
A Survey of Structured and Object-Oriented Software
Specification Methods and Techniques
ROEL WIERINGA

University of Twente

This article surveys techniques used in structured and object-oriented software
specification methods. The techniques are classified as techniques for the
specification of external interaction and internal decomposition. The external
interaction specification techniques are further subdivided into techniques for the
specification of functions, behavior, and communication. After surveying the
techniques, we summarize the way they are used in structured and object-oriented
methods and indicate ways in which they can be combined. The article ends with a
plea for simplicity in diagram techniques and for the use of formal semantics to
define these techniques. The appendices show how the reviewed techniques are
used in 6 structured and 19 object-oriented specification methods.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/
Specifications—tools; D.2.2 [Software Engineering]: Design Tools and
Techniques—Object-oriented design methods; state diagrams

General Terms: Design, Languages

1. INTRODUCTION

In the past 20 years, a large number of
methods have been proposed for the
specification of software systems. Until
1988, the proposed methods followed
the structured approach and since that
time, most proposals have followed the
object-oriented approach. In the short
time since 1988, at least 19 object-ori-
ented methods have been proposed in
book form and many more have been
proposed in conference and journal pa-
pers. This survey puts these develop-
ments in perspective by reviewing the
state of the art of structured as well as
object-oriented methods. It identifies
the underlying composition of struc-
tured and object-oriented software spec-

ifications, investigates in which re-
spects object-oriented specifications
differ essentially from structured ones,
and points out opportunities for combin-
ing the two kinds of specifications. Most
major structured and object-oriented
specification methods are reviewed in
the appendix, where “major” means that
the method must have been described in
a book rather than only in a conference
or journal paper. The distinction be-
tween structured and object-oriented
methods is artificial because some
methods, such as JSD and SDL 92, oc-
cupy an intermediate position in this
division and other methods, such as
those of Shumate and Keller [1992] and
Firesmith [1993], incorporate elements

Author’s address: Department of Computer Science, University of Twente, Enschede, the Netherlands.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 1999 ACM 0360-0300/99/1200–0459 $5.00

ACM Computing Surveys, Vol. 30, No. 4, December 1998

http://crossmark.crossref.org/dialog/?doi=10.1145%2F299917.299919&domain=pdf&date_stamp=1998-12-01


of both. Nevertheless, the division has a
broad validity and it simplifies the dis-
cussion. Qualifications are made where
necessary.

To keep the discussion manageable,
we restrict ourselves to the specification
of software at an external and concep-
tual level. These levels are defined in
Section 2. With this restriction, what
does a specification method include? We
consider a software specification method
to have the following components.

—Techniques for representing proper-
ties of software. Examples of such
techniques are natural languages, for-
mal languages, and diagram tech-
niques.

—Interpretation rules for these tech-
niques. For example, natural lan-
guages are interpreted as described
by some dictionary and grammar, for-
mal languages have a formal seman-
tics, and diagram techniques have
some intended meaning described in
method handbooks.

—Interconnection rules for the tech-
niques. These interconnection rules
tell us how different techniques can
be combined into a coherent specifica-
tion of software and what this com-
bined specification means. For exam-
ple, in different methods, entity-
relationship models are connected in
various ways to dataflow models and
to state transition models. Each of
these ways is characterized by differ-
ent interconnection rules that are, or
should be, defined by the method
handbook.

—Heuristics for the usage of the tech-
niques. These heuristics should be
consistent with the meaning of the
techniques and the interconnection
rules. Often they follow from these
meanings. For example, if class spe-
cialization is interpreted as subset-
ting of class extensions, a simple heu-
ristic to find specializations is to ask
whether an instance of the subclass is
always also an instance of the super-
class. If specialization is interpreted
in another way, for example, as reuse

of class specifications, this heuristic
may not apply but other heuristics
will be valid.

We restrict our attention to semiformal
techniques, by which we mean diagram
techniques and techniques that use
some form of structured natural lan-
guage.

The structure of this article is as fol-
lows. In the rest of this introduction, we
briefly discuss other surveys of struc-
tured and object-oriented specification
methods. Section 2 introduces a frame-
work in terms of which we present and
analyze the methods. This framework is
based upon the philosophy of systems
engineering and is general enough to
accommodate structured as well as ob-
ject-oriented methods without distort-
ing the characteristic philosophy of
these methods. It allows us to present
the techniques in Section 3 in a system-
atic manner and to disentangle in Sec-
tion 4 the agreements and differences
between structured and object-oriented
methods. The actual survey of these
methods is relegated to the appendices,
so that readers can refer to those meth-
ods with which they are less familiar.
Appendix A surveys 6 structured speci-
fication methods and Appendix B sur-
veys 19 object-oriented methods in his-
torical order of first publication in book
form. The subsections of these appendi-
ces can be read in any order.

In Section 3 we review the techniques
employed by the methods surveyed in
the appendices. This is not a catalogue
of all possible techniques that can be
used in software specification. For ex-
ample, Petri nets are not discussed and,
as pointed out, formal specification
techniques are left out of consideration.
However, the coverage of the techniques
used in the methods listed in the appen-
dices is fairly complete. We do not dis-
cuss every variant of every technique
but restrict ourselves to a representa-
tive of every technique “family.” For ex-
ample, we do not discuss all class mod-
eling techniques but discuss the UML
variant only. Other overviews of tech-

460 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



niques are given by Davis [1993] and
Martin and McClure [1985].

Section 4 compares the way struc-
tured and object-oriented methods make
use of these techniques, focusing on the
interconnection rules and the character-
istic heuristics used to find a specifica-
tion. We identify some essential differ-
ences and agreements and point out
unification opportunities. Section 5
winds up the survey with a summary of
findings and directions for further re-
search.

Throughout the article, we use a con-
trol system for a juice plant as a run-
ning example, adapted from an example
given by Shlaer and Mellor [1992]. The
control system controls the way juice is
transported from storage tanks to cook-
ing tanks, heated, and then transported
to an operation where it is canned.

Since 1992, a number of surveys and
comparisons of object-oriented methods
have appeared. Fichman and Kemerer
[1992] compare three structured with
three object-oriented analysis methods
along 11 modeling dimensions. These
dimensions were identified by analyzing
the six reviewed methods but they are
not explained in detail. It is, for exam-
ple, not clear why this would be a com-
plete list of dimensions or whether all
dimensions are at the same level of ab-
straction. Fichman and Kemerer do not
present the techniques used in the
methods in detail, as we do. They also
discuss structured and object-oriented
design methods, which we leave out of
consideration. Sutcliffe [1991] lists four
features of object-oriented models (ab-
straction, classification, inheritance,
and encapsulation) and tabulates five
object-oriented methods against these
features. He also lists three features of
structured models (functions, data,
events) and tabulates eight structured
methods against these features as well
as against the object-oriented features.
The discussion is very sketchy and
there are no clear conclusions.

All other reviews ignore structured
methods. Most of them give a list of
features of object-oriented models

and/or the object-oriented software de-
velopment process, and tabulate some
methods against these features. Taken
separately, the lists look plausible
enough, but different papers use differ-
ent lists of features and none of them
makes clear why the features they pro-
pose should be part of the list, or
whether their list encompasses all es-
sential features of object-oriented meth-
ods. Champeaux and Faure [1992] dis-
cuss a number of key object-oriented
concepts such as inheritance, attributes,
events, and the like, and then tabulate
for each of 12 methods whether these
concepts occur in the method. Monarchi
and Puhr [1992] distinguish a number
of features of the process and notation
of object-oriented methods and then tab-
ulate for each of 23 methods whether
these features occur in the method.
Most of the reviewed methods are de-
scribed in papers; some are described in
books. Monarchi and Puhr use a list of
14 notation features, including the abil-
ity to represent objects, relationships,
attributes, behavior, communication,
and so on. Fowler [1994] looks at seven
object-oriented analysis and design
methods and discusses a number of dia-
gram techniques used in them. He then
gives a number of guidelines for choos-
ing an object-oriented method. Hodgson
[1994] gives a brief history of structured
and object-oriented methods without go-
ing into much detail. Hutt [1994b] and
Hutt [1994a] contain a compilation of
method descriptions, all according to
the same format, submitted by those
who invented the methods. Embley et
al. [1995] draw up a list of 30 features of
an object-oriented analysis notation and
evaluate six methods on this list, again
by tabulating features against methods.
The features include the ability to rep-
resent objects with identity, state, and
behavior, the ability to represent
classes, relationships, aggregation, gen-
eralization, actions, triggers, and so on.
Iivari [1995] compares six methods for
object-oriented analysis on their ability
to model the structure, function, and
behavior of software systems. He con-

Specification Methods and Techniques • 461

ACM Computing Surveys, Vol. 30, No. 4, December 1998



cludes that object-oriented methods are
underdeveloped in the specification of
external functions of the system as a
whole (as opposed to the functions of
individual objects). He also concludes
that object-oriented methods are weak
in guidelines to partition the system
into subsystems. These conclusions
agree with the conclusions we draw in
this article.

This survey differs from all of these in
that we give a detailed catalogue of
techniques used in structured and ob-
ject-oriented methods, and of the use of
these techniques made by these meth-
ods. A second difference is that in our
analysis (Section 4), we concentrate on
the overall structure of software specifi-
cations and look for commonalities and
differences in the reviewed methods
with respect to this overall architecture.
Our comparison framework is carefully
argued from a small number of princi-
ples taken from systems engineering.
We do not enter a discussion about
which features should and should not be
supported by a “true” object-oriented
method. We take a nonpartisan ap-
proach by attempting to appreciate ev-
ery method, structured or object-ori-
ented, on its own terms and by trying to
recognize opportunities for advancing
the state of the art beyond the struc-
tured-object-oriented dichotomy by pick-
ing the best ideas from both approaches.

2. A FRAMEWORK FOR COMPARISON

The framework set out in this section is
described and motivated in detail else-
where [Wieringa 1996]. The basic con-
cept in the framework of comparison is
that of a system. A system is an assem-
blage of parts forming a complex or
unitary whole that serves a useful pur-
pose [Blanchard and Fabrycky 1990, pp.
1–2]. In this wide sense, organizations,
pieces of furniture, thermostats, cars,
and software products are examples of
systems. It is crucial that the parts of a
system interact in such a way that they
cause the system as a whole to have a
useful function for one or more entities

in the environment of the system. An
arbitrary collection of items with some
interactions among the items is not nec-
essarily a system. In order for a collec-
tion of interacting items to count as a
system, the interactions among the
items must produce a coherent and use-
ful overall behavior.

In systems and software engineering
one often reserves the term “system” for
the entire constellation of equipment,
software, and human procedures to be
developed and refers to the software
components of the system as “software
products.” Here we use the term in a
very liberal way to indicate any collec-
tion of interacting items that serves a
useful purpose, including hardware,
software products, and software product
components. However, we do restrict
ourselves to systems that interact with
their environment.

A system delivers a service to its envi-
ronment by interacting with it. There
are certain relevant ways in which we
can describe these interactions. Interac-
tions can always be partitioned into
pieces that are useful for the environ-
ment, called functions. Examples from
the juice plant controller are controlling
the transport of juices from storage to
cooking tanks, controlling the heating of
the cooking tanks, and the like. Second,
system interactions are by nature al-
ways communications with one or more
entities in the environment of the sys-
tem. For example, a juice plant control-
ler communicates with storage tanks,
cooking tanks, temperature sensors,
and so on. Third, the way in which
functions are ordered in time is called
the behavior of the system. For exam-
ple, a cooking tank must be heated only
after it has been filled with juice, and
heating involves switching the heater
on and off in order to maintain the
temperature for a period of time. Com-
munication and behavior should be
treated as orthogonal properties of func-
tions. Communications are the way
functions are ordered in space where
behavior is the way in which functions
are ordered in time. Taking the grand

462 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



view, the distinction between communi-
cation and behavior is similar to the
distinction between space and time.
Closer to home, but still taking a ball
park view, the distinction is a basic
property of algebraic process description
languages, where operators to specify
combinations of communicating pro-
cesses are distinguished from operators
to specify the dynamics of processes
[Milner 1980, p. 61].

Functions, communications, and be-
havior are system properties. There are
other kinds of system properties, such
as security and user-friendliness, but
these are not specified by the tech-
niques reviewed in this survey and we
leave these out of consideration.

We can describe properties at differ-
ent levels of abstraction. For example,
at the most abstract level, the interac-
tions between a juice plant and its envi-
ronment can be described as “provide
canned juice to customers.” This highest
level description of the interactions is
called the mission of the juice plant. At
a more detailed level, we may describe
functions such as “take order,” “deliver
juice,” and “order ingredients,” and at
the most detailed level we may describe
atomic transactions between the juice
plant and its environment. This leads to
the idea of a refinement hierarchy of
behavior descriptions, in which the be-
havior of a system is described at in-
creasing levels of detail. The lowest
level of detail is that of the atomic
pieces of behavior with which a system
interacts with its environment. These
are called atomic because intermediary
states that occur during the behavior
are not externally observable, or at
least not considered to be externally
observable. These atomic pieces of be-
havior are called transactions.

The parts of a system may themselves
be systems that act together to produce
the behavior of the system. This leads to
the idea of an aggregation hierarchy of
systems, in which systems at one level
of aggregation have subsystems at the
next lower level of aggregation and are
themselves part of a compound system

at the next higher aggregation level.
There are two important ways to de-
scribe the decomposition of a system: we
can specify its components and, for each
component, we can specify the way it
interacts with its environment to realize
overall system behavior. The environ-
ment of a component consists of other
components as well as the environment
of the system. The specification of the
interaction of the components can itself
be divided into the specification of com-
munication, functions, and behavior of
each component. This pattern repeats
itself at every level of aggregation. It
follows that when we talk about proper-
ties, interactions, functions, and the
like, we should always indicate the level
in the aggregation hierarchy about
which we are talking. In this survey, we
assume that we have fixed a system of
interest and talk about system func-
tions, system communications, and the
like, in contrast to component functions,
component communications, and so on.
To emphasize that system functions,
and the like, are interactions with the
environment, we also talk of external
system functions, and the like.

Note that components can interact
with the system environment. It is
through these interactions that the sys-
tem interactions are realized. Note also
that the concept of a transaction, intro-
duced previously, must be related to
that of aggregation level. For each sub-
system we can define transactions as
subsystem functions whose internal
states we consider unobservable. A sys-
tem transaction is then realized as a
process consisting of lower-level sub-
system transactions.

The aggregation and refinement hier-
archies are orthogonal. This can be rep-
resented visually by what Harel and
Pnueli [1985] call the magic square of
system development (Figure 1). Every
point in this square represents a level of
aggregation and a level of interaction
refinement. The top-left point repre-
sents the highest aggregation level and
the highest level of abstraction: the
overall mission of the entire system.

Specification Methods and Techniques • 463

ACM Computing Surveys, Vol. 30, No. 4, December 1998



The bottom-right point represents the
lowest aggregation level and the lowest
level of abstraction: the atomic transac-
tions of the lowest-level components of
the system. The orthogonality of the two
dimensions of the square means the fol-
lowing.

—At a given level of aggregation and
abstraction, we can decrease the ab-
straction level at which we specify the
interactions of a system at that level
without decreasing the aggregation
level. This is called interaction refine-
ment. At the highest level of refine-
ment (the lowest abstraction level),
we specify the transactions of a sys-
tem.

—Conversely, at a given level of aggre-
gation and abstraction, we can decom-
pose a system without decreasing the
level of abstraction. This is called in-
teraction allocation and flowdown. We
allocate a system interaction to one or
more components if we decide that
these components will realize the sys-
tem interaction. We flow down the
system interaction if we specify what
the component interactions are
through which the system interaction
is realized.

We can apply the idea of refinement to
the three aspects of interaction (viz.,
functions, behavior, and communica-
tion). This gives us three species of re-
finement; function, behavior, and com-
munication. Of these, function
refinement is the most basic, because

the system functions provide the raison
d’être of the system: the system exists to
provide functions to its environment.
We therefore look at function allocation
and flowdown in somewhat more detail.

Consider a system S at a certain ag-
gregation level, whose functions are
specified at a certain level of abstrac-
tion. This corresponds to a point in the
magic square. Suppose that the func-
tions of S at this level of refinement are
function 1, . . . , function n and that we
have identified components component
1, . . . , component m. We next decide for
each component whether it plays a role
in each function. This can be repre-
sented visually by means of a traceabil-
ity table such as shown in Figure 2. A
cross in an entry means that the compo-
nent plays a role in the function, with-
out yet indicating what this role is; ab-
sence of a cross indicates that this
component plays no role in the realiza-
tion of this function. A traceability table
represents the allocation of functions to
components. It is called a traceability
table because it allows us to trace com-
ponent functions to system functions
and vice versa. If we add more informa-
tion and indicate in each entry what the
function is that the component should
have in order to play this role in the
system function, then we call the result-
ing table a function decomposition table.
This represents the flowdown of func-
tions to components. Allocation and
flowdown are well-known techniques
from systems engineering [Davis 1993,

Figure 1. The magic square. The arrows point towards the direction of increase. To increase behavior
refinement is to decrease behavior abstraction and to increase system decomposition is to decrease the
aggregation level.

464 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



p. 190]. The function decomposition ta-
ble plays a central part in our analysis
of methods.

Before we summarize our framework,
we must make one more distinction. It
is useful to distinguish a conceptual de-
composition of a system from a physical
decomposition. A conceptual decomposi-
tion is a decomposition whose partition-
ing criterion is defined in terms of the
external environment of the system,
which is the environment where the us-
ers of the system reside. (Users may be
people or other systems.) The physical
decomposition of a system is a decompo-
sition defined in terms of the underlying
physical components of the system, such
as lower-level equipment or software
components. The physical decomposi-
tion criterion does not refer to the exter-
nal environment but to the underlying
implementation environment. For ex-
ample, an entity-relationship diagram
represents a conceptual decomposition
of a database. A relational database
schema, in which each relation corre-
sponds to an entity type or relationship
in an entity-relationship model, is still a
conceptual decomposition. A relational
schema, in which the relations corre-
spond to storage entities such as files, is
a physical decomposition. In this
schema, conceptual entities may have
been split or merged in order to improve
performance. Another example of a con-
ceptual decomposition is a JSD model in
which the components correspond to do-
main entities or to external system
functions. In a physical decomposition,
these are all mapped to the available
physical resources and a scheduler may

have been added to interleave processes
that are conceptually concurrent.

The conceptual decomposition corre-
sponds to the essential model of Mc-
Menamin and Palmer [1984] and the
specification model of Cook and Daniels
[1994]. It is a halfway station between
the specification of external functional-
ity and the internal physical decomposi-
tion. In the physical decomposition, is-
sues are dealt with such as the
distribution of resources, processing
time, memory capacity, and error han-
dling. The conceptual decomposition is a
way to make the demands of external
functionality explicit without yet worry-
ing about these implementation deci-
sions.

The relationship between the concep-
tual and physical decompositions is
many–many. One conceptual component
is implemented in one or more physical
components, and one physical compo-
nent implements one or more concep-
tual components. This can be repre-
sented by a second kind of traceability
table, which sets conceptual against
physical components. In this article, un-
less otherwise stated, the decomposi-
tions that we talk about are conceptual,
not physical.

To summarize our framework, we
have a number of kinds of system prop-
erties that we can specify. The following
list relates these to the function decom-
position table of the system.

—System functions. These are the use-
ful pieces of behavior offered to the
environment of the system, and corre-

Figure 2. Function decomposition table.

Specification Methods and Techniques • 465

ACM Computing Surveys, Vol. 30, No. 4, December 1998



spond to items in the top row of the
table.

—System behavior. This is the behavior
of the system over time. This concerns
the way in which the functions in the
top row are, can, or must be ordered
in time. It thus concerns the entire
top row.

—System communication. This concerns
the communication of the system with
external entities in its environment.
It does not correspond to an aspect of
the function decomposition table of
the system, but it would correspond to
a column of the function decomposi-
tion table of the environment, of
which the system is one component.

—Conceptual decomposition. These are
the conceptual components of the sys-
tem, defined in terms of their mean-
ing for the external environment, and
correspond to the items in the left-
most column of the table.

—Component functions. These are the
useful pieces of behavior offered by
the components to their environment,
and correspond to entries in the table.

—Component behavior. This is the way
in which component functions are,
can, or must be ordered in time, and
corresponds with a row in the func-
tion decomposition table.

—Component communication. This is
the way in which the components in-
teract in order to realize the external
functions, and corresponds to the col-
umns of the function decomposition
table. In each column, the component
functions are listed that interact to
realize the external function.

Due to the repetition in this pattern,
there are only four different kinds of
properties that we need specification
techniques for:

—function specification techniques,
—behavior specification techniques,
—communication specification tech-

niques, and
—decomposition specification tech-

niques.

There are of course other properties,
often called “nonfunctional,” that can be
specified, but the reviewed methods of-
fer no techniques for these. In the next
section we therefore use the preceding
classification of techniques.

3. SPECIFICATION TECHNIQUES

3.1 Graphical Techniques

We start with a brief summary of the
graphical structures encountered in the
various techniques that follow. In gen-
eral, there are only two kinds of graph-
ical structures, graphs and Venn dia-
grams. A graph is a set of nodes
connected by edges. (A node may be
connected to itself.) Usually, each edge
connects two nodes, but in a hyper-
graph, an edge may connect two or more
nodes. In a directed graph, the edges
have a direction. So in a directed hyper-
graph, each hyperedge has a collection
of source nodes and a collection of desti-
nation nodes. In a labeled graph, edges
and/or nodes may be labeled. A tree is a
graph with one designated node called
the root and in which from every node
there is exactly one path to the root.
The nodes with the longest paths to the
root are called the leaves of the tree.

A graph can be drawn in many differ-
ent ways, so that one must distinguish
the graph from a presentation of the
graph. Many methods annotate their
graph presentations with additional
comments and adornments that do not
belong to the underlying mathematical
formalism of a graph. If there are differ-
ent kinds of nodes and edges, these are
usually presented by different shapes.
Many methods allow dangling edges
that are connected to one node only and
“dangle in the air” at the other side.
This can be assimilated with the idea of
a graph by allowing some nodes to be
invisible in the presentation.

A Venn diagram is a collection of ar-
eas indicated by closed curves. We call
these areas blobs. Hierarchy can be rep-
resented by a Venn diagram by enclos-
ing one blob within another. Venn dia-

466 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



grams as such are not used in any of the
reviewed techniques but the idea to rep-
resent hierarchy by enclosure is used in
several techniques, such as SDL block
diagrams and in the Statemate lan-
guages.

A higraph is a combination of a Venn
diagram and a hypergraph, extended
with the explicit labeling of areas and
Cartesian products. The nodes of a hi-
graph are blobs and these may be con-
nected by hyperedges. Explicit labeling
of areas means that in Figure 3, dia-
grams (a) and (b) are equivalent repre-
sentations of the same higraph. In dia-
gram (c), A and B have an intersection,
called C. Since Venn diagrams do not
require explicit labeling of areas, dia-
grams (a), (b), and (c) are different Venn
diagrams. The Cartesian product A of
blobs B and C is represented as shown
in Figure 4. Higraphs were introduced
by Harel [1988].

The following sections describe the
use of these graphical structures in a
number of specification techniques. In
general, one cannot tell by looking at a
diagram what it represents. The mean-
ing of a diagram is given by a set of
interpretation rules, which must be de-
fined elsewhere. The interpretation
rules are never specified together with
the diagram but the diagram must be
accompanied with an indication of
which interpretation rules are intended
to be applied. Without such an indica-
tion, the diagram is meaningless. In
most cases, the interpretation rules for
a particular kind of diagram are given
in a book that describes the method. In
some cases, such as the statechart lan-
guage of Statemate, the interpretation
rules are formal [i-Logix 1991a], and in
some very rare cases, such as for SDL,

the interpretation rules are laid down in
a standards document [ITU 1992].

3.2 Decomposition Specification
Techniques

Decomposition specification techniques
can be used to specify the items in the
left-most column of the function decom-
position table.

3.2.1 Entity-Relationship Diagrams.
Entity-Relationship diagrams (ERDs)
were introduced by Chen [1976] to rep-
resent the conceptual structure of data
in a database system. An ERD is a
labeled hypergraph in which the nodes
represent types of entities and the hy-
peredges represent arbitrary relation-
ships. The nodes of the hypergraph are
presented by rectangles and the hy-
peredges by diamonds.

Figure 5 contains a fragment of ERD
for a juice plant control system, derived
from the specification of Shlaer and
Mellor [1992]. The diagrams shows that
there are two kinds of TANKs, STORAGE
TANKs and COOKING TANKs. The hy-
peredge tank usage is called a special-
ization relationship and connects the
node TANK with two other nodes, that
are called its specializations. Each
COOKING TANK is connected to one
HEATER and each HEATER belongs to
one COOKING TANK. A BATCH of juice
is allocated to one COOKING TANK and

Figure 3. Higraphs versus Venn diagrams.

Figure 4. A higraph with a Cartesian product.

Specification Methods and Techniques • 467

ACM Computing Surveys, Vol. 30, No. 4, December 1998



belongs to exactly one RECIPE. Each
RECIPE is related to a JUICE SPECIFI-
CATION. There is some special informa-
tion connected to this relationship by
means of the associative entity type
JUICE IN RECIPE. The extra information
is that there is a certain percentage of
this juice in this recipe, but this is not
detailed in the diagram.

A relationship node in an ERD can
represent any kind of relationship. It
may represent a communication link
but it may also represent a visibility
link, a permission, a part-of link, and so
on.

From the start of their introduction
by Chen, ERDs have been ambiguous,
representing components in the envi-
ronment of the software product or rep-
resenting conceptual software compo-
nents. This ambiguity arises from the
fact that in database systems, where
ERDs are mainly used, the conceptual
structure of the data must correspond to
the conceptual structure of the part of
the world represented by the database.
The same ambiguity can also exist in
models of control-intensive systems: An
ERD can represent the part of the world
controlled by the system or it can repre-

sent conceptual objects inside the sys-
tem. One cannot tell by looking at Fig-
ure 5 whether COOKING TANK
represents real cooking tanks in the en-
vironment, or software objects in the
control system. It follows that, in addi-
tion to the normal interpretation rules
for a notation, an ERD must be accom-
panied by an annotation that tells the
reader whether the ERD is to be inter-
preted in the real world or in the soft-
ware.

3.2.2 Class Diagrams. There are
many variations and extensions of the
ERD technique. All object-oriented spec-
ification methods use some extension of
the technique. We refer to this as a
class diagram, but different OO meth-
ods tend to use different variations or
extensions with different names, such
as “information model,” “object model,”
“object structure diagram,” “static
structure diagram,” and so on. Figure 6
contains a class diagram following the
conventions of the Unified Modeling
Language (UML, Appendix B.19). The
parallel with Figure 6 is clear. A note-
worthy difference is that nodes now rep-
resent object classes, where objects have

Figure 5. Fragment of an entity-relationship diagram of the data manipulated by a juice plant control
system.

468 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



a local state represented by attributes,
and they have local operations that may
change those attributes. Entities speci-
fied by ERDs also have attributes, but
in structured analysis they do not have
local operations. A node in a class dia-
gram may be labeled with some or all
attributes and operations of the objects
of this class.

A second important difference is that
the class diagram contains an addi-
tional object class, TEMPERATURE
RAMP, which has no counterpart in the
ERD. This is not a difference in diagram
techniques but in methodology. The
task of instances of this class is to con-
trol the heating process of a cooking
tank, something that would be modeled
by a control process in dataflow models.

3.3 Communication Specification
Techniques

Communication specification techniques
show how the conceptual components
interact to realize external system in-
teractions. This corresponds to the col-
umns in the function decomposition table.

3.3.1 Dataflow Diagrams. A data-
flow diagram (DFD) is a labeled di-
rected hypergraph in which the nodes
represent functions and the edges data-
flows between functions. It is used in
structured analysis to specify the func-
tions of a system. There are three kinds
of nodes in a DFD that represent func-
tions, data stores, and external entities.
The functions and data stores are de-
fined in terms of their meaning for the

Figure 6. Fragment of a UML class diagram of the juice plant control system.

Specification Methods and Techniques • 469

ACM Computing Surveys, Vol. 30, No. 4, December 1998



external interactions of the system, so
they are conceptual (not physical) sys-
tem components.

Figure 7 shows a part of a DFD of the
juice plant control system, following the
YSM convention [Yourdon Inc. 1993].
External entities in the environment of
the control system are represented by
squares, functions are represented by
circles, memory by two parallel lines,
and dataflows by arrows. The asterisk
in the label of the data store TEMPERA-
TURE RAMP DATA means that this data

store has multiple representations in
this diagram.

Most versions of structured analysis,
including the Yourdon Systems Method
(YSM, Appendix A.2), distinguishes two
kinds of functions, called data processes,
represented by unbroken circles, and
control processes, represented by dashed
circles. Data processes transform data;
control processes transform the mode of
behavior of the system. For example,
Figure 7 shows that there is a control
process Control temperature ramp and a

Figure 7. Fragment of a dataflow diagram of the functions of the juice plant control system.

470 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



number of data processes to turn a
heater on and off, and so on. This con-
trol process corresponds to the TEM-
PERATURE RAMP object class of Figure
6. We discuss the methodological differ-
ence between these two modeling ap-
proaches when we look at decomposition
criteria in Section 4.2.3.

A second distinction made by YSM is
that between instantaneous processes,
whose activity lasts only one instant of
time, and continuing processes, whose
activity lasts a period of time. There is
no visual convention to distinguish the
two kinds of processes. In Figure 7,
Monitor deadline is a continuing data
process and Control temperature ramp is
a continuing control process. All other
processes in the figure are instanta-
neous. Control processes are usually
continuing processes. An instantaneous
control process has no memory and can
always be specified by a decision table
that transforms a number of discrete
binary input flows into a number of
discrete binary output flows.

The diagram shows the data inter-
faces between the functions (unbroken
arrows) as well as the event interfaces
(dashed arrows). The double-headed ar-
row represents a time-continuous flow.
A continuous dataflow contains data
values for periods of time. A continuous
event flow contains Boolean values that
may be present over periods of time.
There are some special symbols that can
appear as labels of event flows. For ex-
ample, T, E, and D stand for triggering,
enabling, and disabling a data or con-
trol process, respectively.

The data processes in Figure 7 must
be specified in structured analysis by
textual specifications that define the re-
lation between their inputs and outputs.
This is not treated in this article. The
control process behaves as a finite state
machine and must be specified by
means of a state transition diagram or
table (Section 3.5.5).

All versions of dataflow modeling
since DeMarco [1978] use hierarchical
DFDs to reduce the complexity of a
large dataflow diagram. Any part of a

large diagram can be abstracted away
by replacing it by a process group,
which has the same visual presentation
as a data process (an unbroken circle).
The process group is specified sepa-
rately by showing the DFD portion for
which it stands. The intention is that a
process group represent a coherent
group of software functions. This con-
vention is well suited to the representa-
tion of a functional decomposition of the
system, discussed in Section 4.2.3.

3.3.2 Context Diagrams. A context
diagram is a graph in which one node
represents the system and the other
nodes represent important systems in
its environment. The edges represent
communications among the systems. A
context diagram will at least show the
systems with which the system under
development communicates, but it may
show other systems, if these are neces-
sary to understand the behavior re-
quired of the system under development
[Jackson 1995].

In structured analysis, a context dia-
gram only shows the systems that the
system communicates with, called ex-
ternal entities, and the edges represent
dataflows between the system and its
external entities (Appendix A.2). In
other words, in structured analysis, a
context diagram is a dataflow diagram.
Large context diagrams may be split
into a number of partial context dia-
grams, one for each major system func-
tion.

3.3.3 SADT Activity Diagrams. An
activity diagram is a directed hyper-
graph in which the nodes represent ac-
tivities and the edges represent flows of
data, matter, or energy between activi-
ties. Activity diagrams are used in
SADT to specify a conceptual decompo-
sition of a system into a number of
cooperating activities (Appendix A.1).
The technique was introduced by Ross
[1977]. Figure 8 shows an activity dia-
gram with three activities, represented
by boxes with rounded corners. Arrows
entering a box from the left represent

Specification Methods and Techniques • 471

ACM Computing Surveys, Vol. 30, No. 4, December 1998



input data, arrows leaving to the right
represent output data, arrows entering
from above represent control informa-
tion, and arrows entering a box from
below represent mechanisms by which
the activity is to be performed. Activity
diagrams can be structured hierarchi-
cally, so that one activity box can be
decomposed into a lower-level activity
diagram. The decomposition hierarchy
does not represent a physical decompo-
sition of the system under description,
but is a conceptual decomposition of the
tasks to be performed by the system.
This convention is well suited to the
representation of functional decomposi-
tion. In contrast to DFDs, activity dia-
grams have only one kind of component
and the interfaces between the activi-
ties distinguish input, output, control,
and mechanism.

3.3.4 Statemate Activity Charts. Ac-
tivity charts are higraphs without inter-
sections or Cartesian products that are
used in Statemate to represent external
system behavior (Appendix A.3). They
are variants of DFDs with a different
syntax but with a similar meaning.
Statemate distinguishes external activi-
ties, regular activities, control activi-

ties, and data stores, which correspond
to external entities, data processes, con-
trol processes, and data stores in DFDs,
respectively. Regular activities are rep-
resented by rectangles with sharp cor-
ners, control activities by rectangles
with rounded corners, and data stores
by rectangles in which the vertical
edges are dashed. Data and event flows
between activities are represented by
directed hyperedges. In Figure 9, D is a
control activity, B a data store, and X and
Y are external activities. The other nodes
in the diagram are regular activities.

The hierarchy of activities is repre-

Figure 9. An activity chart.

Figure 8. Activity diagram.

472 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



sented by means of inclusion of rectan-
gles. Control activities are always sub-
activities of regular activities, and a
regular activity can have at most one
control activity as an immediate compo-
nent. Control activities are specified by
extended finite state machines, speci-
fied in Statemate by means of state-
charts (Section 3.5.7). Extended finite
state machines are finite state ma-
chines extended with variables that can
be updated. Control activities can thus
maintain a state in their variables, can
perform data processing (testing and
updating the variables), and can contain
control.

3.3.5 Object Communication Diagrams.
An object communication diagram
(OCD) is a directed graph in which the
nodes represent object classes and the
edges represent possible object commu-
nications. The technique is used in the
Shlaer–Mellor method to represent ob-
ject communications. Figure 10 shows a
fragment of an OCD based upon an ex-
ample given by Shlaer and Mellor
[1992]. For the sake of the example, the
diagram represents a slightly different
situation than that shown by the DFD
in Figure 7; the start heating message is
sent to the temperature ramp object not
by an operator but by a batch object.

The diagram shows external entities
(operator) as well as object classes.
Edges represent possible communica-

tions. For example, the edge start batch
shows a possible communication be-
tween an instance of Operator and an
instance of Batch. Temporal ordering of
communications is not represented.

3.3.6 JSD System Network Diagrams.
A system network diagram (SND) is a
directed graph in which the nodes rep-
resent processes and the directed edges
represent communications. SNDs are
used in JSD to specify system functions
(Appendix A.6). Figure 11 shows an
SND with three processes, represented
by rectangles, and two communication
connections. SV represents a state vec-
tor connection, which is a connection
through which a reader process (TEM-
PERATURE RAMP CONTROL) reads the
state of another process. D represents a
data stream connection, which is a
queue through which a sender sends
messages to a receiver. The other circles
represent queues through which the
system receives messages from its envi-
ronment and sends messages to its envi-
ronment. The external entities that
send and receive these messages are not
represented in an SND. In JSD, each of
the three processes in the SND would be
an extended finite state machine, speci-
fied by means of a process structure
diagram (Section 3.5.2). JSD allows
these processes to have local state vari-
ables (called attributes) and to test and
update these variables.

Figure 10. Fragment of an object communication diagram.

Specification Methods and Techniques • 473

ACM Computing Surveys, Vol. 30, No. 4, December 1998



SNDs are similar to DFDs in that
both represent the system as a network
of communicating components. How-
ever, SNDs recognize only one kind of
component, a process that maintains a
state and has behavior over time. DFDs
contain three kinds of components, that
maintain a state (data stores), update it
(data processes), and have a behavior
over time (control processes). This is an
important technical difference between
the diagram techniques that is related
to the concept of a state machine. In
DFDs, control processes can do no data
processing or data storage, whereas in
SNDs, the processes can store, test, and
update data. Activity charts occupy an
intermediate position in this spectrum
because they contain regular activities
and data stores just as DFDs do, but
their control activities can store, test,
and update data as well. We return to
this in the discussion of extended finite
state machines in Section 3.5.4.

Another difference between the dia-
gram techniques is that SNDs are flat
whereas DFDs are hierarchical. Typi-
cally, one SND is specified for each ex-
ternal system function. From a method-
ological point of view this corresponds
to the heuristic of event partitioning in
structured analysis in which one DFD is
drawn for every event-response pair of
the system [McMenamin and Palmer
1984]. This means that for every column
in the function decomposition table, a

diagram is drawn. We elaborate on this
in our discussion of decomposition crite-
ria in Section 4.2.3.

The nodes in Figure 11 represent soft-
ware components. TEMPERATURE SEN-
SOR and HEATER represent entities in
the part of the world controlled by the
software, which is why we call them
surrogates. They are represented as en-
tity types in the ERD of Figure 5 and as
object classes in the class diagram of
Figure 6. TEMPERATURE RAMP CON-
TROL is a function process whose task it
is to enforce certain behavior on the
external entities. This corresponds to a
control process in the DFD of Figure 7
and to an object class in Figure 6. The
distinction between surrogates and
function processes is an important
methodological difference between func-
tional decomposition and object-ori-
ented decomposition. This too is dis-
cussed in more detail in Section 4.2.3.

3.3.7 SDL Block Diagrams. A block
diagram is a graph in which the nodes
represent blocks and the edges repre-
sent channels through which the blocks
can communicate. They are used in SDL
to partition a complex system into sim-
pler parts (Appendix A.4).

Blocks communicate by sending sig-
nals through channels. Signals travel-
ing along a channel may experience de-
lay. A channel may carry signals in both
ways. Figure 12 shows a simple block

Figure 11. A system network diagram.

474 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



diagram. The Transport block can send a
batch_id to the Heating block, that can
send a heating_finished signal back to
the Transport block. When used to rep-
resent a system decomposition, these
blocks represent system components.
They are conceptual components, be-
cause they are defined in terms of their
meaning for external system behavior.

A block can be decomposed into a
lower-level block diagram, provided that
the interface of a block is equal to that
of its decomposition. Hierarchical dia-
grams can be used to specify different
levels in an aggregation hierarchy,
called service layers in SDL [Belina et
al. 1991; ITU 1993]. Each leaf block in a
block hierarchy contains one or more
processes. Processes cannot be part of
nonleaf blocks. This means that a block
either has subblocks or it contains pro-
cesses, but not both.1 Each process is an
extended finite state machine, specified
by an SDL state diagram (Section
3.5.8). The processes within one leaf
block communicate with each other by
means of signal routes. The difference
with channels is that signals experience
no delay when traveling through a sig-
nal route, whereas they may experience
delay when traveling through a chan-
nel. The behavior of a leaf block is the
result of the behavior of its component
processes. The behavior of a higher-
level block is the result of the behavior
of its component blocks.

Block diagrams are similar to DFDs
and activity charts in that they all rep-
resent a hierarchy of system functions

and their communications. An impor-
tant difference is that in a block dia-
gram, control is only specified at the
leaves of the hierarchy, whereas in
DFDs and activity charts, control may
be specified at any level in the hierar-
chy.

A second important difference ap-
pears if we flatten both hierarchies. A
flattened DFD or activity chart consists
of a number of communicating control
processes, data processes, and data
stores. A flattened block diagram con-
sists of SDL processes, which are ex-
tended finite state machines, just as
control activities in activity charts and
processes in SNDs are. Extended finite
state machines contain control (a finite
state machine), data processing (tests
and updates), and data storage (vari-
ables).

A third difference between block dia-
grams and DFDs is that a channel or
signal route combines the features of
data and event flows: it may carry a
single signal, like an event flow, or a
signal together with data values, like a
data flow.

Block diagrams are similar to SADT
activity diagrams in that they both rep-
resent a collection of communicating ac-
tivities that can be decomposed hierar-
chically. However, activity diagrams do
not allow the inclusion of control and
have no precise semantics for communi-
cation, as block diagrams do.

The idea of block diagrams is a natu-
ral one and it occurs in several object-
oriented methods with a telecommuni-
cation background. For example, in
OOSE, design components are called
blocks [Jacobson et al. 1992, pp. 224–
227]. In the commercialized variant of
OOSE called Objectory, the term “block”
has been replaced by the term “design
object” [Objectory AB 1995a, p. 88]. See

1 This simple picture is complicated by the possi-
bility of combined block specifications, which from
one point of view are leaf blocks used to specify
the behavior that must be implemented, and from
another point of view are nonleaf blocks, decom-
posed into lower-level blocks that implement this
behavior.

Figure 12. A simple block diagram.

Specification Methods and Techniques • 475

ACM Computing Surveys, Vol. 30, No. 4, December 1998



also Appendix B.5. Block diagrams are
also closely related to actor class dia-
grams in ROOM (Appendix B.11). An
actor class diagram is a block diagram
in which processes can be defined for
blocks at each level of the hierarchy.
The blocks in these diagrams are called
actors.

3.3.8 Sequence Diagrams. A se-
quence diagram represents a particular
sequence of messages exchanged be-
tween a number of entities. In the tele-
communications area, they have been
standardized as message sequence
charts [ITU 1994]. They are used in
combination with SDL specifications to
illustrate sequences of messages be-
tween a system and its environment.
They were introduced into object-ori-
ented modeling by Objectory [Jacobson
et al. 1992], and since then have become
popular in object-oriented methods to
represent communications between ob-
jects.

Figure 13 shows a sequence diagram
that represents the communication
among a number of objects in response
to the operator message to start heat-
ing. The communicating entities are

represented by vertical lines. The down-
ward direction represents the advance
of time. Horizontal arrows represent
messages. Sequence diagrams can be
extended with conventions to represent
timeouts, global conditions across dif-
ferent entities, delayed message recep-
tion, and the like.

A sequence diagram shows one partic-
ular communication sequence in one
run of the system. This stands in con-
trast to the communication specification
techniques reviewed so far, which spec-
ify properties of all possible runs of the
system. A second property of sequence
diagrams is that they show communica-
tion as well as behavior. They could
therefore also have been listed as be-
havior specification techniques.

3.3.9 Collaboration Diagrams. A col-
laboration diagram is a directed graph
in which the nodes represent communi-
cating entities and the edges represent
communications. The edges are num-
bered to represent the ordering of com-
munications in time. Figure 14 contains
a collaboration diagram that represents
the same message sequence as Figure
13. Collaboration diagrams have been

Figure 13. A sequence diagram.

476 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



introduced by Wirfs-Brock et al. [1990]
and have, in various guises, become
popular in object-oriented methods to
represent message exchanges between
objects. In the UML (Appendix B.19),
they can be extended with annotations
that represent dataflows between the
communicating objects and various
adornments that represent the way in
which the communications are imple-
mented.

Collaboration diagrams differ from
DFDs, activity diagrams, activity
charts, and block diagrams because
their nodes represent objects, not activ-
ities. This also sets them apart from
object communication diagrams, be-
cause those diagrams represent object
classes, not individual objects. In addi-
tion, just as do sequence diagrams, col-
laboration diagrams represent the se-
quence of messages in one particular
scenario whereas all other communica-
tion diagrams represent possible com-
munications in all possible scenarios.

3.3.10 Summary. We can distin-
guish two kinds of diagrams to repre-
sent communication; diagrams that show
communication sequence (sequence dia-
grams and collaboration diagrams) and
diagrams that show a set of possible
communications without indicating any
sequence (all other diagrams). Dia-
grams that show communication se-
quence illustrate communications as
well as behavior in one particular run of
the system. The other diagrams show
communication only and do not refer to
a particular run of the system.

A second distinction to be made con-
cerns the kinds of things that can com-
municate. We have seen the following
kinds of conceptual components.

—Finite state machines. Control pro-
cesses in DFDs are specified by finite
state machines.

—Extended finite state machines. These
contain control, local variables, and
tests and updates of these variables.

Figure 14. A collaboration diagram.

Specification Methods and Techniques • 477

ACM Computing Surveys, Vol. 30, No. 4, December 1998



Control activities (activity charts),
JSD processes, and SDL processes are
examples. The objects in sequence
and collaboration diagrams can also
be viewed as extended finite state ma-
chines.

—Data processing activities. Examples
are data processes (DFDs), activities
represented by SADT activity dia-
grams, and regular activities (activity
charts). All data processing performed
by SDL blocks is ultimately part of
SDL processes, which are extended
finite state machines.

—Data stores. These are present in
DFDs and activity charts.

In addition to these conceptual compo-
nents, DFDs and activity charts also
represent the external entities with
which the system communicates.

Complexity reduction by means of hi-
erarchy is possible in DFDs, activity
charts, and block diagrams. Hierarchy
may be represented in a Venn diagram-
like way by enclosure of areas or implic-
itly, by a naming convention.

There is a considerable range in the
possible properties of communication:
synchronous or not, delay or not, reli-
able or not, unidirectional or bidirec-
tional, and so on. The reviewed tech-
niques should define a semantics for the
notations so that it is clear what kind of
communication is represented. Without
such clarity, the notation may be used
to give a rough sketch of vague ideas
but not to communicate a meaning un-
ambiguously to others. There is consid-

erable difference among the techniques
on the matter of semantics. SADT activ-
ity diagrams hardly have any communi-
cation semantics; DFDs and object com-
munication diagrams are slightly less
ambiguous. Petersohn et al. [1994] de-
fine different possible semantics for
DFDs. SNDs have a better defined se-
mantics, but there is nothing near a
formal specification of this. SDL block
diagrams and activity charts have pre-
cisely defined communication proper-
ties. The semantics of communication in
block diagrams is formalized in an ITU
standard.

3.4 Function Specification Techniques

Function specification techniques are
used to specify the external functions of
a system, which are the items in the top
row of the function decomposition table,
or the functions of system components,
which are the items in each row of the
table.

3.4.1 Function Refinement Trees. A
function refinement tree represents sys-
tem behavior at an increasing level of
detail at the same level of aggregation.
Figure 15 shows part of a function re-
finement tree of a juice plant control
system. A function refinement tree in-
creases the level of detail along the hor-
izontal dimension of the magic square.
The highest level of detail at a given
level of aggregation is that of atomic
functions, that is, transactions. The
leaves of a fully grown function refine-
ment tree thus represent transactions.

Figure 15. Part of a function refinement tree of a juice plant control system.

478 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



We should stress that function refine-
ment and system decomposition are or-
thogonal. Figure 15 is compatible with
many different system decompositions,
only one of which is a decomposition
into modules that correspond to system
functions. Other possible decomposi-
tions include subject domain partition-
ing, in which the conceptual compo-
nents correspond to entities in the
represented or controlled part of the
world.

We cannot tell by looking at a tree
diagram whether it is a function refine-
ment tree or a system decomposition
tree. Thus, interpreted as a system de-
composition tree, Figure 15 would rep-
resent a functional system decomposi-
tion of the juice plant control system
into functional modules. This is another
example of the importance of annotat-
ing the diagram not only with the inter-
pretation rules to be used, but also with
an indication of the domain in which the
diagram is to be interpreted.

In information engineering, a func-
tion refinement tree is used to represent
a hierarchical decomposition of business
functions of an organization indepen-

dently from the actual organization
structure (Appendix A.5). In product de-
velopment, function refinement trees
are used to represent the functions of a
product in a hierarchical manner. If a
function refinement tree is used to-
gether with a hierarchical diagram
technique such as DFDs, SADT activity
diagrams, Statemate activity charts, or
SDL block diagrams, then the tree can
be made to correspond to the hierarchi-
cal decomposition of the diagram.

3.4.2 Event-Response Specification. A
simple way of specifying the functions of
a system is to make a list of events to
which the system must respond and
write down the desired response for
each event. Other properties can also be
noted, such as where the event comes
from, where the response goes to, what
the desired response time is, and so on.
It may also be useful to add information
that relates the event-response pair to
other parts of the specification, such as
an indication of the conceptual compo-
nents that handle the event.

Figure 16 shows an example event-
response specification of a function ac-

Figure 16. Event-response specification for a function of the juice plant control system.

Specification Methods and Techniques • 479

ACM Computing Surveys, Vol. 30, No. 4, December 1998



cording to YSM (Appendix A.2). The
function finish heating is triggered by
the temporal event temperature ramp
completed. This is called a temporal
event because it consists of a significant
moment in time, namely, the occurrence
of the desired endtime for heating a
cooking tank. This is noted in the speci-
fication by saying that the detection
mechanism is time. The other kind of
event that can trigger a system function
is an external event, which is generated
by an external entity. For external
events, the external entity that gener-
ates it must be noted. The other proper-
ties of the function listed in Figure 16
only make sense when the specification
contains a dataflow model. This is al-
ways the case in YSM but in other
methods, one would want to specify
other kinds of properties instead. For
example, in object-oriented methods,
one could specify which objects handle
the event and which objects produce the
response.

Event-response pairs are functions of
the system. If event-response specifica-
tions are combined with a function re-
finement tree, they should thus corre-
spond to nodes in a function refinement
tree. Event-response pairs may or may
not be transactions. For example, the
response of a controller to the request to
heat a cooking tank is to heat the cook-
ing tank and this takes a significant
amount of time, with intermediary
states that are externally observable.
However, the response of the controller
to the event that the desired tempera-
ture is reached is to switch off the
heater, and this conceptually takes
place at the same instant as the event
occurrence. Event-response pairs thus
may or may not correspond to the leaves
of the function refinement tree, and
there may be refinement relations be-
tween event-response pairs.

3.4.3 Declarative and Imperative
Specifications

Each function is executed when the sys-
tem is in some state and leaves the

system in a possibly different state. It
may accept input from the environment
and may produce output sent to the
environment. The effect of the function
can be specified textually in two ways,
declaratively or imperatively. In a de-
clarative specification, we describe pre-
and postcondition pairs, where a pre-
condition is a condition on the input and
system state at the start of executing
the function and the postcondition is a
condition on the output and the system
state after the execution of the function.
In an imperative specification, we de-
scribe the activities to be performed to
get from the input and initial system
state to the output and resulting system
state. There are a large number of semi-
formal and formal languages to write
declarative or imperative specifications.
We do not review these here but illus-
trate the idea by using natural lan-
guage.

Figure 17 shows a declarative specifi-
cation of the data process Start tempera-
ture ramp of the DFD in Figure 7. The
outputs of this data process are Bool-
eans and we use their names to indicate
postconditions. The idea is that if the
precondition is true for the input val-
ues, then the data process guarantees
that the postcondition is true. If the
precondition is false, then nothing is
guaranteed. Preconditions and postcon-
ditions come in pairs, of which the pre-
conditions are preferably mutually ex-
clusive and jointly exhaustive of all
possible cases. If they are not mutually
exclusive, then the postconditions of
overlapping preconditions must be mu-
tually consistent. If they are not jointly
exhaustive, then the effect of the func-
tion in some states is not specified.

Figure 18 shows an imperative speci-
fication of the same process. It reads the
dataflow input, collects the necessary
data from three data stores, and writes
a record to another data store. The ad-
vantage of an imperative specification is
that, written down in a suitable lan-
guage, it leads to an executable specifi-
cation that can be validated at an early
stage of development. Its disadvantage

480 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



is that it specifies a process by giving an
implementation for it. For example, the
implementation in Figure 18 gives a
particular order of reading the data
stores. This does not decrease the de-
signer’s freedom to choose another im-

plementation of the same process but in
general what exactly counts as the
“same” process is a moot point. To find
an equivalent implementation of the
same process, one needs a declarative
specification that says what the input-

Figure 17. A declarative specification.

Figure 18. An imperative specification.

Specification Methods and Techniques • 481

ACM Computing Surveys, Vol. 30, No. 4, December 1998



output relation is that must be realized
by the different implementations.

The advantage of a declarative speci-
fication is that it is completely imple-
mentation-independent. However, its
disadvantage is that it is an underspeci-
fication. The implementor has to figure
out what is changed as a result of the
function and what remains the same.
For example, the declarative specifica-
tion of Figure 17 says that if precondi-
tion 1 is satisfied, then after an execu-
tion of the function a new record exists
in the store TEMPERATURE RAMP
DATA. This does not imply that the rest
of the data store remains unchanged. It
is a constraint on the next state of the
store that can be satisfied in many dif-
ferent ways. The new record may be
added to the existing records, or it may
replace any or all of them. The declara-
tive semantics of new will not tell this
unless we add the frame assumption
that whatever cannot be inferred from
the postcondition to change remains the
same. It is not a trivial matter to deter-
mine this, especially if the postcondition
contains disjunctions or negations and
implies derived updates. Borgida et al.
[1995] summarize the frame problem for
declarative software specifications. Im-
perative specifications do not have the
frame problem, because they specify the
change in terms of a sequence of ele-
mentary changes whose effect on the
variables is completely specified. For ex-
ample, in any specification language,
the semantics of the create statement
would be that a record is added to TEM-
PERATURE RAMP DATA. This is not a
constraint that can be satisfied in vari-
ous ways; it is an instruction that yields
a definite result.

Whether one needs declarative or im-
perative specifications, or both depends
upon what one wants to do with a spec-
ification. Declarative and imperative
function specifications may be used to
specify external system functions, for
example, as part of event-response
pairs, or component functions, such as
object operations. They may also be
used to specify state transitions in ex-

tended state machines, as discussed in
Section 3.5.4.

3.4.4 Use Case Diagrams. Use cases
have been introduced by Jacobson et al.
[1992] in OOSE to represent external
system functionality (Appendix B.5) and
have been adopted since then by several
other methods and notations. A use case
is an interaction between the system
and an external entity that has a use for
that external entity. The interaction
need not be atomic. In the terminology
of this article, a use case is the same as
an external system function. Use cases
can be described by a narrative text, or
more formally by a specification of pre-
and postconditions of the use case. For
complex use cases, Jacobson et al.
[1992] recommend the use of a state
transition diagram. An overview of the
use cases can be given by a use case
diagram, that shows for each use case
which external entities are involved in
it. Figure 19 shows a fragment of a use
case diagram of the juice plant control
system. Figure 20 gives an example of a
specification of the heat the cooking tank
use case, following the Fusion conven-
tion [Coleman 1996]. Use case specifica-
tions may be supplemented with se-
quence diagrams that illustrate the
sequence of message exchanges.

A use case diagram actually shows
system functions as well as external
communications, and could also have
been listed in the section of communica-
tion specification techniques. Like con-
text diagrams, they show communica-
tions between the system and its
external entities. The difference with
context diagrams is that a use case dia-
gram shows system functions and their
communications, whereas a context dia-
gram shows dataflows between the sys-
tem and external entities. One can,
however, draw partial context dia-
grams, one for each major system func-
tion [Yourdon Inc. 1993, p. 170]. Use
case diagrams differ only marginally
from these. If a use case diagram is
combined with a function refinement
tree, then the use cases should corre-

482 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



spond to nodes in the diagram. Often,
these nodes will not be leaves of the
tree, because use cases generally are
not atomic functions.

3.4.5 Summary. Each of the re-
viewed techniques draws attention to a
different aspect of external system func-
tionality. A function refinement tree re-
lates the overall mission of a system to
its functions down to its atomic transac-
tions. For each function, it shows why
the system must have that function—to
realize its mission. Use case diagrams
summarize the communications that
take place during particular functions.
All functions can be specified as event-
response pairs but it is most efficient to
do this only for atomic functions, that
is, transactions. A context diagram can
be used to specify the data exchanges
between the system and its environ-
ment. One may choose to draw one par-
tial context diagram for each use case,
one for each major system function.

There is no need for formality in func-
tion refinement trees, context diagrams,

or use case diagrams. The important
point in using these is to follow good
heuristics and not to put more meaning
in these diagrams than is intended. The
specification of event-response pairs is
in need of a bit more formality. In par-
ticular, the specification of the effects of
events must be carefully specified, de-
claratively or imperatively. When inves-
tigating a method, one should look care-
fully at the possibility of ambiguity in
the specification technique used for
this. This is important, because custom-
ers should get the system functions for
which they thought they asked.

3.5 Behavior Specification Techniques

Behavior specification techniques can
be used to show how functions of a
system or of its components are ordered
in time. This corresponds to the rows of
the function decomposition table.

3.5.1 Process Graphs. A process
graph is a directed graph with labeled
edges, in which the nodes represent

Figure 19. Fragment of a use case diagram of the juice plant control system.

Specification Methods and Techniques • 483

ACM Computing Surveys, Vol. 30, No. 4, December 1998



states and the edges represent state
transitions. Usually, there is an initial
state, represented by a node that is
pointed at by a small arrow. Figure 21
shows a process graph that represents a
machine with two states and four tran-
sitions. The machine is nondeterminis-
tic because the start_heating transition
may or may not lead to another state.

Process graphs may have infinitely
many nodes and from any node, infi-
nitely many edges may depart. They are
used as interpretation structures for
formal specifications in process algebra
and dynamic logic [Baeten and Weijland
1990; Harel 1979]. Infinite graphs are
not useful as drawing techniques and
process graphs are not used in any of
the methods reviewed in this survey.
However, they are useful as a stepping
stone for the discussion of the finite-state
specification techniques that follow.

3.5.2 JSD Process Structure Diagrams.
Process structure diagrams (PSDs) are

used in Jackson Structured Programming
(JSP) to represent the structure of files
and of regular programs [Jackson 1975],
and in JSD to represent the behavior of a
system in a modular way (Appendix A.6).
A PSD is a visual way to represent a
regular expression by means of a tree
diagram. For example, Figure 22 repre-
sents the same finite-state process as Fig-
ure 21. The leaves of the tree represent
atomic actions; other nodes represent
nonatomic processes. Left-to-right order-

Figure 20. Schema for the Heat Cooking Tank use case.

Figure 21. A process graph.

484 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



ing of nodes represents sequence, except
if the nodes are labeled with an “o”, in
which case the nodes represent alterna-
tives. Iteration is specified by marking a
box with an asterisk. PSDs are used in
JSD to represent the lifecycle of entities
as well as to specify functions of the sys-
tem. For example, each process in the
SND of Figure 11 would be specified by a
PSD.

3.5.3 Finite State Diagrams. Process
graphs assume that the most interest-
ing thing about a behavior is the transi-
tions, and they do not make any as-
sumption about the number of states in
a system. State transition diagrams
(STDs) assume that the states are at
least as interesting as the transitions
and contain labels for states as well as
for transitions. Finite STDs contain
only finitely many states and transi-
tions and this makes it possible, at least
in principle, to draw finite STDs on a
finite piece of paper. If the number of
states is very small, this can actually be
done in practice. Figure 23 shows an
STD. The initial state is pointed at by a
small arrow. We now know that the
system starts in the IDLE state, a
start_heating transition may lead the

system to the CONTROLLING state, a
timeout transition causes it to iterate
over the CONTROLLING state, and an
end_time transition causes it to return
to the IDLE state.

3.5.4 Extended Finite State Diagrams.
The number of states that can be shown
in one STD is usually extremely small
compared to the number of states in
which a system can be. The number of
states can be increased by introducing
variables that may be tested and up-
dated by the finite state machine. The
state of the system now is represented
by the state of the STD plus the value of

Figure 23. A finite state transition diagram with
labeled states.

Figure 22. A process structure diagram.

Specification Methods and Techniques • 485

ACM Computing Surveys, Vol. 30, No. 4, December 1998



the variables. We speak of the global
state of the system that consists of the
explicit state, represented by the nodes
of the STD, and the extended state, rep-
resented by the values of the variables.

There are two ways to add variables
to an STD: by means of local variables
or by means of external variables. A
local variable is declared together with
the specification of the STD. A method
employing this technique must define
scope rules for these variables. Usually,
the scope of the variable is the entire
state machine specification, which
means that any transition can contain
tests and updates of these variables.
Some methods allow variables whose
scope is a single transition, where they
are used as temporary variables to com-
pute a result. Some methods also allow
variables whose scope is a single state,
where they are used to hold a result
that can be used in the next possible
transition. In all these cases, the ex-
plicit state represented by a node in the
diagram stands for a set of global
states, one for each possible value of the
local state variables. Also, in all these
cases, the computations that access and
change the variables are specified as
part of the state machine specification.

The second way to add variables to an
STD is by means of external variables.
An external variable is declared outside
the specification of the STD but can be
accessed by means of special operations
that act as an interface between the
specification and the variables. Compu-
tations that access or update the vari-
ables are now external to the state ma-
chine. For example, in dataflow models,
data stores are external variables with
respect to the control processes in the
DFD. This means that a global state
change now requires communication be-
tween the state machine and the exter-
nal data stores. For example, in the
DFD of Figure 7 the dashed circle repre-
sents a control process that must be
specified as a finite state machine. The
dashed arrows between the dashed cir-
cle and the other diagram components
represent the communications required

to synchronize a transition of this state
machine and changes in the extended
state.

Generally, object-oriented methods
tend to choose the first option. A state
machine is associated with an object,
whose local variables (often called in-
stance variables or attributes of the ob-
ject) act as local variables of the state
machine. SDL also chooses the first op-
tion. With some stretch of the imagina-
tion, JSD can also be interpreted as
choosing the first option, because each
PSD belongs to an entity, which can
have local variables (called attributes)
that may be changed by the actions in
the PSD. Structured methods that use
dataflow modeling choose the second op-
tion. Statemate uses both options, be-
cause statecharts allow local variables
but activity charts allow data stores and
regular activities to manipulate data.

The presence of variables (local or
external) allows us to refine the specifi-
cation of state changes in a number of
ways. We list these ways here and give
examples in Figures 27 to 29.

—A state transition may change the
values of variables. We saw in Section
3.4.3 that changes can be specified in
a declarative or imperative way. If
the emphasis is on executable specifi-
cations, such as for SDL and State-
mate, then imperative specifications
are chosen.

—For each transition, a guard may be
specified that says when the transi-
tion can occur. There are two inter-
pretations of this. In a weak interpre-
tation, the transition cannot occur if
the guard is false. This means that if
the transition occurred, then we know
that the guard was true. However, if
the guard is true, we do not know
whether the transition can occur. The
guard is in this case a necessary con-
dition for the possibility of occurrence
of the transition. In a strong interpre-
tation, the transition can occur if and
only if the guard is true. The guard is
in this case a necessary and sufficient
condition for the possibility of occur-

486 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



rence of the transition. During the
process of building up a specification,
we usually specify guards with the
weak semantics until we know that
we have specified all conditions for a
transition, at which time we interpret
the conjunction of all weak guards as
a strong guard. One way of specifying
a guard is to say that the guard is the
conjunction of all preconditions speci-
fied for a transition. A guard for a
transition may however be stronger
than this conjunction, in which case
some precondition is true of some
states in which the guard prevents
the transition from occurring. It is not
desirable for the guard to be weaker
than the conjunction of preconditions,
because in that case there would be
states in which the guard allows the
transition but no precondition ap-
plies.

—The presence of variables allows us to
include tests in a state machine that
are used to determine what the next
state will be. The next state is then
determined by the value of the vari-
ables. Tests can be used to resolve
nondeterminism such as that of the
start_heating transition in Figure 23.
The difference between a test and a
guard is that a test determines which
of a set of possible transitions will
occur. A test consists of a guard for
each of the possible transitions.

3.5.5 Mealy Machines. State ma-
chines never operate in isolation but
must communicate with their environ-
ment. This is done by distinguishing
input events, which are received from
the environment, from output actions,
which are sent to the environment. In
all conventions, input events are associ-
ated with a transition, meaning that an
input event occurrence triggers the

transition, provided that the transition
guard does not prevent this. The con-
ventions for the definition of output ac-
tions differ. In a Mealy machine, output
actions are associated with transitions.
This is shown in the STD by separating
the input events from the output actions
of a transition by a horizontal line or by
a slash (Figure 24). We call an STD of a
Mealy machine a Mealy STD. If there
are variables and we wish to define a
guard for a transition, this may be
added between square brackets behind
the action. The actions may be updates
of variables or output actions to the
environment of the machine.

Figure 25 shows a Mealy state dia-
gram with a decision state, following
the YSM convention. The diagram re-
fines the state diagram of Figure 23. It
specifies the control process of Figure 7.
The machine is initialized in the IDLE
state and, upon reception of the event
start_heating, generates output actions,
one that triggers the data process Com-
pare with desired temperature and one
that enables a continuing data process
that monitors the deadline when the
heating will be finished. The machine
then enters the state COMPARING, in
which it awaits the outcome of the com-
parison with the desired temperature.
This is called a decision state. These
states are necessary because in this ex-
ample, the machine cannot do any com-
putations itself but must request exter-
nal data processes to perform
computations. The outcome of the com-
parison is either desired temperature
reached or desired temperature not
reached. These trigger a transition to
the CONTROLLING state, turning the
heater on or off according to the out-
come of the test. The machine then peri-
odically receives a timeout at which it

Figure 24. STD of a Mealy machine.

Specification Methods and Techniques • 487

ACM Computing Surveys, Vol. 30, No. 4, December 1998



checks whether the desired temperature
is reached and turns the heater on or off
accordingly.

In YSM, there are actions to create
and set named clocks. In addition, each
state of a state machine has a clock that
counts the time that has elapsed since
the machine last entered that state. The
event secs(CONTROLLING)510 is a tem-
poral event generated by the state clock
of CONTROLLING. It occurs 10 seconds
after the most recent entry in the CON-
TROLLING state. When this occurs, the
machine checks whether the end time
has been reached. If so, the machine
stops monitoring the deadline, turns off
the heater, outputs a signal that heat-
ing is finished, and returns to the IDLE
state. If the end time has not been
reached, another cycle of monitoring is
initiated. The condition end_time_
reached is a continuous event flow used
in a guard for two transitions of the
Mealy machine.

If a Mealy machine has many states
or must react to many events, it may be
impractical to draw an STD for it. One
can then draw a state transition table.
There are various layouts for such a
table but a commonly used technique is
to set off events against states and show
in the entries which actions are gener-
ated and what the next state is [Hatley
and Pirbhai 1987, pp. 82–83].

3.5.6 Moore Machines. In a Moore
machine, outputs are associated with

states. The meaning is that actions are
performed upon entry of a state. This
means that all transitions entering a
state will generate the same output. In
general, for every Mealy machine there
is a Moore machine that has the same
input-output behavior and vice versa
[Hopcroft and Ullman 1979, p. 44]. Fig-
ure 26 shows an STD of a Moore ma-
chine that does the same as the ma-
chine of Figure 25. We introduced a
state for every output produced. Note
the output action finish controlling in
state TURNING OFF, which triggers the
transition to the FINISHED state. Moore
machines are used in the Shlaer–Mellor
method for the specification of object
behavior (Appendix B.1).

3.5.7 Statecharts. A statechart is hi-
graph without intersection but with
Cartesian products, in which the nodes
represent states and the directed hyper-
edges represent state transitions.2 Node
inclusion allows us to partition a state
into substates. Cartesian products allow
us to specify parallelism. In addition to
these features, actions can be specified
along transitions (Mealy), upon entry of
states (Moore), and exit of states. Stat-
echarts also use local variables to repre-
sent an extended state.

2 There is a version of statecharts with intersec-
tion, but this is not part of the Statemate lan-
guage discussed in this survey [Harel and Kahana
1992].

Figure 25. A Mealy machine with a decision state.

488 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



Figure 27 shows a statechart for the
juice plant controller. In Statemate, a
statechart corresponds to a control ac-
tivity in an activity chart, just as in
YSM a Mealy machine corresponds to a
control process in a DFD. The MONI-
TOR_TEMPERATURE state is parti-
tioned into two or-states, HEATER_ON
and HEATER_OFF. We assume that the
comparison of the current with the de-
sired temperature is done externally by
an activity in the activity chart, called
Compare_with_desired_temperature, just
as in the DFD of Figure 7. The start_
heating event causes a transition into
MONITOR_TEMPERATURE, whose ini-
tial state is COMPARING, as indicated
by a small arrow. Upon entry of this

state, the machine starts the activity
compare_with_desired_temperature. The
answer sent back by this activity deter-
mines whether the heater is turned on
or off. Note that these actions could also
have been associated with the HEATER_
ON and HEATER_OFF states. The time-
out action takes the machine out of any
substate of MONITOR_TEMPERATURE.
The variable end-time must be made
available to the statechart as an input
data flow in the corresponding activity
chart, in which this statechart corre-
sponds to a control activity.

It is possible that the timeout leaving
MONITORING_TEMPERATURE occurs at
the same time as a timeout leaving
HEATER_ON or HEATER_OFF. There are

Figure 26. STD of a Moore machine with a decision state.

Specification Methods and Techniques • 489

ACM Computing Surveys, Vol. 30, No. 4, December 1998



different possible semantics to resolve
this conflict. The current Statemate se-
mantics gives priority to the timeout
leaving the superstate.

Note that monitoring the end time is
done by the statechart itself. This is
contrasted with the DFD in Figure 7,
where the activity Monitor deadline is
external to the control process Control
temperature ramp.

The comparison between the current
and the desired temperature is done by
an activity external to the statechart.
This is analogous to the DFD of Figure
7. Because statecharts allow the decla-
ration and manipulation of local vari-
ables, a different solution is possible, in
which the current and desired tempera-
tures are made available to the control
activity through input flows and the

choice to turn the heater on or off is
made by means of a test.

If the control activity must perform
other jobs in parallel to monitoring the
temperature, then this can be specified
by adding parallel components. For ex-
ample, Figure 28 added a MONITOR_
PRESSURE process in parallel to the
temperature monitoring process of Fig-
ure 27. This parallel composition cannot
be specified conveniently in one Mealy
or Moore machine. In YSM, the DFD
would have to specify a separate control
process, with its own Mealy machine,
corresponding to the MONITOR_PRES-
SURE process in Figure 28.

An action generated by a state transi-
tion is broadcast to all parallel compo-
nents in the same statechart. This may
trigger other transitions, which in turn

Figure 27. A statechart.

490 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



may generate other actions. This pro-
cess comes to a halt when no more tran-
sitions are triggered.

Statemate has defined a large number
of special events, actions, and condi-
tions that can be used in statecharts.
An event dealing with real time is time-
out(e, t), which occurs t time units after
the most recent occurrence of event e.
An action dealing with real time is
schedule(e, t), which schedules the event
e to occur t time units after now.

Formal semantics of statecharts are
defined by Harel et al. [1987] and
Pnueli and Shalev [1991]. Beeck [1994]
lists over 20 different formal semantics
of statecharts. The semantics used by
Statemate is described in an internal
i-Logix report [i-Logix 1991b]. A sum-
mary of this is presented by Harel and
Naamad [1996].

3.5.8 SDL State Diagrams. SDL
state diagrams are extended finite state

diagrams with input and output and
timers. They are used in SDL to specify
the behavior of processes in the leaf
blocks of a block diagram. Figure 29
shows an SDL state diagram that de-
clares two local variables and two tim-
ers. A timer is an object that is owned
by the state machine in whose specifica-
tion it is declared, and that can send
timeout signals to the machine. The
type Recipe must have been defined in
an enclosing block as a record type. The
machine starts in the IDLE state. When
it receives the input signal start_heat-
ing, it initializes the variable desired_
temperature by accessing a field of rec-
ipe and sets the two timers. These
inputs must be input signals of the pro-
cess in the corresponding block dia-
gram. It then tests the current temper-
ature and sends out a signal to turn the
heater on or off. The test is called a
decision in SDL, represented by a dia-

Figure 28. A statechart with parallel substates.

Specification Methods and Techniques • 491

ACM Computing Surveys, Vol. 30, No. 4, December 1998



mond. The machine then periodically
receives a timeout signal, at which it
checks the current temperature and
sets a new timeout. An assignment to
variables or an update of a timer is done
in an SDL task, represented by a rect-
angle. States are represented by rectan-
gles with rounded sides and inputs and

outputs by flag-like symbols, pointing
inward or outward. The asterisk state
in Figure 29 refers to any state in the
current diagram. It is used to specify
that upon reception of a signal of the
Endtime timer, it turns off the heater,
sends out a signal that heating is fin-
ished, and returns to the IDLE state.

Figure 29. An SDL state diagram.

492 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



Different processes in a block diagram
communicate through signal routes
(Section 3.3.7). An alternative means of
communication between processes is by
exporting a variable from one process
and importing it to another. By execut-
ing an export statement, the exporting
process makes the value of the variable
available to any process that imports
the variable. When an importing pro-
cess executes an import statement, this
reads the value that the variable had at
the most recently executed export state-
ment. SDL diagrams have a formal se-
mantics, defined as an ITU standard
[ITU 1992].

3.5.9 Process Dependency Diagrams.
Process dependency diagrams are di-
rected hypergraphs in which the nodes
represent ongoing activities, called pro-
cesses, and the edges represent transi-
tions between these activities. They are
used in information engineering (Ap-
pendix A.5) to represent precedence re-
lations between activities. Figure 30
shows a simple process dependency dia-
gram. The event that triggers the pro-
cesses in the diagram is represented by
a large arrow. The hyperedge leaving
start temperature ramp represents paral-
lel execution of the target processes
monitor deadline and turn on heater.
There is also a convention for alterna-
tive execution of processes. Process de-
pendency diagrams allow the represen-
tation of cardinality properties of
precedence relationships. Figure 31
shows that the process produce quality

report is preceded by one or more test
batch quality processes, using the tradi-
tional crow’s foot notation to represent
the cardinality one or more.

A process dependency diagram is sim-
ilar to a dataflow diagram in that both
diagrams represent a collection of re-
lated processes. The difference is that
an edge in a process dependency dia-
gram represents logical precedence and
an edge in a dataflow diagram repre-
sents a dataflow. Because of this, pro-
cess dependency diagrams are closer to
state transition diagrams, in which
edges represent the transition from one
activity to another activity. Process de-
pendency diagrams can represent trig-
gering events, parallelism, choice, and
the cardinality of process connections,
none of which can be present in a data-
flow diagram. However, process depen-
dency diagrams can be extended with
data stores, giving them the appearance
of dataflow diagrams [Martin 1989b, p.
271].

Related conventions are used in the
Martin–Odell method (Appendix B.6)
and in the UML (Appendix B.19). The
Martin–Odell method uses event dia-
grams which are similar to process de-
pendency diagrams but without event

Figure 30. A simple process dependency diagram.

Figure 31. A process dependency diagram with
cardinality.

Specification Methods and Techniques • 493

ACM Computing Surveys, Vol. 30, No. 4, December 1998



arrows and without the explicit repre-
sentation of cardinalities [Martin and
Odell 1995, pp. 118 ff.]. The exact na-
ture of a dependency of one process
upon previous processes can be specified
in an event diagram by a control condi-
tion. For example, a control condition
can specify that a process can be per-
formed if at least one of the immedi-
ately preceding processes is finished, or
if all of them are finished.

In the UML, activity diagrams, not to
be confused with SADT activity dia-
grams (Section 3.3.3), are defined as
statecharts all of whose states represent
the performance of activities and whose
transitions are triggered when an activ-
ity is terminated. A similar technique is
defined in Mainstream Objects (Appen-
dix B.15). The result is very similar to
process dependency diagrams without
cardinalities or events [Rational 1997a].
Activity diagrams also allow the repre-
sentation of input and output objects of
an activity.

3.5.10 Summary. There is consider-
able similarity between the different no-
tations reviewed in this section. All no-
tations represent states by labeled
nodes and transitions by labeled di-
rected (hyper)edges. The edge labels
represent the input event that triggers
the transition, the output actions gener-
ated, and possibly the actions performed
on local variables. All techniques except
process dependency diagrams have a
formal semantics. There is exactly one
semantics of SDL state diagrams laid
down in the standard [ITU 1992], but
there are many different possible se-
mantics of statecharts [Beeck 1994].
Statecharts are very popular in object-
oriented methods but the varieties of
statechart-like notations defined in
those methods do not all have a pre-
cisely defined semantics.

Process dependency diagrams hardly
have any semantics defined for them.
For example, cardinality constraints be-
tween processes require a theory of
equality between processes. The state-
ment that one process of type P receives

messages from many processes of type
P9 is only meaningful in the presence of
a theory that says when processes are
counted equal and when they are
counted as different. This is the prov-
ince of process algebra [Milner 1980;
Baeten and Weijland 1990], which is far
removed from the realm of process de-
pendency diagrams. Martin–Odell event
diagrams and UML activity diagrams
likewise contain constructs that, at the
time of this writing, are nowhere de-
fined precisely. This means that, say,
different case tool vendors can imple-
ment different execution algorithms for
these diagrams and both claim to imple-
ment the “right” semantics.

We skipped over the details of the
semantics of time in state machines.
For example, one may choose a point or
interval semantics of time, use a dis-
crete, dense, or continuous model of
time, and assume that transitions take
time or are instantaneous. Each of these
choices leads to important differences in
the behavior specified by a state dia-
gram. The semantics of time is carefully
defined in SDL and in the Statemate
semantics of statecharts.

Related to this is the variety of com-
munication semantics that one can use.
We saw already in Section 3.3.10 that
some methods are not very explicit
about the semantics of communication
diagrams. The set of choices that can be
made increases if we realize that we
must specify whether input events are
queued upon reception, what happens if
an event cannot trigger a transition,
and so on. Any method that employs
these notations must make these se-
mantic choices clear. Again, these is-
sues are explicitly dealt with in SDL
and the Statemate semantics of state-
charts.

4. ANALYSIS AND COMPARISON

Appendices A and B review how 6 struc-
tured and 19 object-oriented methods
use the techniques described in the pre-
vious section. Tables A.I and A.II of
those appendices give a quick survey of

494 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



techniques used in the reviewed meth-
ods. In this section, we summarize our
findings. We start with the way in
which external interactions and concep-
tual decomposition are specified in
structured and object-oriented methods.
Next, we look at the way behavior and
communication are specified in each
type of method. Finally, we take a brief
look at the complexity reduction tech-
niques used in the reviewed methods.

4.1 External Interaction Specification

The three relevant aspects of external
system interactions are external func-
tions, communication and behavior.
Looking at the first three columns of
Tables A.I and A.II we see that most of
the techniques employed by different
methods to specify external interactions
can be freely combined. Structured tech-
niques use event-response pairs to spec-
ify system transactions (YSM) and a
function refinement tree that relates
the transactions to the system mission
(IE). Event-response pairs can be speci-
fied declaratively by means of pre- and
postcondition pairs or imperatively by
means of executable programs. A state-
ment of purpose summarizes the func-
tionality of the system by listing the
responsibilities of the system as well as
the functions that the system will not
have. At a greater level of detail, exter-
nal communication and behavior can be
illustrated with sequence diagrams
(SDL), and the details of the dataflows
between the system and its environ-
ment can be specified by a context dia-
gram.

Object-oriented methods have little to
add to this. We noted already that use
case diagrams can be viewed as partial
context diagrams that show which ex-
ternal entities communicate with the
system during particular functions (use
cases). The other addition of object-ori-
ented methods is the use of collabora-
tion diagrams as an alternative to se-
quence diagrams to illustrate external
behavior and communication of the sys-
tem. This pretty much exhausts the

techniques used in the 25 reviewed
methods for the specification of external
interactions.

4.2 Decomposition Specification

4.2.1 Kinds of Components. The es-
sential differences between structured
and object-oriented methods exist in the
way they conceptually decompose the
software product. Structured analysis
uses DFDs to specify system functions.
When a DFD contains dataflows be-
tween data processes then it actually
shows a conceptual decomposition in
which several data processes interact to
realize an external function. When it
contains control processes, the DFD
contains event flows that show how the
control processes cooperate with other
processes to realize external system
functions. In both cases, what is shown
is not a collection of external system
functions but a collection of communi-
cating processes that work together to
realize external system functions. This
is why we listed DFDs as a technique to
specify a conceptual decomposition.
This view of DFDs is even more justified
if the DFD is hierarchical, for the DFD
hierarchy then actually shows a concep-
tual decomposition hierarchy.

Suppose we flatten a DFD hierarchy
and reorganize its data processes so
that each data process corresponds to
one atomic external system transaction.
We ignore control processes for the mo-
ment. Then there will be no interfaces
between the data processes, because dif-
ferent data processes correspond to dif-
ferent system transactions. Such a DFD
is partitioned according to the event
partitioning principles introduced by
McMenamin and Palmer [1984]. It
shows only what the external transac-
tions are and what their interfaces to
external entities and system memory
(data stores) are. Such a diagram still
shows a decomposition, that is, a decom-
position of the system into data pro-
cesses and data stores. Basically, this is
the separation between memory and
processor typical of von Neumann com-

Specification Methods and Techniques • 495

ACM Computing Surveys, Vol. 30, No. 4, December 1998



puters. We call this decomposition prin-
ciple data process separation. In such a
decomposition, there are two kinds of
components: data stores that have
memory but no activity and data pro-
cesses that have activity and no mem-
ory. The decomposition principle of
DFDs is actually a bit more complex,
because only instantaneous data pro-
cesses have no memory. Continuing
data processes may have memory. Nev-
ertheless, data process separation is one
of the major decomposition principles
imposed by DFDs.

Data process separation is opposite to
the update encapsulation, in which in-
stantaneous data processes are modeled
by means of updates that are encapsu-
lated with the state that is updated. It
is true that YSM actually uses the con-
cept of abstract data type, which encap-
sulates the specification of operations
with the operated upon data. Example
abstract data types are integers, charac-
ters, and parameterized types such as
lists and sets of items. However, YSM
does not extend this idea to the encap-
sulation of updates with the state that
is updated. We can simulate objects in a
DFD by a data store that contains the
state of all instances of an object class,
and a number of instantaneous data
processes corresponding to the object
updates that are the only processes to
access the data store. This simulation is
also a vivid illustration of the difference
between data process separation and
update encapsulation.

Note as an aside that update encapsu-
lation implies the need for a concept
like object identity as that which re-
mains invariant under all possible
changes of state. Without such a con-
cept, the concept of state change would
be meaningless.

Dataflow models are also character-
ized by a second separation, that of data
processes from control processes. We
call this the principle of control process
separation. This separation too is abol-
ished in an object-oriented decomposi-
tion, where a state machine can be spec-
ified for each object class, with the

meaning that each instance of that class
executes an instance of that state ma-
chine. Data process separation and con-
trol process separation jointly take care
of the idea to use external variables for
extended finite state machines. The
data stores act as external variables for
the state machines, and data processes
as external updates of these variables.

Putting all of this together, we get
that DFDs use four kinds of compo-
nents; data stores, instantaneous data
processes, continuing data processes,
and control processes. Object-oriented
methods use only one kind of compo-
nent, the object, that encapsulates data
(local state), updates (local operations),
and control (local state machine).

Turning to the other structured meth-
ods, we see that information engineer-
ing uses DFDs and hence follows the
same decomposition principles as YSM.
SADT only recognizes activities as con-
ceptual components and hence does not
apply the principle of data process sepa-
ration or control separation. Statemate
contains the principles of data process
separation and control separation, but
it in addition allows the encapsulation
of a local state with the control pro-
cesses. If we drop activity charts from
Statemate models, all data processing
must be encapsulated in statecharts
and we get a model that is very similar
to object-oriented models. SDL does not
contain the principle of data process
separation or control separation. It does
not contain separate data stores or data
processes at all. Note that although
SDL state machines encapsulate up-
dates, these are not named but are “pro-
grammed” as tasks. This differs from
object-oriented techniques that allow
external access to object operations by
their name only. JSD too does not con-
tain a separate data store construct nor
does it distinguish data processes from
control processes. Updates are called ac-
tions and specified separately from
PSDs.

We conclude that data process separa-
tion and control process separation are
typical for DFDs only and do not occur

496 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



in structured methods that do not use
DFDs. Moreover, Statemate, SDL, and
JSD all encapsulate updates in their
state machines, which puts them all
close to object-oriented methods. Be-
cause Statemate and JSD do not sup-
port the concepts of class or inheritance,
we could call them object-based rather
than object-oriented [Wegner 1992].
SDL 92 has moved closer to object-ori-
entation because it includes the concept
of inheritance [Møller-Pedersen et al.
1987; Færgemand and Olsen 1994].

4.2.2 The Subject Domain. The de-
composition of system memory is repre-
sented in YSM in two ways, by a decom-
position into data stores and by a
decomposition into entities and rela-
tionships, specified by an ERD. In ob-
ject-oriented methods the conceptual
decomposition into objects is always
represented by a class diagram-like
model, which is a close relative of the
ERD. Now, what do these diagrams rep-
resent exactly? In Section 3.2.1 it is
remarked that one cannot tell by look-
ing at an ERD whether it represents a
decomposition of the environment of the
system or a conceptual decomposition of
the system itself. This ambiguity is re-
lated to a fundamental characteristic
feature of software, which we now make
explicit.

A software system is a system that
manipulates and stores data. The defin-
ing characteristic of data items is that
they refer to something. A data item is a
symbol that has a meaning which is not
given by nature but laid down in a
convention usually called a dictionary.
We call the part of the world to which
the data refers the subject domain of
the data. Another frequently used term
is universe of discourse (UoD), but we
stick to the term subject domain here.
The subject domain always lies outside
the software being specified, but it may
lie outside or inside the computer.
There are exceptional cases where we
can define a symbol that refers to itself,
but for software specification these
cases are not interesting. For example,

the subject domain of a personnel data-
base system consists of the relevant as-
pects of the employees of a company,
such as name, address, birth date, sal-
ary, and the like, and the subject do-
main of a juice plant control system
consists of the relevant parts of the
juice plant, such as heating and storage
tanks, heaters, temperature sensors,
and the like. The subject domain of a
database dictionary, however, is a data-
base system, which resides inside a
computer. The subject domain of a soft-
ware product may even be an abstract
conceptual world that does not exist in
the physical world. For example, the
subject domain of a graph editor con-
sists of the set of possible graphs that
can be drawn.

The subject domain plays an impor-
tant role in the decomposition principles
used in object-oriented methods, but the
distinction between the subject domain
and the software product being specified
is not made clearly in most methods.
Exceptions are JSD (Appendix A.6),
which is the first method in which the
distinction is made explicit, and Syn-
tropy (Appendix B.14).

We noted that the meaning of a data
item is not given by nature but by a
convention according to which people
agree that a certain observable symbol
occurrence stands for something else. If
we specify a software system, we must
include this meaning convention in our
specification. This means that we must
include a dictionary in the software
specification that defines the meaning
of data items. The data dictionary used
in dataflow modeling contains such in-
formation, but it also contains addi-
tional information about data types and
representation formats of data, which
have no meaning in the subject domain.
To make clear that we do not have this
kind of data dictionary in mind, we call
the meaning definition of the data items
a conceptual model. Thus, a conceptual
model of a software product is a defini-
tion of the meaning of the data items in
terms of the subject domain.

In database modeling, the conceptual

Specification Methods and Techniques • 497

ACM Computing Surveys, Vol. 30, No. 4, December 1998



model always takes the form of an ERD
and then represents a decomposition of
the subject domain. This ERD specifies
the meaning of the data by simply spec-
ifying the kinds of things (entities and
relationships) to which the data can re-
fer. For every entity or relationship in
the subject domain there will be a corre-
sponding surrogate in the database
[Hall et al. 1976]. As a consequence, the
ERD represents a decomposition of the
subject domain as well as the concep-
tual structure of the data in the data-
base. Note that the ERD can be used to
represent an aggregation hierarchy of
entities and components in the subject
domain, but that the surrogates that
represent these entities all reside at one
level of the aggregation hierarchy of the
software product.

In the specification of control-inten-
sive software systems, the subject do-
main consists of the entities whose be-
havior is to be registered and/or
controlled. In this case, a decomposition
specification of the subject domain does
not necessarily correspond with a con-
ceptual decomposition of the software
system, because the system does more
than store and remember all events
that occur in the life of the subject do-
main entities. However, as shown in the
following section, one can use a decom-
position criterion that produces an iso-
morphy between the subject domain and
at least part of the conceptual software
components. Here we note that even if
there is no such isomorphy, the mean-
ing of the data manipulations per-
formed by the system must be defined
in terms of actual and desired behavior
of entities in the subject domain. We
always need a conceptual model of the
subject domain to define this meaning.

Note that since in object-oriented
specifications, operations are encapsu-
lated with the data they operate on, a
class diagram not only represents the
meaning of the data items but also the
meaning of data manipulations in terms
of the subject domain. For example, JSD
makes a model of the behavior of the

entities in the subject domain before
making a model of software objects.

In structured methods of the Yourdon
school, ERDs are used to represent the
conceptual structure of the data manip-
ulated by the system. The functions of
the system are represented by a DFD
[Flavin 1981; Yourdon 1989; Yourdon
Inc. 1993]. In other structured methods,
ERDs are not used. These methods are
oriented towards systems that are not
data-intensive. In object-oriented meth-
ods, class diagrams are used to repre-
sent a conceptual decomposition of the
software where the decomposition prin-
ciple is that objects in the subject do-
main should correspond to conceptual
objects in the software. In JSD and Syn-
tropy, the distinction between a subject
domain decomposition and a software
specification is made fully explicit: the
decomposition of the subject domain is
modeled separately from the decomposi-
tion of the software product, and the
link between the two is made explicit
(Appendices A.6 and B.14).

4.2.3 Decomposition Criteria. Struc-
tured and object-oriented methods seem
to use quite different decomposition cri-
teria for software. A closer look reveals
that this is not the case. We review a
number of decomposition criteria that
are used in structured and object-ori-
ented methods.

—In functional decomposition, concep-
tual components correspond to system
functions [DeMarco 1978]. In this
kind of decomposition, we choose a
level in the function refinement tree
and decide that the functions at that
level are to be specified as conceptual
components. We thus map the hori-
zontal dimension of a function decom-
position table to the vertical dimen-
sion. The result is that the allocation
entries in the table appear on the
diagonal.

—In event partitioning, each conceptual
component corresponds to the pro-
cessing between an event and the re-
sponse by the system [McMenamin

498 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



and Palmer 1984]. This is a kind of
functional decomposition, but now we
choose the lowest level in the function
refinement tree, that of atomic system
transactions where each transaction
consists of a conceptually atomic
event-response pair. There will be one
conceptual component for each exter-
nal system transaction.

—In device-oriented decomposition, one
conceptual component is defined for
each external device to be controlled;
the task of the component is to control
the device [Yourdon Inc. 1993, pp.
329, 355, 509]. Since each device can
generate more than one event to
which the system must respond, this
decomposition is at a higher level of
granularity than event partitioning.
Unlike functional decomposition, it
does not group event-response pairs
into more abstract functions, but it
groups them according to the device
that originates the event.

—In subject domain-oriented decomposi-
tion, one conceptual component is de-
fined for each external entity about
which data is to be stored or whose
behavior must be controlled [Jackson
1983]. This differs from device-ori-
ented decomposition, because a device
connected to the software system may
not itself be the entity whose behavior
is to be controlled, but merely an in-
termediary that lets the system and
the subject domain entity communi-
cate with each other. Since one entity
may be observed by the system
through several devices, this may
lead to a decomposition at a higher
level of granularity. It is a decomposi-
tion that in any case stays close to the
meaning of the data manipulations of
the system.

A more detailed exposition of these de-
composition criteria is given by Cook
and Daniels [1994], Gomaa [1993],
Jackson [1983], and Shumate and
Keller [1992].

All of these decomposition criteria are
compatible with object-oriented decom-
position as well as with the separation

of data stores, updates (data processes),
and control characteristics of DFDs.
Functional decomposition, event parti-
tioning, and device-oriented partition-
ing all originate from structured analy-
sis. The idea of subject domain-oriented
partitioning was already present in
Simula [Dahl and Nygaard 1966], which
stands at the root of the tradition of
structured programming. The idea led a
sleeping existence until 15 years later
when it became a central partitioning
criterion in JSD, which too has a back-
ground in structured programming
[Jackson 1975]. It is not difficult to
structure a YSM model according to the
principle of subject domain partitioning
and many examples in the structured
analysis literature actually use this par-
titioning without mentioning it. All
ERDs given by Yourdon Inc. [1993] and
Goldsmith [1993] use, for example, this
principle. To be fair, it should be noted
that they do not partition the data pro-
cesses according to the same principle.
Events that update the state of entities
are not encapsulated in the specification
of those entities.

Conversely, object-oriented decompo-
sition is compatible with all of the de-
composition criteria mentioned previ-
ously. It is perfectly possible to define
software objects that correspond to
transactions, or to devices, to system
functions, or to subject domain entities.
This is most explicit in Objectory (Ap-
pendix B.5), where entity objects corre-
spond with subject domain entities, con-
trol objects with control functions, and
interface objects with devices. It is also
present in other object-oriented meth-
ods, but there the distinction between
software objects that represent subject
domain entities and software objects
that embody software functions is
blurred. For example, Figure 6 is based
upon a class model given by Shlaer and
Mellor [1992, p. 90]. It includes the ob-
ject class Temperature Ramp, which is a
control process in the DFD of Figure 7.
The temperature ramp object really cor-
responds to the control process, for the
state diagram specified by Shlaer and

Specification Methods and Techniques • 499

ACM Computing Surveys, Vol. 30, No. 4, December 1998



Mellor is equivalent to the state dia-
gram of the control process (Figure 25).
Nevertheless, the distinction between
software objects that correspond to sub-
ject domain entities and software ob-
jects that correspond to control func-
tions is not made by Shlaer and Mellor.
The confusion is even greater in the
Fusion method (Appendix B.12), where
the system is defined to be a part of the
subject domain. Magically, the system
contains software objects whose func-
tion is to represent subject domain enti-
ties or to act as an interface with those
entities. These software objects cannot
possibly be part of the domain. The
problems in teaching Fusion, reported
by Eckert [1996, p. 282], are caused by
this confusion.

The compatibility of object-orienta-
tion with different decomposition heu-
ristics should not be surprising: using
objects means that we encapsulate a
state and updates of the state into little
systems called objects. Using a particu-
lar decomposition criterion means that
we are guided in a certain way in choos-
ing which objects we have in the sys-
tem. The decision to use objects has
nothing to do with the decision of which
decomposition criterion to use.

We conclude that the use of a particu-
lar decomposition criterion is not the
distinguishing feature of structured
analysis versus object-oriented analysis.
The distinguishing feature is the encap-
sulation of data, operations, and control
into objects versus the separation of
these elements in dataflow modeling.
However, we repeat that this is a char-
acteristic of DFDs. It follows that DFDs
are incompatible with object-oriented
techniques. We already saw that State-
mate, SDL, and JSD are structured
methods that do not use DFDs. They all
use techniques that encapsulate data
processing in control processes and ac-
cess to the state of control processes is
regulated by flows, signals, channels,
data streams, and state vector connec-
tions.

4.3 Behavior Specification

For the specification of component be-
havior we have the same repertoire of
techniques available as for the specifi-
cation of external behavior. Generally,
external behavior is defined implicitly
as the result of a collection of communi-
cating component behaviors. For exam-
ple, DFDs and activity charts define
external behavior by means of a collec-
tion of control processes, SDL defines
the behavior of a system by means of a
collection of communicating processes
defined for leaf blocks, JSD defines sys-
tem behavior by means of communicat-
ing surrogate processes and function
processes, and all object-oriented meth-
ods define system behavior as the result
of a collection of communicating objects.
There are a few exceptions to this.
SADT does not define behavior by
means of state diagrams and some
methods employ process dependency di-
agrams to represent behavior that do
not localize behavior to single compo-
nents. Fusion does not define compo-
nent behavior at all in the analysis
phase.

Statemate and almost all object-ori-
ented methods use statecharts or one of
their many variants to define object be-
havior. Statemate [i-Logix 1991b; Harel
and Naamad 1996], Harel and Gery
[1996], and Cook and Daniels [1994]
give a precise semantics to the notation,
including the behavior with respect to
time. In all other cases, variants of the
notation are introduced for which pub-
lished work does not define a semantics.
As a consequence, when different users
of these notations interpret a diagram
in different ways, there is no other way
to discover the “true” meaning of the
diagram than to ask the original author
of the diagram—which defeats the pur-
pose of using the diagram as a means of
communication between different peo-
ple. Of course, the diagrams can still be
useful to record a half-baked idea for
discussion, to be made more precise
later.

The semantics of SDL state machines

500 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



is defined in terms of an underlying
virtual machine that can execute SDL
models [Belina et al. 1991]. Similarly,
ROOM [Selic et al. 1994] gives a seman-
tics to RoomCharts in terms of an un-
derlying virtual machine that can exe-
cute ROOM models.

4.4 Communication Specification

Communication specification techniques
can be used to specify the communica-
tion of the system with external entities
or to specify communications between
the components of the system. Struc-
tured methods generally view a system
as a collection of communicating activi-
ties. They represent the communication
between component activities by means
of a graph in which the nodes represent
activities and the edges possible com-
munications. Object-oriented methods
view a system as a collection of commu-
nicating objects. Behind a confusing dif-
ference in terminology, Table A.II shows
an overwhelming agreement among ob-
ject-oriented methods for the use of se-
quence diagrams and collaboration dia-
grams to represent sequences of
messages between objects. The se-
quences specified by these diagrams
must be consistent with the specifica-
tion of object behavior.

Just as for behavior specification,
there is a need for precision in the spec-
ification of communication. The issues
include synchronous versus asynchro-
nous communication, delayed versus
immediate arrival, ordering of messages
preserved or not, handshaking versus
multicast or broadcast, channel capac-
ity, queueing of incoming messages, and
so on. This precision is provided by the
same methods that define a precise be-
havior semantics. Other methods do not
give a precise semantics of communica-
tion in their published work. Again, this
defeats the purpose of using the nota-
tion for anything other than organizing
half-baked ideas in a rough sketch, to be
worked out later.

4.5 Complexity Reduction

Large models are simplified by intro-
ducing hierarchy. SADT activity dia-
grams, DFDs, Statemate activity
charts, and SDL block diagrams all in-
troduce hierarchy in more or less the
same way information engineering sim-
plifies large ERDs by partitioning them
into subject areas, Shlaer and Mellor
introduce domains, and in the UML,
large class diagrams are simplified by
parceling them into packages. An im-
portant issue is whether the hierarchy
is a convenient way of organizing a
large description or whether it repre-
sents a hierarchy of subsystems. SDL
allows both interpretations [Belina et
al. 1991, p. 11]; the other techniques
view it as a convenient way of organiz-
ing a large description. Shlaer and Mel-
lor, Syntropy, and Octopus introduce
the concept of a subsystem as a way of
partitioning a large system into simpler
parts.

5. DISCUSSION AND CONCLUSIONS

This survey has shown that systems
engineering offers a framework in
which to integrate the techniques of
structured and object-oriented software
specification. The framework simply
says that the system under develop-
ment must be viewed as an aggregation
hierarchy of subsystems, and is itself a
system in such a hierarchy. To specify
and design the system, we must specify
desired external interactions, specify a
decomposition, and allocate external in-
teractions to component interactions.
An issue that seems to divide structured
from object-oriented design is the use of
functional decomposition versus sub-
ject-domain decomposition. It is argued
in Section 4 that this is not an essential
division, as both heuristics can be used
in object-oriented as well as structured
methods. The essential division lies in
the use of the DFD technique.

DFDs and their close relatives, activ-
ity charts, are incompatible with the
use of object-oriented decomposition be-

Specification Methods and Techniques • 501

ACM Computing Surveys, Vol. 30, No. 4, December 1998



cause of the presence of data process
separation and control separation. The
DFD technique forces the analyst to dis-
tinguish, at some level of the aggrega-
tion hierarchy, data stores from data
processing components and at that
level, we get a decomposition that is
incompatible with the object-oriented
philosophy. All other reviewed tech-
niques are compatible with the struc-
tured as well as the object-oriented phi-
losophy of software specification and,
with the exception of SADT activity dia-
grams, we encounter the same tech-
niques in structured and object-oriented
methods. Note however that DFDs are
also recommended by a number of ob-
ject-oriented methods. This blurs the
line between structured and object-ori-
ented methods even on this point.

The technique most congenial to ob-
ject-oriented decomposition is the ex-
tended finite state diagram, because
this allows the specification of local
state, state transitions, and behavior.
We have seen that this technique is
used in some structured and most ob-
ject-oriented methods. Again, this blurs
the dividing line between structured
and object-oriented methods. The con-
clusion is that object-oriented methods
have adopted structured techniques in a
new guise. We can benefit from making
this “technology transfer” explicit. One
benefit is that this allows us to pinpoint
the agreements and differences between
structured and object-oriented methods,
as we have done in this article. This
should ease the transition from struc-
tured to object-oriented techniques or,
better still, it should ease the eclectic
use of techniques from both approaches.

Following up this last suggestion, how
can one get the best of both worlds?
First, it has been shown here that struc-
tured and object-oriented techniques for
the specification of external system
functionality can be easily combined.
The statement of purpose, function re-
finement tree, event-response list, de-
clarative specification of input-output
relations, use case diagram, and context
diagram all express some interesting

property of the system. Also, the analy-
sis in this article has at least made
plausible that the properties expressible
by these techniques are related in a
simple manner and that it is feasible to
define a set of coherence rules that link
specifications of different views of these
properties. Definition of these coherence
rules requires a more precise semantics
of the notations than is now available
and is the subject of current research. It
should be emphasized that even when
such a precisely defined set of coherence
rules is available, that this does not
mean that in all cases we should use all
of these techniques at the same time.
However, it does mean that in each
individual specification we can use any
convenient combination of these tech-
niques.

In the case of conceptual system de-
composition, there is more variety. Nev-
ertheless, there is an overwhelming
agreement that the decomposition must
be represented by a class diagram, com-
ponent behavior by a statechart, and
component communication by sequence
or collaboration diagrams—more or less
the UML way of specifying decomposi-
tion. However, the sheer number of
methods that propose something like
this structure indicates a problem: they
are all different methods. What makes
them different is that each method de-
fines its own syntactic variation of some
of the techniques, and gives its own
interpretation to it. Some of the syntac-
tic idiosyncracies are quite complex, and
some of the methods only give a vague
indication of the semantics of their tech-
niques and other methods do not give a
semantics at all. Nor are the methods
very clear about the way in which their
techniques must be connected into one
coherent system specification.

The response of industry to this vari-
ety has been to start a standardization
process [OMG 1996]. This led to the
Unified Modeling Language (UML Ver-
sion 1.1, see Appendix B.19), which con-
sists of the original UML submission
(Version 1.0) and elements of five other
submissions. As standardization efforts

502 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



go, the result of standardization is often
a compromise between parties with dif-
ferent interests and this is usually not
the simplest possible solution.

The research issue that evolves from
this is that current and future notations
should be given a precise semantics.
Each notation used in software specifi-
cation should have an unambiguous de-
clarative semantics that tells us what it
means, and does not leave room for in-
dividual variations in meaning that ex-
ist only in the mind of the reader or
writer. Whenever such variations exist,
something is bound to go wrong in the
communication from user to analyst to
designer and programmer. A second
reason for having a precise semantics is
that the value of a specification is con-
siderably enhanced if it can be executed.
For this to take place, the notation
should have an operational semantics
that is equivalent to its declarative se-
mantics, and that can be used to de-
scribe the behavior of the interpreter or
code generator. It is important that
these semantics are formal, because am-
biguities in this early specification
stage may lead to expensive errors
later. The only way to eliminate ambi-
guity is to be formal.

We should add that this does not im-
ply that the reader of the specification
must know all the formal details of the
semantics. Meyer [1985] has shown that
formal descriptions can be translated in
clear and unambiguous natural lan-
guage descriptions that can be used to
communicate the meaning of a specifi-
cation to people not schooled in formal
specifications. Similarly, a diagram-
matic specification that has a formal
semantics can be used to clearly and
unambiguously communicate a meaning
to people not schooled in formal specifi-
cations. Diagram techniques with for-
mal semantics combine the best of the
worlds of semiformal and formal specifi-
cation [Harel 1992].

Having argued for the need for for-
mality underlying semiformal notation
techniques, it is only a small step to
argue for simplicity as well. It is all too

easy to add numerous annotations,
adornments, and extensions to graphi-
cal techniques. However, every such ad-
dition makes it more difficult to define a
formal declarative or operational se-
mantics of the notation. And until a
formal semantics has been defined, the
extension cannot be used for the job it is
intended to perform, that is, communi-
cate a meaning clearly and unambigu-
ously from one person to another. From
a research point of view, the way to go
is to define the simplest technique pos-
sible that still is of use to the specifier,
and give this a formal declarative and
possible operational semantics. One ad-
vantage of simplicity is that it should be
relatively easy to define such a seman-
tics. Another advantage, not to be dis-
counted, is that it should be easy for
specifiers to remember the meaning and
use of the notation—and for different
specifiers to remember the same thing.
Specifiers in real development projects
have enough to think about and should
not be bothered with overly complex
specification techniques. Not unlike in-
cremental development of software sys-
tems, the simple core notation could be
incrementally extended to suit the
needs of the specifier, all the time tak-
ing care that the extensions have a for-
mal semantics. There is no reason to
expect that these incremental exten-
sions will be universally useful. More
likely, we can expect different exten-
sions to emerge for different domains.

There are a few efforts to define a
formal semantics for diagram notations.
Most notable is the formal semantics of
statecharts used in Statemate [i-Logix
1991b; Harel and Naamad 1996] and of
a more recent object-oriented version of
statecharts [Harel and Gery 1996,
1997]. Another influential diagram
technique with a formal semantics is
SDL. Less widely used but very inter-
esting is the formal semantics given to
OMT models by Cook and Daniels
[1994]. In addition, there are a number
of formalizations of structured tech-
niques [France 1992; France and Lar-
rondo-Petrie 1994] and of object-ori-

Specification Methods and Techniques • 503

ACM Computing Surveys, Vol. 30, No. 4, December 1998



ented techniques [Bates et al. 1996;
Bourdeau and Cheng 1995; Wieringa et
al. 1993; Wieringa and Saake 1996]. An
important unsolved point in the formal-
ization of object-oriented class models is
the precise meaning of behavior special-
ization. Preliminary investigations are
presented by Ebert and Engels [1997],
McGregor and Dyer [1993], Schrefl and
Stumptner [1995], and Saake et al.
[1994]. Møller-Pedersen et al. [1987] de-
scribe the solution used in SDL92 and
Cook and Daniels [1994] define the so-
lution used in Syntropy. However, it is
safe to say that a satisfactory solution
has not yet been found. We should
stress that formalization of a diagram
technique cannot be a useful goal in
itself. The formalization must always be
combined with a motivation that the
diagram technique is useful for some
purpose.

This brings us to another interesting
research topic, the definition of criteria
to choose among the techniques avail-
able to the software engineer. It is clear
that specification of data-intensive soft-
ware can benefit from the use of ERDs
or class diagrams, and that the specifi-
cation of control-intensive software can
benefit from the use of STDs and com-
munication diagrams. To give more de-
tailed advice, however, the semantics of
the notations should be defined pre-
cisely. Just as formalization should be
guided by the potential uses of the nota-
tion, the guidelines for using the nota-
tion should be motivated by the formal
semantics.

APPENDIX A. A CATALOGUE OF
STRUCTURED SPECIFICATION METHODS

In this appendix and the next, we use
the bold font to indicate columns in
Tables A.I and A.II and italics to indi-
cate entries in these columns.

A.1 SADT

Structured Analysis and Design Tech-
nique (SADT) is a method to function-
ally decompose the activities to be per-

formed by a system into subactivities
[Marca and Gowan 1988; Ross 1977,
1985]. SADT uses one diagram tech-
nique, the activity diagram (Section
3.3.3), for the representation of external
functions, conceptual components (ac-
tivities), and communication between
those components. The highest-level ac-
tivity diagram represents the overall
functionality of the system, its inter-
faces, and the mechanisms that it uses
to realize its functionality. The lower-
level diagrams describe the decomposi-
tion into subactivities, their communi-
cation by means of flows, and the
mechanisms used by the subactivities.
The subactivities are recursively decom-
posed until a clear understanding of the
activities to be performed by the system
is reached. We consider the activities to
be conceptual components, so that the
activity diagram shows a conceptual de-
composition of the system into func-
tional activities.

The original proposal for SADT envis-
aged a duality of data and activities.
Diagrams with the same syntax as ac-
tivity diagrams were used to represent
data and the way they are connected by
processes [Ross 1977]. This kind of dia-
gram does not seem to be used any
more, and it is not mentioned by Marca
and Gowan [1988].

A.2 The Yourdon Systems Method

The Yourdon approach to structured
analysis started in the late 1970s with
DeMarco [1978], Weinberg [1978], Your-
don and Constantine [1979], and Gane
and Sarson [1979]. Flavin [1981] intro-
duced data modeling concerns. Major
advances were achieved by McMenamin
and Palmer [1984], who introduced the
heuristics of essential systems modeling
and event partitioning, and Ward and
Mellor [1985], who introduced real-time
specification techniques. Yourdon
[1989] summarized the method. The
Yourdon Systems Method (YSM) is a
more recent and extensive statement of
structured analysis for real-time sys-
tems [Yourdon Inc. 1993]. Other ver-

504 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



sions of structured analysis for real-
time systems are presented by Gomaa
[1993], who gives a number of impor-
tant design heuristics, and by Hatley
and Pirbhai [1987], who add system-
level considerations. Shumate and
Keller [1992] integrate the Hatley–Pirb-
hai approach with other approaches to
structured analysis.

A YSM model of the external func-
tions consists of an informal but con-
cise specification of the system purpose,
and an event-response list (Section
3.4.2). In terms of the function decompo-
sition table, the top row of the table
lists all the event-response pairs, each
of which is a system transaction. Exter-
nal communications are represented
by a context diagram (Section 3.3.2). If
there are too many external entities or
interfaces to show on one diagram, then
one can show a set of partial context

diagrams, one for each major subfunc-
tion of the system.

The conceptual decomposition is
represented by a dataflow diagram
(Section 3.3.1), which represents the
activity performed during a system
function (an event-response pair). The
leftmost column of the function decom-
position table thus lists all data stores,
data processes, and control processes.
In addition, an entity-relationship dia-
gram (Section 3.2.1) shows the concep-
tual structure of the data manipulated
during this activity. Dataflow and enti-
ty-relationship diagrams would be ac-
companied by textual specifications not-
ing the functions of the data processes,
the contents of the dataflows and data
stores, and the conceptual structure of
each entity type and relationship. There
is also a data dictionary that defines the

Table A.I. Structured Software Specification Methods

Specification Methods and Techniques • 505

ACM Computing Surveys, Vol. 30, No. 4, December 1998



meaning of all names that occur in the
DFD and ERD.

Different authors state different rules
for connecting an ERD with a DFD in a
coherent YSM model. The source most
explicit about this, Yourdon Inc. [1993,

pp. 309–314], states merely that the
ERD must describe the conceptual
structure of all data manipulated by the
system. One may set up the model in
such a way that for each entity type and
relationship there is a data store that

Table A.II. Object-Oriented Software Specification Methods

506 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



contains the instances of that type. This
is the way in which Figures 7 and 5 are
related. However, there may be a many–
many relationship between the compo-
nents of an ERD and the data stores. In
addition, an ERD may describe the con-

ceptual structure of the data that sur-
vive a single system transaction (stored
in a persistent data store) or that exist
only during a transaction (passing
through a dataflow or stored in a tempo-
rary data store).

Table A.II. Continued

Specification Methods and Techniques • 507

ACM Computing Surveys, Vol. 30, No. 4, December 1998



Only continuing data and control pro-
cesses have behavior over time. In-
stantaneous processes do not have an
internal state, so that they always give
the same response to the same input.
The behavior of a continuing data pro-
cess is specified by a minispec, which
can follow any format, such as a pre- or
postcondition specification for the ini-
tial action when the process is started,
and a pre- or postcondition specification
for the continuing transformation
[Yourdon Inc. 1993, p. 250]. The inter-
face of the transformation must corre-
spond to the interface of the data pro-
cess in the DFD. A continuing control
process is specified by a Mealy machine
(STD or state transition table). The
events and actions of the Mealy ma-
chine must correspond to the interface
of the control process in the DFD.

YSM also allows the specification of
the behavior of entities. For each entity
type in the ERD, an entity state dia-
gram can be defined, which is a Mealy
machine that regulates the accesses
made to the instances of the entity type.

The functions of the conceptual com-

ponents are specified differently for dif-
ferent kinds of components. There are
altogether five kinds of components of
DFDs: data stores, instantaneous and
continuing data processes, and instan-
taneous and continuing control pro-
cesses. The functions offered by data
stores are the ability to create, read,
update, and delete records in the store.
There is no need for a specification of
these data store functions. Instanta-
neous data processes compute the same
function every time they are executed.
This function is specified in a minispec,
which may be declarative or imperative
(Section 3.4.3). This technique can also
be used for specifying continuing data
processes. The elementary functions of-
fered by continuing control processes
are the transitions in their state ma-
chine and these are specified in an STD
or a state transition table. An instanta-
neous control process is simply a deci-
sion table and can be specified as such.
In all these cases, the interface of the
minispec or decision table must match
the interface of the corresponding pro-
cess in the DFD. There is as yet no

Table A.II. Continued

508 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



definitive precise formulation of this co-
herence rule.

The communication between compo-
nents is represented by the DFD. We
can draw one DFD fragment for each
event-response pair, which corresponds
to one column in the function decompo-
sition table. This is what is done in
event partitioning. Each such DFD
shows the communications that take
place between the conceptual compo-
nents during the transaction.

The accesses that are made to a data
store during a system transaction are
summarized in YSM by a function-entity
table, which lists external functions
against entity types and relationships,
and in the entries shows whether in-
stances of these types are created, read,
updated, or deleted during the transac-
tion. This is a restriction of the function
decomposition table to the data store
components.

A.3 Statemate

Statemate is a software toolkit and a
notation for structured analysis. A
Statemate specification consists of ac-
tivity charts (Section 3.3.4), statecharts
(Section 3.5.7), and module charts. Com-
pared to the Yourdon school of struc-
tured analysis, activity charts play the
role of DFDs, statecharts play the role
of Mealy machines, and module charts
play the role of architecture diagrams of
Hatley and Pirbhai [1987] and Shumate
and Keller [1992] (not treated in this
survey). In the interest of executability
of the specification, actions performed
by statecharts are defined imperatively.
The execution semantics of Statemate
models is defined formally [i-Logix
1991b; Harel and Naamad 1996].

The language of statecharts is consid-
erably richer than the Mealy machine
notation used in other methods of struc-
tured analysis. Statemate does not con-
tain a notation corresponding to ERDs.
The way in which Statemate puts activ-
ity charts and statecharts together into
a coherent model differs in details from
the way this is done in other structured

analysis methods but on the whole, the
model structure is the same as the way
DFDs and Mealy machines are put to-
gether in YSM. The general remarks
made for YSM, minus the discussion of
ERDs, therefore also apply to Statemate.

A.4 SDL and Message Sequence Charts

The development of SDL (Specification
and Description Language) started in
1972 and resulted in 1976 in a standard
issued by the CCITT (International
Telegraph and Telephone Consultative
Committee). Since then, revisions and
extensions were defined first by the
CCITT and then by the ITU (Interna-
tional Telecommunication Union) at
four-year intervals [Belina et al. 1991;
Bræk and Haugen 1993]. Sarraco and
Tilanus [1987] and Belina and Hogrefe
[1988–1989] give tutorials on SDL 88
and Færgemand and Olsen [1994] on
SDL 92. A rationale for the object-ori-
ented features of SDL 92 is given by
Møller-Pedersen et al. [1987]. SDL is a
language, not a method. However, some
method guidelines are published by the
ITU as an appendix to the SDL defini-
tion [ITU 1993]. Saracco et al. [1989]
and Turner [1993] give many examples
of and heuristics for the use of SDL.

The external behavior and exter-
nal communication of a system can be
described by message sequence charts
(MSC) [ITU 1994]. These are sequence
diagrams (Section 3.3.8), used to de-
scribe sequences of possible interactions
between the system and its external
entities. Each such sequence is an illus-
tration of the behavior in which the
system must be able to engage.

The conceptual decomposition of a
system is represented by a block dia-
gram (Section 3.3.7). In the same way
as hierarchical DFDs, block diagrams
represent the system as a hierarchical
decomposition into blocks. Each leaf
block in the block decomposition tree
contains one or more processes. As
pointed out in Section 3.3.7, block dia-
grams may be used to represent the
system decomposition or they may be an

Specification Methods and Techniques • 509

ACM Computing Surveys, Vol. 30, No. 4, December 1998



organizing principle of the specification
of external system behavior.

At each level, the component com-
munication is represented by channels
between blocks or signal routes between
processes. (SDL allows implicit signal
routes that are not represented visu-
ally.) Communication through channels
may involve delay. Communication be-
tween processes goes through signal
routes, which experience no delay. How-
ever, each process has an unbounded
input queue of messages that are wait-
ing to be processed. Upon sending, a
signal immediately arrives at the input
queue of its receiver but may then have
to wait for some time before it is pro-
cessed. As mentioned in Section 3.5.8,
processes have an alternative means of
communication, defined by means of ex-
ported variables.

The behavior of a process is defined
by means of an SDL state diagram (Sec-
tion 3.5.8). The interface of a state dia-
gram must match the interface of the
corresponding process in the block dia-
gram. The behavior of each leaf block is
defined totally by the joint behavior of
its processes and the way these are con-
nected by signal routes to each other
and to the block environment. The be-
havior of each nonleaf block follows from
the behavior of its subblocks and the way
they are connected by channels to each
other and to the block environment.

The semantics of SDL models is de-
fined in terms of an underlying virtual
machine upon which the model can be
executed.

A.5 Information Engineering

Information engineering (IE) is a struc-
tured method for modeling the informa-
tion needs of a business, specifying in-
formation systems that meet these
needs, and designing, constructing and
introducing these systems in the busi-
ness [Martin and Finkelstein 1981;
Martin 1989a,b,c]. In this survey, we
deal with information system specifica-
tion only. To deliver the information

systems that a business needs, IE first
abstracts from current and future sys-
tems and identifies business functions
and their information needs indepen-
dently from the way these are realized.
This is represented by a function refine-
ment tree (Section 3.4.1), which refines
the business mission into business func-
tions and refines these into business
processes. The subject domain of the
business—the part of the world that the
business must maintain data about—is
represented by an entity-relationship
diagram. The function tree and ER dia-
gram are then correlated by means of
an entity-function table that shows the
use that each business process makes of
business data. The table can be parti-
tioned into coherent parts called busi-
ness areas. Each business area is mod-
eled in more detail by a process
dependency diagram (Section 3.5.9) and
a more detailed ER diagram (Section
3.2.1). These more detailed processes
and entities are correlated by an entity-
process table. If the business area is too
big to be implemented by one informa-
tion system, it is partitioned into sev-
eral information systems called busi-
ness systems.

Thus, the external functionality of
an information system is represented by
a function refinement tree and its con-
ceptual decomposition is specified by
an ER diagram and a process depen-
dency diagram. The process dependency
diagram also specifies the external be-
havior of the information system. It
does not specify the behavior of the sys-
tem components but shows how pieces
of externally observable processes are
ordered in time. These processes are
components of the conceptual decompo-
sition of the system. Finally, the process
dependency diagram also shows how
these processes communicate.

An interesting phenomenon of IE is
that the conceptual decomposition of the
information system corresponds to the
decomposition of the subject domain of
the business. The conceptual decomposi-
tion of the information supply function
of the business is found by decomposing

510 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



the subject domain. The ERD of the
subject domain is then used to partition
the information supply function into
business areas and these into business
systems. This data-orientation is a cen-
tral tenet of IE: whereas business proce-
dures change rapidly, data types are
relatively stable [Martin 1989a, p. 58].
This principle is also central to JSD,
discussed next, and of object-oriented
methods.

A.6 Jackson System Development (JSD)

Jackson System Development (JSD) is
an elaboration of Jackson Structured
Programming (JSP) to the system level
[Jackson 1975, 1983]. In JSD, the sub-
ject domain of a software system is mod-
eled as a set of communicating entities.
Each subject domain entity is modeled
as a finite state machine by means of a
process structure diagram (Section
3.5.2). Entities may have attributes,
which can be updated only by an action
in the PSD of the entity. Entities com-
municate synchronously by sharing
common actions. Entities are always
classified into types and the PSD is
always specified for a type.

In order to define a decomposition
of the system, for each UoD entity, the
software product contains a surrogate
that performs the same process as the
UoD entity. (“Surrogate” and “PSD” are
not JSD terms.) Each surrogate process
is described initially by the same PSD
as its corresponding subject domain en-
tity. When system functions are speci-
fied, these PSDs may be extended. In
addition, the software product contains
function processes, also described by
PSDs. These communicate with the sur-
rogate processes through various kinds
of connections, represented by a system
network diagram (SND) (Section 3.3.6).

There are thus two kinds of concep-
tual components, surrogate processes
and function processes. It is argued by
Jackson [1983, pp. 11–12] that this dis-
tinction leads to more maintainable sys-
tems than models based upon functional

decomposition. For example, changes to
functions will often be constrained to
the function processes and leave the
surrogates unaffected.

The component functions are the
atomic operations by which a surrogate
participates in an external system func-
tion; they are different from the atomic
operations by which a function process
participates in an external function.
During the execution of an external sys-
tem function F, a surrogate s may per-
form one action, which is a leaf node of
its PSD. This action is an atomic opera-
tion that can stand on its own as an
update transaction. During an external
function, on the other hand, a function
process may completely execute its
PSD. For example, if the function pro-
cess is a query that should report on the
state of a number of surrogates, then
the PSD for that function will specify
imperatively how the function will
search through the surrogates. When-
ever the function process does some-
thing, this function executes its entire
PSD. In other cases, a function process
may be long-running, so that each time
it does not execute its entire PSD but
only a part of it. In general, the actions
in a function process cannot stand on
their own as system transactions but
are only part of an imperative specifica-
tion of a system transaction.

The behavior of a surrogate is speci-
fied by a PSD that describes its life-
cycle. Some function processes may also
be long-running, in which case their
PSD also describes the behavior of the
function process over time; that is, it
orders several atomic pieces of behavior
of the function process in time.

Communication between compo-
nents is represented by an SND, one for
each external system function. This
SND corresponds to a column in the
function decomposition table. The struc-
ture of the SND is very similar to the
structure of an event-partitioned DFD
that could be drawn for the external
function.

Specification Methods and Techniques • 511

ACM Computing Surveys, Vol. 30, No. 4, December 1998



APPENDIX B. A CATALOGUE OF OBJECT-
ORIENTED SPECIFICATION METHODS

B.1 Shlaer–Mellor 1988, 1992

Shlaer and Mellor [1988] define an ob-
ject-oriented variant of information
modeling [Chen 1976; Flavin 1981].
Shlaer and Mellor [1992] extend this
with techniques for the specification of
object behavior and object communica-
tion, and add the concepts of domain
and subsystem. Additional information
on the Shlaer–Mellor method is given
by Lang [1993], Shlaer and Mellor
[1989], and Shlaer and Lang [1996].

Shlaer and Mellor partition complex
systems into domains, where a domain
is defined as a part of the world with its
own conceptual space of rules and poli-
cies. Example domains are the imple-
mentation domain (programming lan-
guages, operating system, database
management systems, etc.), the service
domain (containing utility functions for
user interfaces, data archiving, etc.),
and the application domain (e.g., a juice
plant). The application domain is what
we call the subject domain in this sur-
vey. Large domains can be further par-
titioned into subsystems that have close
cohesion and loose coupling. Each sub-
system is modeled as a collection of
communicating objects.

The decomposition into objects of
a subsystem is represented by an infor-
mation model, which uses a variant of
the ERD notation (Section 3.2.1). There
are special objects called timers that
can be created to count the time remain-
ing to a deadline. Timers are not speci-
fied in the information model.

Object behavior is represented by a
state model, which is a Moore state ma-
chine (Section 3.5.6). Thus, a transition
between states is triggered by an event
arriving at the object and upon arrival
in a state, an action may be performed.

Object operations are actions asso-
ciated with a state. Each action is spec-
ified by means of a piece of executable
code associated with the state (Section
3.4.3). An action may read or update the

state of any object in the subsystem, it
may create an object, and it may send
an event to any object (including itself)
or to an entity outside the subsystem
[Shlaer and Mellor 1992, p. 45]. Actions
take time to execute in OOA. Each state
model corresponds to a row in the func-
tion decomposition table, for it shows
the behavior of a component.

In addition to the code associated
with a state, an action dataflow model
(ADFD) is specified for each action. This
is a dataflow model that is used to spec-
ify the data processing done by an ac-
tion. A data store in an ADFD corre-
sponds to an object class (it holds all
instances of the class), to a timer object,
or to the current time. A process in the
ADFD corresponds to an elementary
computation performed during the ac-
tion. If an ADFD showed what one ob-
ject action does, it would correspond to a
cell in the function decomposition table.
However, the ADFD also shows how
other objects are accessed (read or
write), so it represents a part of what
goes on in the life of other objects as
well. In fact, ADFDs are used to specify
object actions in the same way as YSM
uses a DFD to specify external system
functions. ADFDs thus introduce func-
tional decomposition in the model,
where the decomposition criterion is
very fine-grained: each action of each
object is functionally decomposed into
an ADFD. This makes the model con-
ceptually difficult, because each ADFD
separates data storage and data pro-
cessing in a way that goes counter to
the object-oriented philosophy. The rea-
son for introducing this difficulty is not
clear, because actions are already speci-
fied by means of code associated to a
state.

Object communication is shown by
means of two models. The object com-
munication model (OCM) shows the
messages sent and received by the state
machines of the objects. This is repre-
sented by an object communication dia-
gram (Section 3.3.5). Communication
between objects via events is asynchro-
nous. Events received from one object

512 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



are processed in the order in which they
are sent, but events received from dif-
ferent objects may be processed in any
order [Shlaer and Mellor 1992, p. 107].
External entities are included in the
OCM, so that it also shows the exter-
nal communications of the system.
Except for the representation of exter-
nal entities, all information in the OCM
can be derived from the information in
the state model. There is one OCM for
the entire specification.

The second kind of communication
model is the object access model (OAM),
which shows accesses to object data
stores made by processes in the ADFDs
for the actions of an object. This is rep-
resented by a directed graph in which
the nodes represent object classes and
the edges represent synchronous access
of one object by another. These commu-
nications are synchronous. The OAM
can be derived from the ADFDs. There
is one OAM for the entire model.

B.2 Coad–Yourdon 1990

Coad and Yourdon [1990] use a kind of
class diagram (Section 3.2.2) to repre-
sent the conceptual decomposition
of the system into objects. The same
diagram is also used to specify object
communications. Large class dia-
grams can be partitioned into chunks
called subjects. A class icon contains the
name of the class and the attributes and
operations (called services) of the ob-
jects of the class. Service specifications
are declarative natural language de-
scriptions of object operations.

B.3 Booch 1991, 1994

Booch represents the structure of a soft-
ware system by means of a class dia-
gram and the behavior of the objects by
means of state diagrams. Booch [1991]
uses simple state diagrams, whereas
Booch [1994] uses a statechart-like no-
tation. Communication is represented
by Booch [1991] by timing diagrams and
by Booch [1994] by sequence diagrams.
Timing diagrams resemble sequence di-

agrams turned on their sides. We dis-
cuss the 1994 version of the Booch nota-
tion.

The conceptual decomposition of
the software into objects is represented
by a class diagram (Section 3.2.2).
Booch uses a dotted cloud symbol to
represent the classes. As usual, this can
be annotated with the class name, at-
tributes, and operations, possibly
adorned with symbols that indicate how
the class is to be implemented in a
programming language. Classes can be
parameterized and Booch distinguishes
metaclasses. The diagram can be anno-
tated by various kinds of constraints.
The full notation contains a consider-
able number of icons and symbols, the
meaning of which is informally ex-
plained.

Object behavior is specified by a
state transition diagram, for which
Booch uses a statechart-like notation
(Section 3.5.7). Booch does not use Car-
tesian products to represent parallelism
because he claims that parallelism is
already sufficiently represented by the
parallelism of objects. His notation is
therefore not able to represent intra-
object parallelism.

Classes can be specified textually in a
programming language. Object opera-
tion specifications are part of this
specification.

Object communication is repre-
sented in two ways. An object diagram
is a collaboration diagram (Section
3.3.9) that can be used to show the flow
of messages during a scenario of the
system’s behavior. They can be anno-
tated with dataflows, the communica-
tion mechanisms to be used, visibility
relations between the objects, and con-
straints on the links between the objects
in the diagram. Communication can be
synchronous or asynchronous. Several
other kinds of communication are recog-
nized. The other way to represent com-
munication is by means of an interac-
tion diagram, which is a sequence
diagram (Section 3.3.8). These contain
roughly the same information as object
diagrams.

Specification Methods and Techniques • 513

ACM Computing Surveys, Vol. 30, No. 4, December 1998



B.4 OMT 1991, 1995

The object modeling technique (OMT)
was introduced by Loomis et al. [1987]
and popularized by Rumbaugh et al.
[1991]. We refer to this version of OMT
as OMT91. A significant update was
published several years later [Rum-
baugh 1995c,a,b). We refer to this as
OMT95.

The decomposition of the system
into objects is represented by the object
model, which is a class diagram (Section
3.2.2). The behavior of instances of
classes is represented by the dynamic
model which is a statechart variant
(Section 3.5.7). Events in the state
model can be represented as operations
in the object model [Rumbaugh et al.
1991, p. 110]. Statecharts are inherited
by subclasses but the precise mecha-
nism by which this happens is not de-
fined [Rumbaugh et al. 1991, p. 111].
We already observed in Section 5 that
behavior inheritance is one of the un-
solved problems of object-oriented spec-
ification.

Object operations are defined by
the functional model. This is a DFD
(Section 3.3.1) that shows which compu-
tations are performed by the system
during an external system function.
Just like ADFDs in the Shlaer–Mellor
method (Appendix B.1) the DFD intro-
duces a functional decomposition into
the model. However, where Shlaer–Mel-
lor advise us to define a functional de-
composition for each action, OMT gives
no heuristic for the functional decompo-
sition. The connection between the func-
tional model and the other two models
is ill-defined. Objects in the object
model are viewed as components of the
system, and object operations corre-
spond to the processes in the DFD
[Rumbaugh et al. 1991, p. 137], how-
ever, objects in the object model are
viewed as external entities in the func-
tional model and object operations cor-
respond to data flows to and from exter-
nal entities [Rumbaugh et al. 1991, p.
138]. This matter has never been
cleared up and in OMT95, the func-

tional model as we know it from OMT91
disappeared.

OMT95 can be viewed as a halfway
station between OMT91 and the UML.
The object model of OMT95 contains
some extensions with respect to OMT91
[Rumbaugh 1995b]. It now contains a
class diagram as well as object dia-
grams, with which instances can be rep-
resented. It also contains conventions to
represent parameterized classes and to
represent subsystems.

In the dynamic model, scenarios play
a more prominent role and use cases
have been adopted. Event trace dia-
grams can be annotated with con-
straints on the time between two
events. In the statecharts that describe
object behavior, states now can have
local variables. Interobject concurrency
is described more explicitly as follows.
Like an SDL process, each atomic object
has a queue of input events, but unlike
SDL processes, OMT allows aggregate
objects that have an input queue for
each component object [Rumbaugh
1995a, p. 10]. Two other extensions to
the state model are the inclusion of
entry and exit actions in states and of
timing marks along transitions.

The functional model has undergone a
major revision in OMT95 [Rumbaugh
1995c]. For most system functions
(called operations in OMT), a simple
declarative pre- or postcondition specifi-
cation in terms of the system objects
will do. For complicated functions,
OMT95 offers object interaction dia-
grams and object-oriented dataflow dia-
grams (OODFDs). An object interaction
diagram is a kind of collaboration dia-
gram and can be used to show the se-
quence of messages that implement a
function. It corresponds to a column in
the function decomposition table. An
OODFD is a directed higraph that rep-
resents objects as nodes. These contain
nodes that represent object functions
(cells in our function decomposition ta-
ble) and nodes that represent object at-
tributes. Object attribute and function
nodes are connected by directed edges
that show which attributes are read or

514 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



written by an operation and what the
dataflows between the operations are.
These flows may cross object bound-
aries. This certainly improves the defi-
nition of the relationship between the
functional model and the object model.
Nevertheless, the meaning of OODFDs
is still defined rather informally. In the
UML, they have disappeared from the
scene.

B.5 Objectory 1992, 1995

Objectory is the commercialized version
of object-oriented software engineering
(OOSE) [Jacobson et al. 1992]. It is de-
scribed in the documentation that
comes with the Objectory Case tool [Ob-
jectory AB 1995b,c].

External functions of the systems
are represented by use cases (Section
3.4.4).

To prepare for a conceptual decom-
position of the system, a domain object
model is made, which represents subject
domain entities and their relationships.
The domain object model also repre-
sents communications between domain
entities [Objectory AB 1995b, p. 82].
The 1995 version of Objectory uses a
nonstandard notation for this, but it is
to be expected that later versions of the
UML will use the UML class diagram
notation. The conceptual decomposition
of the system is represented by the
analysis object model. This distin-
guishes three kinds of objects. Entity
objects contain information about some
phenomenon in the subject domain, in-
terface objects handle communication
with the environment, and control ob-
jects encapsulate use-case-specific be-
havior. There is likely to be a close
correspondence between objects in the
domain object model and entity objects
in the analysis model. Control objects
are similar to JSD’s function processes.

Atomic object operations are speci-
fied informally by means of object speci-
fications.

The behavior of objects can be speci-
fied by an SDL-like state transition dia-

gram (Section 3.5.8), called the object
behavior model.

Communication between objects can
be illustrated by means of sequence dia-
grams (Section 3.3.8), called the object
interaction model.

B.6 Martin–Odell 1992, 1995

The first version of the Martin–Odell
method is described in a single book
[Martin and Odell 1992]. The second
version is described in three books, of
which Martin and Odell [1995] give an
overview of the notation used. An im-
portant difference between the 1992
and the 1995 description is that in the
latter, the description of the model
structure is separated from a discussion
of the different possible notations that
could be used to express this structure.
The bulk of the Martin and Odell [1995]
uses object and event diagrams to repre-
sent object structure and behavior, but
in addition a variety of structure and
behavior diagraming techniques is dis-
cussed.

The conceptual decomposition of a
system is represented by an object
model, which is a class diagram-like
technique (Section 3.2.2).

Behavior is analyzed as a dynamic
structure of events that cause objects to
change state. Events are brought about
by operations and may trigger other op-
erations, provided that the guard for
these other operations is satisfied. This
guard is called a control condition for
the triggered operation. The relation-
ships between events, triggers, and op-
erations is represented in an event dia-
gram, which is in the same league as
process dependency diagrams (Section
3.5.9). Event diagrams do not show the
behavior of a single object but “mean-
ingful” behavior structures that are not
necessarily localized into a single object
[Martin and Odell 1995, p. 118]. As a
result, each event diagram represents
an aspect of external system behavior
as well as some of the communication
between objects. An event diagram
could, for example, be used to represent

Specification Methods and Techniques • 515

ACM Computing Surveys, Vol. 30, No. 4, December 1998



the behavior of objects during the execu-
tion of a system function (column of the
function decomposition table) or of an
entire use case.

Martin and Odell [1995] discuss the
use of various dialects of class diagrams
to represent object structure, different
kinds of finite state diagrams to repre-
sent object behavior, and various kinds
of sequence and collaboration diagrams
to represent object communication.

B.7 Embley 1992

Embley et al. [1992] represent the con-
ceptual decomposition of a system by
the object-relationship model, which is a
kind of class diagram (Section 3.2.2).

Object behavior is represented by
the object-behavior model, which uses a
diagram convention called state nets,
that combine some features of Petri nets
(not treated here) and Mealy state dia-
grams (Section 3.5.5). A state net can
also be used to represent intra-object
concurrency. A transition can require
an object to be in several states simulta-
neously and it can lead to a set of simul-
taneous states. A transition can also
require that an object must be in at
least one of a set of states and it can
lead to one out of a set of possible
states.

Object communication is repre-
sented by interaction diagrams, which
are hypergraphs that can show synchro-
nous and asynchronous message-pass-
ing between objects. Communication
can be binary (one sender and one re-
ceiver) or broadcast, and unidirectional
or bidirectional.

Object behavior and interaction dia-
grams can be annotated by timing con-
straints. In the behavior diagram, one
can constrain the time that an object
can reside in a state, the time it takes
for a trigger to take effect, the time it
takes to execute an action, the time that
an entire object transition can take, and
the time it takes to execute a scenario
through the state machine. In the inter-
action diagram, one can constrain the

time it takes for a message to arrive at
its destination.

All diagrams can be abstracted to
higher-level overview diagrams. Thus,
one can represent high-level object
classes, relationship sets, state sets,
transition sets, and interaction sets.

B.8 De Champeaux 1993

Champeaux et al. [1993] represent sys-
tem decomposition by their own
brand of class diagrams called a static
object model. A special feature of their
object model is that they recognize en-
sembles, which are a kind of aggregate
objects that encapsulate their compo-
nents. Ensembles are similar to ROOM
actors that also have their own behavior
defined in addition to the behavior de-
fined for their multiple components (Ap-
pendix B.11). Object behavior is spec-
ified by a Mealy-like notation extended
with guards and object interaction. Ob-
ject operations can be described in
informal text, formal pre- and postcon-
ditions, or even DFDs [Champeaux et
al. 1993, p. 69]. Object communica-
tion is represented by directed graphs
called interaction diagrams. There are
notations for synchronized bidirectional
communication and asynchronous uni-
directional communication.

B.9 Firesmith 1993

Firesmith [1993] defines an elaborate
set of notations for specifying systems,
subsystems, and objects. Systems and
subsystems are called assemblies and
subassemblies, respectively. Where the
Coad–Yourdon notation (Appendix B.2)
is by far the simplest of the reviewed
notations, the Firesmith notation is the
most complex of the reviewed notations.
For each assembly, the external func-
tions are described globally by a state-
ment of purpose and the external com-
munications are specified by means of
a context diagram. In addition, a decom-
position into subassemblies is defined
and for each subassembly, the purpose
is specified. Table A.II lists the tech-

516 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



niques for specifying subassemblies,
plus the statement of purpose and con-
text diagram for the entire assembly.

The decomposition of a subassem-
bly into objects is represented by a di-
rected graph called a general semantic
net, which shows individual objects and
their relationships. This is supple-
mented by a decomposition diagram
that shows aggregation hierarchies of
objects. Object classes are shown in a
separate classification diagram. All of
this can be supplemented by textual
specifications in a programming-lan-
guage-like format.

Object behavior is specified by state
transition diagrams. Object communi-
cation is specified by interaction dia-
grams, which are directed graphs whose
nodes represent individual objects. The
flow of data and control through objects
can be specified by a DFD-like notation
called a control flow diagram. A se-
quence of interactions can be illustrated
by a timing diagram, which resembles a
sequence diagram (Section 3.3.8). The
diagram conventions are all different
from the notations reviewed in this sur-
vey.

B.10 SOMA 1994

The Semantic Object Modeling Ap-
proach (SOMA) defined by Graham
[1994] is an extension of the Coad–
Yourdon notation (Appendix B.2). Other
acknowledged influences are Booch
[1994], Champeaux et al. [1993], Des-
fray [1992], Jacobson et al. [1992], Hen-
derson-Sellers and Edwards [1994], and
Rumbaugh et al. [1991].

The decomposition of the system is
specified by an extension of the Coad–
Yourdon class diagrams. One extension
is that in addition to a class name,
attributes, and operations, a class box
may contain business rules applicable
to instances of that class. Another ex-
tension is that SOMA allows fuzzy ob-
jects, which may have fuzzy attribute
values, fuzzy rule sets, and only partial
inheritance from superclasses. As in
Coad–Yourdon, class diagrams are also

used to specify communication be-
tween objects (called usage in SOMA).

Object operations are specified us-
ing any possible technique, ranging
from state diagrams, JSD’s process
structure diagrams, or DFDs [Graham
1994, p. 249]. No information is given
on how these techniques should be com-
bined with class diagrams. Graham
does give the advice to use these tech-
niques on an object-by-object basis and
not for global system description.

Object behavior is specified using
state diagrams. SOMA allows Mealy di-
agrams, statecharts, and PSDs as a no-
tation.

B.11 ROOM 1994

The real-time object-oriented modeling
(ROOM) method partitions the system
into a hierarchical collection of compo-
nents called actors [Selic et al. 1994].
An actor is a logical component of a
system that can be active concurrently
to the other actors in the system. If the
actor is a software object, it has its own
thread of control. If it is a physical
object, it can behave independently of
other objects. In both cases, it must
have a clearly defined purpose [Selic et
al. 1994, pp. 66, 150]. If an actor A is
decomposed into subactors, interaction
of another actor with these subactors is
only possible through A.

A ROOM model represents the de-
composition of the system as a decom-
position hierarchy of actors. This is rep-
resented by means of actor class
diagrams, which are undirected hi-
graphs in which the nodes represent
actors and the edges represent commu-
nications. The communication links be-
tween actors are called bindings. Actor
class diagrams are very much like SDL
block diagrams (Section 3.3.7), except
that actor class diagrams allow the
specification of behavior for blocks at
any level in the hierarchy. Second, actor
class diagrams require the explicit spec-
ification of the communication mecha-
nisms for each binding [Selic et al. 1994,
p. 159], something which is defined for

Specification Methods and Techniques • 517

ACM Computing Surveys, Vol. 30, No. 4, December 1998



block diagrams by the SDL standard.
Like SDL models, ROOM models are
executable.

Like SDL, ROOM allows the parti-
tioning of large systems into layers. The
difference between layers and decompo-
sition into subactors is that the actors
in a lower layer continue to exist when
actors in a higher layer are destroyed.
By contrast, when a compound actor is
destroyed, its subactors are destroyed
as well [Selic et al. 1994, p. 195].

Actor behavior is represented by a
statechart-like technique called Room-
Charts. Like SDL processes, each actor
has an unbounded queue of messages
that have been received but not yet
processed [Selic et al. 1994, pp. 219,
292].

Communication between actors is
represented by the actor class diagrams,
mentioned previously, and can be illus-
trated by message sequence charts (Sec-
tion 3.3.8). Communication can be syn-
chronous or asynchronous [Selic et al.
1994, pp. 292–293]. In asynchronous
communication, the sender continues
processing immediately after sending a
message. In synchronous communica-
tion, the sender waits until it has re-
ceived a reply from the receiver. This
reply is treated with higher priority
than other received messages; that is, it
bypasses any messages waiting to be
processed. After receiving the reply, the
sender continues its own processing.

B.12 Fusion 1994, 1996

Fusion is a method defined after an
analysis of early object-oriented meth-
ods like OMT, Booch, and Objectory
[Bear et al. 1990; Coleman et al. 1992,
1994; Hayes and Coleman 1991]. These
methods were analyzed using a dialect
of the formal specification language
VDM as a tool. Significant updates to
Fusion were published in 1996
[Coleman 1996; Malan et al. 1996].

Fusion defines a decomposition of a
system by first specifying a domain
model, which is an ER-like diagram of
the subject domain. The system decom-

position is then found by outline of the
system boundary in the domain model.
Everything inside the boundary is part
of the system; everything outside the
boundary is part of the environment.

External functions are called sys-
tem operations in Fusion, and are speci-
fied declaratively by means of pre- and
postcondition specifications (Section
3.4.3), a technique borrowed from VDM
specification theory. The 1996 update
extends this with use case diagrams
(Section 3.4.4) to describe external func-
tionality.

External system behavior is repre-
sented by means of regular expressions
over system operations. In the 1996 up-
date these were replaced by system in-
teraction diagrams, which are collabora-
tion diagrams (Section 3.3.9) that show
sequences of interactions between the
system and the environment. Alterna-
tively, sequence diagrams (Section
3.3.8) can be used, which are called
scenario diagrams in Fusion. Together
with use case diagrams, these diagrams
also show aspects of external commu-
nication).

Object behavior is not specified in
Fusion at the conceptual level. Instead,
during design, external operations are
decomposed into object operations by
means of collaboration diagrams, called
object interaction graphs. These also
show the communication between ob-
jects. Object operations are specified
declaratively by means of pre- and post-
conditions.

B.13 MOSES 1994

“MOSES” stands for methodology for
object-oriented software engineering of
systems (Henderson-Sellers and Ed-
wards 1994] and defines a product life-
cycle from initial conception to product
maturity, in which each change of the
product is performed according to a pro-
cess lifecycle. MOSES also defines nota-
tions to be used for the deliverables of
the process as well as activities that
yield these deliverables. The process is
structured according to the fountain

518 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



model [Henderson-Sellers and Edwards
1990] and consists of planning, investi-
gation, specification, and review phases.
The investigation phases yields a user
requirements specification and system
scenarios, both written in natural lan-
guage. Both of these are a way of speci-
fying external system functions.

The conceptual decomposition of a
software system is specified using an
object/class model, which is a class dia-
gram-like technique that can be used to
specify a decomposition into individual
objects or into classes of objects. The
inheritance structure can be specified
separately by an inheritance model.
MOSES provides some extra notations
for the object/class model to represent
programming language constructs such
as client-server and friend relation-
ships, and exceptions.

Object operations are described by
service specifications, which can take
two forms. Contracts specify a service
offered by an object by means of pre-
and postconditions (Section 3.4.3). Al-
ternatively, a service can be specified
imperatively by means of a service
structure model, which is a kind of
structure chart adapted to object-ori-
ented programming, proposed by Page-
Jones et al. [1990]. Either way, a service
specification specifies an individual ob-
ject action, which corresponds to a cell
in the function decomposition table.

Object behavior is represented by
objectcharts, which is a statechart-like
notation (Section 3.5.7). Object com-
munication is specified by an event
model, which is a kind of collaboration
diagram (Section 3.3.9). Communication
is synchronous in MOSES [Henderson-
Sellers 1992, p. 56]. There is a guideline
that an event model should correspond
to an external system function [Hender-
son-Sellers 1992, p. 300]. An event
model thus corresponds to a column in
the function decomposition table.

Complex system specifications can be
simplified by partitioning the specifica-
tion into sheets and/or the system into
subsystems. Complexity can be further
reduced by partitioning classes or sub-

systems into layers [Henderson-Sellers
1992, p. 250].

B.14 Syntropy 1994

Syntropy [Cook and Daniels 1994] is a
combination of OMT and statecharts,
extended with some other notations
from Booch, all given a precise seman-
tics by means of the formal specification
language Z [Spivey 1989]. In the process
of providing this semantics, many de-
tails of these notations are clarified. For
example, Syntropy is the only reviewed
method that gives a semantics to behav-
ior inheritance [Cook and Daniels 1994,
pp. 206 ff.]. In addition, the notation is
supplemented with modeling guidelines
and a particular view of the develop-
ment process.

Syntropy distinguishes the essential
model, the specification model, and the
implementation model of a software sys-
tem. The essential model is a model of
the subject domain. This is modeled as a
collection of objects and events. Objects
in the subject domain have properties,
which can only change as the result of
an event in the subject domain. Events
may change the properties of more than
one object. Events are instantaneous
and simultaneously observable every-
where. The essential model consists of a
type view, which represent the types of
objects in the subject domain, and a
state view, which represents the way
objects change as a result of events. The
type view is represented by an OMT-
like object diagram, which is a kind of
class diagram (Section 3.2.2), supple-
mented with Z specifications for types
and invariants. In the state view, a
state model is defined for each object
type that provides the details of object
creation, the list of events to which ob-
jects of this type can respond, pre- and
postconditions of these events, and a
statechart (Section 3.5.7) that shows
how objects of this type respond to
events. Each event must appear in at
least one statechart but may appear in
more. The pre- and postconditions for
each event are specified in the formal

Specification Methods and Techniques • 519

ACM Computing Surveys, Vol. 30, No. 4, December 1998



specification language Z. Preconditions
are the conditions that must exist for
the event to occur. In the essential
model, it is impossible for an event to
occur when the preconditions are not
satisfied.

The term “essential model” in Syn-
tropy should not be confused with the
same term as used in Structured Analy-
sis. In Structured Analysis, it is used to
refer to an implementation-independent
software specification, which corre-
sponds to the software specification
model of Syntropy.

The specification model of Syntropy
describes the states that the software
can be in and the way that it responds
to stimuli by changing state and produc-
ing responses. Each stimulus is an
event that is broadcast to all objects in
the model simultaneously. As in the es-
sential model, all events are instanta-
neous. This means that all the conse-
quences of an external stimulus are
completed before any further external
stimuli occur. If an external stimulus
triggers several events in several stat-
echarts, these all occur in an unspeci-
fied order before the next stimulus is
recognized. In contrast to the essential
model, if a precondition is not satisfied,
the event may occur but its effect is
undefined. The specification model is
described by the same techniques as the
essential model, that is, a type view and
a state view. The entries for Syntropy in
Table A.II describe the specification
model. The type view of the specifica-
tion model represents the conceptual
decomposition of the software into ob-
jects and the state view represents ob-
ject behavior.

The implementation model describes
the flow of control of the software. Stim-
uli are mapped to messages and all mes-
sage-passing and method executions
take time. The implementation model
must deal explicitly with concurrency,
persistence, finite resources, errors, ex-
ceptions, and the like. The implementa-
tion model uses collaboration diagrams
called mechanisms to specify the se-

quence of messages that implements ex-
ternal system functions.

To build a specification model, the
system boundary must be defined by
defining external entities, called agents
in Syntropy. These may be modeled as
part of the essential model. For each
event in the essential model it must be
decided whether it is to be detected by
the software, generated by the software,
or ignored. In addition, the specification
model shows how undesirable events
are handled. These were simply impos-
sible in the essential model.

To manage complexity, Syntropy par-
titions the software into subsystems
called domains. A concept domain is a
model of the subject domain. A software
system may have more than one concept
domain. An interaction domain provides
the mechanism for keeping the concept
domain and the world in step and an
infrastructure domain provides general-
purpose abstraction that can be used by
objects in the other domains. Agents
with which the system must communi-
cate may be represented as software
objects in the specification model, for
example, in the interaction domain or in
a concept domain. The type view of a
concept domain will be very similar to
the type view of the essential model
[Cook and Daniels 1994, p. 262]. The
state views of the essential and specifi-
cation models usually differ. The reason
is that essential model statecharts show
event sequencing, whereas specification
model statecharts show how responses
are generated by software.

B.15 Mainstream Objects 1995

Mainstream Objects is a combination of
techniques from different object-ori-
ented methods [Yourdon et al. 1995].
External functions are modeled by
use cases (Section 3.4.4), called transac-
tion sequences in this approach. The
conceptual decomposition of a sys-
tem is represented by an object struc-
ture diagram, which is a kind of class
diagram (Section 3.2.2). The overall
decomposition of the system into sub-

520 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



systems is represented by a system over-
view diagram. This shows the sub-
systems and the services they offer to
each other. Object structure, behavior,
and interaction are then shown for each
subsystem.

Object behavior is represented by
object life cycle diagrams, which is a
statechart-like formalism (Section 3.5.7).
Object communication is specified
using sequence diagrams or collabora-
tion diagrams, called fence and net in-
teraction diagrams, respectively (Sec-
tions 3.3.8 and 3.3.9). Finally, the flow
of activities in the system can be repre-
sented by an activity diagram, which is
a kind of process dependency diagram
(Section 3.5.9). These show behavior
over time, not restricted to any object.

B.16 Business Object Notation 95

In the business object notation (BON), a
number of textual structured natural
language specifications, called charts,
are combined with two kinds of dia-
grams [Waldén and Nerson 1995]. Ex-
ternal behavior is described by sce-
nario charts, which are step-by-step
descriptions of scenarios. External
functions are described by a system
purpose chart. In addition to a descrip-
tion of the system purpose, somewhat
similar to YSM’s system purpose speci-
fication, these specify a decomposition
of the system into clusters of classes.
Each cluster is briefly described. In ad-
dition, system event charts list external
events to which the system must re-
spond and, for each event, the classes
that play a role in recognizing the event
and producing the response. These are
similar to event-response specifications
of YSM but system event charts give
considerably less information.

The system decomposition is speci-
fied in two parts. The decomposition
into clusters is shown on the system
purpose chart and the decomposition of
a cluster into classes is shown in cluster
charts. Relationships between classes
can be represented in a static structure
diagram. This includes inheritance re-

lations between classes. Static structure
diagrams are directed graphs but use a
nonstandard convention.

Communication between compo-
nents is represented by dynamic dia-
grams, which resemble collaboration di-
agrams (Section 3.3.9). In addition, each
event chart lists the classes that play a
role in recognizing and responding to
the event, and there are object creation
charts that specify which classes of ob-
jects can create which classes of objects.

B.17 Octopus 1996

Octopus is an extension of Fusion with
notions useful for the specification and
design of embedded real-time systems
[Awad et al. 1996]. Like Fusion 96, Oc-
topus specifies external system func-
tions by means of use cases, specified
declaratively by means of pre- and post-
conditions. The use cases are not repre-
sented by use case diagrams but by
OMT-like object diagrams, that can
show aggregation relationships between
use cases. External communication
is specified by a context diagram, again
using an OMT-like object diagram. This
allows one to show relationships be-
tween external entities, such as aggre-
gation and communication relation-
ships.

Octopus borrows the domain concept
of the Shlaer–Mellor method to define
subsystems. Example domains are the
application domain, the device domain,
and the implementation domain. Octo-
pus recognizes a special kind of sub-
system called a hardware wrapper that
hides the hardware from the application
subsystem. The partitioning into sub-
systems is represented by an OMT-like
object diagram, showing in particular
the aggregation relationships between
subsystems. The Octopus entry in Table
A.II lists the techniques to specify exter-
nal communication and functions, and
the techniques to specify subsystems.

For each subsystem the decomposi-
tion into objects is represented by an
OMT-like object diagram. This resem-
bles a class diagram (Section 3.2.2). The

Specification Methods and Techniques • 521

ACM Computing Surveys, Vol. 30, No. 4, December 1998



subsystem responds to events by per-
forming operations. The operations of
the subsystem are described by declara-
tive specifications called operation
sheets. In addition to pre- and postcon-
ditions, these also mention the objects
involved in responding to the event.
Each event received by a subsystem is
broadcast to all objects in the system
and all ensuing processing is considered
to be instantaneous.

Subsystem behavior is described by
a subsystem state model, which is a stat-
echart (Section 3.5.7). Following the Fu-
sion philosophy, statecharts are not de-
fined for object types. Instead, a
statechart is specified for every inter-
esting aspect of subsystem behavior.
Statecharts define subsystem states and
show the effect of events on this state.
The external behavior entry for Octopus
in Table A.II lists techniques to specify
external subsystem behavior, which is
why statecharts are mentioned in this
entry.

For each event to which the sub-
system must respond, an event signifi-
cance table is made, which shows for
each possible state of the subsystem
how critical the event is. The more crit-
ical an event is, the more urgent it is
that the subsystem respond immedi-
ately when the event occurs.

As in Fusion, the mechanism by
which objects implement a subsystem
operation is represented in the design
phase by object interaction graphs,
which are collaboration diagrams (Sec-
tion 3.3.9).

Octopus has an interesting similarity
with YSM, used as a method to specify
subsystems. External subsystem behav-
ior is specified in both by means of a
context diagram, pre- and postcondition
specifications of events to which the
subsystem must respond, and state
transition models of subsystem behavior
(control processes in YSM). Even the
ERD in YSM plays a similar role to the
object diagram in Octopus. Both repre-
sent the conceptual decomposition of
the subsystem. The difference lies in the
interpretation of this as data stores in

YSM and as objects in Octopus. Fur-
thermore, Octopus models do not con-
tain data processes and they do not
focus on dataflows, as YSM models do.

B.18 OOram 1996

The central concept in object-oriented
role analysis and modeling (OOram) is
the concept of a role, defined as a posi-
tion that a set of objects can occupy in a
pattern of collaborating objects [Reen-
skaug et al. 1996, p. 22]. A role has an
identity and has behavior and state that
is encapsulated. It is an archetypical
representation of the objects occupying
the corresponding position in the object
system [Reenskaug et al. 1996, p. 7].
The collaboration pattern characteristic
for a role is represented by a kind of
collaboration diagram. This is called a
collaboration view and can be used to
represent the collaboration of the sys-
tem with its environment as well as the
collaboration of objects in the system to
realize an external system function.
Several collaboration patterns can be
specified for a system, one from each
relevant point of view. These different
patterns can then be synthesized into a
overall collaboration model of all objects
in the system performing all their dif-
ferent functions. OOram offers a num-
ber of synthesis operations for this.

OOram recognizes a number of sys-
tem views, not all of which will be
needed in all projects. External behav-
ior and communication are repre-
sented by a sequence diagram (Section
3.3.8) called the external scenario view.
This can be supplemented by the exter-
nal collaboration view, which uses col-
laboration diagrams (Section 3.3.9). The
same kind of diagram can also be used
to represent the communication be-
tween objects in the system. External
functions are represented by a global
description of the system purpose in
natural language, called the area of con-
cern view. System functions are de-
scribed briefly in the stimulus-response
view, which consists of a list of stimuli
and corresponding responses, annotated

522 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



with brief comments. This resembles a
simplified form of an event-response list
(Section 3.4.2).

System decomposition into objects
as well as communication between ob-
jects are represented by the internal
collaboration view, which is again a col-
laboration diagram. As mentioned pre-
viously, communication between compo-
nents can also be represented by
sequence diagrams. Object functions
are specified in a programming-lan-
guage-like way called the interface view.
This lists all the interfaces of all objects.
In addition, a method specification view
can be made, which extends the se-
quence diagrams of the internal sce-
nario view with annotations of the
methods executed by an object as a re-
sult of the reception of a message.

B.19 UML 1997

Version 1.0 of the Unified Modeling
Language (UML) arose as a result of a
joint effort of Booch, Jacobson, and
Rumbaugh to unify the existing nota-
tions for object-oriented software speci-
fication. It combines the notations used
in the Booch method, Objectory, and
OMT, applies some simplifications, and
extends this with new features and dia-
grams. However, the basic structure of
the notations used in these methods
remains recognizable. The intention is
that it will be used as a diagram con-
vention in those methods and probably
in other methods as well. In January
1997, the UML version 1.0 was submit-
ted to the Object Management Group
(OMG) along with several other propos-
als. The submitters then negotiated a
joint submission, which led to Version
1.1 of the UML [Rational 1997b,c]. This
was accepted in November 1997 by the
OMG as standard notation for object-
oriented specifications.3 At the time of
this writing, Booch, Jacobson, and Rum-
baugh all announced books on UML 1.1
and several companies announced that

they will adopt the UML as standard
notation in their method.

All of the diagrams used in the UML
have been explained in Section 3. Here,
we briefly review the terminology of the
UML. External behavior and com-
munication of a system is represented
by collaboration and sequence diagrams
(Sections 3.3.8 and 3.3.9), in which the
system figures as one of the communi-
cating entities. External functions are
represented by use case diagrams and
their attendant documentation. These
also illustrate a part of external system
communication. The conceptual de-
composition is represented by a static
structure diagram, which is a class dia-
gram (Section 3.2.2) extended with the
possibility of representing individual
objects as well as classes. Component
behavior is represented by statecharts
(Section 3.5.7) adapted to object-ori-
ented use, and communication be-
tween components is represented by col-
laboration and sequence diagrams
(Sections 3.3.8 and 3.3.9). The UML de-
fines a special kind of statechart called
an activity diagram to represent depen-
dency between activities. This is similar
to a process dependency diagram (Sec-
tion 3.5.9). Activity diagrams can be
used to specify procedure-like object be-
havior, object operations, or use cases.

The total UML notation is quite com-
plex. It contains by far the largest num-
ber of icons and symbols for adorning,
commenting, and otherwise labeling the
diagrams. This makes the definition of a
formal semantics a daunting task. It
also makes the notation hard to use.
Methods that use this notation should
give heuristics for the good use of all
these features that are consistent with
the semantics of the notations—once
these semantics are defined. The prob-
lem is compounded by the fact that the
UML contains constructs that allow dif-
ferent methods to extend the notation
with new features. Even if we assume
each method gives a precise semantics
to its UML extensions, this may cause a
proliferation of UML dialects, under-
stood only by their inventors.3 See http://www.omg.org for details.

Specification Methods and Techniques • 523

ACM Computing Surveys, Vol. 30, No. 4, December 1998



Despite these misgivings, the survey
of this article has shown that there is
considerable convergence in the nota-
tions used by the different methods.
Agreeing on a standard notation with a
well-defined semantics would allow
practitioners to concentrate on solving
the customer’s problem instead of on
learning yet another notation. The fu-
ture will show whether the UML will
develop into the standard that fits this
need or whether it will turn out to be a
generic template whose meaning is in
the eye of the beholder and that can be
customized beyond recognition.

ACKNOWLEDGMENTS

The survey benefited from detailed comments by
Michael Jackson and Frank Dehne. The anony-
mous referees gave useful comments for further
improvement.

REFERENCES

AWAD, M., KUUSELA, J., AND ZIEGLER, J. 1996.
Object-Oriented Technology for Real-Time
Systems: A Practical Approach Using OMT
and Fusion. Prentice-Hall, Englewood Cliffs,
NJ.

BAETEN, J. AND WEIJLAND, W. 1990. Process Al-
gebra. Cambridge Tracts in Theoretical Com-
puter Science 18, Cambridge, University
Press, New York.

BATES, B., BRUEL, J.-M., FRANCE, R., AND LAR-
RONDE-PETRIE, M. 1996. Guidelines for the
formalizing Fusion object-oriented analysis
models. In Advanced Information Systems En-
gineering (CAiSE’96), P. Constantopoulos, J.
Mylopoulos, Y. Vassiliou, Eds., LNCS 1080,
Springer, 222–233.

BEAR, S., ALLEN, P., COLEMAN, D., AND HAYES, F.
1990. Graphical specification of object-ori-
ented systems. In Object-Oriented Program-
ming: Systems, Languages and Applications/
European Conference on Object-Oriented
Programming. Ottawa, ACM, N. Meyrowitz,
Ed., SIGPLAN Not. 25, 10, 28–37.

BEECK, M. V. D. 1994. A comparison of State-
charts variants. In Formal Techniques in
Real-Time and Fault-Tolerant Systems, H.
Langmaack, W. d. Roever, and J. Vytopil,
Eds., LNCS 863, Springer, 128–148.

BELINA, F. AND HOGREFE, D. 1988–1989. The
CCITT-specification and description language
SDL. Comput. Netw. ISDN Syst. 16, 311–341.

BELINA, F., HOGREFE, D., AND SARMA, A. 1991.
SDL with Applications from Protocol Specifi-
cation. Prentice-Hall, Englewood Cliffs, NJ.

BLANCHARD, B. AND FABRYCKY, W. 1990. Sys-
tems Engineering and Analysis. Prentice-Hall,
Englewood Cliffs, NJ.

BOOCH, G. 1991. Object-Oriented Design with
Applications. Benjamin/Cummings, Redwood
City, CA.

BOOCH, G. 1994. Object-Oriented Design with
Applications, Second Edition. Benjamin/Cum-
mings, Redwood City, CA.

BORGIDA, A., MYLOPOULOS, J., AND REITER, R.
1995. On the frame problem in procedure
specifications. IEEE Trans. Softw. Eng. 21,
785–798.

BOURDEAU, R. AND CHENG, B. 1995. A formal
semantics for object model diagrams. IEEE
Trans. Softw. Eng. 21, 10, 799–821.

BRÆK, R. AND HAUGEN, Ø. 1993. Engineering
Real-Time Systems. Prentice-Hall, Englewood
Cliffs, NJ.

CHAMPEAUX, D. D. AND FAURE, P. 1992. A com-
parative study of object-oriented analysis
methods. J. Object-Oriented Programs, 21–33.

CHAMPEAUX, D. D., LEA, D., AND FAURE,
P. 1993. Object-Oriented System Develop-
ment, Addison-Wesley, Reading, MA.

CHEN, P.-S. 1976. The entity-relationship
model—toward a unified view of data. ACM
Trans. Database Syst. 1, 9–36.

COAD, P. AND YOURDON, E. 1990. Object-Oriented
Analysis. Yourdon Press/Prentice-Hall, Engle-
wood Cliffs, NJ.

COLEMAN, D. 1996. Fusion with use cases: Ex-
tending Fusion for requirements modeling.
Available at URL: http:/www.hpl.hp.com/fu-
sion/index.html.

COLEMAN, D., ARNOLD, P., BODOFF, S., DOLLIN, C.,
GILCHRIST, H., HAYES, F., AND JEREMAES,
P. 1994. Object-Oriented Development: The
FUSION Method. Prentice-Hall, Englewood
Cliffs, NJ.

COLEMAN, D., HAYES, F., AND BEAR, S. 1992.
Introducing Objectcharts or how to use Stat-
echarts in object-oriented design. IEEE
Trans. Softw. Eng. 18, 1, 9–18.

COOK, S. AND DANIELS, J. 1994. Designing Ob-
ject Systems: Object-Oriented Modelling with
Syntropy, Prentice-Hall, Englewood Cliffs,
NJ.

DAHL, O.-J. AND NYGAARD, K. 1966. SIMULA—
an ALGOL-based simulation language. Com-
mun. ACM 17, 7, 403–412.

DAVIS A. 1993. Software Requirements: Objects,
Functions, States. Prentice-Hall, Englewood
Cliffs, NJ.

DEMARCO, T. 1978. Structured Analysis and
System Specification. Yourdon Press/Prentice-
Hall, Englewood Cliffs, NJ.

DESFRAY, P. 1992. Ingénerie des Objects Ap-
proche Classe-Relation Applications à C11.
Editions Massons, Paris.

524 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



EBERT, J. AND ENGELS, G. 1997. Specialization
of object life cycle definitions. Submitted.

ECKERT, G. 1996. Improving the analysis stage
of the Fusion method. In Object-Oriented De-
velopment at Work: Fusion in the Real World,
R. Malan et al. Eds., Prentice-Hall, Engle-
wood Cliffs, NJ, 276–313.

EMBLEY, D., JACKSON, R., AND WOODFIELD, S.
1995. OO systems analysis: Is it or isn’t it.
IEEE Softw. 12, 3, 19–33.

EMBLEY, D., KURTZ, B., AND WOODFIELD, S.
1992. Object-Oriented Systems Analysis: A
Model-Driven Approach. Prentice-Hall, Engle-
wood Cliffs, NJ.

FÆRGEMAND, O. AND OLSEN, A. 1994. Introduc-
tion to SDL 92. Comput. Netw. ISDN Syst. 26,
1143–1167.

FICHMAN, R. AND KEMERER, C. 1992. Object-ori-
ented and conventional analysis and design
methodologies: Comparison and critique.
Computer 25, 22–39.

FIRESMITH, D. 1993. Object-Oriented Require-
ments Analysis and Logical Design: A Soft-
ware Engineering Approach. Wiley, New
York.

FLAVIN, M. 1981. Fundamental Concepts of In-
formation Modeling. Yourdon Press, Engle-
wood Cliffs, NJ.

FOWLER, M. 1994. Describing and comparing
object-oriented analysis and design methods.
In Object Development Methods, A. Car-
michael, Ed., SIGS Books, Denville, NJ, 79–
109.

FRANCE, R. 1992. Semantically extended data
flow diagrams: A formal specification tool.
IEEE Trans. Softw. Eng. 18, 4, 329–346.

FRANCE, R. AND LARRONDO-PETRIE, M. 1994.
From structured analysis to formal specifica-
tion: State of the theory. In Proceedings of the
1994 ACM Computer Science Conference.

GANE, C. AND SARSON, T. 1979. Structured Sys-
tems Analysis: Tools and Techniques. Pren-
tice-Hall, Englewood Cliffs, NJ.

GOLDSMITH, S. 1993. Real-Time Systems Devel-
opment. Prentice-Hall, Englewood Cliffs, NJ.

GOMAA, H. 1993. Software Design Methods for
Concurrent and Real-Time Systems. Addison-
Wesley, Reading, MA.

GRAHAM, I. 1994. Migrating to Object Technol-
ogy. Addison-Wesley, Reading, MA.

HALL, P., OWLETT, J., AND TODD, S. 1976.
Relations and entities. In Modelling in Data-
base Management Systems, G. Nijssen, Ed.,
North-Holland, 201–220.

HAREL, D. 1979. First Order Dynamic Logic.
LNCS 68, Springer.

HAREL, D. 1988. On visual formalisms. Com-
mun. ACM 31, 514–530.

HAREL, D. 1992. Biting the silver bullet. Com-
puter 25, 1, 8–20.

HAREL, D. AND GERY, E. 1996. Executable object
modeling with statecharts. In Proceedings of
the Eighteenth International Conference on
Software Engineering, 246–257.

HAREL, D. AND GERY, E. 1997. Executable object
modeling with statecharts. Computer 30, 7,
31–42.

HAREL, D. AND KAHANA, C.-A. 1992. On state-
charts with overlapping. ACM Trans. Softw.
Eng. Methodol. 1, 4, 399–421.

HAREL, D. AND NAAMAD, S. 1996. The STATE-
MATE semantics of statecharts. ACM Trans.
Softw. Eng. Methodol. 5, 293–333.

HAREL, D. AND PNUELI, A. 1985. On the devel-
opment of reactive systems. In Logics and
Models of Concurrent Systems, K. Apt, Ed.,
NATO ASI Series, Springer, 477–498.

HAREL, D., PNUELI, A., SCHMIDT, J., AND SHERMAN,
R. 1987. On the formal semantics of state-
charts. In Proceedings, Symposium on Logic
in Computer Science, Computer Science Press,
New York, 54–64.

HATLEY, D. AND PIRBHAI, I. 1987. Strategies for
Real-Time System Specification. Dorset
House, New York.

HAYES, F. AND COLEMAN, D. 1991. Coherent
models for object-oriented analysis. In Object-
Oriented Programming: Systems, Languages
and Applications/European Conference on
Object-Oriented Programming, A. Paepcke,
Ed., SIGPLAN Not. 25, 11, 171–183.

HENDERSON-SELLERS, B. 1992. A Book of Object-
Oriented Knowledge. Prentice-Hall, Engle-
wood Cliffs, NJ.

HENDERSON-SELLERS, B. AND EDWARDS, J. 1990.
The object-oriented systems life cycle. Com-
mun. ACM 33, 9, 143–159.

HENDERSON-SELLERS, B. AND EDWARDS, J. 1994.
Book Two of Object-Oriented Knowledge.
Prentice-Hall, Englewood Cliffs, NJ.

HODGSON, R. 1994. Contemplating the universe
of methods. In Object Development Methods,
A. Carmichael, Ed., SIGS Books, Denville,
NJ, 111–132.

HOPCROFT, J. AND ULLMAN, J. 1979. Introduc-
tion to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, MA.

HUTT, A. 1994a. Object Analysis and Design:
Comparison of Methods. OMG/Wiley, New
York.

HUTT, A. 1994b. Object Analysis and Design:
Description of Methods. OMG/Wiley, New
York.

I-LOGIX 1991a. The Languages of STATE-
MATE. Tech. Rep., i-Logix Inc., Burlington,
MA. To be published as D. Harel and M.
Politi, Modeling Reactive Systems with Stat-
echarts: The STATEMATE Approach.

I-LOGIX 1991b. The Semantics of statecharts.
Tech. Report, i-Logix Inc., Burlington, MA.

Specification Methods and Techniques • 525

ACM Computing Surveys, Vol. 30, No. 4, December 1998



IVARI, J. 1995. Object-orientation as structural,
functional and behavioural modelling: A com-
parison of six methods for object-oriented
analysis. Inf. Softw. Technol. 37, 3, 155–163.

ITU 1992. Specification and Description Lan-
guage (SDL). International Telecommunica-
tions Union (formerly CCITT), Revised recom-
mendation Z.100.

ITU 1993. Z.100 Appendix I: SDL Methodology
Guidelines. Tech. Rep., International Tele-
communication Union.

ITU 1994. Criteria for the Use and Applicabil-
ity of Formal Description Techniques: Message
Sequence Charts (MSC). International Tele-
communication Union. Z.120 (03/93).

JACKSON, M. 1975. Principles of Program De-
sign. Academic Press.

JACKSON, M. 1983. System Development. Pren-
tice-Hall, Englewood Cliffs, NJ.

JACKSON, M. 1995. Software Requirements and
Specifications: A Lexicon of Practice, Princi-
ples and Prejudices. Addison-Wesley, Read-
ing, MA.

JACOBSON, I., CHRISTERSON, M., JOHNSSON, P., AND

ÖVERGAARD, G. 1992. Object-Oriented Soft-
ware Engineering: A Use Case Driven Ap-
proach. Prentice-Hall, Englewood Cliffs, NJ.

LANG, N. 1993. Shlaer–Mellor object-oriented
analysis rules. Softw. Eng. Not. 18, 1, 54–58.

LOOMIS, M., SHAH, A., AND RUMBAUGH, J.
1987. An object modeling technique for con-
ceptual design. In European Conference on
Object-Oriented Programming, J. Bézivin,
J.-M. Hullot, P. Cointe, and H. Lieberman,
Eds. LNCS 276, Springer, Paris, 192–202.

MALAN, R., LETSINGER, R., AND COLEMAN, D.,
EDS. 1996. Object-Oriented Development at
Work: Fusion in the Real World. Prentice-
Hall, Englewood Cliffs, NJ.

MARCA, D. AND GOWAN, C. 1988. SADT: Struc-
tured Analysis and Design Technique.
McGraw-Hill, New York.

MARTIN, J. 1989a. Information Engineering,
Book I: Introduction. Prentice-Hall, Engle-
wood Cliffs, NJ.

MARTIN, J. 1989b. Information Engineering,
Book II: Planning and Analysis. Prentice-
Hall, Englewood Cliffs, NJ.

MARTIN, J. 1989c. Information Engineering,
Book III: Design and Construction. Prentice-
Hall, Englewood Cliffs, NJ.

MARTIN, J. AND FINKELSTEIN, C. 1981. Informa-
tion Engineering. Savant Institute, Carnforth,
England.

MARTIN, J. AND MCCLURE, C. 1985. Diagram-
ming Techniques for Analysts and Program-
mers. Prentice-Hall, Englewood Cliffs, NJ.

MARTIN, J. AND ODELL, J. 1992. Object-Oriented
Analysis and Design. Prentice-Hall, Engle-
wood Cliffs, NJ.

MARTIN, J. AND ODELL, J. 1995. Object-Oriented
Methods: A Foundation. Prentice-Hall, Engle-
wood Cliffs, NJ.

MCGREGOR, J. AND DYER, D. 1993. Inheritance
and state machines. Softw. Eng. Not. 18, 4,
61–69.

MCMENAMIN, S. AND PALMER, J. 1984. Essential
Systems Analysis. Yourdon Press/Prentice-
Hall, Englewood Cliffs, NJ.

MEYER, B. 1985. On formalism in specifica-
tions. IEEE Softw. 6–26.

MILNER, R. 1980. A Calculus of Communicating
Systems. LNCS 92, Springer.

MØLLER-PEDERSEN, B., BELSNES, D., AND DAHLE,
H. 1987. Rationale and tutorial on OSDL:
An object-oriented extension of SDL. Comput.
Netw. ISDN Syst. 13, 97–117.

MONARCHI, D. AND PUHR, G. 1992. A research
typology for object-oriented analysis and de-
sign. Commun. ACM 35, 9, 35–47.

OBJECTORY AB 1995a. Objectory: Introduction,
Version 3.6.

OBJECTORY AB 1995b. Objectory: Requirements
Analysis, Version 3.6.

OBJECTORY AB 1995c. Objectory: Robustness
Analysis, Version 3.6.

OMG 1996. Object analysis and design RFP-1.
OMG TC Document ad/96-05-01—rev.1, 6/6/
96. Available at URL http://www.omg.org/
public-doclist.html.

PAGE-JONES, M., CONSTANTINE, L., AND WEISS, S.
1990. Modeling object-oriented systems: The
uniform object notation. Comput. Lang. 7, 10,
69–87.

PETERSOHN, C., HUIZING, C., PELESKA, J., AND DE

ROEVER, W.-P. 1994. Formal semantics for
Ward and Mellor’s TRANSFORMATION
SCHEMAS. In Sixth Refinement Workshop,
Workshops in Computing, BCS-FACS, D. Till,
Ed., Springer Verlag, 14–41.

PNUELI, A. AND SHALEV, M. 1991. What is in a
step: On the semantics of statecharts. In The-
oretical Aspects of Computer Software, T. Ito
and A. Meyer, Eds. LNCS 526, Springer, 244–
264.

RATIONAL 1997a. Unified Modeling Language:
Notation Guide, Version 1.0. Rational Soft-
ware Corporation, Santa Clara, CA. Available
at URL http://www.rational.com/ot/uml.html.

RATIONAL 1997b. Unified Modeling Language:
Notation Guide, Version 1.1. Rational Soft-
ware Corporation, Santa Clara, CA. Available
at URL http://www.rational.com.uml/1.1/.

RATIONAL 1997c. Unified Modeling Language:
Semantics, Version 1.1. Rational Software
Corporation, Santa Clara, CA. Available at
URL http://www.rational.com/uml/1.1/.

REENSKAUG, T., WOLD, P., AND LEHNE, O. 1996.
Working with Objects: The OOram Software

526 • R. Wieringa

ACM Computing Surveys, Vol. 30, No. 4, December 1998



Engineering Methodology. Computer Society
Press.

ROSS, D. 1977. Structured analysis (SA): A lan-
guage for communicating ideas. IEEE Trans.
Softw. Eng. SE-3, 1, 16–34.

ROSS, D. 1985. Applications and extensions of
SADT. Computer 18, 4, 25–34.

RUMBAUGH, J. 1995a. OMT: The dynamic
model. J. Object-Oriented Program. 7, 9,
6–12.

RUMBAUGH, J. 1995b. OMT: The functional
model. J. Object-Oriented Program. 8, 1, 10–
14.

RUMBAUGH, J. 1995c. OMT: The object model.
J. Object-Oriented Program. 7, 8, 21–27.

RUMBAUGH, J., BLAHA, M., PREMERLANI, W., EDDY,
F., AND LORENSEN, W. 1991. Object-Orient-
ed Modeling and Design. Prentice-Hall,
Englewood Cliffs, NJ.

SAAKE, G., HARTEL, P., JUNGCLAUS, R., WIERINGA,
R., AND FEENSTRA, R. 1994. Inheritance
conditions for object life cycle, diagrams. In
Formale Grundlagen für den Entwurf von In-
formationsystemen, U. Lipeck and G. Vossen,
Eds. Institut für Informatik, Universität Han-
nover, Germany 79–88. Informatik-Berichte
Nr. 03/94.

SARACCO, R., SMITH, J., AND REED, R. 1989.
Telecommunications Systems Engineering Us-
ing SDL, North-Holland.

SARRACO, R. AND TILANUS, P. 1987. CCITT SDL:
Overview of the language and its applications.
Comput. Netw. ISDN Syst. 13, 65–74.

SCHREFL, M. AND STUMPTNER, M. 1995. Behav-
ior consistent extension of object life cycles. In
ER’95.

SELIC, B., GULLEKSON, G., AND WARD, P. 1994.
Real-Time Object-Oriented Modeling. Wiley,
New York.

SHLAER, S. AND LANG, N. 1996. The Shlaer-Mel-
lor method: The OOA96 report, version 1.0.
Tech. Rep., Project Technology, Inc., Berkeley,
CA 984710. Available at URL http://www-
.projtech.com/cgi/pdf/ooa96.pdf.

SHLAER, S. AND MELLOR, S. 1988. Object-Orient-
ed Systems Analysis: Modeling the World in
Data. Prentice-Hall, Englewood Cliffs, NJ.

SHLAER, S. AND MELLOR, S. 1989. An object-ori-
ented approach to domain analysis. ACM
SIGSOFT Softw. Eng. Not. 14, 5, 66–77.

SHLAER, S. AND MELLOR, S. 1992. Object Life-
cycles: Modeling the World in States. Prentice-
Hall, Englewood Cliffs, NJ.

SHUMATE, K. AND KELLER, M. 1992. Software
Specification and Design: a Disciplined Ap-

proach for Real-Time Systems. Wiley, New
York.

SPIVEY, J. 1989. The Z Notation: A Reference
Manual. Prentice-Hall, Englewood Cliffs, NJ.

SUTCLIFFE, A. 1991. Object-oriented systems
development: Survey of structured methods.
Inf. Softw. Technol. 33, 6, 433–442.

TURNER, K., ED. 1993. Using Formal Descrip-
tion Techniques: An Introduction to ES-
TELLE, LOTOS and SDL. Wiley, New York.

WALDÉN, K. AND NERSON, J.-M. 1995. Seamless
Object-Oriented Software Architecture: Analy-
sis and Design of Reliable Systems. Prentice-
Hall, Englewood Cliffs, NJ.

WARD, P. AND MELLOR S. 1985. Structured De-
velopment for Real-Time Systems. Prentice-
Hall/Yourdon Press, Englewood Cliffs, NJ.

WEGNER, P. 1992. Dimensions of object-ori-
ented modeling. Computer 25, 10, 12–20.

WEINBERG, V. 1978. Structured Analysis. Your-
don Press, Englewood Cliffs, NJ.

WIERINGA, R. 1996. Requirements Engineering:
Frameworks for Understanding. Wiley, New
York.

WIERINGA, R. AND SAAKE, G. 1996. A formal
analysis of the Shlaer–Mellor method: To-
wards a toolkit for formal and informal re-
quirements specification techniques. Req.
Eng. 1, 106–131.

WIERINGA, R., JUNGCLAUS, R., HARTEL, P., SAAKE,
G., AND HARTMANN, T. 1993. OMTROLL—
object modeling in Troll. Proceedings of the
International Workshop on Information Sys-
tems—Correctness and Reusability (IS-
CORE’93), Udo W. Lipeck and G. Koschorrek,
Eds. Institut für Informatik, Universität Han-
nover, Germany, 267–283.

WIRFS-BROCK, R., WILKERSON, B., AND WIENER,
L. 1990. Designing Object-Oriented Soft-
ware. Prentice-Hall, Englewood Cliffs, NJ.

YOURDON, E. 1989. Modern Structured Analy-
sis. Prentice-Hall, Englewood Cliffs, NJ.

YOURDON, E. AND CONSTANTINE, L. 1979. Struc-
tured Design: Fundamentals of a Discipline of
Computer Program and Systems Design.
Prentice-Hall, Englewood Cliffs, NJ.

YOURDON, E., WHITEHEAD, K., THOMANN, J., OPPEL,
K., AND NEVERMANN, P. 1995. Mainstream
Objects: An Analysis and Design Approach for
Business. Prentice-Hall, Englewood, Cliffs,
NJ.

YOURDON, INC. 1993. Yourdon™ Systems Meth-
od: Model-Driven Systems Development. Pren-
tice-Hall, Englewood Cliffs, NJ.

Received May 1997; Accepted January 1998

Specification Methods and Techniques • 527

ACM Computing Surveys, Vol. 30, No. 4, December 1998


