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The numerical evaluation of the Hankel transform poses the problems of both infinite
integration and Bessel function calculation. Using the corresponding numerical program
routines from the literature, a Fortran program has been written to perform the Hankel
transform for real functions, given either in analytical form as subroutines or in discrete form
as tabulated data.
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tions—FORTRAN 77; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numeri-
cal Algorithms and Problems—Computation of transforms (e.g., Fast Fourier Transfor)

General Terms: Algorithms
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1. PROBLEMS WITH THE HANKEL TRANSFORM

The real Hankel transform *n~j, f~x!! of a real function y 5 f~x! requires
the evaluation of the infinite integral

*n~j, f~x!! 5 E
0

`

~xj!1/ 2f~x!Jn~xj!dx (1)

where n [ R is the order of the transform; j [ R is the transformation
parameter with 0 , j; and Jn~x! is the Bessel function of the first kind.
Precise definitions of *n~j, f~x!! and conditions on f~x! can be found in
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Erdelyi et al. [1954], Korn and Korn [1968], and Sneddon [1955]. For 21/2
, n the Hankel transform is self-reciprocal, i.e., with g~j! 5 *n~j, f~x!!
given one finds f~x! from f~x! 5 E

0
`~xj!1/ 2g~j!Jn~xj!dj. The integral (1)

will exist if f~x! [ L1, i.e., if the integral E0
`if~x!idx exists. Analytical

solutions of (1) are known for a variety of functions f~x! [Erdelyi et al.
1954]. By use of a symbolic computation program further analytical solu-
tions may be found.1

Numerical solutions also are of interest and unavoidable, if f~x! is not
known analytically. For example, measured data may be given (sampled) as
a table of N data pairs ~x1, f~x1!!, . . . , ~xN, f~xN!!. Several computer
programs are available to solve (1) numerically. Siegman used a nonlinear
change of variables to convert the one-sided Hankel transform into a
two-sided cross-correlation integral [Siegman 1980]. The algorithm is par-
ticularly fast and can be applied to sampled data, but requires a sampling
at exponentially increasing x-values. Piessens presented a program which
solves (1) making use of numerical integration [Piessens 1982]. The approx-
imation for the Bessel function Piessens used allowed him to write the
infinite integral as the sum of an integral over a finite interval and of a
Fourier-sine and Fourier-cosine transform. The restriction to integer
n-values (with 0 # n # 10) prevents the application of that program to
transforms with noninteger n which in particular arises if spherical Bessel
functions are involved. In the same year, Anderson [1982] introduced his
algorithm for the Hankel transform by using related and lagged convolu-
tions. Again, the algorithm is restricted to integer n. The noninteger
Hankel transform with n 5 j 1 1/2 (where j is an integer) is known as
spherical Bessel transform. Talman [1983] provided a corresponding pro-
gram for sampled data, but the x-values have to be distributed uniformly in
ln~x!.

In this work, a direct numerical approach to solve Eq. (1) is presented
which consists of two parts: (1) the calculation of the infinite integral and
(2) the calculation of the Bessel function Jn~x!.

(1) Several strategies can be found in literature for the numerical evalua-
tion of infinite integrals. None of them is strictly valid, since any
numerical procedure has to map the infinite integral onto a finite one.
A frequent strategy is to split the integral into a finite one from lower
limit 0 to upper limit xl (where xl stands for the upper limit of the finite
integral, i.e., the x-value at which the integral in (1) is split) and an
infinite one from xl to `. Furthermore, no procedure can account for the
uncountable variety of the integrand form. Of particular difficulty are
infinitely oscillating functions as integrand, as Jn~x! is.

1The function inttrans[hankel] of the symbolic computation program Maple [Waterloo
Maple 1996] looks up known Hankel transform in an internal table.
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(2) Many books give details on the definition (e.g., Courant and Hilbert
[1968] and Whittaker and Watson [1978]) and on the numerical evalu-
ation of Jn~x!. For large x an asymptotic expansion is available which
reads in its simplest form

Jn~x! 5 S 2

pxD
1/ 2

cosSx 2
np

2
2

p

4D 1 O~ixi2
3
2!. (2)

2. AN APPROXIMATION TO THE HANKEL TRANSFORM

The approach presented here combines two strategies from (1) and (2) in an
appropriate manner with respect to Eq. (1). Since Jn~x! is oscillatory, the
integration procedure should be able to integrate an oscillating integrand.
A particular problem is posed by the fact that the oscillations of Jn~x! are
not of constant period p (the zeros of Jn~x! are not equidistantly spaced).
Fortunately (2) is of constant period p 5 2p; therefore, we can take
advantage of splitting the integral into two parts and using the asymptotic
form (2). The present approach is

*n~j, f~x!! ' E
0

xl

~xj!1/ 2f~x!Jn~xj!dx 1 E
xl

`

S2

p
D1/ 2

f~x!cosSxj 2
np

2
2

p

4Ddx. (3)

We are not able to estimate the error of the approximation (3). Of
decisive importance is the choice of xl, the “splitting value.” No general rule
can be given, only a few guidelines, since xl depends on f~x!. In any case, xl

should not violate the condition xl # xas, where xas denotes the x-value
above which we apply (2). A condition on the upper limit for xl is obviously
xl , xmax, where xmax is the largest real number of the computer system in
use. The optimal value for xl may be suggested by f~x!. In case of tabulated
data, one has obviously xl # xN. A further favorable case will be a damped
function, which may be considered equal to zero above a certain value xd, so
that one will set xl 5 xd. Functions containing a damping factor exp(2ax)
for example will belong to this case. Functions f~x! which are oscillating
will cause particular problems for approach (3). The period pf of f~x! will
mostly be different from 2p. Then any particular integration algorithm
depending on p 5 const above xl will fail. In this case the user is forced to
cut any oscillating part in f~x! above xl. Any f~x! for which E

0
`if~x!idx does

not exist will cause our approach to fail. Speaking in a loose manner, we
say that favorable functions should obey f~x! 3 0 for x 3 `.
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3. THE IMPLEMENTATION OF THE APPROXIMATION

The actual implementation of (3) has been done in the form of a Fortran
program named HANKEL. The finite integral E0

xl. . . dx is carried out by
INTHP from Sikorsky et al. [1984]. Any other reliable subroutine could be
taken here, but our tests lead to the choice of INTHP, partially because it
can integrate even sharply peaked functions like sin~x! / x, but mainly
because it is designed for infinite integrals also (and thus could be used for
that purpose, too). The infinite integral E

xl

`. . . dx is left to subroutine
OSCINT from Lyness and Hines [1986] which is specially designed for an
oscillating integrand of constant period p. OSCINT will fail if p Þ const for
x . xl. Any oscillating part of f~x! must be canceled above xl.

Table I lists all important parameter ranges set in HANKEL. The values
for x and j are machine dependent. The user has to tell HANKEL the
actual computer platform used. This is done in subroutine D1MACH. The
values listed in Table I are valid for an IBM RS 6000 , as well as for a
Pentium PC (IEEE IBM/XT standard).

4. TESTS OF PROGRAM HANKEL

Although classification is desirable, we are not able to classify the functions
f~x! for which HANKEL will give correct transforms. Moreover, even for a
given f~x! we cannot provide an error estimation in closed form. Therefore,
we tested HANKEL using the test functions listed in Table II. Their
implementations are provided as examples in DHFUNC of HANKEL’s
source code, so one can take them as templates for one’s own function
implementations. The following figures give *n~j, f~x!! according to the
analytical solution *exa [Erdelyi et al. 1954] (plotted as line) and the
residual r~j! of the numerical solution *num with r 5 *num 2 *exa (plotted
as L) for test functions 1–4. Satisfactory agreement (5 small residual)
between the analytical and numerical solutions was achieved for functions
1, 2 and 6, whereas for 3 and 4 some deviations were observed. In the
specific case of function 3, for x 5 1 the transform does not exist; thus
some deviations around this singularity are not too surprising.

Table III summarizes for test functions 1–4 the mean residuals
r 5 O

i51
N ~*num, i 2 *exa, i! / N and the standard deviations s~r! 5

~O
i51
N ~~*num, i 2 *exa, i! 2 r!2!1/ 2 of the residuals. Also given are the relative

residuals rrel 5 O
i51
N ~~*num, i 2 *exa, i!/*exa, i! / N and the relative standard

Table I. Ranges of Some Major Variables in HANKEL

Variable Function Minimal Value Maximal Value

x independent variable in f~x! 2.23D-307 1.79D1308
j parameter in *n~j, f~x!! 2.23D-307 1.79D1308
n order of the transform -100.0 100.0

xas onset of (2) for Jn~x! 100.0 —
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deviations s~r!rel 5 ~O
i51
N ~~*num, i 2 *exa, i! 2 rrel!

2!1/ 2. The precision e of the
computer arithmetic is defined as the smallest number such that 1 1 ? e ? Þ 1.
In order to take into account the computer arithmetic, residuals and relative
residuals were also calculated relative to e. These numbers should be comparable
among different computer platforms with different e. Since e 5
0.222044604925031308 3 10215 for the present examples, all e-relative

residuals are unusual large numbers compared to absolute residuals.
A test on a sampled function was done for f~x! 5 cos2~x!exp~20.1x! with

x1 5 0, xN 5 2p, and N 5 200. The abscissa values were equidistantly
spaced in this example, but HANKEL accepts also nonequidistant spacing.
Since f~x! is given at discrete points only, although required at many more
points xi by the integration process, f~x! has to be interpolated at these xi.
HANKEL carries out this interpolation by itself. We compared HANKEL’s
results with results from HANKEL(AART) from Piessens [1982]. Table
IV summarizes the comparison. HANKEL arrived at correct results for all
arguments. HANKEL’s results deviate not more than 1.5% from those of
HANKEL(AART) for which HANKEL(AART) returns no error message.

f~x! 5 cos2xexp~20.1x! and x 5 0.0 and x 5 2p and Dx 5 p/100.0
A major problem for all implementations of numerical algorithms is the

detection of errors. Any program which realizes (3) has three major sources
for errors: (a) the finite integration, (b) the infinite integration, and (c) the
calculation of Jn~x!. A further complication arises from the different and
varying severity of errors occurring in different parts of the algorithm. So

Table II. List of Test Functions

No. f~x! Analytical Solution [Erdelyi et al. 1954] *n~j, f~x!!

1 xn11/2 j21/2Jn11~j!
2 x21/2exp~2x! j1/22n~1 1 j2!21/2~~1 1 j!1/2 2 1!n

3 x21/2sin~x! cos~1/2pn!jn11/2~1 2 j2!21/2~1 1 ~1 2 j2!1/2!2n for 0 , j , 1
j1/2~j2 2 1!21/2sin~narcsin~1/j!! for 1 , j , `

4 x21/2Jn21~x! j2n11/2 for 1 , j , `
5 cos2~x!exp~20.1x! —
6 x21/2 y21/2

Table III. Residuals r for the Hankel Transforms of the Test Functions

Function
No. 1 2 3 4

r 0.010 3 1029 0.953 3 1026 0.188 3 1023 0.072 3 1023

s~r! 1.854 3 1029 23.01 3 1026 545.795 3 1023 31.043 3 1023

rrel 20.0006 3 1023 0.004 3 1023 0.018 3 103 258.915 3 1023

s~r!rel 0.116 3 1023 0.120 3 1023 3.717 3 103 9371.676 3 1023

r / e 0.045 3 106 4.292 3 109 849 3 109 3283 3 109

s~r! / e 8.352 3 106 103.640 3 109 2458046.38 3 109 139806.914 3 109

rrel / e 23.077 3 109 22.064 3 109 8.334 3 1016 20.026 3 1016

s~r!rel / e 524.745 3 109 541.175 3 109 1674.229 3 1016 4.220 3 1016
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even if an error may have occurred, the final result still could be acceptable
within some error bounds.2 For several errors HANKEL will continue the

2For example, an integration subroutine may report that the requested accuracy has not been
achieved within the preset maximal number of function evaluations, but the returned integral
values may be correct.

Fig. 1. Analytical solution (line) and residual r~j! (L) of the numerical calculation of *n~j,
f~x!! for test function 1, f~x! 5 xn10.5, as a function of parameter j with n 5 3.5. Both *n~j,
f~x!! and r~j! are normalized for plotting. Multiply r~j! by a factor of 7.147 3 1029 to have
r~j! in the same magnitude as the normalized *n~j, f~x!!.

Fig. 2. Residual r~j!/e and relative residual rrel~j!/e relative to arithmetic precision e '
2.220 3 10216 for test function 1.
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calculation and output an estimate for *n~j, f~x!!, but in theses cases
HANKEL cannot decide on the validity of the result. The most serious

Fig. 3. Analytical solution (line) and residual r~j! (L) of the numerical calculation of *n~j,
f~x!! for test function 2, f~x! 5 x20.5exp~2x!, as a function of parameter j with n 5 3.5. Both
*n~j, f~x!! and r~j! are normalized for plotting. Multiply r~j! by a factor of 3.194 3 1026 to
have r~j! in the same magnitude as the normalized *n~j, f~x!!.

Fig. 4. Residual r~j!/e and relative residual rrel~j!/e relative to arithmetic precision e '
2.220 3 10216 for test function 2.
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errors are those which are not detected by the program.3 HANKEL can fail

3The integration subroutine will have difficulties at a singularity of the integrand. For
example, if the integrand has a discontinuity, then the integration subroutine still may return
a result, but an erroneous one.

Fig. 5. Analytical solution (line) and residual r~j! (L) of the numerical calculation of *n~j,
f~x!! for test function 3, f~x! 5 x20.5sin~x!, as a function of parameter j with n 5 3.5. Both
*n~j, f~x!! and r~j! are normalized for plotting. Multiply r~j! by a factor of 0.443 to have r~j!
in the same magnitude as the normalized *n~j, f~x!!.

Fig. 6. Residual r~j!/e and relative residual rrel~j!/e relative to arithmetic precision e '
2.220 3 10216 for test function 3.
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without any error message.4

4An example is provided by test function 2 for xl 5 xas 5 1000.

Fig. 7. Analytical solution (line) and residual r~j! (L) of the numerical calculation of *n~j,
f~x!! for test function 4, f~x! 5 x20.5Jn21~x!, as a function of parameter j with n 5 3.5. Both
*n~j, f~x!! and r~j! are normalized for plotting. Multiply r~j! by a factor of 0.037 to have r~j!
in the same magnitude as the normalized *n~j, f~x!!.

Fig. 8. Residual r~j!/e and relative residual rrel~j!/e relative to arithmetic precision e '
2.220 3 10216 for test function 4.
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5. CONCLUSIONS

HANKEL proved to give correct results for quite difficult (in particular
oscillating) test functions f~x!, composed of algebraic, exponential, trigono-
metric, and special functions. HANKEL is expected to arrive at correct
results for functions f~x! which (a) fulfill E0

`if~x!idx, (b) are smooth on
@0, `#, and (c) are nonoscillating for x . xl.
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