y;
second(new index) "= z;
PRODUCT := new index

end PRODUCT;

A p p h c a t i o n s o f P a t h Co mp res s io n on B a l a n c e d Trees 711

During the second stage we ignore the LINK instructions and use the following
procedures to carry out UPDATE and EVAL.

procedure UPDATE2(r, x),
value(r) = x ® value(r),

suitable procedure EVAL2(v),
begin

mstrucnon = mstructwn + 1,
EVAL = COMPUTE(answer(mstructwn))

end EVAL2,

Recurswe procedure COMPUTE, which actually computes the vertex values, is defined
by

suitable procedure COMPUTE(t),
if value(t) ~ undefined then COMPUTE = value (i)

else COMPUTE =value(O = COMPUTE(first(O) ® COMPUTE(second(i)) fi;

The complete half-line algorithm, including initiahzatlon, consists of the following steps.

FIRST STAGE
Step 1 Imtlahze parent(v) = chdd(v) = O, size(v) = !, bucket(v) = (~, root(v) .= label(v) :ffi v for every vertex v
Intuahze number of vertices = mstructzon = O, new index = n

Step 2 Carry out the EVAL and LINK instructions using the off-line procedures with the new version of
PRODUCT Ignore all UPDATE mstructions

Step 3 Execute EXTRA_PASS using the new Version of PRODUCT

SECOND STAGE
Step 4 Inmahze value(v) = the initial label of v for every vertex v, value(t) = undefined for n < i _< new index,

where undefined is a value dlstmgmshable from every element of S

Step 5 Carry out the EVAL and UPDATE instructions on-hne usmg procedures EVAL2 and UPDATE2
Ignore all LINK mstructlons

There is one tricky point in this algorithm, involving the question of when the assignments
value(i) ~ - va lue (j) ® value(k) are actually carried out. For i > n, the second stage computes
value(i) only once. However, value(t) for i _< n can change as UPDATEs are carried out,
which might make value(i) obsolete for some indices i > n.

Fortunately this is not the case. Consider the ith EVAL(v) instruction. The value to be
returned by this instruction is the product of the labels of the vertices r = vo, vl , vk =
v on the tree path from the root r of the tree containing r to v. At the time of the EVAL,
the labels of v~, ..., vk cannot be affected by subsequent UPDATE instructions. The first
stage defines the value that EVAL(v) returns by an assignment va lue(answer(i)) . - value(r)
® va lue (j) , where va lue (j) is defined by a set of asstgnments as the product of the labels of
Vl vk. It follows that each assignment executed by EVAL2(v) while computing v a l u e (j)
involves values that cannot be affected by subsequent UPDATEs. Thus value(i) for each
nonlnput, nonoutput index i need only be computed once.

The rnnnmg ttme of the half-hne algorithm is O ((m + n) a (m + n, n)). Tho storage space
required is also O ((m + n) a (m + n, n)), since the total number of assignments that the first
stage must encode is proporuonal to the total length of all the path compressions.

7. Ver i fy ing M i n i m u m S p a n n i n g Trees

In this section we consider a simple apphcation of the results in Sections 4, 5, and 6. Let
(S, ®) be a commutative semigroup and let Tbe an unrooted n-vertex tree with an element
of S, label(v, w), associated wtth each edge (v, w). Given a set o f m vertex pairs ({v, w,} I 1
_< l _< m}, we wish to compute for each pair {v,, w,) the product of labels on the path in T
joining v, and w~.

We can solve this problem by using the least common ancestors algorithm of Section 4
and an appropriate EVAL-LINK-UPDATE method. First we arbitrarily choose a root r

712 R.E. TAR JAN

for the tree T. Next, we compute u, = LCA(v,, w,) for each pair {v,, w,). Finally, we
compute the product o f labels on the paths from u, to v, and from u, to w,, and combine
these products to give the answer for each pair {v,, w,}. The following procedure uses
EVAL, LINK, and UPDATE to carry out this computation.

procedure EVALUATE_PATHS;
begin

for each v ~ V - {r) do
create a tree with vertex v having label(parent(v), v) as its label,
bucket(v) "= 0 od,

for each (v, w} Epalrs do add {v, w) to bucket(LCA(v, w)) od,
SEARCH(r)

end EVALUATE_PATHS;

Recursive procedure SEARCH is defined by

procedure SEARCH(u),
begin

for v ~ children(u) do SEARCH(v) od,
for {v, w} ~ bucket(u) do

answer(v, w) = if u = v then EVAL(w)
else if u = w then EVAL(v)
else EVAL(~) G EVAL(w) od;

for v ~ children(u) do LINK(u, v) od
end SEARCH,

This algorithm requires O((m + n)a(m + n, n)) time. It is not hard to combine the
computations of least common ancestors and of path values into a single traversal of the
tree; we leave this as an exercise.

We shall give three applications of this algorithm. The first is to determine maximum
flow values in a multiterminal network. Gomory and Hu [16] have given a method of
constructing, for any undirected graph G with nonnegative edge capacities, an unrooted
tree T with edge capacities such that T has the same vertices as G and the value o f the
maximum flow from v to w in G is equal to the minimum capacity of an edge on the path
joining v and w in T, for any vertices v and w.

Assume that such a cut tree T is given for some graph G. I f we let (S, ®) be the real
numbers under minimization and we use the algorithm above in combination wtth the
EVAL-LINK-UPDATE method of Section 5, we can compute maximum flow values for
m pairs of vertices in O((m + n)a(m + n, n)) time.

A second application is to verify minimum spanning trees. Suppose G = (V, E) is a
graph with real values c(v, w) on its edges and that T is a spanning tree of G. T is a
minimum spanning tree if ~(o. w)~e' e(v, w) is minimum among all spanning trees of G. We
can verify that a spanning tree is minimum by using the following weB-known lemma.

LEMMA 5. T is minimum if and only ~ for each edge (v, w) E E - E', c(v, w) _>
max{c(x, y)](x, y) is on the tree path joining v and w}.

If we let (S, ®) be the real numbers under maximization and we use the algorithm above
in combination with the EVAL-LINK-UPDATE method of Section 5, we can compute
the maximum cost o f an edge along the tree path joining v and w for each nontree edge
(v, w). We can then apply Lemma 5 to test whether Tis minimum. This algorithm requires
O(mct(m, n)) time if G has m edges. It is interesting to note that the fastest known
algorithms for actually f indmg a mimmum spanning tree [6, 31] require O(m log log n)
time.

Our third application is to a problem of updating minimum spanning trees considered
by Chin and Houck [7]. Before addressing this problem, we make a seemingly unrelated
observation. If we use the first stage of the half-line algorithm in Section 6 to carry out the
EVAL and LINK instructions in EVALUATE__PATHS, we can build a straight-line
program for computing label products. We can visualize this program as a directed acyclic
graph, with one node of in-degree zero for each edge of T, one node of in-degree two for

Apphcations of Path Compression on Balanced Trees 713

each ® operation to be performed, and one node of out-degree zero for each pair
{v,, w~}. This graph contains O((m + n)a(m + n, n)) nodes, and there is a path from a node
of in-degree zero representing an edge (x, y) to a node of out-degree zero representing a
pair {v,, w,} if and only if (x, y) is on the path joining v, and w, in T.

Normally we would run this straight-line program forward, assigning initial values to
the nodes of in-degree zero and combining these values using ® operations until assigning
a value to each node of out-degree zero. We shall solve the problem of updating mimmum
spanning trees by what amounts to running the straight-line program backward.

Suppose G = (V, E) is a graph with edge values c(v, w), and that T = (V, E ') is a
minimum spanning tree of G. For each edge (v, w) of T, we wish to determine a nontree
edge (x, y) by which (v, w) should be replaced to create a new minimum spanning tree if
(v, w) is deleted from the graph. The proper replacement edges are specified by the
following lemma.

LEMMA 6. I f (v , W) is a tree edge, then any nontree edge (x, y) o f minimum cost such that
(v, w) is on the tree path joining x and y ts a suitable replacement for (v, w).

Chin and Houck give an O(n 2)-time algorithm for finding replacement edges. We can
find replacement edges in O(ma(m, n)) time, as follows.

Step 1 Using the algorithm of thts section m combmaUon wtth the first stage of the half-hne EVAL.LINK-
UPDATE method of SecUon 6, construct a dtrected acychc graph D with the following properties.

(a) D has O(ma(m, n)) nodes and edges
(b) Each tree edge (v, w) corresponds to a node a(v, w) of m-degree zero m D
(c) Each nontree edge (x, y) corresponds to a node b(x, y) of out-degree zero in D
(d) There is a path from a(v, w) to b(x,y) m D If and only if(v, w) ts on the tree path joining x andy

Step 2 Label each node b(x, y) of out-degree zero tn D by the corresponding edge (x, y) Process the remaining
nodes of D m reverse topological order To process a node c, examme the edges labehng the successors of c
Choose such an edge of minimum cost, and let this edge be the label of c

After step 2 is completed, each node a(v, w) of in-degree zero will be labeled by a nontree
edge suitable for replacing tree edge (v, w). Step 1 of the algorithm requires O(ma(m, n))
time; step 2 requires time proportional to the size of D [18, 22], which is O(ma(m, n)). Thus
the total running time is O(mc~(m, n)). The space required is also O(ma(m, n)).

8. Remarks

The algorithms we have presented for the E V A L - L I N K - U P D A T E problem can easily be
adapted to handle somewhat more general instruction types, such as the following.

GLINK(v, w) Combine the tree containing v with the tree having root w by making v the parent of w (This
mstructmn differs from LINK(v, w) m that v need not be a tree root)

RELABEL(r, x) If x is the root of a tree, replace the label of r by x

All our algorithms have a running time of O((m + n)a(m + n, n)) or worse. It is natural
to ask whether there ~s a faster, perhaps even linear-time algorithm. Such is not the case.
For certain choices of (S, ®) it is impossible to find an algorithm that runs faster than
O((m + n)a(m + n, n)), assuming m is ~(n) [291. Furthermore the disjoint set union
problem, when solved by any of a large class of pointer manipulat ion methods, requires
~((m + n)a(m + n, n)) time if m is f~(n) 128].

The remaining major open problem is to find an algorithm that will solve the on-line
EVAL-LINK-UPDATE problem, for any semigroup (S, ®), in O((m + n)a(m + n, n))
time. Recently Farrow [9] has presented an O((m + n)log*n)-time algorithm for this
problem, where

i tlmes

log*n = min{tllog log ... log n _< 1).

The author is presently developing an O((m + n)a(m + n, n))-time algorithm, but it is
substantially more complicated than the algorithms presented here.

714 R.E. TARJAN

In practice, the simple algorithm of Section 2 seems to be the best. Lengauer and the
author [19] have used the algorithms of Section 2 and Section 5 to compute dominators in
flow graphs. Our experiments comparing the two methods were inconclusive; the sophis-
ticated algorithm was about 10 percent faster than the simple algorithm on small problems
and about 20 percent faster on large problems. This small gain in speed is offset by the
added complexity of the algorithm.

Appendix. Graph-Theoretic Terminology

A graph G ffi (V, E) consists of a finite set V of vertices and a set E o f edges. Either the
edges are ordered pairs (v, w) of distinct vertices (the graph is directed) or the edges are
unordered pairs of distinct vertices, also represented as (v, w) (the graph is undirected). I f
(v, w) is an undirected edge, v and w are adjacent. I f (v, w) is a directed edge, v is a
p~edecessor of w and w is a successor of v. A graph G1 -- (V1, El) is a subgraph of G if
Vi C V and E~ C E. A path of length k from v to w in G is a sequence of vertices v ffi v0, v~,
. . . . vk = w such that (v, v~+l) E E for 0 _< i < k. The path contains the edges (v,, v~+~) for
0 _< i < k as well as the vertices v, for 0 _< i _< k. The path is simple i f v0 vk are distinct
(except possibly v0 ffi vk) and the path is a cycle i f Vo = vk. By convention there is a path o f
no edges from every vertex to itself, but a cycle must contain at least two edges. An
undirected graph is connected i f there is a path joining every pair of vertices. A graph is
acyclic i f it contains no cycles. A topological ordering of the vertices of an acyclic directed
graph is an ordering such that, for any edge (v, w), v appears before w in the ordering.

An unrooted tree T- - (V, E) is an undirected, connected, acyclic graph. I f an unrooted
tree T is a subgraph of a graph G with the same vertex set as T, then T is a spanning tree
of G. In a tree Tthere is a unique simple path between any two vertices v and w; we denote
this path by T(v, w).

A rooted tree (T, r) is a tree with a distinguished vertex r, called the root. A forest is a set
o f vertex-disjoint rooted trees. I f v and w are vertices in a rooted tree (T, r), we say v is an
ancestor of w and w is a descendant of v (denoted by v ~ w) if v is on the path from r to
w. By convention v ~ v for all vertices v. I f v --~ w and (v, w) is an edge of T (denoted
by v ~ w), we say v is the parent of w and w is a child of v. In a rooted tree each vertex has
a unique parent (except the root, which has no parent). Any two vertices v and w in a
rooted tree have a unique vertex u, called the least common ancestor of v and w (denoted
by u ffi LCA(v, w)), such that u is on T(v, w), u--~ v, and u--~ w. The path T(v, w)
consists of two parts, a path joining v and u containing descendants of u and ancestors of
v, and a path joining u and w containing descendants of u and ancestors of w. A leaf of a
rooted tree is a vertex with no children. The height of a vertex v in a rooted tree is the
length of the longest path from v to a leaf.

ACKNOWLEDGMENTS. I would like to thank Andrew and Frances Yao for several stimu-
lating discussions on the minimum spanning tree problem which sparked the writing of
this paper, Adr ian Bondy and Ron Graham for constructive criticism, Mark Wegman for
many long and rewarding talks about algorithms for global flow analysis, and Jeff Barth
for providing stimulus for this research.

REFERENCES

1. AC~RMANN, W Zum Hdbershen Autbau der reellen Zahlen. Math. Ann 99 (1928), 118-133
2 AHO, A.V, HOPCROFr, J.E., AND ULLMAN, J.D The Design and Analysts of Computer Algorithms. Addison-

Wesley, Reading, Mass., 1974
3 Aao, A.V, HOPCROFT, J.E, AND ULLMAN, J.D On computing least common ancestors in trees SIAM J.

Comping. 5 (1976), 115-132.
4 Aao, AV., AND ULLMAN, J D. Node listings for reducible flow graphs. J Comptr gyst Sci. 13 (1976), 286-

299
5. ARDEN, B.W., GALLER, B A., AND GRAHAM, R.M. An algorithm for equivalence declarations. Comm. ACM

4, 7 (July 1961), 310--314

Applications o f Path Compression on Balanced Trees 715

6 CHERITON, D, AND TARJAN, R E Finding minimum spanning trees SIAM J Comping. 5 (1976), 724--742
7 CHIN, F Y, AND HOUCK, D J Algorithms for updating minimal spanning trees. J. Comptr Syst Sci 16

(1978), 333-344
8. CHVATAL, V., KLARNER, D.A., AND KNUTH, D E Selected combinatorial research problems STAN-CS-72-

292, Comptr Scl Dept, Stanford U , Stanford, Cahf, 1972
9 FARROW, R Efficient on-line evaluation of functions defined on paths m trees. Tech. Ree. 476-093-17, Dept

Math Scl, Rice U , Houston, Tex, 1977
10. FISCHER, M J. Efficiency of equivalence algorithms. In Complexity of Computations, R E Miller and J W

Thatcher, Eds, Plenum Press, New York, 1972, pp 153-168
! 1 FONG, A., KAM, J , AND ULLMAN, J D Application oflatUce algebra to loop optimization. Conf. Rec Second

ACM Symp. Pnnclples of Programming Languages, Palo Alto, Cahf., 1975, pp 1-9
12 GALLER, B A., AND FISCHER, M J An improved equivalence algorithm Comm. ACM 7, 5 (May 1964), 301-

303.
13 GRAHAM, S L, AND WEGMAN, M A fast and usually linear algorithm for global flow analysis. J. ACM 23,

1 (Jan 1976), 172-202
14. HOPCROFT, J E Private communication.
15. HOPCROFT, J E., AND ULLMAN, J D Set-merging algorithms. SIAM J Comping 2 (1973), 294-303
16. Hu, T C Integer Programming and Network Flows. Addison-Wesley, Reading, Mass., 1969, pp 129-150.
17. KENNEI)Y, K.W Node hstmgs applied to data flow analysis Conf Rec. Second ACM Syrup Pnnclples of

Programming Languages, Palo Alto, Cahf, 1975, pp 10--21.
18 KNUTH, D E The A rt of Computer Programming, Vol l. Fundamental Algorithms, Addison-Wesley, Reading,

Mass., 1968
19. LENGAUER, T., AND TARJAN, R E A fast algorithm for finding dominators in a flow graph. To appear m

A CM Trans Programming Languages and Syst.
20. PATERSON, M Unpubhshed report, U. of Warwick, Conventry, England, 1972.
21. TA~AN, R.E Depth-first search and linear graph algorithms SlAM J. Comptng. 1 (1972), 146-160.
22 TARJAN, R.E Finding dominators m dtrected~raphs. SIAM J. Comping 5 (1974), 62-89.
23. TARJAN, R.E. Testing flow graph reductbdlty J Comptr and Syst. Scl 9 (1974), 355-365
24 TAPaAN, R E Efficiency of a good hut not hnear set union algorithm J. ACM 22, 2 (April 1975), 215-225.
25. T^POAN, R E. Apphcatlons of path compression on balanced trees Tech Rep. STAN-CS-75-512, Comptr.

Scl Dept, Stanford U , Stanford, Cahf., 1975
26 TAPJAN, R.E Solving path problems on directed graphs Tech Rep STAN-CS-75-528, Comptr. SCL Dept,

Stanford U , Stanford, Cahf, 1975
27 TA~AN, R.E. Graph theory and Gaussmn ehmmaUon In Sparse Matrix Computations, J R. Bunch and D.J.

Rose, Eds., Academic Press, New York, 1976, pp. 3-22
28. TA~AN, R E A class of algorithms which reqmre non-hnear ume to maintain disjoint sets TO appear m J.

Comptr and Syst. Scl
29 TA~AN, R.E Complexity of monotone networks for computing conjuncnons Annals Discrete Math. 2

(1978), 121-133
30. ULLMAN, J.D. A fast algonthm for the ehmmauon of common subexpresslons. Acta Informauca 2 (1973),

191-213.
31. YAO, A.C. An O([E[log log [V]) algonthm for finding minimum spanning trees. Inform. Processing Letters

4 (1975), 21-23

RECEIVED SEPTEMBER 1975; REVISED NOVEMBER 1978

Journal of the Association for Computing Machinery, Vol. 26, No 4, October 1979

