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The advent of the era of Big Data has allowed many researchers to dig into various socio-technical
systems, including social media platforms. In particular, these systems have provided them with
certain verifiable means to look into certain aspects of human behavior. In this work, we are specif-
ically interested in the behavior of individuals on social media platforms—how they handle the
information they get, and how they share it. We look into Twitter to understand the dynamics
behind the users’ posting activities—tweets and retweets—zooming in on topics that peaked in pop-
ularity. Three mechanisms are considered: endogenous stimuli, exogenous stimuli, and a mechanism
that dictates the decay of interest of the population in a topic. We propose a model involving two
parameters η? and λ describing the tweeting behaviour of users, which allow us to reconstruct the
findings of Lehmann et al. (2012) on the temporal profiles of popular Twitter hashtags. With this
model, we are able to accurately reproduce the temporal profile of user engagements on Twitter.
Furthermore, we introduce an alternative in classifying the collective activities on the socio-technical
system based on the model.
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I. INTRODUCTION

The study of information diffusion from gossip spread-
ing [15, 16], to the propagation of viral memes [10, 20, 23],
fads, and trends [2, 22, 24], and even word-of-mouth mar-
keting [8, 13] has become increasingly interesting espe-
cially in this era of “Big Data.” Current technologies and
methods have allowed researchers to look more closely
into the social network fabric—the medium at which the
proliferation of various entities takes place. Questions
relating to how fast information travels or what kind of
information captures the most audience have piqued the
interest of many researchers [3, 5, 11, 17, 25]. Various ap-
proaches have been implemented to shed light into these.
Researchers have looked into the role of a network’s de-
gree of connectivity, modularity, and various centrality
measures, among other things [5, 11, 17, 25]. Efforts
have also been put in understanding the degree of social
“influence” of entities on each other [6, 9, 19]. Many
have also investigated the nature of topics that are being
diffused in a social system.

In this work, we propose a model that aims to cap-
ture the various aspects of these approaches—we do not
only look at the network structure in isolation, but also
augment it with particulars on the nature of the infor-
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mation being spread, and the individuals’ tendencies to
spread such information or “inject” new ones. Particu-
larly, we investigate the observations described in [14] on
the dynamical classes of collective attention in Twitter
where they defined four groups depending on the tem-
poral features of their popularity dynamics. We initially
introduce two free parameters intrinsic to the users’ be-
haviours, λ and η?, where λ quantifies the rate of decay
at which a user would spread a given information and η?

is the threshold an agent has that determines whether or
not he/she propagates information from the users he/she
follows. The rules defined are then implemented in an
empirical Twitter network obtained from the Stanford
Large Network Dataset Collection [18].

This paper is structured as follows: we first describe
the data and model in Sec. II, then present the results
and discussions in Sec. III, and finally summarise and
establish our conclusions in Sec. IV.

II. DATA AND THE MODEL

A. Data

The dataset utilised here is a set of 115 hashtags used
by Lehmann et al. in [14]. It contains the time series of
number of tweets and distinct users for each of the hash-
tags. Each time series centers around a day on which the
number of relevant tweets attain their maximum “popu-
larity,” and spans from seven days before to seven days
after the day of the peak. The full data collected in [14]
contain 130 million Twitter messages appearing in the
period of approximately 6 months from November 20,
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2008 to May 27, 2009. We point the readers to reference
[14] for further details on the dataset utilised here for
model fitting and verification.[26]

B. The model

1. Definitions and rules

The model is defined on a general network N with N
nodes, each node representing a user. Each user i has Fi

“followers” and Li “leaders” whom he/she follows. This
leader-follower relationship results to a directed network.
It is also worth noting that although the Twitter network
structure is dynamically changing in the real-world, here
we only consider a static structure given the relatively
short time frame we are considering, which is two weeks.
Note that when a user i follows another user j, the fol-
lower sees all the tweets that j posts; if, on the other
hand, user i visits the profile page of j, i will not only
see the tweets, but also the retweets and replies that user
j posts.

Three mechanisms are incorporated in our model. Two
of which, exogenous and endogenous, define the man-
ner at which information is propagated in the system
[7, 14]. The endogenous process involves a re-posting
of someone else’s tweet (“retweet”), thereby propagat-
ing/diffusing the same tweet across the social network.
On the other hand, when new information is “injected”
in the social network system, an exogenous process is
said to have taken place. In addition to these two mech-
anisms, a third one is regarded as well that accounts for
the decay of the level of the activities involving a specific
topic on Twitter. To encapsulate, our model incorpo-
rates these three processes: (1) injection of new informa-
tion into the network, (2) spreading of information in the
network, and (3) decay of information after a peak.

The key features of the model proposed are quantified
in two parameters η? and λ—characterising the spreading
of information and the decay of activities in the network,
respectively. The parameter η? quantifies the thresh-
old of influence of leaders on their followers, determin-
ing whether or not a follower would take action such as
retweeting and/or replying to a tweet, consequently ex-
posing his/her own followers to the information. In other
words, η? encapsulate the level of contagion of a piece of
information in the network. On the other hand, the pa-
rameter λ quantifies the rate of decay of interest of a user
in the information after a certain point in time. It could
be seen that, in our model, the build-up in activities be-
fore a topic’s peak in popularity is solely reflected by the
parameter η?, while the decay in activities after the peak
is the interplay between the two parameters η? and λ.

To make the model results comparable with the data
we have at hand, we use the scale of one day as one time
unit. The rules and flowchart of implementation of the
model are described in Fig. 1. The model is updated se-
quentially, i.e. the state of a user i at time t only depends

on the state of the network before time t but not at time
t.

2. Assumptions

The model constructed makes the following assump-
tions on the tendency of a user to tweet and retweet.
A user posts an original[27] tweet if he/she is exposed
to some new information outside of his/her Twitter net-
work, i.e. from external sources (or has some original
ideas to share). A user who follows a lot of other users
tends to rely solely on his/her social network for infor-
mation and, hence, retweets more often than “injects”
new information from external sources. On the contrary,
a user who has a huge following tends to be more active
in posting original ideas or new tweets rather than just
reposting others’. These assumptions on tendencies are
illustrated in Fig. 2.

Let us consider a user i (i = 1, 2, . . . , N) who follows Li

leaders l(i, j) (j = 1, 2 . . . , Li) and who has Fi followers.
The probability that user i is exposed to external sources
is

ρi(t) = Aiχ(t− t0), (1)

in which Ai represents the activeness of i in following
news and propagating to other people, and χ(t− t0) the
coverage by the media. In general, the temporal profile of
external media coverage satisfies the limiting conditions

1 ≥ χ(x) ≥ 0 ∀x
χ(0) = 1

lim
|x|→∞

χ(x) = 0
. (2)

We, however, assume that within a narrow window of
time around the event, the media coverage is consistent
and stays approximately constant so that χ(x ∼ 0) ≈ 1.
By the assumption described above, the activeness Ai

takes the form

Ai =
Fi

Fmax
×
(

1− Li

Lmax + Fi

)
(3)

to reflect the assumption that a user having more fol-
lowers tends to be active in following news and can in-
troduce interesting stuff, but that is offset by having
many leaders—as in such case, the user tends to rely on
the leaders for information rather than tweeting so him-
self/herself as illustrated in Fig. 2(a) (see, for example,
[12]).

Upon external exposure, the probability of a user i to
tweet Ti depends on: (1) the interest of user σi in the
nature of the information or the particular topic under
consideration, (2) the level of interest τi(t− t0) as a func-
tion of time, and (3) his hesitancy to tweet Hi.

Ti = σiτi(t− t0)−Hi. (4)
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“Injects” new tweet with 
probability ρ True AND  

user has not tweeted 
False OR  
user has tweeted 

t < t0 t ≥  t0 

Tweet with 
probability T 

Tweet with 
probability decaying 
exponentially; rate λ  

Retweet with 
probability R 

Retweet with 
probability decaying 
exponentially; rate λ   

No tweet 

η ≥ η⋆  η < η⋆  

t < t0 t ≥  t0 

for every time step: 
   for each user of the network: 

FIG. 1: Rules of the model proposed in this work. t0 is the day of the peak and η is the amount of activities by the user’s
leaders accumulated after his last tweet.

The level of interest τi(t − t0) is high during and before
the event, and decays with rate λ after the event

τ(x) =

{
1 if x ≤ 0

exp (−λx) if x > 0
. (5)

The hesitancy to tweet (also retweet) depends on the
number of leaders and followers a user has as illustrated
in Fig. 2(b). The less leaders or followers a user has,
the more hesitant he is to retweet because of the lack of
engagement and/or motivation to do so. Hence,

Hi =
1

Li + Fi + 1
. (6)

Here, we also assume that σ = 1 indicating that we only
focus on the topics that are of interest to the users.

Next, we define the average influence of all leaders of
a user i as

Ii =
1

Li

Li∑
j=1

Fl(i,j), (7)

in which Fl(i,j) is the number of followers that the leader
l(i, j) has.

In addition, we quantify the amount of exposure user
i has to the influence of his/her leaders in the following
equation:

Yi(t) =
∑

all leaders
l(i,j) having

tweeted
recently
before t

Fl(i,j). (8)

And the necessary condition for retweeting is

Yi ≥ η?Ii. (9)

Upon this condition is met, the user i retweets with prob-
ability

Ri(t− t0) = σiτi(t− t0)−Hi, (10)

which takes the same form as Eq. (4) in which Hi repre-
sents the hesitancy as described in Eq. (6).

The number of leaders who tweeted recently, i.e. after
the user’s last tweet and before current time t, is denoted
as ηi(t). The total number of possible retweets by user i
at time t is given by

νi(t) =

√
ηi(t)

η?
× Yi
η?Ii

, (11)

in which we only take the integer part and take 0 as 1
because the number of retweets is at least 1 if the user
retweets.

If the user retweets, it does not necessarily mean that
he would retweet all n tweets. The probability to retweet
R means that he tweets at least one tweet. Therefore, it
could be calculated that each of his n possible retweets
carries probability r = 1− n√

1−R.

By identifying the two key parameters λ and η?, we can
expect to observe four different types of users’ behaviour
in response to an event, as illustrated in Fig. 3. The four
types correspond to four quadrants in the (λ, η?) param-
eter space, namely lowly contagious-slow decaying, lowly
contagious-fast decaying, highly contagious-slow decay-
ing and highly contagious-fast decaying.
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(a)Tweeting behaviour of different types of Twitter users
based on their number of leaders and followers. Each type
corresponds to the likelihood of being exposed to external

media.
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(b)Retweeting hesitancy of different types of Twitter users
based on their number of leaders and followers. The arrows
indicate the directions of increasing hesitancy, i.e. when the

number of leaders or followers decreases.

FIG. 2: Behaviour patterns of different types of users accord-
ing to their number followers and leaders.

III. RESULTS AND DISCUSSIONS

The empirical network we use for simulation was ob-
tained from Stanford Large Network Dataset Collection
[18]. The entire network is a combination of 1, 000 ego
networks with 81, 306 nodes and 1, 768, 149 links, a diam-
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FIG. 3: Distribution of different types of event in the (λ, η?)
parameter space.

eter of 7, and a clustering coefficient of 0.5653. We run
the simulation starting from δt days before a topic peaks
in popularity t0 (we also refer to this one as “event”)
until 7 days after t0. δt can vary from 0 to 7, mimick-
ing the fact that the amount of activities related to an
event becomes significant up to δt days before the event.
δt = 0 corresponds to sudden events while a large value
of δt indicates an anticipated one. It is noteworthy that
by varying δt, we effectively include a third parameter in
our model, which characterises the injection of informa-
tion into the network.

We then scan the (λ, η?) parameter space in the steps
of ∆λ = 0.1 (λ ∈ [0; 4]) and ∆η? = 1 (η? ∈ [1; 60]) to
produce different time series for the number of tweets as
well as the number of (distinct) users everyday and iden-
tify the ones that reproduce the empirical observations
by using the distance metric introduced below. Since
this is a Monte-Carlo simulation that involve generation
of random numbers, we perform 50 runs with distinct
seeds for the random number generator for each set-up,
i.e. the triplet (δt, η?, λ), and take the average results.

A. Validation of the model

We compare the data generated by our model to
the empirical data by calculating the matching score
of the two profiles which are quantified by the frac-
tion of users or tweets on a single day. In details, let
P = (P1, P2, . . . , PN ) be the profile of the tweets pro-
duced by our model, i.e. Pi is the fraction of tweets on
day ti within the entire period from t1 to tN . By defini-
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tion, we have

i=N∑
i=1

Pi = 1. (12)

Similarly, Q = (Q1, Q2, . . . , QN ) is the corresponding
profile of the tweets in the data collected by [14].

We compare P and Q by introducing the metric

δ(P ,Q) =
1

N

√√√√i=N∑
i=1

(
Pi −Qi

max (Pi, Qi)

)2

, (13)

which quantifies the (normalised) “distance” between the
two profiles. It is obvious that when the two profiles are
identical P ≡ Q, i.e. Pi = Qi ∀i = 1, 2, . . . , N , the
distance is δ(P ,Q) = 0. This is a normalised measure so
that the maximum possible value of δ is 1.

In Eq. (13), when Pi = Qi = 0, the term(
Pi −Qi

max (Pi, Qi)

)2

does not have any contribution to δ.

Finally, we set a tolerance threshold θ = 0.04 such that
all the terms with Pi +Qi ≤ θ do not have any contribu-
tion to δ.

Using the metric introduced above and after visually
verifying the plots (Fig. 4), we consider measures with
δ(P ,Q) ≤ 0.08 good and discard the rest. Of the 115
hashtags, about 80% (88/115) result to good fits—both
for the number of users and number of retweets. The re-
maining 20% fall into the groups of activities distributed
before and symmetric around the peak day [14], which
have significant amounts of activities distributed prior to
the events. This demonstrates that the proposed model,
in spite of it being capable of capturing the main fea-
tures in the collective attention build-up and decay of
users before and after the event day, requires additional
framework that would quantify the “sense of time” of the
users—whether or not an event is approaching [1]. This
aspect will be investigated and reported elsewhere.

It is worth noting that while it is not straightforward
to know how many times a user would tweet or retweet in
a day, we have shown that our assumptions in Sec. II B 2
for the users’ activities work well in estimating both the
number of users and retweets in most cases. Moreover,
the fact that we could reproduce the temporal profiles of
activities (see Fig. 4) using our model with only two user-
intrinsic parameters and an effective third parameter for
external factors, justifies and validates our assumptions
and hypotheses in identifying the key mechanisms of in-
formation spreading in social networks.

B. Classification of hashtag types

With the estimated parameter values, we generate the
plot for the distribution of the hashtags on the two-
dimensional parameter space of η? and λ, as shown in
Fig. 5. From the plot, we can observe the clustering

pattern corresponding to different types of event shown
in Fig. 3, with only a few outliers. It is quite evident
that there is a clustering of large points at the bottom
left corner of the plot, which correspond to the events
that quickly go viral and last long. Those events ap-
pear many days before the peak and generate significant
amount of activities afterward. The other three clusters
contain small points signifying the events start not so
long before their peak of activities.

As illustrated by the colors of the data points in Fig. 5,
we can also observe that the distribution of the points
correspond very well to the classification of dynamical
classes reported in [14], i.e. the points for each of the
four classes can be segregated into distinct clusters (with
exception of a few points in class of activities concen-
trating before the peak, see below). The four classes are
called A, B, P and S, respectively, in this work for conve-
nience of the discussion. Class A describes events where
the associated activities are concentrated after a topic
peaks in popularity. Class B, on the other hand, refers
to the events where the activities occur before the peaks.
Class P consists of events where the activities are concen-
trated on a single day. Finally, Class S contains events
that have significant activites before, on and after the
peak day. Our results show that the clusters described
above also reveal the existence of subclasses within each
of the classes. In Fig. 5, we can generally identify 7 clus-
ters of data points (or hashtags) which show very good
correspondence to the classification in [14].

From the fittings, we can observe two subgroups in
the class with activities concentrating after the peak,
i.e. class A (after). One group shows long range be-
haviours in which the activities span over a long period of
time reflected by slow decay of interest (small λ) but high
spreading threshold (large η?). The other group shows
short range behaviours in which the activities span over
a very short period of time reflected by low spreading
threshold (small η?) but very fast decay of interest (large
λ).

For the class with activities concentrating before the
peak, i.e. class B (before), we also observe two subgroups.
One group shows long range behaviours in which the ac-
tivities span over a long period of time reflected by long
appearance before the peak but high spreading threshold
(large η?). The other group shows short range behaviours
in which the activities span over a very short period of
time reflected by very short appearance before the peak
but very low spreading threshold (small η?).

For the class with activities concentrating at the peak,
i.e. class P (peak), the values of the parameters sug-
gest two subgroups, both of which have very fast de-
cay of interest (large λ). One group shows contagious
behaviours in which the events appear very shortly be-
fore the peak but generate a lot of activities due to low
spreading threshold (small η?). The other group shows
inert behaviours due to very high spreading threshold
(large η?).

The class with activities distributed symmetrically
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FIG. 4: Time series of activities (top) and users (bottom). Results from the model (blue) shown together with the data (red)
presented in [14] for classes A, B, P, and S, respectively.

around the peak, i.e. class S (symmetric), generally has
low spreading threshold (small η?) and slow decay of in-
terest (small λ).

In Fig. 4, we show the different profiles for each of the
classes described above.

C. Content analysis

After revealing the existence of the classes and sub-
classes of the hashtags, we turn to looking at content of
each hashtag and learn how it is related to the apparent
classification. In Appendix A, we have a table showing

the hashtags together with their corresponding type and
class (and subclass, according to our results above). The
table is organised in such a way that the top rows contain
the “simple” hashtag types, in the sense that the hash-
tags of those types generally belong to one class identified
by our model. The rows further down at the bottom of
the table contain more complicated hashtag types whose
tweets fall into different classes.

From the table, it could be seen that hashtags in
the categories of activism (#ie6, #pman) or technology
(#safari, #safari4, #skype) indicate events that cap-
ture attention in a long period of time and make im-
pact that keep people discussing. These events are called
for attention on a particular matter, e.g. campaign or
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FIG. 5: Fitted parameters η? and λ showing clustering patterns. The circles of larger size correspond to large value of δt. The
colours (online) of the data points are determined by the classed identified in [14], red for S, black for P, blue for A and green
for B.

of great interest and impact to many people, e.g. tech-
nology products. The peak in these events are usually
associated with a symbolised or iconic activities on that
day, e.g. rally of people in a place or release of a product.
The hashtags in the category of charity (#twestival,
#protest) indicate events that generate activities before
a peak but soon decay after that. This is because these
events usually call for people’s support to achieve a cer-
tain goal (e.g. fund raising, signature collection). And
once the goal has been achieved, people are no longer in-
terested in the follow-up. The hashtags in the category
of marketing generally exhibit sudden appearance. That
could be explained by the strategies of marketers releas-
ing incentives to advertise their products. But our results
show that it also depends on the type of product and how
it is advertised to determine the dynamical behaviours of
people’s attention to it.

The hashtags in other categories generally spread
across different classes with no easy way of relating the
content to the class. Nevertheless, content type like the
Twitter (word) games spontaneously started by some
user(s), which appear in all of the classes and subclasses
identified in the work, could provide a very useful set-up
to study what type of content would become popular in
a social setting [4, 21]. Further analysis of the meaning
of the hashtags and the content of the tweet messages
containing the hashtags will be explored and reported
elsewhere.

D. Discussions

The classification of hashtags allows us to identify their
general features in terms of how people react to the in-
formation they receive and also possibly infer their con-
tent. Overall, class S (symmetric) occupies the bottom
left quadrant of the parameter space (λ, η?). In this
quadrant, the threshold η? is low and the rate of de-
cay λ is also low. They correspond to events that can
easily spread (due to low threshold) and can last after a
topic peaks in popularity (low rate of decay), e.g. movie
(#watchmen), technology release (#safari, #skype) or
activism (#pman). Our model in this study can recon-
struct the data very well up to δ = 4 days before the peak
but generally falls through beyond that. This suggests
a different pattern in people’s behaviour when spread-
ing the information when the “sense of time” is relevant,
i.e. before and near the event associated with the infor-
mation.

On the other hand, class P (peak) occupies the right
half of the parameter space, which corresponds to events
that decay very quickly after the peak. They can fur-
ther be categorised into two groups: the upper one (high
threshold η?) corresponds to events that capture imme-
diate attention but decay immediately, e.g. unexpected
and unpopular political events (#spectrial, #nsotu) or
occasional media events (#grammys, #oscars); and the
lower one (low threshold η?) corresponds to the events
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that spread very quickly (it appears one or two days be-
fore the peak) and also decay very quickly, e.g. sport
events (#nfl, #superbowl). The remaining two classes
A (after) and B (before) can both be divided into two
groups: (1) low threshold, high decay rate; (2) high
threshold, low decay rate. The difference between them is
the time the users become aware of the events. Events in
class A are sudden and people continue to discuss them
due to either low decay rate (long last), e.g. lobbying
marketing campaign (#macheist), or low threshold (easy
to spread), e.g. honouring popular stars (#hoppusday).
Events in class B depict anticipation where people al-
ready discuss the topics even before their popularities
peak—this contributes to large amounts of activities be-
fore the peak, e.g. new feature of Twitter (#plurk) or an-
ticipated show (#poynterday). The events in this class,
however, display scattered pattern and in some rare cases
make overlap with class S (#therescue).

It needs to be emphasised that the model proposed is
straightforward and concise—carrying the heuristic and
intuitive assumptions on the online behaviours of users,
given the knowledge of their social network’s structure.
Yet, the model produces the dynamical behaviours ob-
served in real data and allows us to gain insights on the
clustering of topics—telling us about the different natures
of the contents being circulated in the social media, and
how these clusters relate to the classes presented in [14].
This signifies that the three mechanisms included in the
model are essential and sufficient in accurately describing
the dynamics behind the collection attention of users on
a Twitter network.

Knowing the relevant factors that influence the dy-
namics behind information spreading and trend setting
is crucial for various aspects of society which can range
from governance to politics, and marketing. Everyday,
we are overwhelmed with terabytes of information origi-
nating from various social media sources as people share
news, comments, opinions, and updates in their blogs,
microblogs, and homepages; and on Facebook, Twitter,

and Instagram, among others. The key for the stake-
holders is to know how to manipulate and strategize, if
possible, their messages and campaigns such that theirs
will stand out to attract attention and not get lost in the
vast sea of online information.

What we have presented herewith so far is a model that
recaptures the previous trends for certain issues and top-
ics by describing certain attributes of the agents involved
in the social network. The next important question is
whether or not we can use this knowledge to reshape
the trend profiles of the different information types. Our
work hints on the importance of knowing the kind of au-
dience on which a product, an idea, or a campaign has
possible influence. That aspect to some extent is quanti-
fied in our model as the parameters λ and η∗.

IV. CONCLUSIONS

In this work, we proposed a model using three mech-
anisms that underlie the tweeting and retweeting be-
haviours of users on Twitter. These behaviours corre-
spond to perceiving and propagating information in a
social network. Despite the simplicity of the model, we
are able to capture the general patterns of behaviours
observed in real data. In particular, we have not only il-
lustrated the four dynamical classes reported by Lehman
et al. [14] but also demonstrated the existence of further
subclasses in three of the classes.
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by Bruno Gonçalves, see Acknowledgement.

[27] “Original” in this sense is used in a loose fashion. It only
means that the post is not a retweet.

Appendix A: Hashtag type vs. its class

The 88 hashtags used in this study. They belong to 13 types of event. Full description of the meaning of the
hashtags could be found in [14].
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Class −→ A B P S

Hashtag
type ↓

High η? Low η? High η? Low η? High η? Low η? Low η?

Activism
(2)

#ie6

#pman

Technology
(3)

#safari

#safari4

#skype

Charity (2)
#twestival

#protest

Sport (6)

#masters #superbowlads

#nfl

#superads09

#nfldraft

#superbowl

Honour (3)
#hoppusday #poynterday

#asot400

Holiday (3) #aprilfool
s

#easter #happy09

Convention
(10)

#rp09 #macworld #w2e

#mix09 #ces

#leweb #ces09

#drupalcon

#cebit

#25c3

Awareness
(4)

#earthday #earthhour #horadoplaneta

#therescue

Marketing
(5)

#glmagic #skittles #evernote

#free

#macheist

Media (9)
#bsg #americanidol #grammys #watchmen

#bachelor #starwarsday #oscars

#phish #oscar

Political
(10)

#g20 #rncchair #spectrial #budget #inaug09

#teaparty #nsotu #davos

#coalition

#hadopi

Disruption
(14)

#amazonfa
il

#googmayh
arm

#gfail #snowmage
ddon

#h1n1

#peace #winneden #gmail #mikeyy #influenza

#swineflu #schiphol

#bushfires #blackout

Twitter
(17)

#yourtag #unfollow
friday

#tweepme #iloveyou #nerdpick
up

#crapname
s

#dbi

#blogger #firstfol
low

#myfirstj
ob

#oscarwil
deday

#followme #politics

#socialmedia #plurk #3hotwords

#oneword


	I Introduction
	II Data and the model
	A Data
	B The model
	1 Definitions and rules
	2 Assumptions


	III Results and discussions
	A Validation of the model
	B Classification of hashtag types
	C Content analysis
	D Discussions

	IV Conclusions
	V Acknowledgments
	 References
	A Hashtag type vs. its class

