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ABSTRACT

The Android operating system has become the most pop-
ular operating system for smartphones and tablets leading
to a rapid rise in malware. Sophisticated Android malware
employ detection avoidance techniques in order to hide their
malicious activities from analysis tools. These include a wide
range of anti-emulator techniques, where the malware pro-
grams attempt to hide their malicious activities by detecting
the emulator. For this reason, countermeasures against anti-
emulation are becoming increasingly important in Android
malware detection. Analysis and detection based on real de-
vices can alleviate the problems of anti-emulation as well as
improve the effectiveness of dynamic analysis. Hence, in this
paper we present an investigation of machine learning based
malware detection using dynamic analysis on real devices.
A tool is implemented to automatically extract dynamic fea-
tures from Android phones and through several experiments,
a comparative analysis of emulator based vs. device based
detection by means of several machine learning algorithms
is undertaken. Our study shows that several features could
be extracted more effectively from the on-device dynamic
analysis compared to emulators. It was also found that ap-
proximately 24% more apps were successfully analysed on
the phone. Furthermore, all of the studied machine learning
based detection performed better when applied to features
extracted from the on-device dynamic analysis.

Keywords

Android; Malware; Malware detection; Anti-analysis; Anti-
emulation; Machine Learning; Device-based detection

1. INTRODUCTION

The Google Android operating system (OS) is the leading
OS in the market with nearly 80% market share compared
to i0S, Blackberry, Windows, and Symbian mobile. Over
1 billion Android devices have been sold with an estimated
65 billion app downloads from Google Play [1]. Moreover,
it is reported that more than 1.5 billion Android devices
will be shipped worldwide by 2020 [2]. This has led to
malware developers increasingly targeting Android devices.
According to a report from McAfee, there are more than
12 million Android malware samples with nearly 2.5 million
new Android malware samples discovered every year [24].

The rapid increase in malware numbers targeting Android
devices has highlighted the need for efficient detection mech-
anisms to detect zero-day malware. In contrast with other

mobile operating systems, Android allows users to down-
load applications from third party stores, many of which
do not have any mechanisms or tools to check the submit-
ted apps for malware. The Google play store uses a tool
called Bouncer to screen submitted applications. However
it has been previously demonstrated that the Bouncer dy-
namic analysis process can be bypassed by means of some
simple anti-emulator techniques [26].

Android malware can be found in a variety of applica-
tions such as banking apps, gaming apps, media player apps
etc. These malware-infected apps may access phone data
to collect privacy sensitive information, root the phone, dial
premium rate numbers or send text messages to premium
rate numbers without the user approval etc. Many Android
malware families employ detection avoidance techniques in
order to hide their malicious activities and evade anti-virus
software. Commonly used detection avoidance methods by
Android malware include a wide range of anti-emulator tech-
niques, where the malware programs attempt to hide their
malicious activities when being analysed in an emulator. For
this reason, countermeasures against anti-emulation are be-
coming increasingly important in Android malware detec-
tion.

Several approaches for anti-emulation (or anti-virtualization)

have been discussed in previous work. The paper [30] dis-
cusses some methods that could be employed in order to de-
tect the run-time environment thereby hindering dynamic
analysis. Some malware applications, for example, will de-
tect the emulator through the use of Android APIs. For
instance, if the Telephony Manager API method Telephony-
Manager.getDeviceld() returns 000000000000000, it means
the run-time environment is an emulator rather than a real
device, because no real phone will return Os as the device
identifier. This is one of the emulator detection methods
used by the Pincer family of Android malware [3].

The emulator can also be detected through the network-
ing environment which is different from that of a real phone,
or the underlying QEMU can be detected. Morpheus [22]
has also exposed more than 10,000 detection heuristics based
on some artifacts that can be used to detect the run-time
analysis environments. These artifacts can be used in mal-
ware samples to hide the malicious activities accordingly.
Dynamic analysis tools that rely on emulators (or virtual
devices) such as Dynalog [14] attempt to address the prob-
lem by changing properties of the environment to emulate
a real phone as much as possible and to incorporate several
behaviours to mimic a real phone. However, these methods
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whilst useful, have been shown to be insufficient to com-
pletely tackle anti-emulation [21], [22], [31] .

Several dynamic analysis tools such as TaintDroid [20],
DroidBox [4], CopperDroid [29], Andrubis [17], AppsPlay-
ground [27] have been proposed. Similarly, some online
based tools are available for Android malware analysis such
as SandDroid [5], CopperDroid [6], TraceDroid [7], and
NVISO ApkScan [8|. All of these dynamic approaches can
be evaded by malware that use anti-emulation. Since the
analysis is done in a virtualized environment.

Mutti et al. [25], have demonstrated the feasibility of
device-based dynamic analysis to alleviate the problems of
anti-emulation. We have also found that phones generally
provide more effective analysis environment due to incom-
plete nature of emulators. Many apps nowadays have func-
tionality that utilize device hardware features such as sen-
sors, WiFi, GPS, etc. and these require emulation in the
sandbox. Therefore, devices should provide more effective
analysis environment. Hence, we have designed and imple-
mented a python-based tool to enable dynamic analysis us-
ing real phones to automatically extract dynamic features
and potentially mitigate anti-emulation detection. Further-
more, in order to validate this approach, we undertake a
comparative analysis of emulator vs device based detection
by means of several machine learning algorithms. We ex-
amine the performance of these algorithms in both environ-
ments after investigating the effectiveness of obtaining the
run-time features within both environments. The exper-
iments were performed using 1222 malware samples from
the Android malware genome project [9] and 1222 benign
samples from Intel Security (McAfee Labs).

The rest of the paper is structured as follows. Section II
describes the runtime analysis process for feature extraction
from the phone and emulator, Section III details the method-
ology and experiments undertaken for the evaluation. The
results and the discussions of results will be given in Section
1V, followed by related work in Section V. Section VI will
present conclusions and future work.

2. PHONE BASED DYNAMIC ANALYSIS AND

FEATURE EXTRACTION

In order to apply machine learning to the classification and
detection of malicious applications, a platform is needed to
extract features from the applications. These features will
be used by the machine learning algorithm to classify the
application. Prior to that, the algorithm must be trained
with several instances of clean and malicious applications.
This process is known as supervised learning. Since our
alm is to perform experiments to compare emulator based
detection with device based detection we need to extract
features for the supervised learning from both environments.
For the emulator based learning, we utilized the Dynalog
dynamic analysis framework described in [14].

The framework is designed to automatically accept a large
number of applications, launch them serially in an emula-
tor, log several dynamic behaviours (features) and extract
them for further processing. Dynal.og components include
an emulator-based analysis sandbox, an APK instrumen-
tation module, Behaviour/features logging and extraction,
App trigger/exerciser and log parsing and processing scripts
[14]. Dynal.og provides the ability to instrument each appli-
cation with the necessary API calls to be monitored, logged

and extracted from the emulator during the run-time anal-
ysis. The instrumentation module was built using APIMon-
itor [10].

Dynal.og currently relies on Monkey, an application exer-
ciser tool, which allows the application to be triggered with
thousands of random events for this experiment. These ran-
dom events include "swipes”, "presses”, "touch screens” etc,
to ensure that most of the activities has been traversed to
cover as much code as possible. In order to enable dynamic
analysis and feature extraction from a real phone, the Dy-
nal.og framework was extended with a python-based tool to
enable the following:

e At the start, push a list of contacts to the device SD
card and then import them (using adb shell command)
to populate the phone’s contact list.

e Discover and uninstall all third-party applications prior
to installing the app under analysis (or from which fea-
tures are to be extracted). This capability was imple-
mented using package manager within an adb shell as
illustrated in Fig.

e Check whether the phone is in airplane mode or not.
If it is in airplane mode, turn it (airplane mode) off.
This is because with airplane mode switched on, many
phone features such as WiFi, 3G/4G connectivity will
be unavailable, which could affect the dynamic analy-
sis. Also, Monkey (the app exerciser tool) was found
to sometimes temper with the analysis by turning on
the airplane mode due to its randomly sending events

such as "touch screens”, "presses” and "swipes”.

e Check the battery level of the phone. If the level is
very low i.e. battery has discharged to a low level,
put the analysis on hold (sleep) until the phone has
re-charged to an appropriate level.

e Outgoing call dialling using adb shell.
e Outgoing sms messages using adb shell.

e Populate the phone SD card with other assets such as
folders containing dummy files: image files, pdf, text
files etc.

Each of the apps is installed and run for 300 seconds on
the emulator (and then on the phone for the second exper-
iment) and the behaviours are logged and parsed through
scripts that extract the desired features. The features used
in the experiments include API calls and Intents (signalling
critical events). The API calls signatures provided during
the instrumentation phase allows the APIs to be logged and
extracted from the phone (or the emulator) via adb log-
cat as the app is run. For malicious apps that incorporate
anti-emulator techniques it is expected that the API call
that could lead to the exposure of their malicious behaviour
would not be logged as the malware will attempt to hide
this behaviour. The analysis process is shown in Fig.

uninstall = "adb shell pm list packages -3 | cut -d":'-f2 | tr'\r'"" | xargs -r -n1 -t adb uninstall"
0s.system (uninstall)

print("uninstalling all 3rd party user apps")

Figure 1: Uninstalling third party apps from the phone using
package manager in an adb (android debug bridge) shell.
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Figure 2: Phone and emulator based feature extraction using
DynalLog.

3. METHODOLOGY AND EXPERIMENTS

This section describes the methodology of the experiments
which were performed to evaluate the environmental effec-
tiveness of detecting and extracting the features as well as
analysing the performance of the machine learning algo-
rithms on both emulator and real phone.

3.1 Dataset

The dataset used for the experiments consists of a total
of 2444 Android applications. Of these, 1222 were malware
samples obtained from 49 families of the Android malware
genome project [9]. The rest were 1222 benign samples
obtained from Intel Security (McAfee Labs).

3.2 Environmental configurations

The two environments under which the experiments were
performed had the following configurations. The first was
the phone which was an Elephone P6000 brand smartphone
equipped with Android 5.0 Lollipop, 1.3 GHz CPU, 16 GB
internal memory, and 32 GB of external SD card storage.
In addition, a sim card with call credit was installed in the
phone to enable outgoing calls and 3G data usage.

The emulator environment (an Android virtual device)
was created in a Santoku Linux VirtualBox based machine.
The emulator was configured with 2 MB of memory, and an
8 GB of external SD card memory. The Android version in
the emulator was 4.1.2 Jelly Bean (API level 16). Note that,
the features are app dependent so the difference in Android
versions will have no impact. The emulator was enhanced
as described in [14] by adding contact numbers, images,
.pdf files, and .txt files as well as changing the default IMEI,
IMSI, sim serial number and phone numbers to mimic a real
phone as much as possible. The emulator is also restored
after each application run to ensure that all third party apps
are removed.

3.3 Features extraction

After all the apps are run and processed in both analy-
ses environments, the outputs are pre-processed into a file of
feature vectors representing the features extracted from each
application. Within the vector, each feature is represented
by 0 or 1 denoting presence or absence of the feature. The
files were converted to ARFF format and fed into WEKA
machine learning tool for further processing. Initially, 178
features were extracted for both the phone and emulator
environments. These were then ranked using the InfoGain
(information gain) feature ranking algorithm in WEKA. The
top 100 ranked features were then used for the experiments
to compare the detection performance between the two en-
vironments using several machine learning algorithms. The

Table 1: Top-10 Ranked Features Based on InfoGain

Top-10 Features from
Emulator

Top-10 Features from
Phone

1 BOOT_COMPLETED BOOT_COMPLETED

2 || Ljava/util/Timer;schedule || UMS_DISCONNECTED

3 Ljava/io/FileOutputStream || Ljava/lang/ClassLoader;-
;-write getResourceAsStream

4 || UMS_DISCONNECTED Ljava/util/Timer;schedule

5 Ljava/lang/ClassLoader;- Ljava/lang/ClassLoader;-

getResourceAsStream

getResource

6 || Ljava/lang/ClassLoader;- INSTALL_REFERRER

getResource

7 || Landroid/content/pm/ Ljava/lang/Class;-
ApplicationInfo;- getClassLoader
get ApplicationInfo

8 INSTALL_REFERRER Ljava/io/FileOutputStream

;-write

9 || Ljava/lang/Class;-
getClassLoader

Ljava/lang/ClassLoader

10 || Ljava/lang/ClassLoader Ljava/lang/System;-

loadLibrary

top 10 ranked features (based on InfoGain) in both sets
(phone and emulator) are shown in Table

3.4 Machine learning classifiers

In the experiments, the features were divided into five dif-
ferent sets (20, 40, 60, 80 and 100 top ranked using InfoGain)
in order to compare the performance of emulator and phone
based detection using machine learning algorithms. The fol-
lowing algorithms were used in the experiments: Support
Vector Machine (SVM-linear), Naive Bayes (NB), Simple
Logistic (SL), Multilayer Perceptron (MLP), Partial Deci-
sion Trees (PART), Random Forest (RF), and J48 Decision
Tree.

3.5 Metrics

Five metrics were used for the performance emulation
of the detection approaches. These include: true positive
rate (TPR), true negative ratio (TNR), false positive ratio
(FPR), false negative ratio (FNR), and weighted average
F-measure. The definition of these metrics are as follows:

TPR = TPT+7PFN (1)
INE = TP:CLNFN @
FPR= TP}:—PFN 3)
FNR = TP};NFN “)

2 x recall * precision

F — measure = —
recall + precision

True positives (TP) is defined as the number of malware
samples that are correctly classified, whereas the false neg-
atives is defined as the number of malware samples that are
incorrectly classified. True negatives (TN) is defined as the
number of benign samples that are correctly classified, while
false positives (FP) is defined as the number of benign sam-
ples that are incorrectly classified. The F-measures is the
accuracy metric which incorporates both the recall and the
precision.



4. RESULTS AND DISCUSSIONS

4.1 Experiment 1: Emulator vs Device analy-
sis and feature extraction

In order to validate our phone-based machine learning de-
tection, we analysed the effectiveness of running the samples
and extracting features from both phone and emulator envi-
ronments. Out of the 1222 malware samples used, 1205 were
successfully run on a real phone compared to only 939 suc-
cessfully run on an emulator. From the benign samples, 1097
out of 1222 were successfully examined using a real phone
versus 786 from the emulator for the same dataset. There-
fore, 98.6% malware sample were successfully analysed us-
ing the phone, while only 76.84% were successfully analysed
when using the emulator. Also, 90% of the benign samples
were successfully analysed using the phone versus 64.27% us-
ing the emulator. That gives us a total of 94.3% successfully
analysed using the phone compared to only 70.5% using the
emulator as illustrated in Table[2].

The phone-based experiments were performed using a San-
toku Linux-based VM. During the study we discovered that
the use of USB 2.0 or 3.0 was essential. In our initial exper-
iments where the default USB 1.0 was utilized to attach the
phone, only 480 out of the 1222 benign samples were able to
run. This was due to the fact that samples > 1 MB in size
took longer to analyse and hence experienced a ’time-out’
error with the use of the slower USB 1.0 standard. We also
noticed that apps that did not have any Activities crashed
and could not be analysed on the phone or emulator. This
accounted for a small percentage of the apps that failed to
run successfully.

Fig. fland Fig. [4show the top-10 extracted features from
malware and benign dataset respectively. Fig. |3| shows that
more malware features are able to be extracted from the
phone based analysis vs. the emulator based analysis from
the same sample set. The feature "TimerTask;-><init>",
for example, was logged from 813 malware applications us-
ing the phone, while it was only logged from 633 malware
applications using the emulator. Similarly, the feature ”in-
tent. BOOT_-COMPLETED?” in Fig. [3] has been extracted
from 662 malware applications using the phone whereas only
501 were extracted from the same sample set using the em-
ulator.

Similar findings appear with the benign samples as shown
in Fig. More samples were able to be analysed using the
phone. With some features, the difference between phone
and emulator extraction were > 200. The more features
we can extract during the dynamic analysis the better the
result of the detection mechanism is likely to be. There
were some features that were extracted exclusively from the
phone but not with the emulator. These are shown in Table
The System.loadLibrary feature (found in 209 apps) is
the API call associated with native code. The reason it is
not logged when the emulator is used could be due to the
lack of ability to run native code on the emulator. Overall,

Table 2: Percentage of successfully analysed Android apps

Emulator | Phone
Malware samples 76.84% 98.6%
Benign samples 64.27% 90%

Total 70.5% 94.3%

Table 3: Features extracted from Phone but not obtained
with the emulator

Extracted Feature Phone | Emulator
Ljava/lang/System;->loadLibrary 209 0
Ljava/net/URLConnection;- 14 0
>connect
Landroid/content/Context;- 4 0
>unbindService
Landroid /app/Service;->onCreate 3 0
BATTERY_LOW 1 0
Landroid/telephony /SmsManager;- 1 0
>sendTextMessage

the phone based analysis shows a much higher efficiency of
detecting and extracting features for analysis of the apps or
training machine learning classifiers.

4.2 Experiment 2: Emulator vs Device Ma-
chine learning detection comparison

Table [] and Table [5] present the performance evaluation
results of the different machine learning algorithms (for the
top 100 features). The results demonstrates that using the
phone-based features for the dynamic analysis approach is
more effective for detecting and classifying the applications
compared to the emulator. The results shown were obtained
from testing on 33% of the samples while 66% were used for
training the model. Table 5 shows that higher detection
rates were obtained from the phone-based features for all
the algorithms (top 100 training features). TPR of > 90%
were obtained with all but the N.B classifier with the phone-
based features. Whereas, NB, SL, PART, and J48 all had
< 90% TPR with the emulator-based features.

As mentioned earlier, 939/1222 malware and 786,/1222 be-
nign samples executed successfully on the emulator (i.e. to-
tal of 1725 out of 2444 samples). Out of these 1725 sam-
ples, 12 did not execute successfully on the phone. Thus
there were 1713 (939 malware and 774 benign) overlapping
apps that executed successfully on both the emulator and
the phone. Another set of experiments were performed with
only the apps that executed in BOTH the emulator and
phone successfully. The results (for top 100 features) using
66% training and 33% testing split are shown in Tables [f]
and |Z| respectively.
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Figure 3: Top-10 features extracted from the malware
dataset in two different analysis environments (Emulator
and Phone-USB2.0)
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Figure 4: Top-10 features extracted from the benign
dataset in two different environments (Emulator and Phone-
USB2.0)

The results show with the exception of RF, all of the tested
algorithms in the data collected from emulator recorded an
F-measure of < 0.9, whereas with the phone, only NB, PART
and J48 recorded < 0.9 F-measure. Again, the results indi-
cate better performance with the phone-based features.

Fig. [5| shows the results from top 20, 40, 60, 80 and 100
information-gain ranked features for the first experiment.
It depicts the F-measures obtained for the various machine
learning algorithms trained on both phone and emulator
data. From the figure it is clear that the overall detection
performance is better with the phone than the emulator. It
is only in the case of MLP-80 features that the emulator
records a better f-measure performance.

Fig. |§| shows the results from top 20, 40, 60, 80 and 100
information-gain ranked features for the second experiment,
where only apps that executed successfully in BOTH en-
vironments were used. In all the cases, the phone-based
experiments showed better performance except in the fol-
lowing: J48-60 features, SVM-20 features, RF-100 features
and SL-20 features. Thus, we can conclude that the phone-
based method still surpassed the emulator-based method in
overall performance prediction.

Table 4: Performance Evaluation of the machine learning
algorithms trained from Emulator-based features (top 100

Table 5: Performance Evaluation of the machine learning

algorithms from Phone-based features (top 100 features)

ML TPR || FPR || TNR || FNR || W-FM
SVM-linear || 0.916 || 0.096 || 0.904 0.084 0.91
NB 0.629 || 0.125 || 0.875 0.371 0.744
SL 0.919 || 0.085 || 0.915 0.081 0.917
MLP 0.919 || 0.088 || 0.912 0.081 0.916
PART 0.904 || 0.101 0.899 0.096 0.902
RF 0.931 0.08 0.92 0.069 0.926
J48 0.926 || 0.104 || 0.896 0.074 0.912

Table 6: Evaluation of the machine learning algorithms on
Emulator-based features extracted from apps run success-
fully in BOTH environments (top 100 features)

ML TPR || FPR || TNR || FNR | W-FM
SVM-linear 0.89 0.122 || 0.878 0.11 0.885
NB 0.537 0.18 0.82 0.463 0.654
SL 0.884 0.11 0.89 0.116 0.887
MLP 0.887 || 0.106 || 0.894 0.113 0.89
PART 0.893 || 0.122 || 0.878 0.107 0.887
RF 0.911 | 0.069 || 0.931 0.089 0.919
J48 0.869 || 0.094 || 0.906 0.131 0.885

Table 7: Evaluation of the machine learning algorithms on
Phone-based features extracted from apps run successfully

in BOTH environments (top 100 features)

[ ML [ TPR| FPR | TNR || FNR || W-FM |

SVM-linear [| 0.905 ][ 0.109 [| 0.891 ]| 0.095 [ 0.907
NB 0.596 || 0.102 [ 0.898 || 0.404 0.73

SL 0.902 | 0.098 [[ 0.902 [[ 0.098 || 0.902
MLP 0.905 || 0.072 [ 0.928 || 0.095 || 0.916
PART 0.899 || 0.106 || 0.894 || 0.101 || 0.897
RF 0.918 | 0.064 [ 0.936 || 0.082 || 0.926

J43 0.88 [[ 0.125 || 0.875 || 0.12 0.878

features)

ML TPR || FPR || TNR || FNR || W-FM
SVM-linear || 0.909 || 0.109 | 0.891 0.091 0.9
NB 0.596 || 0.102 || 0.898 0.404 0.73
SL 0.899 || 0.102 || 0.898 0.101 0.899
MLP 0.924 || 0.098 || 0.902 0.076 0.914
PART 0.896 || 0.109 || 0.891 0.104 0.894
RF 0.909 || 0.068 || 0.932 0.091 0.919
J48 0.88 0.125 || 0.875 0.12 0.878

4.3 Comparison with other works

In this subsection, we compare our results with those ob-
tained from the DroidDolphin and STREAM
dynamic analysis frameworks. DroidDolphin is a dynamic
analysis framework for detecting Android malware applica-
tions which leverages the technologies of GUI-based testing,
big data analysis, and machine learning. STREAM is also

a dynamic analysis framework based on Andromaly which
enables rapid large-scale validation of mobile malware ma-
chine learning classifiers. DroidDolphin used 1000 to 64000
balanced malware and benign Android applications.

In the STREAM approach, the testing set used 24 benign
and 23 malware applications while the training set consisted
of 408 benign and 1330 malware applications. Both used
split training/testing set (T.S.) and 10 fold cross-validation
(C.V.) methods. Tableshows the comparison between our
phone results (100 features) and the STREAM results, while
Table 0] shows the results obtained from DroidDolphin.

From the DroidDolphin results, it is obvious that the de-
tection accuracy is increasing as the number of the training
samples are increased. The accuracy rate starts from 83%
for the training set with 1000 applications and increased
gradually to 92.50% with 64k applications. Table |8 shows
that despite the difference in the testing set numbers be-
tween our work and STREAM, our phone based RF, SL,
J48 and MLP perform significantly better for T.S. accuracy.
In the case of C.V. accuracy, S.L performs better with our
phone results, while the RF, J48, and MLP results were
close to those of STREAM. The C.V. accuracy of RF, SL,
J48 and MLP from our phone results showed better perfor-
mance than all the DroidDolphin C.V. results.
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Table 8: Accuracy results of Phone (100 features) vs
STREAM

ML Real Phone STREAM
T.S. [ C.V. | T.S. | C.V.
NB 75.2 72.9 | 7891 | 79.79
Bayes net | 74.8 74.1 81.25 | 86.23
RF 92.6 92.9 | 70.31 | 94.53
SL 91.4 90.4 | 68.75 | 89.52
J48 91.4 91.1 | 73.44 | 93.43
MLP 91.2 91.2 | 70.31 | 93.91

Table 9: Evaluation Results of DroidDolphin (Accuracy)

Quantity || Testing Set Cross Validation
0.5k0.5k 83 79.90
1k1k 84 81.70
2k2k 85.80 83.30
4k4k 87.20 83.80
8k8k 89.10 83.50
16k16k 91.30 84.10
32k32k 92.50 86.10

For the T.S. results, our phone SL, J48 and MLP were bet-
ter than DroidDolphin T.S. results except for the 32k/32k
training/testing split T.S. results. The T.S. results from our
phone based RF experiments showed better accuracy than
all of the DroidDolphin T.S. results. Therefore, based on
the encouraging results, we would continue our analysis us-
ing the real phones with larger numbers of training samples
in future work.

S. RELATED WORK

Once a new malware application is discovered in the wild,
it should be run in a closed environment in order to under-
stand its behaviour. Researchers and malware analysts rely
heavily on emulators or virtual devices due to the fact that it
is a comparatively low cost analysis environment. Emulators
are also more attractive for automated mass analysis com-
monly employed with machine learning. Hence, most previ-
ous machine learning based detection with dynamic analysis
rely on feature extraction using tools running on emulator
environments. Contrary to previous machine learning based
dynamic detection work, we attempt to utilize real phones
(devices) for automated feature extraction in order to avoid
the problem of anti-emulator techniques being employed by
Android malware to evade detection.

Some previous machine learning based Android malware
detection works such as [16], , [33], [13], [32], have consid-
ered API calls and Intents in their studies. However, unlike
our work, these are based on static feature extraction and
thus could be affected by obfuscation. Marvin 23| applies a
machine learning approach to the extracted features from
a combination of static and dynamic analysis techniques
in order to improve the detection performance. Shabtai et
al |28 presented a dynamic framework called Andromaly
which applies several different machine learning algorithms,
including random forest, naive Bayes, multilayer perceptron,
Bayes net, logistic, and J48 to classify the Android applica-
tions. However, they assessed their performances on four
self-written malware applications. MADAM |[19] is also a
dynamic analysis framework that uses machine learning to
classify Android apps. MADAM extracted 13 features at

the user and kernel level. However, their experiments were
only performed on an emulator with a small dataset. Crow-
droid [18] is a cloud-based machine learning framework for
Android malware detection. Crowdroid features were col-
lected based on Strace from only two self-written malware
samples. Most of these previous works utilize dynamic fea-
tures extracted from emulator-based analysis. By contrast,
in this paper our work is based on dynamically extracted fea-
tures from real device and we perform a comparative anal-
ysis between emulator and phone based machine learning
approaches.

BareDroid [25] proposed a system designed to make bare-
metal analysis of Android applications feasible. It presented
analysis with malware samples from Android.HeHe |[11],
OBAD [12], and Android_Pincer.A [3] families. Their work
highlighted the anti-emulator capabilities of malware which
can be solved by using real devices. Glassbox [21] also
presented a dynamic analysis platform for analysing An-
droid malware on real devices. However, unlike the work
presented in this paper, these studies have not addressed
machine learning based detection on real devices. Different
from the previous studies, this paper presents a compara-
tive analysis of machine learning based detection between
real devices and emulators and investigates the effectiveness
of run-time feature extraction in both environments.

6. CONCLUSIONS

In this paper we presented an investigation of machine
learning based malware detection using dynamic analysis on
real Android devices. We implemented a tool to automat-
ically extract dynamic features from Android phones and
through several experiments we performed a comparative
analysis of emulator based vs. device based detection by
means of Random Forest, Naive Bayes, Multilayer Percep-
tron, Simple Logistics, J48 decision tree, PART, and SVM
(linear) algorithms. Our experiments showed that several
features were extracted more effectively from the phone than
the emulator using the same dataset. Furthermore, 23.8%
more apps were fully analyzed on the phone compared to
emulator. This shows that for more efficient analysis the
phone is definitely a better environment as far more apps
crash when being analysed on the emulator. The results
of our phone-based analysis obtained up to 0.926 F-measure
and 93.1% TPR and 92% FPR with the Random Forest clas-
sifier and in general, phone-based results were better than
emulator based results. Thus we conclude that as an in-
centive to reduce the impact of malware anti-emulation and
environmental shortcomings of emulators which affect anal-
ysis efficiency, it is important to develop more effective ma-
chine learning device based detection solutions. Hence fu-
ture work will aim to investigate more effective, larger scale
device based machine learning solutions using larger sample
datasets. Future work could also investigate alternative set
of dynamic features to those utilized in this study.
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