
Multilevel Atomicity-A New Correctness
Criterion for Database Concurrency Control

NANCY A. LYNCH
Massachusetts Institute of Technology

Multilevel atomic& a new correctness criteria for database concurrency control, is defined. It weakens
the usual notion of serializability by permitting controlled interleaving among transactions. It appears
to be especially suitable for applications in which the set of transactions has a nat.ural hierarchical
structure based on the hierarchical structure of an organization. A characterization for multilevel
atomicity, in terms of the absence of cycles in a dependency relation among transaction steps, is
given. Some remarks are made concerning implementation.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs-
concurrent programming structures

General Terms: Design, Performance, Theory

Additional Key Words and Phrases: Transaction, breakpoint, atomicity

1. INTRODUCTION

Popular models for database concurrency control [l, 141 are based on a set of
“entities,” either centralized or else distributed among the nodes of a network.
These entities are accessed by users of the database through “transactions,”
certain sequences of steps involving the individual entities. The steps are grouped
into transactions for at least three distinct. purposes. First, a transaction is used
as a logical unit: it describes a self-contained task within which local state
information can persist; thus, the results of earlier steps can be recorded so as to
affect the later steps of the same transaction. Second, a transaction is used to
define atomicity: all of the steps of a transaction form a logical atomic unit in
the sense that it should appear to users of the database that all of these steps are
carried out consecutively, without any intervening steps of other transactions.
This requirement. that transactions appear to be atomic is called “serializability”
in the literature [l, 3, 141 and has been widely accepted as an important
correctness criterion for databases. Third, a transaction is used as a unit of

This work was supported in part by NSF Grant No. MCS79-24370, by U.S. Army Research Office
Contract DAAG29-79-C-0155, and by the Advanced Research Projects Agency of the Department of
Defense Contract N00014-75-C-0661.
Author’s address: Laboratory for Computer Science, Massachusetts Institute of Technology, 545
Technology Square, Cambridge, MA 02139.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1983 ACM 0362-5915/83/1200-0484 $00.75

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983, Pages 484-502

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319996.319999&domain=pdf&date_stamp=1983-12-01

Multilevel Atomic@ l 485

recovery: either all of the steps of a transaction should be carried out, or none of
them should; thus, if a transaction cannot be completed, its initial steps must be
“undone” in some way.

While the same unit is generally used for all three purposes, I think it is more
appropriate to use different units. In particular, the logical unit (henceforth called
the “transaction”) should be as large as possible, for maximum transaction
expressiveness. If transactions are long, then the usual requirement of serializa-
bility of transactions is so strong that it excludes efficient implementation of
many application databases. Therefore, another mechanism must be superim-
posed on the transaction mechanism, in order to define atomicity. The unit of
atomicity should be as small as possible, for maximum concurrency. The unit of
recovery could be anywhere in between; one would probably not want to roll back
very long transactions, but might want to roll back beyond a unit of atomicity.

In this paper I consider the simultaneous use of a large logical unit and a
smaller unit of atomicity and imagine a database world in which processing is
carried out by very long, possibly even infinite, transactions. Each transaction
can rely on its memory of previous processing to determine its later processing.
From time to time, a transaction reaches a “breakpoint” where other transactions
are permitted to interleave. When a transaction resumes processing after a
breakpoint, it can recall its activities prior to the breakpoint.

Application databases are modeled here as centralized, concurrent systems of
transactions and entities. Application databases exist at a purely logical level.
Thus, it is appropriate to regard them as centralized even though they are to be
“implemented” by a distributed system. The steps of different application data-
base transactions might be allowed to interleave in various ways; the set of
allowable interleavings is determined by the application represented. At one
extreme, it might be specified that all allowable interleavings be serializable; this
amounts to requiring that the application database be a centralized serial database.
At the other extreme, the interleavings might be unconstrained. In a banking
database, a transfer transaction might consist of a withdrawal step followed by a
deposit step. In order to obtain fast performance, the withdrawals and deposits
of different transfers might be allowed to interleave arbitrarily, even though the
users of the banking database would thereby be presented with a view of the
account balances which includes the possibility of money being “in transit” from
one account to another. I don’t think that this interleaving represents an
inconvenience to be remedied when technology advances further; rather, it
represents the appropriate activity for this application. Between the two ex-
tremes, there are many reasonable possibilities.

A framework is required for describing sets of allowable interleavings. Such a
framework should specify interleavings in a way which is suitable for use by a
concurrency control algorithm. At the same time, the sets of interleavings which
can be specified should include the allowable interleavings for important appli-
cation databases such as those for banking.

As a first approximation to a specification method, we might associate with
each transaction its “atomicity,” formally described by a set of “breakpoints”
between different sets of consecutive steps. Steps not separated by a breakpoint
would always be required to occur atomically (at least from the point of view of

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983

488 ’ N.A. Lynch

the system users). As a special case of this definition, if there are no breakpoints
for any transaction except at the beginning and end, then this requirement is
simply the usual requirement of serializability. As another special case, if there
are always breakpoints between every pair of steps of each transaction, then this
requirement allows arbitrary interleaving. In addition, many intermediate cases
are possible.

However, this definition is not sufficiently general to express all commonly
used constraints on interleavings. For example, consider a banking system with
transfer transactions as described above. Transfers might be allowed to interleave
arbitrarily with each other. However, one might also want to have another type
of transaction, an “audit transaction” [4], which would read all of the account
balances and return their total. This audit transaction should probably not be
allowed to interrupt a transfer transaction between the withdrawal and deposit
steps, for then the audit would miss counting the money in transit. That is, the
entire transfer transaction should be atomic with respect to the entire audit
transaction. Thus, the same transfer transaction should have one set of break-
points with respect to other transfers, and another set with respect to audit
transactions.

This example is representative of a fairly general phenomenon: it might be
appropriate for a transaction to have different sets of breakpoints with respect
to different other transactions. That is, each transaction might allow different
“views” of its activity to different other transactions. Thus, a natural specification
for allowable interleavings might be in terms of the “relative atomicity” of each
transaction with respect to each other transaction, rather than just in terms of
each transaction’s (absolute) “atomicity.”

In this paper, a formal definition is given for a type of relative atomicity called
“multilevel atomicity.” This definition is probably not general enough to describe
all conceivable interesting sets of interleavings. However, it is quite adequate for
many applications, and appears especially suited for describing activities of
hierarchical organizations. A virtue of this definition is that any set of interleav-
ings thus defined has a simple characterization, in terms of the absence of cycles
in a particular dependency relation among transaction steps. This characteriza-
tion ought to be useful in the design of concurrency control algorithms for
multilevel atomicity.

Other researchers [2, 5, 6, 71 have also noted that the usual notion of serializ-
ability needs to be weakened. In particular, reference [5] contains interesting
preliminary work on specification and concurrency control design, for certain
nonserializable interleavings. In fact, the multilevel atomicity of this paper is a
generalization of the two-level atomicity described in [5] under the designation
“compatibility sets.”

The bank transfer-audit example is explored in references [4] and [7]. The
solution presented in [4] has the particularly pleasant property that the audit
does not stop transactions in progress.

The organization of the rest of the paper is as follows. In Section 2, some
examples are given of the sorts of applications for which multilevel atomicity is
suited. In Section 3, a formal model is given for application databases. In Section
4, multilevel atomicity is defined. In Section 5, the characterization theorem is
ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983

Multilevel Atomicity l 487

stated and proved. Section 6 contains discussion of the possible uses of the
characterization theorem for concurrency control design. Section 7 contains
discussion of the relationship of multilevel atomicity to the “nested transaction”
model of [8,9,11] and [13].

Much work remains to be done in designing and evaluating concurrency control
algorithms for multilevel atomicity. It remains to be seen whether new concur-
rency control algorithms which achieve multilevel atomicity can be made to
operate much more efficiently than existing concurrency control algorithms
which achieve serializability. It also remains to determine whether these weaker-
than-serializability notions are useful for describing the constraints required for
real-world database applications.

2. EXAMPLES

Definitions and claims are illustrated with examples. Many of the illustrations
are derived from the following applications.

Application 1. Banking. This example expands on the scenarios described in
the Introduction. The database for the Big Bucks Bank consists of individual
accounts. Bank customers are permitted to manipulate their own accounts in the
usual ways. They are also permitted restricted access to the accounts of others
(say, to deposit money). As an additional complication for this example, cus-
tomers are grouped into families, each of which shares control of a common set
of accounts. Frequently, a family member will move money between family
accounts. Transfers of money from the accounts of one family to the accounts of
another family are also fairly common: they are often contingent upon some
condition involving the amount of money in one of the originating accounts or
the total amount of money in all the accounts of the originating family. Occa-
sionally, the bank wishes to take a complete audit of the contents of all accounts,
perhaps using the result to enter a calculated interest amount into a special
account. Also, creditors frequently require an audit of the contents of all the
accounts of particular families.

The interleaving constraints are very strong for the bank audit it should be
atomic with respect to all the other transactions, and conversely. The interleaving
constraints for credit audits and customer transactions are much less severe: for
example, as long as the total of the accounts of any particular family is “correct”
(e.g., no money is in the process of being moved from one family account to
another), it should be possible for any creditor or customer transaction to obtain
access to that family’s accounts. Finally, the interleaving constraints for customer
transactions from customers in the same family are even less severe (perhaps
nonexistent). Presumably, family members trust each other enough to allow
arbitrary interleaving of accesses to individual accounts (or can be prevailed upon
to do so by having to pay less for arbitrarily interleaved service).

It might sometimes be the case that there are some precise database consistency
requirements which can be used to determine which interleavings are allowable.
For example, the condition that a particular family’s total be a correct represen-
tation of its assets might be used above to determine where certain interleavings
can occur. More usually, however, I expect that such data consistency constraints

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983

488 l N.A. Lynch

will be imprecisely understood, very complicated to state, and very difficult to
check. I prefer to place emphasis on the transactions themselves rather than on
the data. When several transactions are allowed to interleave to a particular
degree, I assume it is because they share sufficient understanding of their
permitted activities to be willing to allow each other access to some of their
partial results. The exact nature of this shared understanding is highly dependent
on the semantics of the application.

Application 2. Computer-Aided Design. Utopian Planning, Inc. is an organi-
zation which develops detailed plans for design of small cities. The organization
consists of a large number of specialized experts: architects, plumbers, traffic
engineers, electrical planners, residential-industrial zoning planners, pollution
experts, energy efficiency experts, and landscape planners, to name a few. Since
there are a large number of experts in some of the categories, these categories
are often further subdivided into teams. There is also a public relations depart-
ment, which has the job of describing the plans to customers intending to build
small cities.

Utopian’s database for each city consists of the latest plan for that city. All
the experts are constantly making changes appropriate to their specialties. These
changes interact in very complicated ways. The public relations department
requires “snapshots” which describe some reasonable recent version of the plans,
satisfying some loosely defined notion of consistency.

Interleaving requirements here are strongest for the snapshots vs. the changes:
it is preferred that snapshots be atomic with respect to all changes, and vice
versa. Among the changes a large amount of interleaving is allowed, each group
of experts expects that the version of the plan on which it begins its work satisfies
some minimal consistency constraints required by all the groups of experts.
However, this version need not be “sufficiently consistent” to show to customers.
Experts within a common specialty share a large body of knowledge about their
specialty. Therefore, by agreeing to respect certain consistency constraints ap-
propriate to their specialty, they can permit their changes to interleave to a high
degree. Experts within the same team share, in addition to knowledge about their
specialty, knowledge about the team’s working methods and habits. On this basis,
changes made by members of the same team are permitted to interleave to an
extremely high degree.

In this example, data-determined consistency constraints would be especially
difficult to describe. Nevertheless, it might be easy to describe which groups of
transactions “trust each other” to respect appropriate consistency constraints.
Note that I have not even described any structure for the database in this
example. This structure is extremely complex, and is not required for the
approach taken in this paper.

3. APPLICATION DATABASES

In this section we define precise notions of “transaction” and “application
database.” Application databases consist of a set of transactions together with a
set of “correct” interleavings for executions of those transactions. A notion of
“equivalence” for transaction executions is defined: two executions are equivalent
ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983

Multilevel Atomicity l 489

provided they look the same to each transaction and to each entity in the
database. The “correctable” executions are defined to be those which are equiv-
alent to correct executions.

3.1 A Model for Asynchronous Parallel Processes

Application databases will be formalized using a variant of a model [lo] for
asynchronous parallel computation.

The basic entities of the model are processes (nondeterministic automata) and
variables. Processes have states (including start states and possibly also final
states), while variables take on values. An atomic execution step of a process
involves accessing one variable and possibly changing the process’ state or the
variable’s value or both. A system of processes is a set of processes, with certain
of its variables designated as internal and others as external. Internal variables
are to be used only by a given system, and come equipped with particular initial
values. External variables are assumed to be accessible to some “environment”
(e.g., other processes or users) which can change the values between steps of a
given system.

The computation of a system of processes is described by a set of executions.
Each execution is a (finite or infinite) totally ordered set of steps which the
system could perform when interleaved with appropriate actions by the environ-
ment. Each execution consists of steps of the processes of the system.

For any execution e of a system of process, the dependency partial order, I,,
of the steps of e is defined as follows. For every pair of steps, CY, & in e, let cx I,
,f3 if LY precedes p in e and either

(1) CY and p involve the same process, or
(2) CY and /3 access the same variable.

In this paper I generalize slightly from [lo] by allowing executions to be arbitrary
totally ordered sets. Therefore, I require the technical assumption that each step
in an execution e has only finitely many I, predecessors. The consistency
requirements for executions are as follows. Each internal variable starts with its
initial value; each execution step involving a process, p, begins with p in the same
state which p had at the end of the previous step involving p; each execution step
accessing an internal variable, X, begins with x having the same value which x
had at the end of the previous step accessing x.

I relax the defintion of “execution” in [lo] in one further way, by removing
the assumption of fairness. That is, I do not require here that each process
continue to take steps until it reaches a final state.

If e is an execution of a system, S, of processes, then every total ordering of
the steps of e which is consistent with 5, is also an execution of S, having the
same sequence of values for each variable and the same sequence of states for
each process. We say that two executions, e and e’, of S are equivalent if I, is
identical to I,,.

3.2 Transactions, Application Databases, Correct and Correctable Executions

My notion of an application database is a centralized, concurrent system con-
sisting of transactions acting on entities, together with a set of correct interleav-
ings of the steps of those transactions. This is modeled very directly in the model

ACM Transactions on Dat+ase Systems, Vol. 8, No. 4, December 1983

490 l N.A. Lynch

in Subsection 3.1: transactions are simply formalized as processes, while entities
are formalized as variables. More precisely, an application database (S, C) consists
of a system S of processes, where all variables of S are internal (i.e., internal to
the system), together with a subset C of the executions of S. The processes are
called trunsuctions, while the variables are called entities. The elements of C are
called correct executions. The assumption that the variables are internal means
that the entities are only accessed via the transactions.

This definition gives a very general notion of an application database. The
(indivisible) steps of transactions are arbitrary accesses to entities, not necessarily
just reading or writing steps (although these two types of steps are permissible
special cases). Transactions can branch conditionally: for example, based on the
values encountered for certain entities, they might access different entities at
later steps. This model of a transaction is general enough to include most others
in the literature. It also includes some other notions usually regarded as somewhat
different from ordinary transactions: the “transactions with revoking actions” in
[5] are a particular type of nondeterministic transaction in the present model.

If (S, C) is an application database and e is an execution of S, we say that e is
correct&e provided e is equivalent to some e’ E C.

Example. If C is the set of serial executions of the transaction system [3], then
the correctable executions are just the usual serializable executions.

4. MULTILEVEL ATOMICITY

4.1 Motivation

One would like to be able to define particular application databases and have a
(centralized or distributed) system able to “implement” them. That is, the system
should “simulate” (in some sense which will remain unspecified) only correctable
executions for the transactions. For arbitrary choices of C, this task could be
very difficult.

For the case where C is the set of serial executions, concurrency control theory
provides help. A basic theorem [1,3] characterizes the serializable executions as
those having an absence of cycles in a certain relation describing dependencies
among transactions. Thus, one can ensure serializability by explicitly preventing
unwanted cycles (using such devices as two-phase locking [3] and timestamps
171).

In this section I restrict the form of C so that a similar cycle-free characteri-
zation can be obtained The particular method of restriction I use is to group
transactions into nested classes. Those which are more closely related in the
nesting structure will be permitted to interleave at a finer level of atomicity. This
structure has the advantage that it allows breakpoint specifications for each
transaction to be given solely in terms of nesting level. Nested classes are
appropriate for describing the examples given in Section 2, and for describing
other examples which model activities of hierarchical organizations.

4.2 Coherent Relations

The definitions in this subsection are presented at an abstract level (using sets
and partial orders) because they are used to prove a general combinatorial lemma
in Subsecton 5.1.
ACM Transactions on Database Systems, Voi. 8, No. 4, December 1989

Multilevel Atomicity l 491

A k-nest, 7r, for a set X assigns an equivalence relation a(i) to each i, 1 5 i 5
k, in such a way that

(1) a(1) consists of exactly one equivalence class,
(2) r(k) consists of singleton equivalence classes, and
(3) each ?r(i) is a (not necessarily proper) refinement of its predecessor, ?r(i - 1).

If x, x’ E X, then level& x’) denotes the largest i for which (x, x’) E ?r(i)(that
is, for which x and x’ are related by equivalence relation a(i)). Thus, pairs with
higher-numbered levels are more closely related.

We will consider cases where X is a set of transactions, as in the following two
examples.

Example (Banking). The set X consists of customer transactions, bank audit
transactions, and creditor transactions. A 4-nest describes the relevant relation-
ships among transactions. ~(1) relates all the transactions. 7r(2) relates all
customer and creditor transactions and places each bank audit transaction in a
singleton class. ~(3) refines 7r(2) by relating only those customer transactions
belonging to a common family. 7r(4) consists entirely of singleton classes.

Example (Computer-AidedDesign). The set Xconsists of snapshot transactions
and modification transactions. A 5-nest describes the important relationships.
~(1) relates all the transactions. 7r(2) groups all modification transactions to-
gether and all snapshot transactions together. 7r(3) refines ~(2) by relating only
those modification transactions belonging to a common specialty, and a(4) refines
7r(3) by relating only those belonging to a common team. Finally, ~(5) consists
of singleton classes.

Next, I describe sets of breakpoints within a totally ordered set, one set of
breakpoints for each of several “levels,” in such a way that the higher level sets
of breakpoints always include the lower level sets. The totally ordered set should
be thought of as the set of steps of some execution of a particular transaction.

If (X, 5) is a total order, then an equivalence relation, =, on X is said to be a
=-segmentation, provided that (Y = p and CY 5 y 5 @ together imply (Y = y. That
is, each equivalence class is a segment consisting of consecutive elements of X.

Breakpoints will be described formally by describing the segments between the
breakpoints, as follows. Once again, a k-nest (this time for the steps of the
transaction) is useful. If (X, I) is a total order, then a k&we1 breakpoint
description, B, for (X, 5) is a k-nest for X such that each B(i) is a s-segmentation.

Example (Banking). Let the elements of (X, I) be wl, 02, 03, &, &, in 5 order.
Then B given as follows is a 4-level breakpoint description for (X, 5):

B(l)‘s only class is (wl, 02, w3, &, &),
B(2)% classes are (ml, w2, wg} and (6,, a,),
B(3)‘s classes are (wi], (w2), (0~1, (6,) and (S,), and
B(4) is identical to B(3).

Intuitively, wl, w2, 03, &, a2 might represent the sequence of steps of a particular
execution of a funds-transfer transaction. Steps wl, w2, and w3 represent with-
drawals from accounts belonging to the family originating the transaction. The

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983

492 l N.A. Lynch

amounts obtained by these withdrawals depend on the amounts which are
discovered to be in the accounts. Steps A1 and & represent deposits to two
arbitrary other accounts (say, a fuel bill account and an entertainment account).
The amounts deposited in the two accounts might depend on the amount
discovered to be already in the first account. B(1) and B (4) just represent the
extreme cases of atomicity. B(2) represents the breakpoint (between w3 and &)
where other customer and creditor transactions (but not bank audit transactions)
are permitted to interleave. B (3) represents the breakpoints permitted for other
transactions of the same family as the given funds-transfer transaction.

Next, I want to describe sets of breakpoints for all the transactions in a given
set. If T is a set (to be thought of as a set of transactions), then a k-level
interleaving specification, 2 for T, is a collection of triples (X,, st, B,), one for
each t E T, where 1(X,, <,):t E T} is a collection of disjoint totally ordered sets
(to be thought of as the sets of steps of particular executions of all the transactions
in T) and each B, is a k-level breakpoint description for (X,, I~).

Example (Banking). Let T = (ti, t2, t3). For each ti, let (X,, sti) be the sequence
wil, wi2, ws, ail, 6i2, and let Bti be defined by analogy to the previous example:

B,(l)‘s only class is (wil, wi2, wi3, dil, S,),
B,(~)‘s classes are (ail, wi2, wi3) and (6il, &I, etc.

Then 9= ((Xt, st, B,):t E 2’1 is a 4-level interleaving specification for T.
Intuitively, ti, t2, and t3 represent different funds-transfer transactions, which

might be from the same or different families. Ygives both a sequence of steps
and a breakpoint description for each of tl, t2, t3. This combination of descriptions
is intended to be used to help define how tl , t2, and Q are permitted to interleave.
(Of course, in order to define the permissible interleavings, we must also know
which of ti, t2, and t3 are from common families.)

Next, I define an important condition for a relation, R, on U (Xt:t E T). I want
to express the fact that R preserves all of the individual st orderings and also
respects the restrictions expressed by the given collection of breakpoint descrip-
tions. In most cases of interest, R will be a partial order.

Let a be a k-nest for T, 9 = ((X,, I~, B,):t E T) a k-level interleaving
specification for T, and R a relation on U {Xt:t E T). Then R is coherent for ?r
and Yprovided the following two conditions hold.

(1) R contains each partial order st.
(2) Assume level ,(t, t ‘) = i.

Assume CY, (Y’ E X, and (Y I~(Y’ and (cu, (Y’) E B,(i).
Assume p E X,..
If (a, #I) E R, then (a’, p) E R.

Intuitively, this latter condition says the following. If a step, /3, of one trans-
action follows (in R) a step, (Y, of another transaction, t, then p also follows any
other step, (Y’, oft which follows (Y but precedes any breakpoints of the appropriate
level. Note that the breakpoints are defined solely in terms of the nesting level
for the two transactions.
ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983

Multilevel Atomicity - 493

Example. Let k = 3, T = (tl, tz, t3) and let 742)‘s classes be (tr, t2) and {&I.
(r(l) and ~(3) are uniquely determined.) For each ti E T, let (X,, sti) be the
sequence ail, CQ , ais, aid, and let Bt, (2)‘~ classes be (ail, ai 1 and { ai3, ai4). (B, (1)
and B,(3) are uniquely determined.)

Let R1 be the transitive closure of all the sti plus the pairs ((Yap, (Yap), ((Yap, cy13),
((~14, (~3~) and ((~24, (~3~). Then RI is a coherent partial order.

Let R2 be the transitive closure of all the sti plus the pairs (cyii, (Yap), (azl, ai3),
(an, (Yap) and ((Yap, (Yap). Then R2 is a noncoherent partial order.

Let R3 be constructed similarly to R2, except with ((Yap, all) in place of (an,
1~3~). Then R3 is a noncoherent partial order.

If a given relation R is not coherent, it is sometimes useful to consider the
smallest coherent relation containing R. This can be defined as follows. Given a
set T, a It-nest P for T, a k-level interleaving specification Y= ((X,, I~, B,):t E
7’) for T, and a relation R on U (X,:t E T} containing all the st, define the
coherent closure of R with respect to ?r and Yto be the relation obtained from R
by closing under Condition (b) of the coherence definition.

Example. In the previous example, the coherent closure of RI is RI itself. The
coherent closure of R2 is just the partial order RI. The coherent closure, R4, of
R3 is not a partial order, however. (Since ((~3~, (YJ E R4, it follows that ((Yap, (in)
E R4. We know ((~ii, az2) E R4. Since ((Yz~, (~33) E R4, it follows that ((~22, cys3) E
Rd. Hence, Rc contains a cycle.)

It is easy to see that R is extendable to a coherent partial order if and only if
the coherent closure of R is a partial order.

4.3 Definition of Multilevel Atomicity

In contrast to the preceding subsection, the definitions in this subsection deal
explicitly with a system S of transactions. I use the abstract definitions in Section
3 to help describe sets of allowable execution sequences. Intuitively, transactions
are grouped in nested classes so that for each t, the set of places where a
transaction t ’ can interrupt t is determined solely by the smallest class containing
both t and t’. Moreover, smaller classes determine at least all of the breakpoints
determined by containing classes (and possibly more). This says that transactions
which are grouped in a common small class might have many relative breakpoints
(i.e., can interleave a great deal), while transactions which are only grouped in a
common large class might have fewer relative breakpoints (i.e., cannot interleave
very much).

For each pair of transactions t and t ‘, I must describe the places at which t is
permitted to be interrupted by steps of t’. Since the transactions need not be
straight-line programs but can branch in complicated ways, I am forced to
describe separately the places at which each different execution, e, of t can be
interrupted by steps of t’.

A k-level breakpoint specification, $9, for a system, S, of transactions is a family,
(&,,:t is a transaction of S, e an execution of t], where each B,, is a k-level
breakpoint description for the steps of e, totally ordered according to their
occurrence in e. (Formally, the elements of the ordered set of steps are pairs (i,
ai), where ui is the ith step of e.)

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983

494 l N.A. Lynch

A k-nest, ?F, for the transactions of a system S, and a It-level breakpoint
specification, 9, for S can be used in a straightforward way to define an
application database. Namely, for any execution e of S, define a k-level interleav-
ing specification, Y(G8, e) =((Xt, st, B,) :t E T), by letting T be the set of
transactions appearing in e, e, be the execution of t occurring as a subsequence
of e, X, be the set of steps of t occurring in e,, I~ be the order in which those
steps occur in e, and Bt be B,,, E 9. Y(.@, e) is just the natural interleaving
specification which is derived from the particular execution e using the given k-
level breakpoint specification -G?. An execution e of 5’ is multilevel atomic for ?r
and 99 provided the total ordering of steps in e is coherent for ?r and 9(9, e).
Let C(?r, $8) denote the set of executions which are multilevel atomic for ?r and
&Z?. Then the application database of interest is (S, C(*, 9)).

Thus, we use the multilevel atomic executions as the “correct” executions. In
Section 5, we develop a characterization of the corresponding “correctable”
executions. Note that “multilevel atomic” generalizes “serial,” as follows.

Example. If k = 2, then x(1) relates all transactions, while x(2) only relates
transactions to themselves. There is only one possible breakpoint specification
99. Namely, for each t and e, &,, (1) groups all steps together, while &,, (2) divides
the steps into singleton sets. In this case, the multilevel atomic executions are
just the serial executions.

Example. The reader is referred to [5] for treatment of a special case of our
definition corresponding to k = 3, where B,,(2) consists of single steps, for all t
and e. That is, transactions in a common 7r(2) class can interleave arbitrarily,
but transactions not in a common n(2) class must be serialized with respect to
each other. The “multilevel” definition of this paper also allows intermediate
degrees of interleaving as well as the two extremes represented in [5].

Example (Banking). Let the set of transactions be T U A, where T = (tI, tz, t3)
is a set of transfers and A = (a) consists of a single bank audit. Let x be the 4-
nest with 7r(2) = (tl, t2, ts}, (a) and a(3) = (tl, t2j, (t3), (a).

Consider tl, for example. It is intended to withdraw $100 from the combined
accounts A, B, and C, and deposit the withdrawn amount in D and E. The precise
behavior of tl depends on the amounts encountered in the various accounts. It
will examine A, B, and C sequentially, attempting to obtain $100 as soon as
possible. If t1 is able to obtain $100 from A alone or from just A and 23, then it
need not access the remaining accounts. If tl accesses all three accounts and
succeeds in obtaining less than $100, it will proceed to D and E with the lesser
amount. It tries to leave D with at least $125; any available money over $125 will
be deposited in E.

Thus, tl has many possible execution sequences. Two are described below.

el: Access A, see $20, leave $0.
Access B, see $150, leave $70.
Access D, see $20, leave $120.

e2: Access A, see $0, leave $0.
Access B, see $15, leave $0.
Access C, see $70, leave $0.
Access D, see $110, leave $125.
Access E, see $30, leave $100.

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983

Multilevel Atomicity l 495

Let 58 = (&,,:t E T U A, e an execution for t) be the 4-level breakpoint
specification for T U A defined as described in the banking examples in Subsec-
tion 4.2. For example, B,,eZ(2) has classes {WI, WZ, wg), {S,, &), where wi, 02, 03,
&, and & represent the five steps of e2, in sequence. (For all transfers, B,,(2)
groups withdrawal steps together and deposit steps together.) B,,,J3) consists of
singleton classes.

NOW, for each ti, fix a corresponding execution ei with steps wii, wi2, ail, 6iz. Fix
an execution e of a with steps al, (Ye, CQ. If the following is an execution (i.e., if
the successive values of entities match up properly), then it is multilevel atomic
for?randG’:

w31, 032, ull, u21, a229 u12, 631, 632, 621, 611, 622, 612, al, a2, a3.

5. CHARACTERIZATION THEOREM

In the previous section, a particular style of definition for C, the set of correct
sequences, was given. One -Nould like a centralized or distributed processing
system to “simulate” only correctable executions. (“Simulation,” as already
mentioned, is not used in the context of any precise definition.) In this section a
characterization theorem is proved for correctable executions. This theorem is
analogous to the absence-of-cycles characterization for serializability [3].

5.1 A Combinatorial Lemma

In this subsection I state a combinatorial lemma which will be used in the next
section to derive a necessary and sufficient condition for correctability (equiva-
lence with multilevel atomicity). The lemma requires only the abstract definitions
in Subsection 4.2.

For this subsection, let T be a fixed set, let x be a fixed k-nest for T, and let .9
= KX, 5, B,) :t E TJ be a fixed k-level interleaving specification for T. Let
“coherent” mean “coherent for K and 2 n and write “level” for “level,“.

LEMMA 1. If I is a coherent partial order, then there is a coherent total order
5’ which contains 1.

PROOF. See Appendix.

Example. Let RI be the coherent partial order given in Subsection 4.2. Then
there are two coherent total orders containing RI:

(Yll, CXl2, (Y21, (Y22, a13, a14, (%3, a24, a31, a329 a339 a349

and

(Yll, (Y12, (Y21, a221 a23, a24, a139 014, a311 a329 @3, a34-

5.2. The Theorem

The characterization result can now be stated. For this subsection, let S be a
fixed set of transactions, ?r a fixed k-nest for S, and 58 a fixed k-level breakpoint
specification for S. Let the “correct” executions denote those in C(r, G?)(i.e., the

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983

496 r l N.A. Lynch

multilevel atomic executions), and the “correctable” executions denote those
which are equivalent to multilevel atomic executions.

THEOREM 1. Let e be an execution of S. Then e is correctable if and only if the
coherent closure of I, with respect to ?r and .9(~23, e) is a partial order.

PROOF. First, assume e is correctable. This means that I, is extendable to a
total order which is in C(n, Q), that is, which is coherent for a and Y(L%‘, e).
Then surely the coherent closure of I,, which is the smallest coherent relation
containing I,, must be acyclic.

Conversely, assume that the coherent closure of I, with respect to a and 9(G’,
e) is a partial order. Then the lemma implies that there is a coherent (for n and
9(G?, e)) total order which includes the coherent closure of I,, and which
therefore includes I,. Thus, e is correctable. Cl

Example (Banking). Consider the last example in Subsection 4.3, where the
transactions are tl , t2, t3 and a, and fix executions as before. Assume the accounts
accessed are as follows.

If the following is an execution, then, while it is not multilevel atomic for r
and 29, it is correctable:

Wll, Wl, w21, w12, al, a2, w22, 611, a3, 821, 622, w32, 612, 631, 832.

An equivalent multilevel atomic execution is the one given in Subsection 4.3.
On the other hand, if the following is an execution, then it is not correctable:

all, 021, w31, al, a2, a3, w12, w22, 032, ‘hl, 821, ‘531, 612, 622, 832.

The theorem can be used to verify both claims. For instance, to see that the
second execution is not correctable, we describe a particular cycle in the coherent
closure, namely, a3 < w22 < al < cz3, where the second inequality follows when
we consider that w21 < (Y~ and take the coherent closure.

6. CONCURRENCY CONTROL

In this section I discuss how a concurrency control mechanism might take
advantage of some of the preceding ideas. I want to design concurrency controls
which use the correctness condition stated in the theorem in Section 5.

For definiteness, I use the “migrating transaction” model described in [14]. In
this model, entities of the database reside at nodes of a network of processors,
and the transactions migrate from entity to entity as necessary, executing some
of their steps on different processors. In more detail, a transaction t, with start
state s, originates at a processor p. A message (p, t, s) is sent to the processor
owning the entity which t accesses when it is in state s. A processor receiving a
message (p, t, s) “performs” the indicated step by changing the value of the
ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983

Multilevel Atomicity l 497

entity, updating t’s state, and sending a new message (p, t, s’), where s’ is the
new state. Ifs’ is not a final state, the messages is sent to the processor owning
the appropriate entity. If s ’ is a final state, the message is sent back to the
originator p. In this way, an execution e of the system of transactions is actually
“performed” by the processors. The total order of the execution is determined by
real clock time.

I consider how to insure that any execution sequence e “performed” by the
processors has a dependency partial order I, whose coherent closure is a partial
order.

It will be necessary to make an additional assumption about a breakpoint
specification-in order to be able to determine the locations of breakpoints on-
line, it is necessary to assume a “compatibility” condition: if two executions of a
transaction share a common prefix @, then either both executions have a break-
point immediately after 6, or neither does.

Assume that the concurrency control generates an execution e of S, and that
the concurrency control includes some priority scheme and rollback mechanism
to ensure that no initiated transaction gets blocked indefinitely. (Such a scheme
is not specified here.) I consider how to ensure that the coherent closure of 6, is
a partial order.

One possible strategy is cycle detection, using the coherent closure of I,. If
the concurrency control does not otherwise guarantee that se is extendable to a
coherent partial order, the concurrency control might explicitly generate the
edges of the coherent closure of I,, and check for cycles. If a cycle is detected, a
priority scheme can be used to determine which steps should be rolled back.
Presumably, fewer cycles would be detected using the multilevel atomicity defi-
nition than if strict serializability were required, leading to fewer rollbacks.

Another approach is cycle prevention: guaranteeing that the coherent closure
of se is a partial order. One way of doing this might be to delay some steps, as
follows.

Let /3 be a step of any transaction t’. /3 first gets “scheduled,” thereby locking
its entity and delaying t’. (The lock on the entity prevents any other step from
being performed on it.) p does not actually get “performed” until the following is
ensured. (Note that e refers to the order in which steps actually get performed,
not the order in which they are scheduled.) Let es denote the initial segment of e
ending with step fl. If LY is the last step of some transaction t which precedes /3 in
the coherent closure of sea, then a level(t, t’) breakpoint immediately follows (Y
in the execution subsequence of es belonging to t. (This can be accomplished by
making p wait until suitable breakpoints have been reached, assuming that the
concurrency control uses a priority-rollback mechanism for preventing blocking.)

If the property above is guaranteed, for each /3, then the coherent closure of I,
is consistent with the total ordering of steps in e, so it must be a partial order.

Of course, there are still many difficulties involved in designing a priority-
rollback scheme to guarantee that no transactions block. Another related diffi-
culty in the design of a mechanism for allowing transactions to commit is that
even though the concurrency control guarantees eventual performance of all of
the steps of a correct execution e, it does not necessarily follow that the
concurrency control can determine a particular point in time when each trans-

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983

498 l N.A. Lynch

action can no longer have any of its steps rolled back! This is appare.ntly a greater
difficulty for multilevel atomicity than it is for ordinary atomicity, since multi-
level atomicity allows (even if there are only a finite number of entities) an
infinite chain of transactions tl, t2, t3, . . . such that for each i, there are steps (Y
of ti and /3 of ti+l with p I, (Y. This means that it is quite plausible that a rollback
of steps of tic1 can cause a rollback of steps of ti, and SO on.

7. DISCUSSION

7.1. Nested Transactions

It is interesting to compare multilevel atomicity to the atomicity achieved by the
“nested transaction model” [9, 11, 131. The latter model permits transactions to
be nested, and then requires serializability of transactions at every level, including
the top level. The remainder of this subsection assumes familiarity with some of
the work on nested transactions.

At first glance, it appears that the nested transaction model is incapable of
describing the interleavings considered in this paper. Indeed, this is the case if
the atomicity units (“transactions” of the nested transaction model) are con-
strained to be the same as the logical units (“transactions” of this paper).

Example (Banking). Let T be a set of transfer transactions, A a set of audit
transactions. If each element of T U A is modeled as a separate top-level
transaction in the nested transaction model, then elements of T are required to
be serialized with respect to each other.

However, the situation is different if the logical units and the units of atomicity
are allowed to be different. The nested “transactions” of the nested transaction
model can be regarded as describing the units of atomicity.

In order to distinguish these from the logical transactions, I will designate the
former as “actions.” A (logical) transaction would be mapped into actions by
means of a mapping which distorts the transaction’s structure.

Example (Banking). Let T = (tl, . . . , t4) be a set of transfers, where each
transfer ti consists of a withdrawal step wi followed by a deposit step 6i. Let A =
(al, ~2) be a set of audits, where each audit ai consists of a sequence ail, . . . , ain
of read-account-balance steps. A nested action tree can be used to describe the
relevant nesting relationships between actions for each multilevel atomic execu-
tion. For example, the tree in Figure 1 can be used to describe an execution in
which transactions tl and t2 are combined to form a single action. The steps of
the two transactions, ol, &, w2 and i& are all siblings as far as atomicity is
concerned.

There are several possible ways in which wl, a2, w2 and a2 might interleave.
Similarly, t3 and .?* are combined. (Note that the reorganization of transactions
into actions is not statically determined, but rather depends on the particular
execution.) With this reorganization, the nested transaction model expresses
exactly the proper atomicity requirements.

In a way similar to that described in the preceding example, any set of multilevel
atomic executions C(s, .G?) can be described by a corresponding collection of
nested action trees. In each such nested action tree, the following property holds.
ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983

Multilevel Atomicity l 499

ll
*1 Sl w2 62 51 52. " 5" w3 63 O4 % Q2l a22 . l . a2”

Fig. 1

Enumerate the levels of the tree, with the root at level 1. Then all steps appearing
below any particular level i node in the tree belong to transactions which are
?r (&equivalent. Moreover, (if i > l), these steps suffice to carry each of the
transactions involved to a level i - 1 breakpoint. In this way, the nested action
tree structure follows the k-nest structure.

Although it is possible for the nested transaction model to describe multilevel
atomicity, it is not clear to what extent this fact is useful for implementing
multilevel atomicity. There are several known ways of implementing nested
transactions, based on timestamps [13] or two-phase locking [8, 111. Of course,
these could be specialized to implement multilevel atomicity. However, I do not
know whether these specializations provide efficient implementations. This ques-
tion is a topic for future study.

The new programming language Argus [8] is based on the nested transaction
model. In that language, the structure of user programs follows the nested action
structure very closely. That is, the logical unit and the unit of atomicity are the
same. While I suspect that the nested transaction model is adequate for describing
atomicity, it seems to me that for modeling many situations of interest (multilevel
atomicity, conversations between transactions [12]), it will be necessary for the
logical program structure to be different from the atomicity structure. Perhaps
both logical structure and atomicity are naturally described using nested struc-
tures, but the nestings used for those two purposes might be different.

7.2 Remaining Questions

There are several areas remaining for future research: exploration of more
applications in which multilevel atomicity is a helpful descriptive tool; the design
of detailed concurrency controls based on this criterion, and the use of them to
determine whether this generalization of serializability can be exploited for
increased efficiency are a few such areas. It also remains to be seen whether
implementation of multilevel atomicity as a special case of the nested transaction
model will provide reasonable efficiency.

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983

500 ’ N.A. Lynch

Of the greatest and most general significance, though, is the identification of
other situations in which it is useful to distinguish the logical unit from the unit
of atomicity (and from the unit of recovery).

APPENDIX. PROOF OF THE COMBINATORIAL LEMMA
Let &) denote 1. A sequence of stages numbered 2, . . . , k is carried out. Each
stage, i, inserts additional pairs into the ordering relation, yielding I”‘. Then I’
is defined to be @. It is shown, inductively on i, 1 5 i 5 k, that (a) I(‘] is a
coherent partial order, and (b) if (Y E X, and B E Xl, and level(t, t’) <, then (Y
and p are &) comparable. Conditions (a) and (b) are trivially true for i = 1.
Conditions (a) and (b) for i = k clearly imply the needed result.

Stage i(2 I i I k).
Partition X = U (Xt: t E 7’) into segments, where each segment is an equivalence

class of some B,(i - 1).
A segment S is said to belong to an element t E T if 5’ c X,.
Define a directed graph G whose nodes are all the segments. G contains an

edge from segment S1 to segment Sp exactly if there exist (Y E S1, p E Sz with (Y
&i-l) P.
- Totally order the strongly connected components of G, 35 5$ zz . . . , so that
G contains no edges from any segment in Ym to any segment in Ym, n < m. Then
define I(‘) by adding to I(‘-” all pairs ((u, /3), where (Y E S1 E Ym, ~j E Sz E 9;,
and m < n. (Stage i is now complete.)

I now prove the needed properties (a) and (b) for #, assuming that they hold
for &l). (Note, there is no Lemma 2.)

LEMMA 3. I”’ is a partial order.

PROOF. There are no edges in I(‘) from (Y E S1 E 9, to /I E Sz E J%, where n
< m. Also , all edges in sci) not in &l) go from (Y E S1 E 5% to B E Sz E 9&
where m < n. Thus, there is no cycle in &’ involving a new edge. Since &l) is
a partial order, there are no cycles in 8. Cl

LEMMA 4 di) is coherent. . -

PROOF. Assume level(t, t’) = j. Assume (Y, (Y’ E X, and (Y st LY’ and (ar, (u’) E
&(j). Assume /3 E Xl. Assume (Y I”’ /3. I show that (Y’ &) p. The result is trivial
if t = t’, so assume that t # t’.

Case 1 (Y 4-l) p . - . By inductive hypothesis (a), I”- ‘) is coherent, which
implies the needed result.

Case 2. a 75 +l’ p. Then a E S1 E .S$$, /3 E Sp E 9” for some m < n.

Since (Y I”’ fl and I”’ contains &l), it follows that p &(‘-l) (Y, so that cy and p
are j(‘-‘) -incomparable. Then inductive hypothesis (b) implies that j (= level(t,
t’)) 2 i - 1. Thus, &(j) C B,(i - l)(i.e., &(j) is a refinement of B,(i 7 l)), so
that (a, a’) E B,(i - 1). Therefore, (Y ’ E &. The definition of 5(i) then insures
the needed result. 0

LEMMA 5. For each m, the following holds. If S, S’ E Y,, S belongs to t and S’
belongs tot’, then (t, t’) E n(i).

ACM Transactions on Database Systems, Vol. 8, NO. 4, December 1983

Multilevel Atomicity l 501

PROOF. If not, then some 5?%m contains a cycle So, &, . . . , S1 = So of segments
such that for each j, 0 I j 5 l- 1, there exist (Y E Sj, @ E Sj+l with (Y I(‘-‘) p and
such that two of the segments belong to r(i)-inequivalent elements of 7’.

Let S and S’ be two distinct segments in this cycle, belonging to elements t
and t’ respectively, where (l)(t, t’) &r(i), and (2) any segment S” following S
and preceding S’ in the cycle belongs to some t” which is x(i)-equivalent to t.
Then if (Y is the last (in the I~ ordering) element of S and fi is the last (in the
s,c-ordering) element of S’, we claim that a! I(‘-‘) /I. This is shown by induction
on the number of segments following S and preceding S’ in the cycle.

Inductive Step. There exists cy’ E S such that LY’ &” p’, where p’ is the last
step of the cycle-successor of S. (This is by construction of the cycle and the fact
that I”-” contains all the total orderings of the individual transactions.) By
inductive hypothesis (or trivially, if S’ itself is the cycle-successor), it follows
that p’ I(‘-~) p. Thus, (Y’ I(‘-‘) p. Now, j = level& t’) 5 i - 1, by assumption, so
B,(i - 1) C B,(j). Since ((Y’, a) E B,(i - l), it follows that ((Y’, a) E B,(j).
Coherence of 8-l) implies that (Y &-l) /3.

Applying this claim repeatedly around the cycle shows that there are two
distinct segments, S and S ‘, such that (Y &l) p and /3 &-l) (Y, where (Y and p are
the last steps of S and S’ respectively. But this contradicts the assumption that
4-l) is a partial order. - Cl

LEMMA 6. If (Y E X, and p E X,, , and level(t, t’) < i, then cu and p I”)-
comparable.

PROOF. By Lemma 5, t and t’ do not have any segments in the same strongly
connected component 9,. Thus, (Y E S1 E 5$, @ E Sz E _sP,, and m # n. But
then sea is defined to contain the pair ((u, /3) if m < n, and to contain (p, a) if n
<m. q

ACKNOWLEDGMENTS

The author is grateful to Nancy Griffeth, Mike Merritt, and Mike Fischer for
many discussions about the subjects covered in this paper. Comments and
suggestions from Phil Bernstein, Nat Goodman, and Bill Weihl are also appre-
ciated.

REFERENCES

1. BERNSTEIN, P. A., AND GOODMAN, N. Concurrency control in distributed database systems.
ACM Comput. Suru. 13, 2 (June 1981), 185-221.

2. CLARK, D. Oral presentation at the Fifth Berkeley Workshop on Distributed Data Management
and Computer Networks, Feb. 3-5,1981.

3. ESWAREN, K. P., GRAY, N. N., LORIE, R. A., AND TRAIGER, I. L. The notions of consistency and
predicate locks in a database system. Commun. ACM 29,ll (Nov. 1976), 624-633.

4. FISCHER, M. J., GRIFFETH, N. D., AND LYNCH, N. A. Global states of a distributed system. In
Proc. IEEE Symp. Reliability in Distributed Software and Database Systems, July 1981. Also in
IEEE Trans. Softw. Eng. SE 8,3 (May 1982), 198-202.

5. GARCIA-M• LINA, H. Using semantic knowledge for transaction processing in a distributed
database. Tech. Rep. 285, Princeton Univ. Dept. of Electrical Engineering and Computer Science,
April 1981.

6. GRAY, J. N., LORIE, R. A., PUTZOLU, G. R., AND TRAIGER, L. I. Granularity of locks and degrees
of consistency in a shared database. In Proc. IFIP Working Conf. on Modelling of Data Base

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983

502 l N.A. Lynch

Management Systems (Freudenstadt, Germany, Jan. 1976), pp. 695-723. Also in Modelling in
Data Ease Management Systems, G. M. Nijssen, Ed., Elsevier North-Holland, 19’76, pp. 365-395.

7. LAMPORT, L. Towards a theory of correctness of multi-user database systems. Massachusetts
Computer Associates, CA-7610-0712, Oct. 1976.

8. LISKOV, B., AND SCHEIFLER, R. Guardians and actions: linguistic support for robust, distributed
programs. In 1982 Ninth Annual ACM SZGACT-SZGPLAN Symp. on Principles of Programming
Lunguoges (Albuquerque, Jan. 25-27,1982) pp. 7-19.

9. LYNCH, N. A. Concurrency control for resilient nested transactions. MIT/LCS/TR-285, MIT,
Laboratory for Computer Science, Feb. 1983.

10. LYNCH, N. A., FISCHER, M. J. On describing the behavior and implementation of distributed
systems. Theor. Cornput. Sci. 13, (Jan. 1981), 17-43.

11. MOSS, J. E. B. Nested transactions: an approach to reliable distributed computing. PhD
Dissertation, Tech. Rep. MIT/LCS/TR-260, MIT, Laboratory for Computer Science, Cambridge,
Mass., 1981.

12. RANDELL, B. System structures for software fault tolerance. In Proc. Znt. Conf. on Reliable
Software (Los Angeles, April 21-23,1975), ACM, New York, 1975, pp. 437-457. Also in SZGPLAN
Notices 10,6 (June 1975); also in IEEE Trans. Softw. Eng. 1,2 (June 1975), 220-232.

13. REED, D. P. Naming and synchronization in a decentralized computer system. PhD Dissertation,
Tech. Rep. MIT/LCS/TR-205, MIT, Laboratory for Computer Science, Cambridge, Mass., 1978.

14. ROSENKRANTZ, D., STEARNS, R., AND LEWIS, P. System level concurrency control for distributed
database systems. ACM Tmns. Database Syst. 3,2 (June 1978), 178-198.

Received June 1981; revised September 1982; accepted November 1982

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983

