
Defining an Architecture for Evolving Environments
Jarkko Hyysalo, Gavin Harper, Jaakko Sauvola, Anja Keskinarkaus, Ilkka Juuso, Miikka

Salminen and Juha Partala
Faculty of Information Technology and Electrical Engineering, University of Oulu

P.O. BOX 8000, FI-90014 University of Oulu, Finland
jarkko.hyysalo@oulu.fi, gavin.harper@student.oulu.fi, jaakko.sauvola@oulu.fi, anjakes@ee.oulu.fi,

ilkka.juuso@ee.oulu.fi, miikka.salminen@ee.oulu.fi, juha.partala@ee.oulu.fi

ABSTRACT
The architecture of a system specifies how the system should be
designed and built. However, shortcomings are identified in
current architecture process frameworks concerning evolving
domains like healthcare. We claim that an iterative architecture
process is required, where the technical concerns are separated
from the non-technical ones. Furthermore, a strong guiding vision
is required. Based on our experiences from a biobank IT
infrastructure process, we present an architecture process that is
modular, interoperable, controlled and abstracted, thus being
capable of handling complex systems with large uncertainties.

CCS Concepts
• Software and its engineering~Software architectures

Keywords
Architecture; design; lessons learned; post-mortem; process.

1. INTRODUCTION
There exist several architectural frameworks that provide
guidance on how a system is to be designed and implemented
that are available. However, in domains that are not established or
stable, there exist variables that may cause changes and
unexpected events that require non-routine solutions. The wider
the scope of the project and the more stakeholders that are
involved, the more difficult the architecture definition is [1]. If the
development problem is not well-structured, it becomes
increasingly more challenging to address and communicate [2].
Healthcare is one such domain that is constantly evolving. There
exist several stakeholders from different domains, various laws
and regulations with many still emerging and service models still
being refined. These factors result in an inherent volatility within
this particular domain.

We claim that an incremental and iterative process is necessary,
where the outcome is built gradually. This facilitates observation
of the evolution of the design and implementation allowing a
better understanding of its requirements and potential. Feedback
can then gradually be gathered and incorporated into the
development process.

In order to define such a process, we propose the following
research question: What form of architecture process is suitable
for evolving environments? To address our research question, we
used a post-mortem analysis to study the process of building a
biobank IT infrastructure. The remainder of the paper is organised
as follows. Section 2 studies the background; Section 3 presents
the research approach; Section 4 discusses the new process model
and the empirical study; Section 5 summarises the study.

2. BACKGROUND AND RELATED WORK
The healthcare domain is constantly evolving by means of new
technological innovations, new requirements for efficiency and
cost and new regulations being introduced. There also exists the
continued interaction and dependency on legacy systems and data
formats. Legacy systems and data formats that are widely utilised
in the medical domain create challenges by means of potentially
isolated and non-interoperable systems. A technical burden
through legacy may arise from e.g. used data formats, processes,
tools, applications or service-level agreements, which may each
affect interoperability. Thus, there exists a need for migration and
renewal strategies in addition to strategies that enable complying
with the legacy systems.

Architecture design is heavily guided by requirements regarding
efficiency and cost. Emerging technologies may provide better
and more efficient solutions to current challenges, public-private
partnerships (PPP) funded by a partnership of government and a
number of private sector companies and new principles like 4P
medicine, referring to preventive, predictive, personalised, and
participatory medicine [3]. 4P medicine is also sometimes referred
to as personalised or precision medicine with the goal to enhance
the health outcomes with integration of evidence-based medicine
and precision diagnostics into clinical practice.

Through this holistic approach, in combination with several
divergent stakeholders and new technologies, it is easy to see that
the design environment may become fragmented and volatile.
Furthermore, the healthcare sector is evolving with new strategies
and business models such as PPP, where the strategic and
business drivers are diverse. The gradual evolution of legacy
systems towards new solutions must facilitate the continued use of
existing systems that are currently integrated into the current
environment. This may result in a complex environment with
combination of both legacy systems and modern solutions [4].
The ongoing evolution through changing legislation, regulations
and improvements in medical practices creates an environment
that is constantly changing.

Various frameworks have been proposed to address different
design realities, including standards such as ISO/IEC/IEEE
42010. In addition a general model for architecture design is
presented in [5]. Architectural frameworks have been analysed
extensively [cf. 1, 6, 7], and a recurring theme across the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.

SAC 2017, April 03-07, 2017, Marrakech, Morocco © 2017
ACM. ISBN 978-1-4503-4486-9/17/04…$15.00 DOI:
http://dx.doi.org/10.1145/3019612.3019902

frameworks is that each describes the role of the architecture in
the product development process as a “systematic analysis and
design of related information to provide a model for guiding the
actual development of information systems” [6]. Many
architecture frameworks discuss, but few focus primarily on, the
architecture creation process [7]. The value of the processes is
shown in the literature and it has been suggested that processes
ensure that activities in an organisation are performed consistently
and reliably [8]. Evaluations of architecture frameworks are also
provided in [1, 7] that can be used to select an approach for
different sets of requirements. While there are pros and cons for
each method, common deficiencies in the architecture frameworks
can be identified [6]: 1) The level of details required in models is
not specified enough. 2) Rationales are not considered in models,
thus no verification is possible. 3) Non-functional requirements
are not considered in all frameworks. 4) Software configuration is
not considered in all frameworks.

Moreover, architectural design involves often complex trade-off
analyses that may require expertise in several domains. Further,
the environment may be more variable and dynamic than current
processes can support. It is even possible that not all stakeholders
are known or they may not be fully aware of what the product is
intended to accomplish. Thus, the guiding vision for the product is
impossible to be fully defined during the early stages of
development. Instead, it is suggested that it is built incrementally.
In conclusion, there appears to be a need for an architecture
process that addresses the identified shortcomings including but
not limited to evolving environments, the availability of specific
details, design rationales, non-functional requirements and
software configurations.

3. RESEARCH APPROACH
The results are based on experiences gathered during a biobank IT
infrastructure development project. The research consisted of
studying several organisations related to biobank activities with
the aim of defining architecture for a biobank and finally
implementing a functional infrastructure. Managing the large
number of stakeholders and constantly changing environment
required a new approach for architecture development thus
creating the need and basis for this work.
During the project several challenges were identified. A post-
mortem analysis was conducted to analyse these findings and to
identify ways of improving the architecture process. A post-
mortem analysis is a study method that may be used to gather
empirical knowledge. The benefits of a post-mortem analysis
include revealing findings more frequently than other methods
such as project completion reports. Post-mortem analysis may be
used as a project-based learning technique [9, 10]. In addition to
finding impediments of the process, a post-mortem analyses may
be used to improve methods and practises [11]. During this
research project, a post-mortem analysis was used to study our
development process to facilitate identifying potential sources for
improvement or optimisation. Our post-mortem analysis follows
the general iterative post-mortem analysis, as shown Fig. 1.

Figure 1. General post-mortem analysis process [9].

Our research started with an initial preparation stage where we
identified key participants involved with our effort and considered
which methods and procedures would be applicable. Project
history was examined with the participants involved in the project
(primarily project managers) and project documents were studied.

Then our goal for the post-mortem analysis was determined–to
identify potential sources for improvement and optimisation. Data
collection involved gathering relevant project experiences from
team members and key stakeholders. Participants of our data
collection and analysis sessions were project managers (1),
researchers (2) and system architects (2). A lightweight post-
mortem analysis was used, as it fits the project size best [cf. 12].
KJ sessions [13] with thematic analysis [14] were utilised to
gather and organise ideas and data. In the analysis phase, findings
and ideas were organised into groups based on their relationships.
Post-It notes were used to record the ideas and findings and
related notes were then grouped together. Based on our results, we
modelled an architecture process for evolving environments,
which was finally reported in the results and experiences phase.

4. OUR ARCHITECTURE PROCESS
Our approach to architecture is a) modular, b) interoperable, c)
controlled and d) abstracted. This way it can handle complex
systems with inherent uncertainties. The design philosophy is that
when designing the architecture, the requirements are separated
into technical and non-technical requirements. Incremental and
iterative development is suggested as it allows observing the
outcome and improving it as new information becomes available.
Our proposal is a Continuous Renewal architecture model, which
is intended to be general such that it does not mandate how each
abstraction level should be modelled. This allows several
architectural styles and notations to be utilised. More important is
that all the necessary views to a development are addressed. The
architecture is modular to allow flexibility and extendibility.
Modularity allows the reconstruction of any part of the system
such that an area-of-effect can potentially be localised to just
those components directly connected to the modified region. In
the case of the biobank, the system was designed such that
successive system component regions typically form a directional
data flow through standardised interfaces. Interoperability is
achieved through the specification of interfaces defining various
domains with utilisation of open-standard communication
protocols. Controllability comes from the rigorous process and
from the Master Architecture that guides the development and
verifies the outputs against the set targets. The architecture should
initially be defined at a high level of abstraction. It is not
necessary to define rigorously the exact transformations that shall
occur on the data passing through the system. It suffices to
consider only its input type and output type as it traverses a
domain. The content of the data is largely irrelevant in most cases.
This is highly beneficial in an evolving healthcare environment
whereby the content of a data set may frequently be in a state of
flux while the laws and regulations surrounding the data set are
interpreted. Increasing or decreasing the level of abstraction as
required allows the examination of the system from different
perspectives. The separation of technical concerns from non-
technical concerns allows adapting to future needs, as the design
is not relying on specific technologies or solutions.
In evolving environments, constant comparison to the Master
Architecture is required. It allows for the verification of
compliance for all the relevant inputs and design choices, even if
those vary during development. It also provides the goals towards
which the effort is pushed as well as the guidelines that determine
how those goals should be reached. Design rationales guide the
overall work and are kept up-to-date by continuous
communication with the stakeholders who see the system being
defined incrementally. Continuous communication aids in
building trust between stakeholders. This allows insight into
the rationale for the design and implementation decisions and

consequently allows context to more localised. Additionally, the
Master architecture is updated accordingly. Comparing the results
to the Master Architecture enables a constant feasibility analysis,
and corrective actions if necessary.

In our architecture, domains are fundamental units and the
communication pathways between the domains indicate
connectivity between domains. The internal structure of a domain
remains unspecified in the highest level of abstraction. It is
specialised once the requirements for that domain are defined. For
example, we can consider the anonymising encoding service of
the biobank not as a part of the architecture, but as a specialisation
of a domain for a specific task. Thus, if for example the law
changes, the specialised components of the domain may be
updated or replaced with minimal impact to the architecture
assuming the new specialisation utilises the existing connection
path and communicates using compatible data storage and
communication formats. It then follows that any connected
domains from which it receives from or transmits to must be able
to accept that communication readily.

This is accomplished by initially designing the system at a high of
abstraction, modelling the transformations that occur in a domain
as a function with an argument type T that maps to some other
type U where T, U may have some structure or may represent a
collection of different data types. It is also important to note that
type identifiers such as T or U are arbitrarily chosen and the label
communicates only the preservation, or lack thereof, of the
structure of the input data. The labelling of an input and output
type is defined such that if the input and output types of a domain
are identical as is the case in a mapping from T to T then the
transformation that occurs is said to be structure preserving such
that the output contains an identical structure to the input type. An
example of this could be structured tabular data with given
column headings. If the transformation does not modify this table
structure, instead only reading the contents or modifying the table
contents then it is said to be structure preserving. It is then
possible once a directed graph of each transformation is obtained
to perform algebra upon this graph. Such operations may include
the simplification of the structure through composing
transformations or identifying potential incompatibilities between
domains through type mismatches. Each domain in the
architecture is constructed from one or many transformations such
that the functionality of a domain is defined by the composition of
these transformations.

In practise, many concepts may not map naturally to this model.
Examples include data storage on disc and databases. In such
cases, it is possible to map these as either state machines or
simply as entities in the data flow that label a particular complex
process. As requirements stabilise and become readily available,
the intent is for an architecture defined in this abstract manner to
reduce down to a traditional architecture specification.

Designing the system this way allows us to largely disregard the
shifting external environment and design a system around the
modelled data flow rather than the specific form of the
transformations until such time that information exhibits stability.
It is only required that information regarding what transformations
are required exists. This way, the architecture is largely resilient
against variation in both non-functional and many non-technical
requirements as each domain is intended to be entirely self-
contained with all state being local to that domain and any
information that enters the domain is passed directly to it and the
given output from a domain depends only upon information
contained within that domain.

We propose that the architecture specifies open standard protocols
for communication between interfaces of each domain. It is
specified that all data be retained so any variation in requirements
downstream can be trivially propagated through the signal chain
or the entire data set can be rebuilt at any time if a failure occurs
somewhere. Similarly, by defining the interfaces between
domains, it is possible to enforce properties such as strong and
guaranteed cryptography on communications and storage in
addition to simple topology modifications due to a standardised
interface between domains. While this requires additional work in
the implementation stage, by communicating through a unified
routing system, it ensures that future software replacing legacy or
unsuitable components may develop against a known, open
communication protocol removing the possibility that proprietary
vendor communication methods hamper third-party inclusion into
the architecture. There are many benefits of this approach, as
shown in Table 1.

Table 1. Benefits.

- Since the creation of abstract domains is largely trivial and the
communication between those domains follows open standards, each
domain is fully knowable and may be audited. The system may then
easily adapt by localising changes to only the affected domains.

- Adapting to future needs is made viable using this architecture, as it
doesn't matter whether the software used to power a particular
domain is open source or proprietary as long as it conforms to the
open standard data storage formats and communication protocols, it
can be replaced or upgraded.

- There is much less chance of a given software company creating a
monopoly in the business domain by providing a large monolithic
system that is proprietary and does not allow (or limits) the ability
for third-parties to build upon or interface with it.

- There is opportunity for innovation because anyone can develop
candidate solutions for domain specialisation without needing to
invest effort in satisfying criteria regarding licensing other vendor
APIs. It also allows for larger scale international collaboration.

- The organisation is free to choose any software, open source or
proprietary to specialise each domain. We specify in our prototype
biobank implementation architecture open source software because
for our purposes existing solutions exist for many of the domain
specialisations and it is possible to implement new functionality
upon the existing code bases with relative ease. However, the client
remains free to choose the software solutions they deem adequate.
The only requirement is that the communication between domains
follows open protocols with implementations provided either by an
existing library or directly as part of the core infrastructure.

- There is a potential for reduced maintenance costs. If a decision is
made to deploy an entirely open source system, not only does there
not typically exist a license cost, there may exist multiple options
regarding organisations able to support and maintain the system.
That way they can receive quotes and optimise expenditure based on
the value each quote offers.

- Since rigid software design processes may stagnate and impede
innovation. By having a modular system, any organisation may be
required to innovate whether it is by feature set or cost as there may
not exist a possibility to implant a system at the project's inception
and rely on the difficulty of switching to a competing product as a
source of longevity in the deployed infrastructure.

With this in mind, we believe that this approach is not limited to a
single field (pathology, genetics or similar) and does not depend
on a single company. This is a general model that can apply to any
domain of any size. This is where the novelty and innovation of
this approach lies. We suggest a system design method that is
resilient to changing requirements and constraints while being
dependent only upon technological requirements. This method can
potentially adapt and grow to any scale and is both modular and
knowable.

There do, however exist limitations to our study. We had limited
access to end-users as only a limited number of healthcare
professionals were directly participating in the process. We thus
had to rely on application and service providers, who served as an
intermediary between the researchers and the end-users. However,
the application and service providers are established and well
known in their domain and have a strong knowledge of the end-
users’ needs and requirements. We can thus rely on their
experience for making informed decisions. Furthermore, the
practical generalisability of our results is limited until the process
is used in other domains. We believe that generalisation issues are
likely to be negligible, as this property constitutes a fundamental
design philosophy in our approach.

5. SUMMARY
A post-mortem analysis was conducted for the biobank
infrastructure process, where several challenges are encountered.
Challenges were presented e.g. by the strict requirements for
privacy and anonymity as well as rigid processes involved with
the patient data. We have identified several challenges and
solution proposals. Table 2 shows the overview of proposed
solutions and summarises how the challenges may be addressed.

Table 2. Overview of proposed solutions.

- Changing requirements, components and environments are tackled
with an iterative process that builds a shared understanding, shaping
of goals and permits reaction to changes. Furthermore, a Continuous
Renewability approach enables constant feedback and mitigates the
effects of changes as the process progresses.

- Several communications related issues are tackled with an iterative
process, as it allow stakeholders to see the system evolve. Improved
communication practices also are necessary from the initial stages of
the project to create a common vision that continues through the
entire development cycle. Constant communication also builds trust
between stakeholders.

- The Master Architecture provides the scope and guidance for the
development work. The first draft of the architecture serves as a
guide for development. The basic data flows are then defined. The
Master Architecture provides a checkpoint from which the design
may be verified. Designing the system around data flows limits
complexity as well as the effects of a changing external
environment.

- An iterative approach builds gradually towards the final result. The
modular and abstract system architecture allows modifying the
design with minimal effort and impact to other parts of the system.
Abstraction and separation of concerns allows for an adaptable
design that scales to accommodate future needs.

- Separation of non-technological issues from technological issues
simplifies the design as it limits the effects of internal politics and
rigid processes from the technological concerns.

- The separation of the architecture into isolated domains connected
through a common interface can serve to restrict the propagation of
errors through the system in the event of component failure or
modification. This in turn has the potential to offer greater flexibility
and expansion of the system to meet future needs.

- Interfaces between the domains utilise open-standard
communication protocols. This ensures that the components can be
changed according to future needs.

By following these proposals the resulting architecture will be a)
modular, b) interoperable, c) controlled and d) abstracted. This
approach is general by definition and should be easily adapted to
other domains. It is suitable for evolving environments, thus

addressing our research question. The resulting architecture from
this process is discussed at [15].

6. REFERENCES
[1] Leist, S. and Zellner, G. 2006. Evaluation of current

architecture frameworks. In Proceedings of the 2006 ACM
symposium on applied computing. 1546-1553.

[2] Brancheau, J.C., Schuster, L. and March, S.T. 1989. Building
and implementing an information architecture. ACM SIGMIS
Database 20(2), 9-17.

[3] Auffray, C., Charron, D. and Hood, L. 2010. Predictive,
preventive, personalized and participatory medicine: back to
the future. Genome Med 2(8), 57.

[4] Ferrara, F.M. 1998. The standard ‘healthcare information
systems architecture and the DHE middleware. International
Journal of Medical Informatics 52(1), 39-51.

[5] Hofmeister, C., Kruchten, P., Nord, R. L., Obbink, H., Ran,
A., and America, P. 2007. A general model of software
architecture design derived from five industrial approaches.
Journal of Systems and Software, 80(1), 106-126.

[6] Tang, A., Han, J. and Chen, P. 2004. A comparative analysis
of architecture frameworks. In 11th Asia-Pacific Software
Engineering Conference, 2004. 640-647.

[7] Franke, U. Höök, D., König, J., Lagerström, R., Närman, P.,
Ullberg, J. ... and Ekstedt, M. 2009, EAF2-a framework for
categorizing enterprise architecture frameworks. In 10th
ACIS International Conference on Software Engineering,
Artificial Intelligences, Networking and Parallel/Distributed
Computing, 2009. 327-332.

[8] Mangan, P. and Sadiq, S. 2002. On Building Workflow
Models for Flexible Processes. In Proceedings of the 13th
Australasian Database Conference, 103-109.

[9] Birk, A., Dingsoyr, T. and Stalhane, T. 2002. Postmortem:
Never leave a project without it. IEEE Software 19(3), 43-45.

[10] Myllyaho, M., Salo, O., Kääriäinen, J., Hyysalo, J. and
Koskela, J. 2004. A review of small and large post-mortem
analysis methods. In Proceedings of the ICSSEA, 1-8.

[11] Collier, B., DeMarco, T. and Fearey, P. 1996. A defined
process for project postmortem review. IEEE Software 13(4),
65-72.

[12] Dingsøyr, T. and Moe, N.B. 2001. Augmenting experience
reports with lightweight postmortem reviews. In Product
Focused Software Process Improvement, 167-181.

[13] Scupin, R. 1997. The KJ Method: a technique for analyzing
data derived from Japanese ethnology. Human Organization,
vol. 56, 233-237.

[14] Cruzes, D.S. and Dyba, T. 2011. Recommended steps for
thematic synthesis in software engineering. In International
Symposium on Empirical Software Engineering and
Measurement, 2011, 275-284.

[15] Hyysalo, J., Keskinarkaus, A., Harper, G. and Sauvola, J.
2017. Architecture Enabling Service-oriented Digital
Biobanks. In Proceedings of the 50th Hawaii International
Conference on System Sciences (HICSS-50), January 4-7,
2017, Hawaii.

