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Alcohol use in young adults is common, with high rates of morbidity and mortality largely due to periodic, heavy drinking 
episodes (HDEs). Behavioral interventions delivered through electronic communication modalities (e.g., text messaging) can 
reduce the frequency of HDEs in young adults, but effects are small. One way to amplify these effects is to deliver support 
materials proximal to drinking occasions, but this requires knowledge of when they will occur. Mobile phones have built-in sensors 
that can potentially be useful in monitoring behavioral patterns associated with the initiation of drinking occasions. The objective 
of our work is to explore the detection of daily-life behavioral markers using mobile phone sensors and their utility in identifying 
drinking occasions. We utilized data from 30 young adults aged 21-28 with past hazardous drinking and collected mobile phone 
sensor data and daily Experience Sampling Method (ESM) of drinking for 28 consecutive days. We built a machine learning-based 
model that is 96.6% accurate at identifying non-drinking, drinking and heavy drinking episodes. We highlight the most important 
features for detecting drinking episodes and identify the amount of historical data needed for accurate detection. Our results 
suggest that mobile phone sensors can be used for automated, continuous monitoring of at-risk populations to detect drinking 
episodes and support the delivery of timely interventions. 
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1 INTRODUCTION 

Young adults have the highest prevalence (41%) of hazardous alcohol use among all age groups [11]. Young adults also report 
high rates of alcohol-related problems, including significant co-morbidities; unintentional injuries such as motor vehicle accidents; 
sexually transmitted infections; loss of productivity; broken relationships; and effects on physical health [1,46]. Unfortunately, 
numerous barriers prevent young adults from seeking help to reduce drinking [44] and rates of hazardous drinking among young 
adults have remained relatively unchanged in recent years [17]. 

Existing methods to detect a drinking occasion include self-reports, breathalyzer or transdermal alcohol monitors (e.g., 
SCRAM ankle bracelet, WrisTAS) [38]. Self-reports of alcohol use have shown validity in specific contexts [53]. The use of 
Experience Sampling Methods (ESM) to collect self-reports of alcohol use more proximal to drinking occasions can minimize 
biases associated with retrospective reporting [38]. Self-report of drinking episodes using ESM is generally reliable and valid [54]. 
When comparing a breathalyzer with self-report of alcohol use (i.e., start/end of drinking episode, quantity consumed) to estimate 
blood alcohol content, there is a high correlation [9], further supporting the validity and applicability of self-reported alcohol use. 
In comparison with SCRAM devices, self-reports produced a greater number of drinking events [4,26]. Moreover, SCRAM is 
sometimes subject to equipment failure (<10% of the time), less useful in detecting low drinking quantities compared to self-
reports of alcohol use, and carries an associated stigma related to wearing an ankle monitor [4]. Another limitation of existing 
transdermal alcohol sensors is that transdermal alcohol content readings lag behind consumption by up to several hours, making 
the devices less useful for applications requiring real-time data [34]. However, issues of participant burden and reporting 
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compliance associated with self-reports, highlight the importance of developing alternative low burden methods to detect alcohol 
use quickly and unobtrusively. 

The extensive body of research on drinking behavior suggests that young adults often consume alcohol in social contexts [6] 
and some young adults may not be ready to change drinking behavior [67]. Consequently, numerous drinking intervention studies, 
which applied social strategies and motivational factors, demonstrated effects of self-efficacy [63], self-control [28] clear advice to 
change [15], and personalized feedback [41] on reducing alcohol use. However, few studies focus on how to accurately detect 
drinking behaviors in the moment, especially heavy drinking in young adults in daily life. Young adults may not recognize when 
they are at risk of consequential harm from drinking excessively.  

To support strategies for intervening in drinking behaviors, we construct a smartphone-based model to accurately detect 
drinking and heavy drinking episodes ‘in the moment’. We can then use existing motivational strategies delivered in mobile 
messaging interventions [37] to help young adults to change behaviors in the moment and/or better reflect on drinking patterns and 
provide opportunities to regulate drinking patterns after heavy drinking incidents [61,62]. To extend this work, we envision a 
mobile message intervention, such that when drinking is detected, text messages that recommend the use of certain protective 
behavior strategies, such as slowing the pace of drinking, and setting a limit on quantity to be consumed, could be delivered when 
drinking is detected, to prevent a transition to heavy alcohol consumption. For example, a text message intervention that 
incorporated protective behavior strategies was effective in reducing binge drinking in young adults [61]. Similarly, a text message 
intervention focused on reducing weekend drinking was effective in reducing heavy drinking episodes up to 6 months post-
intervention [62]. Young adults have expressed some willingness to receive intervention messages during drinking episodes [62]. 
Combining these results suggests that providing support (e.g., suggestions for protective behavioral strategies) more proximal to 
drinking occasions, when drinking is accurately detected, could increase the likelihood that protective behavioral strategies will 
actually be used, thus reducing the frequency of binge drinking. We believe that detecting ‘heavy drinking’ could also be quite 
beneficial, particularly for those who frequently binge drink. Detecting drinking episodes in the moment would allow for a 
message to be sent to designated individuals (e.g., designated sober driver) who could provide assistance and support. Also, with 
expert guidance and detected evidence of heavy drinking, individuals can then reflect on their drinking behavior, and gain insights 
into their drinking patterns; clinicians could use the data to adjust a care plan to address issues associated with heavy alcohol use.  

Recently, a novel method for detecting substance use behavior was developed that applies machine learning-based models to 
sensor data, to continuously monitor physiological and behavioral patterns [20,49]. However, wearable sensor-based physiological 
monitoring can be burdensome and is not yet scalable, motivating our investigation of data available from built-in mobile phone 
sensors and meta-data (e.g., call/text activity) to detect alcohol use occasions from daily activities. As an example of the potential 
utility of this approach, GPS digital activity trails over 4-5 hours predicted self-reports of heroin craving in substance users [49]. 
We hypothesize that using only smartphone-based sensor data, we can identify behavior patterns (e.g., communication and travel 
patterns) that are associated with drinking occasions. For example, smartphone sensors could capture a behavioral pattern of 
increasing social activity within a specific time frame, indicated, for example, by increased texting and travel activity to meet with 
friends (e.g., at a party or bar), followed by alcohol use [14]. Specifically, we examine the extent to which phone sensor data (e.g., 
movement and motion sensor, geo-location, call and text patterns, and smartphone usage) contains features that could be useful in 
detecting drinking occasions. 

Our focus in this study is to develop a machine learning model which detects not-drinking, drinking, and heavy drinking 
episodes using only data from smartphone-based sensors (e.g., accelerometer, location) and meta-data (e.g., communication logs) 
that capture individuals’ daily activities. A primary potential application of this model is to support just-in-time delivery of 
intervention messages more proximal to drinking occasions, when preventive messages may be most salient and useful [57]. The 
model is not being developed to directly detect or estimate blood alcohol concentration using phone sensor data (e.g., for legal or 
forensic purposes), which is beyond the scope of this study.  

We used a mobile phone application, based on AWARE [24], to collect sensor data from smartphones and an automated text 
message program to collect self-reports of drinking events (i.e., start/end of episode, number of drinks consumed) each day, in the 
morning, to increase compliance and minimize retrospective recall bias in responding to surveys sent directly to a personal 
smartphone. We identified the sensor-based features with the strongest relationships to not drinking, drinking and heavy drinking 
episodes, and determined the accuracy of machine-learning based models using these features to detect and differentiate not 
drinking, drinking and heavy drinking episodes. 

In this paper, we provide two main contributions. First, using only smartphone data collected from 30 young adult participants, 
we built a machine learning based-model that can detect whether an individual is not drinking, drinking, or heavy drinking based 
on self-reports in the natural environment with an accuracy of 96.6%. By comparison, prior work, which used the accelerometer 
from a smartphone (e.g., gait) conducted in a lab setting, obtained only 70% accuracy in detecting the number of drinks consumed 
[2]. Our study provides an advance over existing research by using data collected in the natural environment (versus the lab), in a 
larger sample, and using data available only from a smartphone that most young adults already carry (rather than a wearable device 
that few people own). More importantly, we identify the most important features for performing this detection, which can be used 
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to inform the timing of intervention delivery. Second, we determine the relative value of using different amounts of historical data, 
and different size windows of data on detection accuracy to maximize the efficiency of the model. In this regard, we found that 1-
day historical data on smartphones is enough to detect drinking and heavy drinking episodes. The former indicates how much data 
needs to be stored on the phone for accurate drinking detection, and thus, the privacy risk. The latter is informative for determining 
optimal time windows for intervention delivery. 

In the following section, we review previous work related to developing smartphone-based behavior models. Next, we describe 
our method for data collection, feature selection, and detecting not drinking, drinking and heavy drinking behaviors using our 
machine-learning based model. We then conclude with a discussion of the implications and contributions of our model 
development. 

2 BACKGROUND AND RELATED WORK 

2.1 Smartphone-based behavior modeling 
In the field of ubiquitous computing, smartphone instrumentation has enabled better understanding of users’ interaction with 

these devices in specific contexts. For example, they have increased our understanding of how people use applications [3,22] and 
smartphone networks [23], and allowed us to predict which application is relevant to the current context [35,50], and to detect the 
most opportune moments to deliver information to users [32]. More related to our work, in the area of health and wellbeing, the 
widespread availability of smartphones in today’s young adult population has prompted research that leverages the embedded 
sensors in smartphones to study human behavior. 

Researchers have used smartphones to assess and predict academic performance [65], used them to detect sleep and sleep 
quality [36], and personality traits [13], to passively sense and detect mental health changes (e.g., schizophrenia [64], lack of social 
interaction [18]), and to detect habitual behaviors such as smoking [52]. It is noteworthy that substance use (e.g., cocaine usage 
[10], cigarette smoking [49], heroin craving [20]) can be detected using machine learning applied to data from wearable sensors. 
However, wearable sensors can be burdensome, and their use does yet not scale to long periods of time nor large numbers of users. 
This has motivated our work in understanding how the combination of machine learning and sensor data from commodity mobile 
phones can be used to detect drinking episodes, particularly to support delivery of messages for just-in-time and post hoc 
intervention [39,40]. 

2.2 Defining “Drinking” and “Heavy Drinking” episodes 
The National Institute on Alcohol Abuse and Alcoholism [43] defines a standard drink as “any drink that contains about 14 

grams of pure alcohol, i.e., 1.2 tablespoons.” To illustrate the NIAAA’s standard drink measurement, one 12 oz. beer is equal to 1 
standard drink, one 16 oz. malt liquor is 2 standard drinks. One mixed drink with “hard liquor” is estimated – depending on the 
alcohol percentage – to contain one or more standard drinks, where a pint (16 oz.) of 80-proof alcohol is equivalent to 11 standard 
drinks. Moderate alcohol consumption is 2 and 1 standard drinks (men and women, respectively) per day. The NIAAA defines 
binge drinking as a pattern of drinking that brings blood alcohol concentration (BAC) levels to 0.08 g/dL [44]. This equates to 4 or 
more standard drinks for women or 5 or more standard drinks for men consumed in roughly 2 hours [44]. We perform our analysis 
with heavy drinking defined as any drinking occasion when an individual reported either consuming ≥4 drinks (for women) or ≥5 
drinks (for men) [42]. 

2.3 Methods to Assess Drinking Behavior: Self-Report and Wearable sensors 
Research on drinking behavior in the psychology, nursing and medical domains have traditionally quantified participants’ 

alcohol consumption with self-reports (e.g., interview, questionnaire, diaries, ESM), observer reports, and sensors (Table 1). 
 

Table 1. Drinking Behavior Studies and Methodology 
Paper Year Sample, 

Length 
Research question Methods & tools Analysis Accuracy Limitations & Future 

work 

[27] 2016 N=5, 1d Smartwatch-based user’s 
alcohol intoxication level 
estimation 

Sensor 
instrumentation 

Regression 
SVM 
ANN 

32% 
88,6% 
52,4% 

Laboratory study 
 

[54] 2015 N=60,  
2y 

Examine the convergent 
validity of three 
approaches to collecting 

Biochemical 
(WrisTAS), daily 
and weekly 

Multilevel logit 
model (Stata 13) 

85,7% Limited number of 
participants, and 
assessment days; 
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daily self-report drinking 
data: experience 
sampling, daily morning 
reports of the previous 
night, and 1-week 
timeline follow-back 
(TLFB) assessments. 

reconstruction larger sample and 
replication is needed 

[2] 2015 N=6, 2w Smartphone-based user’s 
alcohol intoxication level 
(how many drinks) can be 
inferred from their gait, in 
three categories: 0-2 as 
sober, 3-6 as tipsy and >6 
drinks as intoxicated. 

Sensor 
instrumentation, 
self-report 

Random Forest 56,0% Very limited sample 
and evaluation; future 
work should include 
additional sensors: 
gyroscope, GPS, BT, 
magnetometer and 
other inertial sensors. 

[50] 2015 N=213,  
1y 

Assess the role of 
personality and drinking 
onset in predicting 
weekly alcohol 
consumption, and the 
impact of the whole set of 
variables in predicting the 
number of consequences 
associated with 
consumption in 
undergraduates. 

Weekly 
reconstruction 

Hierarchical 
regression 

20,2% Participants have 
different notions of 
how to measure binge 
drinking 

[16] 2014 N=312,  
1y 

Test a model including 
Facebook alcohol 
displays and constructs 
from the theory of 
reasoned action to predict 
binge drinking. 

Social media Path modeling NA Sample not 
representative of all 
colleges, ethnically 
and racially diverse; 
self-report bias on 
recall and social 
desirability bias. 

[21] 2013 N=37,  
16m 

Study the longitudinal 
effects of alcoholism on 
gait and balance 

Interview, 
observations 

Statistical analysis NA Small sample, found 
no evidence of 
change after 1 year, 
unsure why 

[19] 2012 N=44,610, 
1y 

Analyze ultimate and 
distal factors predicting 
substance consumption 
according to Petraitis’ 
theory of triadic influence 

Survey Multivariate 
logistic regression 

70,2% Limited to Germany, 
adolescents 

[45] 2011 N=81, 1d Compare trained field 
observer reports of 
number of drinks 
consumed with 
participant self-report (1-
2 days after drinking 
episode) of drinking 
quantity 

Next day self-
report collected 
by phone 
interview 

Correlation, 
comparison of 
means 

NA Participants 
accurately estimated 
their consumption 
when consuming 
eight or fewer drinks 
in a single session; 
underestimated 
consumption above 
eight drinks 

[55] 2010 N=423,  
1y 

Evaluate the impact of 
online social-norms 

Survey Generalized linear 
mixed models 

NA Intervention used 
physical methods 
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interventions 
(personalized, marketing 
ads, attention control) 

(flyers, banners, 
campus newspapers), 
uncertain of reach, 
impersonal; limited 
data 

[5] 2008 N=52,  
2w 

Explore the relationship 
between alcohol 
consumption (i.e., binge) 
and health 

Survey Descriptive 
statistics 

NA Short term; limited 
data 

[42] 2007 N=818,  
1y 

Evaluate the relative 
contribution of social 
norms, demographics, 
drinking motives, alcohol 
expectancies in predicting 
alcohol consumption 

Survey, weekly 
reconstruction 

Regression 24,0% Focused on first year 
students, may not 
apply to senior 

[14] 2003 N=1909,  
2y 

Examine the validity of a 
set of environmental 
variables to predict heavy 
drinking at college 
students’ most recent 
drinking occasions 

Interview, survey Nonparametric 
exploratory and 
confirmatory 
discriminant 
analysis 

48,0% Limited data, future 
studies would benefit 
from inclusion of 
more indicators of the 
social and physical 
environment in which 
college students drink 

[66] 2003 N=1894,  
4m 

Identify person, social 
group, and environmental 
factors associated with 
uptake of binge drinking 
among national college 
students 

Survey Univariate and 
multivariate logistic 
regression, 
Generalized 
Estimating 
Equations (GEE) 
from Statistical 
Analysis Software 

NA Focused on first year 
students; limited 
contextual data 

[48] 1999 N=3961,  
4y 

Compare three methods 
for assessing alcohol 
consumption to resulting 
prevalence estimates for 
high risk drinking and 
harm as defined by 
morbidity and mortality 
indicators 

Survey, weekly 
reconstruction 

Cross-tabulation, 
Spearman 
correlation, and 
descriptive statistics 

NA Based on estimated 
values; limited 
contextual data 

However, retrospective reports, especially over long intervals (e.g., past month) may be subject to bias. ESM methods (e.g., 
report of prior day’s drinking behavior) generally provide higher rates of self-reported drinking episodes compared to methods that 
ask individuals to recollect drinking behavior over longer periods (e.g., past month) [51]. 

2.4 ESM serves as “ground truth” for drinking behavior 
The main methods of measuring alcohol use include self-report, and breath or transdermal alcohol monitors. Daily self-report 

of drinking may be subject to underreporting, but given proper assurances and appropriate data collection methods (e.g., ESM), as 
used in this study, participants can provide reliable and valid self-report of alcohol use [54]. We used a daily morning ESM report 
to obtain data on the prior day’s alcohol use, because research comparing random ESM, end of the day ESM, and next day ESM 
report found that next day ESM in the morning provided a better summary of the prior day’s drinking (i.e., more drinking events 
reported, and higher quantity of alcohol consumed per day) than other self-report methods [54]. In addition, a preliminary study 
that we conducted resulted in relatively low completion (32%) rates for hourly reports of alcohol consumption (e.g., push 
notifications sent every hour from 8pm to 12am on weekend days after onset of a drinking episode was reported). Exit interviews 
indicated that participants either ignored or did not remember to complete ESM self-reports during or at the end of the drinking 
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episode. For these reasons, we used daily morning ESM reports to obtain data on the prior day’s alcohol use to minimize 
participant burden and reduce potential retrospective recall bias. 

Studies comparing ESM report of alcohol consumption against WrisTAS and SCRAM generally find that self-reports generate 
more drinking days than WrisTAS or SCRAM [4,26,54]. Specifically, a study that compared multiple forms of self-report (e.g., 
recall of past week, ESM) with transdermal alcohol bracelet (WrisTAS) found that ESM corroborated with 85.74% (biochemical) 
and 87.27% (daily morning reports of previous night and 1-week timeline follow-back) of drinking days [45]. Other work found 
that the sensitivity of the SCRAM device (ankle monitor) exceeded WrisTAS in detecting self-reported drinking events [26]. A 
review of SCRAM studies indicated that the SCRAM detected 73%-91% of self-reported drinking days [8]. SCRAM sensors 
showed good ability to detect >5 drinks, but appeared to be less sensitive at lower drinking quantities [4]. Use of transdermal 
alcohol sensors also needs to consider the time lag between transdermal alcohol content and breath alcohol concentration, which 
averaged over 2 hours (129 minutes) [29], limiting the utility of these sensors for real-time detection of alcohol use. Studies that 
have collected self-report (using ESM, web diary) on start/end time of drinking, and number of drinks consumed, in order to 
compute estimated BAC find that self-report provides estimates of BAC that are strongly correlated with  breathalyzer readings [9]. 
In sum, research comparing WrisTAS, SCRAM, and breathalyzer with self-report of alcohol use indicate that self-reports produced 
more data on drinking days compared to WristTAS and SCRAM, and had strong correspondence with breathalyzer reading, 
supporting the use of ESM self-report to assess alcohol use in this study. 

Based on the literature and our preliminary work, we used ESM self-reported data on alcohol consumption as “ground truth” in 
developing a model to detect drinking episodes based on smartphone sensor data. We, therefore, leverage widely used smartphones 
and their sensing ability to detect instances of drinking in the wild, and to perform daily experience sampling. In addition, looking 
ahead to the future, the smartphone can also be used as an intervention delivery platform. In previous work, we found that 
interactive text messages were successful in reducing heavy drinking episodes among young adults [58-61]. 

3 METHOD 

3.1 Participants 
A convenience sample of Emergency Department (ED) patients aged 21 to 28 years were identified over three months. Those 

medically stable and not seeking treatment for substance use disorder were screened for enrollment. We included 21 individuals 
who reported recent hazardous alcohol consumption based on an Alcohol Use Disorder Identification Test for Consumption 
(AUDIT-C) score of ≥3 for women or ≥4 for men [7] and at least one heavy drinking episode (HDE) on any day in the prior month. 

We also recruited 17 young adults (ages 21-28 years) from the Craigslist website, a local participant pool and through study 
flyers placed on and off campus at locations such as the university student center and a nearby coffee shop. Thirteen of these 
individuals were included in our study, using the same screening as above (AUDIT-C and HDE report). The individuals 
represented undergraduates, graduate students, and young professionals who regularly used a mobile device (Android or iPhone). 

In total, 38 (21 from ED, 17 from general population) young adults (50% female, mean age=23.15, SD=1.89) met our 
enrollment criteria, provided informed consent, answered a questionnaire (with questions about demographics, height and weight) 
and downloaded our data collection app to their phone. Participants were compensated $20 for completing the baseline 
questionnaire and installing the smartphone app. For each day on which an ESM was completed they also earned $2, which was 
paid at the end of the 28-day study. 

3.2 Data Collection 
The AWARE-based application passively collected the timestamped sensor data shown in Table 2. For clarity, 1 Hz is 1 

sample per second. 
Table 2. Mobile Phone Sensors and Frequency of Collection 

Sensor Frequency 

Accelerometer: to detect motion and device interaction 20Hz 

Keyboard: i.e., keystroke speed, text input length. Event-based 

Battery usage: battery level in percent and voltage, charging state, battery temperature Event-based 

Communication: meta-data from calls and texts, i.e., timestamp, one-way hashed phone number, and if 
received, sent, or missed 

Event-based 

Device usage: amount of time the device is in use and when idle Event-based 
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Mobility State: still, tilting, walking, running, on bicycle, in vehicle, using an Activity Recognition API 1-minute interval 

Luminosity: to detect well-lit environments 1 Hz 

Network usage; traffic: WiFi, Bluetooth, airplane on/off states; and bytes and packets exchanged Event-based; 10-
second interval 

Location: using the phone’s fused location provider – best location estimate (~50 meters) using 
simultaneously cell towers’ positioning, GPS and WiFi access points 

3-minute interval 

Proximity to screen: to detect if the phone is in one’s pocket 1 Hz 

Rotation: to detect holding of the device 20Hz 

Screen status: on, off, locked, unlocked Event-based 

Telephony: connected cell tower ID and nearby towers, with signal strength Event-based 

WiFi: nearby Wi-Fi access points and signal strength 1-minute interval 
 

When installing AWARE for the first time, a Universal Unique ID (UUID) is randomly generated. We use this UUID identifier 
to identify a participant without storing any personal data (e.g., name). The application initially stored the sensor data from the 
table above on a participant’s device and then synchronized this information to our server over a secure connection (SHA-256, 
2048-bit long RSA encryption key), via Wi-Fi only. A sync attempt is performed every 30 minutes. If the user is not connected to 
Wi-Fi, the synching is postponed for another 30 minutes. 

GPS has been used previously to monitor one’s travel activities and interactions with the smartphone for mental health 
applications [20,64]. However, to the authors’ best knowledge, no work exists using sensors to infer social and behavioral context 
in association with drinking episodes. Moreover, we hypothesize that communication activities such as call and messaging events 
collected by a smartphone could be used to detect drinking events. For example, young adults may increase communication 
activities with friends or colleagues just prior to drinking events to plan and decide for the evening’s activities at a party or bar. 

To identify drinking episodes and to calculate an estimate of blood alcohol content, we triggered a notification for a survey 
each day at 10am for 28 days, asking participants the following survey questions:  

“Did you drink alcohol yesterday?”  
If they responded “no” then no further questions were asked. If they responded “yes”, we asked:  

“Approximately what time did you start drinking?”,  
“Approximately what time did you stop drinking?”, and  

“How many standard drinks did you have during this period?”.  
Participants were provided with the definition of a standard drink (e.g., 12 oz. can of beer or 5 oz. glass of wine or 1.5 oz. 80-

proof liquor) at the start of the study [43]. We trained participants on the definition of a standard drink, and sent an illustration (in 
the survey) of a typical standard drink for common beverage types: beer, wine, liquor. If there were multiple drinking episodes in a 
single day, participants were instructed to report on the occasion when the largest number of drinks was consumed. 

3.3 Measurement of drinking behavior 
Ground truth for our analyses was self-reported alcohol use based on daily surveys via smartphones. We defined a drinking 

occasion as any day in the 28-day data collection period when an individual reported “yes” to the question “Did you drink alcohol 
yesterday?” A “heavy drinking episode” was defined as any drinking occasion when an individual reported either consuming ≥4 
drinks (for women) or ≥5 drinks (for men) [42]. A “drinking episode” was any episode where alcohol was consumed that did not 
meet the heavy drinking episode criterion. 

There are three points at which accuracy can come into question when using self-reports: remembering to report a drinking 
episode, remembering the number of drinks in the drinking episode, and remembering the timing (start and end) of the drinking 
episode. Based on the existing literature (section 2.4), we used ESMs to obtain self-report information on drinking episodes. 

3.3.1 Reporting a drinking episode 
The existing literature shows that self-reports generally produce a greater number of drinking events compared to episodes 

extracted from the SCRAM or WrisTAS devices [4,26]. Self-reported drinking episodes using ESM also have been shown to be 
generally reliable and valid [54]. Further, alcohol sensors such as SCRAM were sometimes subject to equipment failure (<10% of 
the time), and were less useful in detecting low drinking quantities compared to self-report of alcohol use (Barnett et al., 2014). 
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3.3.2 Reporting the number of drinks 
Research indicates that self-reported (next day) number of drinks and the time of drinking onset are highly correlated (0.84) 

with data from a breathalyzer test (breath alcohol concentration or BrAC) [9]. In addition, a more recent study [4] showed that the 
transdermal alcohol concentration from SCRAM was highly correlated with self-reported number of drinks (r<0.77, p <0.001). 
Another line of evidence involves a study that compared trained field observer reports of the number of drinks consumed in the 
natural environment (e.g., bar) with an individual’s self-report (obtained by phone interview 1-2 days after the drinking episode) 
[45]. Compared to trained observers, participants accurately estimated their consumption, particularly when consuming eight or 
fewer drinks in a session [45], a quantity that is lower than that used to define a “heavy drinking episode” for our current analyses. 

3.3.3 Reporting the timing of a drinking episode 
Self-reported onset and ending of drinking events, combined with self-reported number of drinks consumed, was strongly 

correlated with breathalyzer readings [9], providing some support for the validity of self-reported times for start/end of drinking. 
By contrast, readings of alcohol use from devices such as SCRAM and WrisTAS involve a time lag in detection of alcohol by up to 
several hours, making the devices less useful for applications needing real-time data [34]. SCRAM and WrisTAS are also limited 
with regard to determining drinking start time due to their reduced sensitivity in detecting lower levels of alcohol use (e.g., <5 
drinks), which occur at the start of drinking episodes [26]. In general, self-reports of start time for a drinking episode likely provide 
greater precision relative to existing transdermal sensors (Dr. Denis McCarthy, Director of the Alcohol Cognitions Lab at the 
University of Missouri, personal communication: January 2017). Overall, the literature supports the accuracy of self-reported 
drinking start time. 

3.4 Drinking Detection Model Development 
Developing a model for detecting drinking involved a four-step process: data pre-processing, data preparation, feature 

extraction, and training of classification models. 

3.4.1 Data Pre-processing 
Our 38 participants reported 621 episodes (Fig. 1, a); 415, 135 and 71 for non-drinking (M=10.92, SD=7.92), drinking 

(M=3.55, SD=4.32) and heavy drinking (M=1.86, SD=2.19), respectively. Our first inclusion criterion was self-report of at least 1 
non-drinking episode and at least 1 drinking or heavy drinking episode. We excluded 2 subjects because one reported only 11 non-
drinking episodes and no other episodes, and the other reported only 21 drinking and 7 heavy drinking episodes but did not report 
any non-drinking episodes. Our second inclusion criterion was that participants had to keep their smartphones on and not disable 
any of the sensors. We excluded an additional six participants who had only had one or two days’ worth of sensor data 
(corresponding to 72 non-drinking, 14 drinking and 5 heavy drinking episodes). They did not have sufficiently granular sensor data 
(i.e., they manually disabled location or motion sensor plug-in, or explicitly turned off the smartphone for long periods of time). 
The remaining 30 participants had 332 non-drinking, 100 drinking and 59 heavy drinking episodes (Fig. 1, b). Our final inclusion 
criterion was that we needed to have sensor data for those drinking episodes. We excluded episodes if we were missing sensor data 
for them. The focus of our analysis was the remaining 293 episodes from 30 participants: heavy drinking (45) or drinking (41) 
reports, and non-drinking episodes (207) because 125, 59 and 14 for non-drinking, drinking and heavy drinking episodes were 
removed due to lack of sensor data. 
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(a) ESM reports across the participants (n=38) including excluded participants (31-38) 

 

 
 

(b) Drinking reports per each participant (n=30): x-axis refers to days during the study (max=28 days), y-axis refers to the number 
of standard alcohol drinks consumed  

 
Fig. 1. ESM reports of drinking episodes for each participant. 

 
If there were missing sensor values at a certain timestamp, we interpolated the average value between two instances rather than 

simply removing data. In addition, we used the day of week as nominal attributes (Monday, Tuesday, Wednesday, Thursday, 
Friday, Saturday, and Sunday).  
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3.4.2 Data Preparation 
All participants (without prompting) reported the start and end times of their drinking episodes with a granularity of 15 minutes 

(e.g., 7:00, 7:15, 7:30, 7:45), likely due to the fact that self-reports were not provided until the next day. With this self-report 
granularity, we chose to use 5-minute windows as our analysis window. We divided the time-series sensor data from each 
participant into a series of non-overlapping 5-minute windows and utilized the 5-minute window as our base unit for analysis and 
for extracting features. For the 30-minute, 1-hour and 2-hour windows we took the average of the numerical sensor values, and the 
most frequent amongst the nominal sensor values, among six, twelve, and twenty-four segments, respectively, of the base unit. The 
time of day was coded as 1 to 24 if dataset was 1-hour segment instances. 1 starts from 00:00 to 00:59 and 24 refers to the time 
between 23:00 to 23:59.  

If a participant reported not drinking during the previous day in the survey, we labeled all of data windows for that day as non-
drinking (N). When they did report drinking episodes, we labeled the windows before the start time and after the end time as non-
drinking (Fig. 2 – top). For the windows during the reported drinking episode, we labeled them as drinking (D) if the number of 
drinks consumed was less than 4 (for female participants), or 5 (for male participants). Otherwise, they were labeled as heavy 
drinking (H). 

 
We believe that social and behavioral data captured by smartphone sensors can help to detect the current drinking episodes [14]. 

Instead of only looking at a single time window for extracting features and training drinking detection models, we also considered 
the use of historical data, i.e., data that preceded the drinking episodes. As shown in Fig. 2 – bottom, if participants reported a 
heavy drinking episode that started at 5pm, then we considered sensor data from 5pm on the previous day up to 5pm on the 
drinking day as a 1-day historical dataset. In our analyses, we considered 1-day, 2-day and 3-day histories referring to the social 
and behavioral sensor streams that were captured and stored on smartphones before drinking episodes began.  

The final dataset included 12,442 segments (11,798 non-drinking, 243 drinking and 401 heavy drinking). We split our data into 
a training dataset (60% of all episodes, on which to build models), a cross-validation set (20% of all episodes to optimize our 
models), and a testing dataset (20% of all episodes, on which to test our model) (Table 3). 
 

Table 3. Dataset Distribution 

 Models 
 

Three Classes 
 

All Training  
set 
(60%) 

CV  
set 
(20%) 

Test  
set 
(20%) 

SMOTE Training set 
800% for Drinking &  
400% for Heavy 
drinking (oversampled). 

30min window size 
-no history data 

Non-drinking 11798 7078 2360 2360 7078 
Drinking 243 145 49 49 1160 

Heavy drinking 401 240 80 81 960 

30min window size 
-1day historical data 

Non-drinking 2652 1591 531 530 1591 
Drinking 204 122 41 41 976 
Heavy drinking 388 233 78 77 932 

30min window size Non-drinking 4510 2706 1127 1128 2706 

 

 
Fig. 2. Description of window size (top) and use of historical data (bottom). 
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-2days historical data Drinking 226 135 56 57 1080 
Heavy drinking 387 232 97 97 928 

30min window 
-3days historical data 

Non-drinking 6044 3626 1209 1209 3626 
Drinking 236 141 48 47 1128 
Heavy drinking 387 232 78 77 928 

1hour window 
no- historical data 

Non-drinking 5870 3522 1174 1174 3522 
Drinking 139 83 28 28 664 
Heavy drinking 214 128 43 43 512 

1hour window size 
-1day historical data 

Non-drinking 1437 862 288 287 862 
Drinking 101 60 21 20 480 
Heavy drinking 207 124 42 41 496 

1hour window size 
-2days historical data 

Non-drinking 2385 1431 477 477 1431 
Drinking 111 66 23 22 528 
Heavy drinking 207 124 42 41 496 

1hour window size 
-3days historical data 

Non-drinking 3137 1903 635 635 1903 

Drinking 117 70 23 24 560 
Heavy drinking 207 124 41 42 496 

2hour window size 
no historical data 

Non-drinking 2941 1764 588 580 1764 
Drinking 68 40 14 14 320 
Heavy drinking 104 62 21 21 248 

2hour window size 
-1day historical data 

Non-drinking 721 432 144 145 432 
Drinking 60 36 12 12 288 
Heavy drinking 100 60 20 20 240 

2hour window size 
-2days historical data 

Non-drinking 1260 756 252 252 756 
Drinking 65 39 13 13 312 
Heavy drinking 100 60 20 20 240 

2hour window size 
-3days historical data 

Non-drinking 1689 1013 338 338 1013 
Drinking 70 42 14 14 336 
Heavy drinking 100 60 20 20 240 

 
To account for the imbalanced class sizes where heavy drinking and drinking episodes represent a minority of the data 

compared to non-drinking events in our dataset, we used SMOTE (Synthetic Minority Over-Sampling Technique) in the training 
set when we built our models [12]. This technique is a standard balancing approach that oversamples the instances of the 
underrepresented target event. Rather than just creating copies of these events, it selects two or more (k-nearest neighbor) similar 
instances using a distance measure and generates synthetic samples by perturbing attributes of one of the instances by a random 
amount, such that the similarity of the two instances remains within the original distance.  

The technique can be also applied to a multiple class problem such as ours as well. As Table 3 shows, for each setting (window 
size x amount of historical data), there were several instances in the majority non-drinking class (N) and instances in the minority 
drinking class (D) and heavy drinking (H) respectively. We used this data to oversample (setting k to 5) the minority classes, 
drinking and heavy drinking classes at 800% and 400% of their original size, respectively, from the training set compared to 
models using original training set [12]. To determine the optimal oversampling, we calculated the ROC convex hull, a common 
approach for estimating the performance of classifiers for imbalanced datasets. Using this oversampling approach, we ended up 
with 7078, 1160 and 960 instances for non-drinking, drinking and heavy drinking classes respectively compared to the original 
7078, 145 and 240 instances for a 30-minute window size when not using historical data (Table 3). Previous literature pointed out 
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that this approach efficiently leads the decision region of the minority class to become more general, making the classifier less 
specific but having bigger decision regions [12]. 

3.4.3 Feature extraction 
With the resulting balanced data, we calculated features derived from both the “raw” smartphone data (e.g., GPS, call, message, 

activity, accelerometer, and meta-data) and computed values (e.g., {minimum, median, maximum, average and standard deviation}) 
of acceleration for each window size; 30-minute, 1- and 2-hours. First, statistical features of location (e.g., travel distances and 
radius of gyration) within time segments were extracted to capture movement patterns. Second, we extracted the duration and 
number of incoming/outgoing messages, calls and contacts features to understand individuals’ communications associated with 
drinking episodes. Third, physical activities and motions were extracted to capture human behaviors. Finally, we used screen on 
and off, battery status, charging time and length of charge to understand how people use smartphones during non-drinking and 
drinking episodes. In total, we extracted 56 features to represent the episodes (Table 4). 
 

Table 4. Extracted Features from each Sensor Stream 
Sensors Contextual information derived 

Time Day of week 
Location Time at/away from home, number of places visited, travel distance, number of changes in location, time 

spent in a certain location, entropy, radius of gyration 
Communication Number of incoming and outgoing calls and text messages, number of contacts, duration of incoming and 

outgoing calls, number of incoming and outgoing calls 
Speed of typing, number of insert, delete, number of emojies, types of emojies, frequent timeslots of typing, 
number of conversations, length of conversation 

Motion {Min., Med., Max., Avg., Std.} of the changes in activity, number of activities per time slot, number of 
changes in activity 
{Min., Med., Max., Avg., Std.} Magnitude of acceleration 
{Min., Med., Max., Avg., Std.} Magnitude of rotation 

Device usage Name and type of applications, frequency and length of use, number of changes between applications, 
number of applications running 

Frequency and duration of screen on and off  

battery status, charging time, length of charge 
{Min., Med., Max., Avg., Std.} of screen proximities 

3.4.4 Classifier building 
To decide which features to include in our models of drinking detection, we took two approaches. First, we run the correlation 

analysis to gain an intuitive understanding of the value of individual features, and to see the value of the historical data in detecting 
non-drinking and drinking episodes. Second, we applied an attribute evaluator, Information Gain, and a ranker to identify the 20 
most informative features. Information Gain is the amount of information that is gained by a model by knowing the value of a 
particular attribute or feature [31]. Using these top-20 features, shown in Table 6 and Figure 5 below, we trained the following 
machine learning classifiers: C4.5 decision tree, Bayesian Network (BN) and Random Forest (RF) used by Weka. 

To compare different models’ performances, as we mentioned, labeled episodes were divided into time windows by splitting 
into 10 groups and training on 9 selected groups, tested on the remaining group, and repeating this process 10 times, once for each 
of the 10 groups. We conducted 10-fold cross-validation on the training dataset (60% of data) of all labeled episodes across all 
users. We evaluated our resulting models using 10-fold cross-validation in the cross validation (CV) dataset (20%) and compared 
the models’ performances.  

The models’ performances were evaluated using accuracy, F-score and ROC area under the curve (convex hulls) which are 
traditional methods for comparing machine learning model performance. Accuracy approximates how effective the algorithm is by 
showing the probability of the true value of the class label (assesses the overall effectiveness of the algorithm); ROC represents a 
relation between the sensitivity and the specificity of the algorithm; F-score is a composite measure which favors algorithms with 
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higher sensitivity and challenges those with higher specificity. We used the F-score to optimize parameter values for our three 
chosen machine learning algorithms (C4.5, BN and RF), and used the default settings in Weka. 

In addition to the 3 different types of classifiers, we also experimented with different parameters: different data window sizes 
and different amounts of historical data. Our contribution here is two-fold. First, by experimenting with different amounts of data, 
we can provide guidance to other researchers about how much data is required for accurate detection and how much data needs to 
be stored on the phone impacting user privacy. Second, by experimenting with different data window sizes and identifying 
important features, we can help clinicians decide when to intervene,  the types of data that might be useful to include in the 
intervention, respectively. 

4 RESULTS 

In this section, we describe the behavioral model we built to detect non-drinking, drinking and heavy drinking episodes 
among young adults using data continuously collected from their smartphone sensors during everyday life. In addition to reporting 
the accuracy of our model, we identified 1) which features significantly correlate to non-drinking, heavy drinking and drinking 
episodes, and suggest the most important features, 2) the impact of the time window size on model performance for detecting 
drinking episodes and 3) how much historical sensor data is needed to achieve the best-performing model. After we present the 
model, we will discuss how our model can facilitate interventions once drinking episodes are detected. We will now describe how 
we identify the most important features, with correlation analysis and information gain.  

 Correlation Analysis: Important Features of Drinking Episodes using Smartphone Sensor Data 
We ran the correlation analysis 1) to gain an intuitive understanding of the value of individual features, 2) to quantify the 

strength of the relationship between sensor variables and not-drinking, drinking and heavy drinking episodes, and 3) to understand 
the value of using historical data for differentiating drinking episodes. In addition, we explain how the features differ when 
detecting non-drinking, drinking, and heavy drinking. For this analysis, we divided the data into 1-hour segments, providing 
enough data on which to operate, without overburdening the analysis with a data window that is too large. 

To test if there is a linear relationship between the variables, we used the Pearson correlation coefficient r (from the 
Hmisc package of the R program to compute the significance levels for Pearson correlations). Table 5 shows the results of the 
correlation analysis where we present the features only if they have a positive or a negative relationship with whether a participant 
was not drinking, drinking, or heavy drinking. The correlation coefficient ranges from +1.0 to -1.0. r > 0, for example time_of_day 
r = 0.11 (Table 5a), indicates a positive linear relationship; r < 0, for example accelerometer_mean_magnitude r = -0.03 (Table 
5a), indicates a negative linear relationship. 

Table 5. Correlation Matrix with Significance Levels (p-value) 
Features r p-value 
time_of_day 0.11 0.000 
screen_duration_interaction_seconds 0.07 0.000 
day_of_week 0.06 0.000 
average_time_between_keypress_ms 0.06 0.000 
number_of_keypress_deletions 0.06 0.000 
accelerometer_min_magnitude -0.05 0.0001 
number_of_keypress_insertions 0.04 0.002 
accelerometer_mean_magnitude -0.03 0.023 
count_activity_changes 0.03 0.030 
accelerometer_median_magnitude -0.03 0.039 
number_of_correspondents 0.03 0.047 

(a) Correlations to episodes without historical data (n=6223) 

 
Features r p-value 
screen_unlocks_per_minute 0.20 0.000 
time_of_day                                        0.19 0.000 
screen_duration_interaction_seconds  0.15 0.000 
number_of_deletions  0.15 0.000 
happy_emoticon_count 0.14 0.000 
day_of_week                                            0.10 0.000 
average_time_between_keypress_ms  0.07 0.007 
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number_of_insertions  0.05 0.022 
(b) Correlations including 1 day of historical data before drinking episodes (n=1745) 

 
Features r p-value 
time_of_day                                        0.16 0.000 
happy_emoticon_count 0.11 0.000 
day_of_week                                            0.08 0.000 
screen_duration_interaction_seconds 0.08 0.000 
average_time_between_keypress_ms 0.08 0.000 
number_of_deletions  0.07 0.0006 
number_of_insertions  0.06 0.002 

(c) Correlations including 2 days of historical data before drinking episodes (n=2701) 

 
Features r p-value 
time_of_day 0.14 0.000 
happy_emoticon_count 0.10 0.000 
day_of_week 0.08 0.000 
screen_duration_interaction_seconds 0.08 0.000 
average_time_between_keypress_ms 0.07 0.0001 
number_of_keypress_deletions 0.06 0.0002 
number_of_keypress_insertions 0.05 0.003 
radius_of_gyration 0.03 0.05 

(d) Correlations including 3 days of historical data before drinking episodes (n=3494) 
 

We performed the correlation analysis with historical data (1-day, 2-days, 3-days) and without historical data. Table 5a shows 
the results of the analysis with no historical data, and Table 5b, 5c and 5d shows the results with 1-day, 2-days and 3-days of 
historical data, respectively. Similar to previous studies [14,38], we found that time_of_day (r = 0.11, 0.20, 0.16, and 0.14) and 
day_of_week (r = 0.06, 0.1, 0.08, and 0.08) had weak correlations with whether a participant was not drinking, drinking, or heavy 
drinking with no historical data, and with 1-, 2-, and 3-days of historical data, respectively. We found that these two temporal 
features (time_of_day, day_of_week), and four mobile usage features (screen_duration_interaction_seconds, 
average_time_between_keypress_ms, number_of_keypress_deletions, and number_of_keypress_insertions) have positive 
relationships with drinking episodes with and without history data.  

While all correlations were weak, we also had mixed results regarding the value of using historical data for correlating with 
different types of drinking episodes. For example, certain types of smart phone interactions (happy_emoticon_count, r = 0.14, 
0.11, and 0.10) appeared in the top list of correlations for the analysis with 1-, 2-, 3-days of historical data, but not in the without 
historical data analysis. The movement features, accelerometer_min_magnitude (r = -0.05) and 
accelerometer_mean_magnitude (r = -0.03) and accelerometer_median_magnitude (r = -0.03)  had a weak negative 
relationship with whether a participant was not drinking, drinking, or heavy drinking only when we did not use history data. In 
addition, Radius_of_gyration was correlated with drinking episodes when only using 3-day history. 

We now provide more details on the correlation analysis, broken out by type of features: e.g., temporal, motion, device usage 
and communications. 

4.2 Day of Week and Time of Day 
The correlation analysis (Table 5) shows that time_of_day and day_of_week correlate significantly with drinking episodes. As 

shown in Figure 3a and b, our results support prior research [68] showing that young adults tend to engage in heavy drinking from 
Thursday to Sunday, and were more likely to report drinking episodes on Saturday than other days, and during evening and night 
times compared to other times of the day. Heavy drinking episodes had longer average durations (M=8.96, SD=8.37) than drinking 
occasions (M=5.79, SD=5.21).  
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                (a)  Day of week (days)                                      (b) Time of day (hours) 

Fig. 3. (a) Drinking episodes collected by ESM (Experience Sampling Method) via smartphones across all 30 users. (b) Time 
of day using 1-hour time window. 1 starts from 00:00 to 00:59 and 24 refers to the time between 23:00 to 23:59. 

4.3 Motion: activity and movement 
The correlation analysis shows that there is a significant relationship between mean, median and minimum magnitude of 

acceleration and drinking episodes without historical data: r = -0.03, p < .05, r = -0.03, p < .05, and r = -0.05, p < .001 
respectively and no relationship using historical data r = 0.02, p = .3314, r = 0.03, p = .066, and r = 0.03, p = .0639 respectively. 
This tells us that by using historical acceleration data, we are unlikely to be able to more easily differentiate non-drinking and 
drinking and heavy drinking episodes, compared to attempting this without using historical data. 

We also report on a few other features related to activity and movement. There is a significant positive relationship between 
maximum magnitude of acceleration and drinking episodes when not using historical data, r = 0.11, p < .001. The number of 
activity changes, meaning the number of transitions between different types of activities (still, tilting, walking, running, on bicycle, 
and in vehicle), correlates with drinking episodes (r = 0.03, p < .05), meaning that people who show an increase in physical 
activity changes are more likely to report a drinking event within a given time window. The radius of gyration meaning the radius 
of the circle which encompasses all of the places an individual visited in a given time segment [25]  is also a good predictor to 
differentiate between non-drinking and drinking episodes both when not using historical data, r = 0, p = .7799, and using historical 
data r = 0.03, p = .0535. However, travel distance meter meaning the distance traveled in each time window, does not correlate 
with non-drinking and drinking episodes (r = 0, p=.8263).  

4.4 Device usage: screen, unlock and keyboard operation  
The results show that there is a significant relationship between screen_duration_interaction_sec (total duration of screen on 

and off within time segment), and drinking episodes when we use the previous 3 days of historical data before each drinking 
episode, r= 0.07, p<0.001. We found that there is a significant relationship without this historical data as well, r= 0.08, p<0.001. 
The average time duration for interacting with screen of the phone was lower when participants were drinking (M=16.32, 
SD=48.13) compared to non-drinking episodes (M=23.19, SD=77.13). However, the interaction durations of screen were higher 
for heavy drinking episodes (M=57.27, SD=127.31) when compared to non-drinking (M=23.19, SD=77.13) and drinking episodes 
(M=16.32, SD=48.13) (Figure 4a). 

Interestingly, screen_unlocks_per_minute was likely to be lower when a participant was drinking (M=3.24, SD=27.37) and 
heavy drinking (M=1.48, SD=9.88) compared to non-drinking episodes (M=13.41, SD=467.40) (Figure 3a), which means people 
tend to check their smartphones less frequently during drinking events. This number was a little lower when participants were 
heavy drinking compared to when they were drinking (but still less than when they were not drinking). 

Our results show that when participants were heavy drinking, they had longer average times between keyboard presses and a 
lower number of keypress insertions compared to when they were drinking or non-drinking (Figure 4b).  
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(a) Screen_unlocks_min (left) and duration_interaction_sec (right) between heavy drinking, drinking and non-drinking events 

  

   
(b) Keypress interaction: average time between keypresses, happy emoticon count, number of keypress deletions and insertions 

Fig. 4. Users’ device usage; screen, lock and keyboard between episodes; heavy drinking, drinking and non-drinking. 

4.5 Communication: calls and messages 
Our results show that there is a positive relationship between the number of correspondents (i.e., number of individuals with 

whom the participant communicated) and non-drinking and drinking episodes, r = 0.03, p < .05. However, the number of 
incoming and outgoing messages did not correlate with any drinking and non-drinking episodes (r = 0.02, p = 0.0704) and (r = 
0.02, p = 0.1475) respectively. 

Despite the number of significant correlations between these different types of features, all correlations were quite weak with 
the drinking episodes of interest. Further, our correlation analysis revealed somewhat conflicting evidence about the value of using 
historical data. While most of the feature correlations increased in magnitude with more historical data, adding more historical data 
was not uniformly positive.  
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Due to this conflicting evidence and the weak correlation, to find optimal features with which to build our models, we 
performed an Information Gain analysis on the feature set. We use Information Gain to select a smaller number of features than the 
maximum, to avoid overfitting to the data. In the analysis below, we target the features with the 20 highest information gain scores. 

4.6 Feature Understanding: Information Gain 
We measured the Information Gain (IG) of each sensor stream to understand the relationship between drinking episodes and 

the importance of behavioral sensor streams for detecting drinking episodes. Here we measure the Information Gain of each feature 
for each of our target classes; non-drinking, drinking and heavy drinking. From the IG, we chose the top ranked 20 features (IG > 
0.05) across all our data. Figure 5 shows the results of our Information Gain analysis for a Random Forest classifier without (1h_no) 
and with historical data (1h_1, _2 and _3day) using a 1-hour data window size.  

 
First, using these models, we confirmed that a traditional predictor of drinking behavior, time of day attribute is top ranked as 

0.650, 0.413, 0.488 and 0.460, for the 1h_no, 1h_1day, 1h_2day and 1h_3day model respectively, across all users. Second, from 
our initial list of 56 features, movement features such as number_of_activities (0.383, 0.320, 0.339, and 0.249), activity changes 
(0.203, 0.248, 0.247, and 0.378) were quite good for detecting non-drinking, drinking and heavy drinking across all models. Third, 
the importance of smartphone usage features such as screen_duration_interaction_seconds increased (0.294, 0.327 and 0.282) 
with 1-, 2-, and 3-days of historical data compared to models without history data (0.096) to detect non-drinking, drinking and 
heavy drinking.  

In addition, the screen_unlocks_per_minute and battery_length_of_charge_seconds features had information gain scores of 
0.134, 0.173 and 0.247 and 0.210, 0.227 and 0.096, respectively, if historical data were added compared to when no-history data 
was used (0.104 and 0.050 respectively). Fourth, communication features, such as the number of incoming calls, missed calls 
(except for number_of_correspondents_phone) were relatively poor for identifying non-drinking, drinking and heavy drinking 
episodes, from the Information Gain perspective. However, the importance of communication features e.g., number_missed_calls 
and number_outgoing_calls had the highest information gain scores (0.1765 and 0.1689, respectively) with 1-day of historical 
data. Fifth, when using a 2-hour window of historical data from smartphones, we found that more detailed keyboard measures such 
as number_of_keypress_insertions (0.134) and number_of_keypress_deletions (0.120) had relatively higher information gain 
scores than when not using historical data. Lastly, the importance of movement and location features 
accelerometer_mean_magnitude (0.200), max_magnitude_rotation (0.162) and radius_of_gyration (0.163) respectively had 
higher information gains with 1-day of historical data, compared to using no-history data. This means that movement and location 
sensors on smartphones, particularly with 1 day of historical day, can also contribute to accurately detecting drinking episodes.  

Fig. 5. Information Gain (IG) of sensor streams with different amounts of historical data, using a 1-hour data 
window. Top ranked 20 features were used to build our non-, drinking and heavy drinking detection models. 



1:18     •     S. Bae et al. 
 

 
PACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, No. 0, Article 0. Publication date: Month YYYY. 

Table 6. Description of Information Gain (IG) Ranking Filter: Importance of Top 20 Ranked Attributes 
Ranking Category Features Importance 

1 Time time_of_day 0.50338 
2 Motion number_of_activities 0.32338 
3 Motion count_changes_of_activities 0.26943 
4 Device usage screen_duration_interaction_seconds 0.25022 
5 Communication duration_outgoing_calls_seconds 0.16987 
6 Device usage screen_unlocks_per_minute 0.16493 
7 Device usage battery_length_of_charge_seconds 0.14618 
8 Motion max_magnitude_rotation 0.12541 
9 Time day_of_week 0.11206 

10 Motion accelerometer_mean_magnitude 0.11069 
11 Communication number_of_correspondents_phone 0.10837 
12 Location radius_of_gyration 0.10543 
13 Location travel_distance_meters 0.10008 
14 Communication number_outgoing_calls 0.09475 
15 Communication number_missed_calls 0.08767 
16 Device usage average_time_between_keypress_ms 0.08535 
17 Device usage number_of_deletions 0.08528 
18 Device usage number_of_insertions 0.07263 
19 Communication number_incoming_calls 0.05535 
20 Device usage happy_emoticon_count 0.02490 

4.7 Classifier Performance 
In this section, our goal is to optimize our drinking detection models, and to see the effects of window size and days of history 

on the model accuracies. We trained three machine-learning classifiers, Random Forest (RF), C4.5 decision tree and Bayesian 
network (BN) using the top ranked 20 features from our Information Gain analysis (Table 6). We used the F-score to optimize the 
models. Table 7 shows a detailed view of our classification comparisons having different data window sizes with averaged 
accuracies in classifying non-drinking, drinking and heavy drinking episodes using these metrics: Kappa, accuracy, precision, 
recall, F-score, MCC (Mathews Correlation Coefficient) and ROC (Receiver operating characteristics). Kappa is a measure of the 
similarity between observations and predictions while correcting for agreement which happens by chance [25].  ROC refers to a 
relation between the sensitivity (true positives) and the specificity (true negatives) of the algorithm [47]. MCC is a Pearson 
product-moment correlation coefficient between the observed and predicted classifications that can be used when dealing with 
unbalanced classes [30]. In addition, we performed two additional analyses to improve the quality of our models. First, we 
analyzed the impact of time window size on the model accuracy. The time window size refers to how recent the data is for 
calculating our features to determine optimal time windows for intervention delivery. If a 1-hour time window size is used, then a 
1-hour snapshot of the smartphone sensor data is used to calculate the identified features. We experimented with 30-minute, 1-hour 
and 2-hour time windows to compare the accuracy of our model. Second, we analyzed the impact of historical data on the accuracy 
of our models to see how much data needs to be stored on the phone for accurate drinking detection. We use up to 3 days’ worth of 
sensor data before the drinking events, to assess a model’s accuracy. 
 
Table 7. Model Evaluation for Different Window Sizes and Number of Days of Historical Data: Random Forest (RF), C4.5 

and Bayesian Network (BN). Metrics for each Model Include Averaged Kappa (K), Accuracy, Precision, Recall and F-score 
in Classifying. Bold indicates the top performing results for a particular metric. 

Model Kappa Accuracy Precision Recall F-Score MCC ROC Area 
30m_n_RF 0.339 0.946 0.936 0.946 0.94 0.377 0.871 
30m_n_C4.5 0.336 0.914 0.938 0.914 0.925 0.381 0.818 
30m_n_BN 0.043 0.928 0.904 0.929 0.916 0.045 0.729 
30m_1d_RF 0.842 0.952 0.951 0.952 0.951 0.838 0.976 
30m_1d_C4.5 0.719 0.904 0.921 0.904 0.91 0.723 0.895 
30m_1d_BN 0.465 0.816 0.837 0.816 0.825 0.469 0.866 
30m_2d_RF 0.757 0.948 0.948 0.949 0.948 0.752 0.967 
30m_2d_C4.5 0.366 0.808 0.874 0.808 0.833 0.398 0.899 
30m_2d_BN 0.297 0.9 0.905 0.901 0.87 0.395 0.882 
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30m_3d_RF 0.804 0.966 0.966 0.967 0.966 0.809 0.961 
30m_3d_C4.5 0.778 0.96 0.962 0.961 0.961 0.785 0.939 
30m_3d_BN 0.61 0.938 0.935 0.938 0.936 0.612 0.93 

(a) 30-minute window size 
Model Kappa Accuracy Precision Recall F-Score MCC ROC Area 
1h_n_RF 0.158 0.931 0.909 0.932 0.919 0.174 0.825 
1h_n_C4.5 0.175 0.902 0.91 0.903 0.906 0.196 0.671 
1h_n_BN 0.021 0.934 0.895 0.934 0.913 0.039 0.694 
1h_1d_RF 0.732 0.916 0.92 0.917 0.918 0.732 0.96 
1h_1d_C4.5 0.536 0.85 0.865 0.851 0.857 0.543 0.846 
1h_1d_BN 0.444 0.833 0.845 0.833 0.837 0.446 0.821 
1h_2d_RF 0.687 0.94 0.936 0.941 0.936 0.696 0.936 
1h_2d_C4.5 0.581 0.907 0.911 0.907 0.909 0.599 0.79 
1h_2d_BN 0.327 0.879 0.861 0.88 0.868 0.333 0.805 
1h_3d_RF 0.717 0.955 0.953 0.956 0.953 0.719 0.946 
1h_3d_C4.5 0.519 0.912 0.919 0.913 0.916 0.511 0.802 
1h_3d_BN 0.304 0.888 0.877 0.889 0.883 0.293 0.729 

(b) 1-hour window size 
Model Kappa Accuracy Precision Recall F-Score MCC ROC Area 
2h_n_RF 0.09 0.926 0.902 0.926 0.913 0.127 0.819 
2h_n_C4.5 0.218 0.91 0.917 0.91 0.913 0.246 0.576 
2h_n_BN 0.005 0.931 0.892 0.931 0.911 0.026 0.762 
2h_1d_RF 0.505 0.841 0.846 0.842 0.844 0.489 0.853 
2h_1d_C4.5 0.438 0.823 0.824 0.824 0.823 0.43 0.758 
2h_1d_BN 0.317 0.744 0.797 0.744 0.766 0.363 0.834 
2h_2d_RF 0.588 0.922 0.915 0.923 0.916 0.587 0.94 
2h_2d_C4.5 0.514 0.908 0.897 0.909 0.901 0.509 0.783 
2h_2d_BN 0.453 0.87 0.888 0.87 0.878 0.467 0.769 
2h_3d_RF 0.558 0.938 0.928 0.938 0.929 0.568 0.873 
2h_3d_C4.5 0.415 0.903 0.9 0.903 0.902 0.404 0.751 
2h_3d_BN 0.22 0.881 0.876 0.882 0.877 0.212 0.639 

(c) 2-hour window size 
 
Overall, the Random Forest (RF) model generally outperformed the C4.5 decision tree model, which generally outperformed 

the Bayesian network (BN) model, in terms of accuracy, for different window sizes of data and differing numbers of days of 
history (Figure 6). Our most accurate population-based classifier had an average classification accuracy of 96.6% across the data 
from all 30 young adults (average Kappa, accuracy, precision, recall, F-score, MCC and ROC: 0.804, 0.966, 0.966, 0.967, and 
0.966, 0.809 and 0.961 respectively, Figure 7) in distinguishing non-drinking, drinking, and heavy drinking episodes. This model, 
30m_3d_RF (features calculated using 30-minute window sizes, with 3 days of historical data) outperformed the models with 1-
hour (95.5%) and 2-hour (93.8%) windows and 3 days of historical data. However, we found that the 30m_1d_RF model (30-
minute window size for computing behavioral features with 1-day historical data) resulted in the highest kappa (k=0.842), MCC 
value (0.838) and ROC value (0.976) compared to the highest performance model (30m_3d_RF k=0.804, MCC: 0.809, ROC: 
0.961), but slightly lower accuracy (95.2%) and F-score (0.951).  
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                         (a) 30-minute window size                                                                     (b) 1-hour window size 

  
(c) 2-hour window size 

Fig. 6. Model performance comparisons using Random Forest (RF), C4.5 and Bayesian Network (BN) classifiers with 1-, 2 
days and without historical data. 

 
We computed the ROC convex hulls (see Figure 7) for the best performing models (ROC area >= 0.96) because the curves 

represent the subset of the best decision boundaries showing the relative costs of true positives (Y-axis represents sensitivity) and 
false positives (X-axis represents 1- specificity). (0, 1) on the ROC curve would be an ideal point. They indicate the relative 
tradeoffs that can be made when tuning for a particular true positive and false positive balance. As expected, the false positive rates 
are low for high true positive rates, particularly for the two models with the highest accuracy 30m_3d_RF (Figure 7a) and 
30m_3d_RF (Figure 7c). In addition, for detecting heavy drinking, the area under the curve is highest (0.992) for the 30m_1d_RF 
model, and for detecting drinking, it is highest (0.948) for the 30m_3d_RF model. 
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(a) 30-minute window size – 1day historical data (30m_1d_RF)   (b) 30min – 2days historical data (30m_2d_RF) 

 

 
(c) 30-minute window size – 3days historical data (30m_3d_RF)    (d) 1hour window size – 1day historical data (1h_1d_RF)    

Fig. 7. Receiver Operating Characteristics(ROC) curves for the best performing models with Random Forest(RF) 

4.8 Classifier Performance for Different Window Sizes 
As Figure 8 shows, Kappa decreases when the data window size increases. Correspondingly, the false positive rate increases, 

and the true positive rate slightly decreases as the data window size increases. The accuracy of each model (meaning 30min, 1h-, 
and 2h-window) trained and tested with no, 1-day, 2-day and 3-day historical data all have similar trends (Figure 9a, b, c). The 
results show that the optimal window size for detecting non-drinking, drinking and heavy drinking was when the social and 
behavioral data were collected within a 30-minute window. 
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Fig. 8. RF Model comparisons of Kappa, True Positive, and False positive rates: An average of each window with historical 
data; no-days, 1-day, 2-days, and 3-days data. 

 
 

 
(a) 30-minute window size 

  
(b) 1-hour window size 

  
(c) 2-hour window size 

Fig. 9. The results of the model comparisons differentiated window sizes as well as with and without historical data in which we 
used the Random Forest (RF) classifier to detect drinking episodes because the RF showed the best performance among models in 
the previous experiments. In specific, model comparisons in classifying 30 minutes (30m), 1-hour (1h) and 2-hour (2h) windows as 
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non-drinking (N), heavy drinking (H) and drinking (D), and drinking detection results without (n)- and with 1day (1d), 2days (2d) 
and 3days (3d) of historical data. The metrics used are Kappa, accuracy, precision, recall, F-score, MCC, ROC and true positive 

(TP) and false positive (FP). 

4.9 Classifier Performance for Different Amounts of Historical Data 
We now focus on the results of the models built with differing amounts of historical data: no-, 1-, 2- and 3-day histories. The 

highest Kappa value, 0.842, was achieved with the 30m_1d_RF model. Landis and Koch [33] define values in the range of 0.81-1 
as almost perfect, and Fleiss [25] defines values > 0.75 as excellent. Using historical data results in higher values of Kappa, as 
shown in Figure 10a. It also results in lower false positive rate compared to models trained without using historical data of the 
smartphones (Figure 10b), regardless of the data window size chosen. Further, accuracy of models with 3-days historical data, 
when compared to models with no historical data, was higher for all data window sizes (30m: 96.6% vs. 94.6%; 1h: 95.5% vs. 
93.1%; 2h: 93.8% vs. 92.6%). 

 
                                               (a) Kappa                                                                         (b) False Positive (FP) 
Fig. 10. Comparison of the RF models trained on different amounts of historical data (no-days, 1-day, 2-days, and 3-days), 

averaged across the different data window sizes. 

4.10 Classifier Performance for Heavy Drinking 
When it comes to delivering an appropriate intervention, we would like to be able to predict heavy drinking episodes, and not 

just detect them. However, detection of these heavy drinking episodes is a necessary stepping stone and is valuable in and of itself. 
As described when we motivated our work in the introduction, when a heavy drinking episode is detected for an individual, an 
automated system can, for example, send an intervention message to alert designated individuals to assist or watch out for this 
person, or send a post-hoc message providing feedback to the individual regarding recent heavy drinking episodes. The latter 
supports both self-reflection and possible changes to a care plan by a clinician (if the individual is in treatment). To enable such 
features, we need to maximize the true positive rate for detecting heavy drinking episodes (as opposed to maximizing the 
accuracy or true positive rate across all 3 types of episodes). The consequences of an incorrect prediction (in particular, a false 
negative) could involve, for example, a missed opportunity to provide real-time support to reduce alcohol-related harm, whereas a 
false positive in the context of a mobile intervention (e.g., sending a message that encourages a halt to drinking) could erode 
engagement with the intervention [57]. 

Figure 11 shows the True Positive Rate (TPR) and False Positive Rate (FPR) for classifying all three classes (non-drinking, 
drinking, heavy drinking). Our results show that models using 1 day of historical data had the highest true positive rate for 
classifying heavy drinking. Among these, the 30m_1d_RF model represents the highest TPR for classifying heavy drinking (0.909). 
As expected, all models using historical data performed better than with no historical data.  
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Fig. 11. True Positive(TP) and False Positive(FP) in classifying non-drinking (N), drinking (D)and heavy drinking (H) 

episode. 
 

Table 8. Metrics for each Model Include True Positive (TP) and False Positive (FP) in Classification: Model Evaluation for 
Different Window Sizes (30, 1h, 2h) and with (1d, 2d, 3d, where d is days) and without historical data (n) using Random 

Forest (RF). 

  30m_n
_RF 

30m_1d
_RF 

30m_2d
_RF 

30m_3d
_RF 

1h_n_
RF 

1h_1d
_RF 

1h_2d
_RF 

1h_3d
_RF 

2h_n_
RF 

2h_1d
_RF 

2h_2d
_RF 

2h_3d
_RF 

N_
TP 0.984 0.979 0.975 0.985 0.980 0.944 0.983 0.987 0.978 0.897 0.972 0.985 

D_
TP 0.163 0.683 0.684 0.702 0.036 0.550 0.409 0.500 0.071 0.417 0.308 0.214 

H_
TP 0.321 0.909 0.794 0.844 0.186 0.902 0.732 0.783 0.048 0.700 0.700 0.650 

N_
FP 0.685 0.169 0.247 0.194 0.859 0.197 0.365 0.348 0.886 0.406 0.455 0.529 

D_
FP 0.010 0.013 0.016 0.006 0.005 0.034 0.012 0.009 0.013 0.048 0.007 0.006 

H_
FP 0.008 0.005 0.007 0.010 0.015 0.020 0.006 0.003 0.012 0.045 0.019 0.009 

 
We also found that models using 1 day of historical data had the lowest false positive rate (false alarm) in detecting non-

drinking. False positives for detecting non-drinking may have the highest cost to participants as they result in missed opportunities 
for interventions. Among these, the 30m_1d_RF model represents the lowest FPR for classifying non-drinking (0.169) episodes 
among all our RF models.  

4.10.1 Confusion Matrix 
As Table 9b shows, the 30min_1d_RF model performs the best at classifying heavy drinking: 90.9%. Its performance in 

classifying all episodes (non-drinking, drinking and heavy drinking) is 95.2%. It is interesting to note that classifiers incorrectly 
labelled heavy drinking episodes as non-drinking episodes for most of the mislabeled cases. With more historical data, the 
classifiers more correctly label heavy drinking episodes as heavy drinking. For example, with just 1 day of historical data (Table 
9b), the true positive rate for heavy drinking rises from 32.1% (no history, Table 9a) to 90.9%. The same is true for the true 
positive rates for drinking episodes – more history improves accuracy.  
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Table 9. Confusion Matrix per Model (Random Forest) 

  
Estimated       

    Non-drinking Drinking Heavy drinking Total 

A
ct

ua
l 

Non-drinking 2322  
(98.4%) 22 16 2360 

Drinking 37  8 (16.3%) 4 49 

Heavy drinking 52 3 26  
(32.1%) 81 

Total 2411 33 46 2490 
(a) 30-minute window size, without historical data 

 

  
Estimated       

    Non-drinking Drinking Heavy drinking Total 

A
ct

ua
l 

Non-drinking 519 
(98.4%) 8 3 530 

Drinking 13 28 
(68.3%) 0 41 

Heavy drinking 7 0 70 
(90.9%) 77 

Total 539 36 73 648 
(b) 30-minute window size – 1day historical data used 

 

  
Estimated       

    Non-drinking Drinking Heavy drinking Total 

A
ct

ua
l 

Non-drinking 1100 
(97.5%) 20 8 1128 

Drinking 18 39 
(68.4%) 0 57 

Heavy drinking 20 0 77 
(79.4%) 97 

Total 1138 59 85 1282 
(c) 30-minute window size – 2days historical data used 

 

  
Estimated       

    Non-drinking Drinking Heavy drinking Total 

A
ct

ua
l 

Non-drinking 1191 
(98.5%) 7 11 1209 

Drinking 13 33 
(70.2%) 1 47 

Heavy drinking 11 1 65 
(84.4%) 77 

Total 1215 41 77 1333 
(d) 30-minute window size – 3days historical data used 

 

  
Estimated       

    Non-drinking Drinking Heavy drinking Total 

A
ct

ua
l Non-drinking 1151 

(98%) 6 17 1174 

Drinking 26 1 
(3.6%) 1 28 
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Heavy drinking 35 0 
 

8 
(18.6%) 

43 

Total 1212 7 26 1245 
(e) 1-hour window size – no historical data used 

 

  
Estimated       

    Non-drinking Drinking Heavy drinking Total 
A

ct
ua

l 

Non-drinking 271 
(94.4%) 11 5 287 

Drinking 8 11 
(55%) 1 20 

Heavy drinking 4 0 37 
(90.2%) 41 

Total 283 22 43 348 
(f) 1-hour window size – 1day historical data used 

 

  
Estimated       

    Non-drinking Drinking Heavy drinking Total 

A
ct

ua
l 

Non-drinking 469 
(98.3%) 6 2 477 

Drinking 12 9 
(40.9%) 1 22 

Heavy drinking 11 0 30 
(73.2%) 41 

Total 492 15 33 540 
(g) 1-hour window size – 2days historical data used 

 

  
Estimated       

    Non-drinking Drinking Heavy drinking Total 

A
ct

ua
l 

Non-drinking 627 
(98.7%) 6 2 635 

Drinking 12 12 
(50%) 0 24 

Heavy drinking 11 0 31 
(78.3%) 42 

Total 650 18 33 701 
(h) 1-hour window size – 3days historical data used 

 

  
Estimated       

    Non-drinking Drinking Heavy drinking Total 

A
ct

ua
l 

Non-drinking 567 
(97.8%) 7 6 580 

Drinking 12 1 
(7.1%) 1 14 

Heavy drinking 19 1 1 
(4.8%) 21 

Total 598 9 8 615 
(i) 2-hour window size – without historical data 
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Estimated       

    Non-drinking Drinking Heavy drinking Total 

A
ct

ua
l 

Non-drinking 130 
(89.7%) 8 7 145 

Drinking 7 5 
(41.7%) 0 12 

Heavy drinking 6 0 14 
(70%) 20 

Total 143 13 21 177 
(j) 2-hour window size – 1day historical data used 

 

  
Estimated       

    Non-drinking Drinking Heavy drinking Total 

A
ct

ua
l 

Non-drinking 245 
(97.2%) 2 5 252 

Drinking 9 4 
(30.8%) 0 13 

Heavy drinking 6 0 14 
(70%) 20 

Total 260 6 19 285 
(k) 2-hour window size – 2days historical data used 

 

  
Estimated       

    Non-drinking Drinking Heavy drinking Total 

A
ct

ua
l 

Non-drinking 333 
(98.5%) 2 3 338 

Drinking 11 3 
(21.4%) 0 14 

Heavy drinking 7 0 13 
(65%) 20 

Total 351 5 16 372 
(l) 2-hour window size – 3days historical data used  

 

5 DISCUSSION 

Our results show that the use of only passively collected data from smartphones can capture young adults’ drinking and 
particularly their heavy drinking behaviors. Smartphones, which are almost always owned and carried by this population, provide 
an opportunity to detect drinking and heavy drinking behaviors using data streams such as physical movements, location, phone 
usage and communications without having to rely on the burdensome self-report of number of drinks and durations of drinking 
episodes. Importantly, our drinking detection model was developed primarily to support young adults with strategies during 
drinking episodes (to limit drinking and to provide help) and opportunities to reflect on drinking episodes and patterns after the fact. 
We optimized the model to detect drinking and heavy drinking episodes, in terms of the data features used, the window size for 
performing data analysis, and the number of days of historical data. The model was not developed to detect alcohol use for other 
purposes (e.g., forensic or legal), since these purposes may involve minimizing different types of errors.  

Our work examined the utility of smartphone sensors to track certain physical and social behaviors that are associated with 
drinking episodes in young adults. Smartphone sensors can capture physical activity, but they also can record social 
communication activity, such as phone usage (e.g., calls, messages) and screen on/off. In particular, screen on/off could be an 
important marker of heavy drinking episodes, with implications for signaling optimal times for intervention in future work. Our 
study provides insights about how much data needs to be collected on smartphones to increase the accuracy of heavy drinking and 
drinking detection (30 minute windows, with 3 days of historical data for overall classification and 30 minute windows with 1 day 
of classification for heavy drinking detection). We created a behavioral model that distinguishes non-drinking, drinking and heavy 
drinking based on both the physical behavior and social behavior collected using smartphone sensor data, with an accuracy of 
96.6%. Our best model for detecting heavy drinking episodes had an accuracy of 95.2% 
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Our detection model outperforms existing drinking detection models that also use commodity hardware. For example, a lab 
study using the accelerometer on a smartphone to estimate gait for six participants had an accuracy of roughly 70% in detecting 
level of alcohol use (0-2, 3-6 or more than 6 drinks) [2]. A similar alcohol detection model that tracked data from smartwatch  
sensors including the accelerometer, gyroscope, heart-rate and skin temperature, had a precision of .886 for the binary 
classification problem of blood alcohol level above or below 0.0685 [27]. Recall that the precision of our best model was 0.966. 
Although these lab studies demonstrate the use of sensors to detect alcohol use, our work provides important advances in terms of 
larger sample size, detection of drinking and heavy drinking episodes “in the wild” over 28 days, rather than a single lab visit, and 
the novel use of smartphone sensors to detect social (e.g., communication activities) and behavioral (e.g., user-device interactions, 
such as key strokes; travel activity) markers associated with drinking episodes. Of note, our study shows that historical data, which 
were not available in the lab studies, improved the performance of detecting drinking and heavy drinking episodes in the natural 
environment.  

With an accurate detection method, we can now begin to explore the use of intervention strategies that depend on detecting 
drinking and heavy drinking episodes. In particular, in the moment when drinking is detected, protective behavioral strategies can 
be delivered to slow down or halt the rate of drinking, particularly for those that are prone to transition from drinking to heavy 
drinking. If heavy drinking is detected, messages could similarly be delivered to the drinker, or to designated individuals to provide 
support for the drinker. After heavy drinking episodes, we can use visualization techniques to help young adults better reflect on 
their drinking patterns and use motivational strategies to encourage regulation of drinking patterns. In addition, clinicians could use 
recent drinking patterns to alter care plans for at-risk drinkers. The drinking models we have presented in this paper will allow us 
to test the efficacy of these approaches for reducing the incidence and cost of drinking. In the future, we want to build upon our 
detection work and try to predict future events of drinking and heavy drinking. This would allow us to proactively engage with 
individuals before they begin drinking or heavy drinking, through the user of just-in-time (or optimally timed) interventions.  

For detection and prediction, it is important to reduce the false positive and false negative rates as much as possible. As an 
extreme example, the false positive rate of over 90% (for the 1h_n_BN model) is too high for many applications. Fortunately, the 
false positive rates for drinking detection were much lower for our best models. False positives (in which the model identifies 
drinking when no drinking has occurred) may be preferred to false negatives (not identifying drinking events that actually 
occurred). Specifically, if the model detects drinking when none occurred, and a message encouraging strategies to reduce alcohol-
related harm is sent (e.g., “alternate alcoholic drinks with water”), the respondent may, for example, not understand why the 
message is being sent, since the message appears to be “out of context”. Alternatively, if the model fails to detect drinking, and no 
intervention message is sent, an opportunity to address alcohol use proximal to its occurrence has been lost (which is a more 
serious error in the specific context of an intervention). For other applications, such as those involving detection of alcohol use for 
legal or court purposes, false positives could result in imposing erroneous sanctions.  

More work is needed to identify other beneficial raw or computed values from smartphone sensor data, since only 56 sensor 
features were explored here. In addition, other indicators of the social and physical environment such as scheduled events, social 
media posts and social ties that are related to situations when young adults drink could be used to understand individual interests 
and social interactions, and to increase detection of drinking episodes, accordingly.  

5.1 Real-time Intervention to Prevent Negative Consequences in a Timely Manner 
Our development of the drinking detection model using only smartphone sensors is a first step toward “just in time” 

intervention. That is, first, the outcome of interest needs to be “detected” with reasonable accuracy. The next step will be to see if 
we can go beyond detecting drinking episodes, to predicting drinking and heavy drinking episodes. If these episodes can be 
predicted accurately, then intervention messages can be sent to individuals at a time when they appear to be “at risk” for heavy 
drinking. For example, prior to a drinking episode, a message encouraging non-drinking activities could be sent, whereas during a 
drinking episode, a message that encourages moderate drinking (e.g., let a couple of hours pass before your next drink) could be 
delivered. Our ultimate goal is to use data collected by the smartphone, with minimal participant burden, to predict drinking and 
heavy drinking episodes for the purpose of informing “just in time” intervention delivery. 

As further evidence of the value of appropriately timing messages, a recent proof-of-concept study [56], which experimentally 
manipulated the timing of mobile reminders to use stress reduction strategies, found that a group receiving proximal (i.e., delivered 
in response to a self-report of high stress, or after detection) intervention messages had better outcomes (e.g., lower self-reported 
stress, lower salivary cortisol) than a group receiving interventions at random times. This study demonstrates that proximal 
delivery of intervention messages is associated with better outcomes, emphasizing the utility of determining optimal timing for 
message delivery to improve intervention effects. Our future work will leverage message delivery, in which messages are timed to 
be sent prior to (in the predictive case), and during (in the detection case), drinking episodes to improve the effects of our alcohol 
intervention messaging.  
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5.2 Maximize Efficiency of Using Embedded Sensors on Smartphones for Detecting Drinking Episodes 
While our application for collecting sensor data was not overly power-intensive (at least, none of our subjects complained 

about battery life), it could be made more efficient. We would both like to explore the use of additional sensor streams, while 
reducing the sampling rate of all the used sensor streams to reduce battery usage. This will be more important when our models for 
detection (and in the future, prediction) need to run on the phone, as the model execution will consume additional battery power. 
From a data storage perspective, as we obtained our strongest results with 1 or 3 days of history data, we can safely have our 
application always delete data older than 3 days. This policy also has positive privacy implications.  

6 LIMITATIONS  

Our work, although avoiding the limitations of other smartphone and wearable device studies, had some limitations of its own. 
First, while we used a larger group of participants than past work (n=30), it is still relatively small, so our model might have 
limited generalizability. Second, young adult participants showed reduced compliance toward the end of the 28-day data collection 
period. Compensation ($2 per completed report) was provided, but this micropayment schedule could be improved, for example, 
by using bonuses or other incentives to motivate consistent completion to improve ground truth data collection. Although self-
reports of alcohol use collected using ESM is state-of-the-science and has demonstrated validity, self-reports are subject to possible 
bias (e.g., under- or over-reporting). Perhaps combining self-reports with a transdermal alcohol monitor would allow us to capture 
the benefits of both for obtaining better ground truth data. Third, our application for heavy drinking detection allowed users to 
disable sensors (e.g., Wi-Fi, Bluetooth, location) if they felt that battery drain was too high, or did not have enough storage space 
on their phones. A future deployable system would have to block users from disabling sensors, to not impact the system’s ability to 
detect drinking episodes. 

7 FUTURE WORK 

Our immediate next work will be to study the impact of delivering different interventions based on drinking and heavy 
drinking detection. In addition, to increase the generalizability of our work, we plan to extend this line of research to other 
populations (e.g., older individuals). The models we developed in the work were population models (using data from all 
participants). As a next step, we aim to build individual models for detecting drinking behavior as young adults are likely to exhibit 
different and mutable patterns over time when drinking. Our goal then, is to improve overall detection performance by leveraging 
individual differences. Finally, as stated previously, we would also like to expand our work to move beyond detection to prediction 
of heavy drinking, which would enable just-in-time intervention message delivery prior to initiation of a drinking episode, to 
increase message impact. 

8 CONCLUSIONS 

In this paper, we built a machine learning based-model that can detect whether an individual is not drinking, drinking, or heavy 
drinking with an accuracy of 96.6%, using smartphone data from participants. We identified the most important features for 
performing this detection, which can be used to deliver appropriate interventions either in the moment or after the drinking 
episodes, to reduce the frequency and severity of heavy drinking. We identify the relative value of using different amounts of 
historical data, and different size windows of data on detection accuracy, and the tradeoffs that can be made for balancing false 
positive and false negative rates. Our work provides guidance regarding how much data needs to be collected from smartphones to 
increase the accuracy of drinking and heavy drinking detection. Our results can be used to improve the timing of mobile 
intervention delivery, and is a first important step towards future work to predict drinking and heavy drinking episodes.  
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