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Further results speed up the insertion times to match the bounds of known partially dynamic
algorithms.

All our algorithms are based on a new technique that transforms an algorithm for sparse graphs
into one that will work on any graph, which we call sparsification.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems; G.2.2 [Discrete Mathematics]: Graph Theory

General Terms: Algorithms

Additional Key Words and Phrases: Dynamic graph algorithms, minimum spanning trees, edge and
vertex connectivity

1. Introduction

Graph algorithms are fundamental in computer science, and much work has gone
into the study of dynamic graph algorithms; that is, algorithms that maintain
some property of a changing graph more efficiently than recomputation from
scratch after each change. If the changes allowed include both edge insertions
and deletions, the algorithm is fully dynamic; a partially dynamic algorithm only
allows insertions. Among many problems that have been studied from this point
of view, the minimum spanning tree1 is perhaps the most important. Other recent
work has focused on several types of connectivity.2

The main contribution of this paper is a new and general technique for
designing dynamic graph algorithms, which we call sparsification. We use this
technique to speed up many fully dynamic graph algorithms. Roughly speaking,
when the technique is applicable it speeds up a T(n, m) time bound for a graph
with n vertices and m edges to T(n, O(n)); that is, almost to the time needed if
the graph were sparse.3 Sparsification applies to a wide variety of dynamic graph
problems, including minimum spanning forests, edge and vertex connectivity.
Using the data structure developed for the dynamic maintenance of a minimum
spanning forest, we are able to improve previous bounds also for other problems,
such as dynamic matroid intersection problems, sampling the space of spanning
trees, and computing the k best spanning trees.

The technique itself is quite simple. Let G be a graph with m edges and n
vertices. We partition the edges of G into a collection of O(m/n) sparse
subgraphs, that is, subgraphs with n vertices and O(n) edges. The information
relevant for each subgraph can be summarized in an even sparser subgraph,
which we call a sparse certificate. We merge certificates in pairs, producing larger
subgraphs which we make sparse by again computing their certificate. The result
is a balanced binary tree in which each node is represented by a sparse
certificate. Each update involves log(m/n) graphs with O(n) edges each, instead
of one graph with m edges. A more careful partition into subgraphs causes each
update to involve a sequence of graphs with O(n) edges total.

We develop three variants of our sparsification technique. We use the first
variant in situations where no previous fully dynamic algorithm was known. We

1 See, for example, Eppstein [1994a], Eppstein et al. [1992], Frederickson [1985], and Gabow and
Stallman [1985].
2 See, for example, Di Battista and Tamassia [1990], Frederickson [1997], Galil and Italiano [1992;
1991a; 1991b], Kanevsky et al [1991], La Poutré [1991], and Westbrook and Tarjan [1992].
3 Throughout this paper log x stands for max(1, log2x), so log(x) is never smaller than 1.
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use a static algorithm to recompute a sparse certificate in each tree node affected
by an edge update. If the certificates can be found in time O(m 1 n), this
variant gives time bounds of O(n) per update.

In the second variant, we maintain certificates using a dynamic data structure.
For this to work, we need a stability property of our certificates, to ensure that a
small change in the input graph does not lead to a large change in the
certificates. This variant transforms time bounds of the form O(mp) into O(np).

In the third variant, we perform deletions as in the first variant, and insertions
using a partially dynamic algorithm. This leads to insertion times often matching
those of known partially dynamic algorithms, together with deletion times similar
to those of the first variant.

The remainder of the paper consists of nine sections. Section 2 lists the
improved bounds obtained by applying our sparsification technique. In Section 3,
we describe an abstract version of sparsification. We first show in Section 4 how
sparsification produces a new data structure for maintaining a minimum span-
ning forest and the connected components of a graph. The same data structure
finds applications in other problems, such as finding the k smallest spanning
trees of a graph, sampling spanning trees and maintaining a color-constrained
minimum spanning tree. Next, dynamic edge and vertex connectivity problems
are considered in Sections 5 and 6, respectively. We then discuss an application
of sparsification to the problem of maintaining information about the bipartite-
ness of a graph in Section 7. In Section 8, we improve some of our bounds for
edge insertions. Finally, Section 9 contains some concluding remarks, and
Section 10 lists some open questions.

2. New Results

We describe algorithms and data structures for the following problems:

—We maintain the minimum spanning forest of an edge-weighted graph in time
O(n1/ 2) per edge insertion, deletion, or weight change, improving a longstand-
ing O(m1/ 2) bound [Frederickson 1985]. We can instead take time O(log n)
per insertion and O(n log(m/n)) per deletion, strengthening known partially
dynamic algorithms.

—We give a data structure for querying membership in the connected compo-
nents of a graph, in O(n1/ 2) time per edge insertion or deletion, and O(1)
time per query. As with minimum spanning forests, the best previous bound
was O(m1/ 2) [Frederickson 1985].

—We give a fully persistent, fully dynamic data structure for maintaining the best
swap in the minimum spanning tree of a graph, in time O(n1/ 2) per update. As
a consequence, we find the k smallest spanning trees of a graph in time O(m
log log* n 1 kn1/ 2), or randomized expected time O(m 1 kn1/ 2). The best
previous times were O(m1/ 2) per update and O(m logb(m, n) 1 km1/ 2) total
[Frederickson 1997].

—We maintain a color-constrained minimum spanning tree of an edge-colored
graph in O(d2n1/ 2 1 d11/3(d!)2n1/3 log n) time per update, where d is the
total number of colors. The best previous time bound was O(d2m1/ 2 1
d11/3(d!)2n1/3 log n) [Frederickson and Srinivas 1989]. For fixed d, the
improvement is from O(m1/ 2) to O(n1/ 2).

671Sparsification and Dynamic Graph Algorithms



—We use a randomly weighted version of our minimum spanning forest algo-
rithm to perform a certain random walk among the spanning trees of a graph
in time O(n1/ 2) per step. Feder and Mihail [1992] prove that this walk can be
used to sample the space of spanning trees in time O((n log m 1 log
e21)m1/ 2n3); we improve this to O((n log m 1 log e21)n7/ 2).

—We maintain the 2-edge-connected components of a graph, in time O(n1/ 2)
per update, and O(log n) per query, improving the previous O(m1/ 2) bound
per update [Frederickson 1997].

—We maintain the 3-edge-connected components of a graph, in O(n2/3) time
per update or query, improving the previous O(m2/3) bound [Galil and
Italiano 1991a].

—We maintain 4-edge-connected components of a graph in O(na(n)) time. No
fully dynamic algorithm was known for this problem. The best static algorithm
takes time O(m 1 na(n)) [Galil and Italiano 1991c; Kanevsky et al. 1991].

—For any fixed k, we maintain information about the k-edge-connectivity of an
undirected graph in time O(n log n) per update. No dynamic algorithm for
this problem was known, even for insertions only. The best known static
algorithm takes time O(m 1 n log n) [Gabow 1991b; Gabow 1991a].

—We maintain the connected, 2- and 3-edge-connected, and 2- and 3-vertex
connected components of a graph in time O(a(q, n)) per insertion or query
and time O(n log(m/n)) per deletion, strengthening known partially dynamic
algorithms.4 Rauch [1995] has recently discovered a fully dynamic algorithm
for 2-vertex connectivity, which takes O(1) time per query and O(m2/3)
amortized time per update. Her bound and our bound are incomparable. No
previous fully dynamic algorithm for 3-vertex connectivity was known. All the
static problems can be solved in time O(m 1 n) [Hopcroft and Tarjan 1973;
Tarjan 1972].

—We maintain the 4-vertex-connected components of a graph in O(na(n)) time
per update, or in time O(log n) per insertion and O(n log n) per deletion. No
fully dynamic algorithm was previously known. The static problem can be
solved in time O(m 1 na(n)) [Kanevsky et al. 1991].

—We maintain a bipartition of a graph, or determine that the graph is not
bipartite, in O(n1/ 2) time per update. Alternately, we achieve O(a(n))
amortized time per insertion and O(n) time per deletion. No dynamic
algorithm was previously known. The static problem can be solved in time
O(m 1 n).

3. Sparsification

We first describe an abstract version of our sparsification technique. Our
technique is based on the concept of a certificate:

Definition 3.1. For any graph property 3, and graph G, a certificate for G is
a graph G9 such that G has property 3 if and only if G9 has the property.

4 See for example, DiBattista and Tamassia [1990], Galil and Italiano [1993], La Poutré [1991], and
Westbrook and Tarjan [1992].
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Cheriyan et al. [1993] use a similar concept, however they require G9 to be a
subgraph of G. We do not need this restriction. However, Definition 3.1 allows
trivial certificates: G9 could be chosen from two graphs of constant complexity,
one with property 3 and one without it.

Definition 3.2. For any graph property 3, and graph G, a strong certificate for
G is a graph G9 on the same vertex set such that, for any H, G ø H has property
3 if and only if G9 ø H has the property.

In all our uses of this definition, G and H will have the same vertex set and
disjoint edge sets. A strong certificate need not be a subgraph of G, but it must
have a structure closely related to that of G. The following facts follow
immediately from Definition 3.2.

Fact 1. Let G9 be a strong certificate of property 3 for graph G, and let G0
be a strong certificate for G9. Then G0 is a strong certificate for G.

Fact 2. Let G9 and H9 be strong certificates of 3 for G and H. Then G9 ø
H9 is a strong certificate for G ø H.

A property is said to have sparse certificates if there is some constant c such
that for every graph G on an n-vertex set, we can find a strong certificate for G
with at most cn edges.

3.1. SPARSIFICATION TREE. The other ingredient of our algorithm is a sparsi-
fication tree. In the conference version of our paper, this was simply a balanced
tree with O(m/n) leaves, each holding an arbitrary O(n)-edge subgraph of the
original graph. Each internal node corresponds to a subgraph formed by the
union of edges at descendant leaves. We improve that method somewhat here, by
using a technique similar to the 2-dimensional topology tree of Frederickson
[1985; 1997] to partition the edges in a way that induces subgraphs with few
vertices.

We start with a partition of the vertices of the graph, as follows: we split the
vertices evenly in two halves, and recursively partition each half. Thus, we end up
with a complete binary tree in which nodes at distance i from the root have n/ 2 i

vertices.
We then use the structure of this tree to partition the edges of the graph. For

any two nodes a and b of the vertex partition tree at the same level i, containing
vertex sets Va and Vb, we create a node Eab in the edge partition tree,
containing all edges in Va 3 Vb. The parent of Eab is Egd, where g and d are
the parents of a and b respectively in the vertex partition tree. Each node Eab in
the edge partition tree has either three or four children (three if a 5 b, four
otherwise).

We use a slightly modified version of this edge partition tree as our sparsifica-
tion tree. The modification is that we only construct those nodes Eab for which
there is at least one edge in Va 3 Vb. If a new edge is inserted new nodes are
created as necessary, and if an edge is deleted, those nodes for which it was the
only edge are deleted.

LEMMA 3.1.1. In the sparsification tree described above, each node Eab at level
i contains edges inducing a graph with at most n/2i21 vertices.

PROOF. There can be at most n/ 2 i vertices in each of Va and Vb. e
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3.2. BASIC SPARSIFICATION. We say a time bound T(n) is well behaved if for
some c , 1, T(n/ 2) , cT(n). We assume well-behavedness to eliminate
strange situations in which a time bound fluctuates wildly with n. All polynomials
are well behaved. Polylogarithms and other slowly growing functions are not well
behaved, but since sparsification typically causes little improvement for such
functions, we will generally assume all time bounds to be well behaved.

Our main result is the following:

THEOREM 3.2.1. Let 3 be a property for which we can find sparse certificates in
time f(n, m) for some well behaved f, and such that we can construct a data
structure for testing property 3 in time g(n, m) which can answer queries in time
q(n, m). Then there is a fully dynamic data structure for testing whether a graph has
property 3, for which edge insertions and deletions can be performed in time O( f(n,
O(n))) 1 g(n, O(n)), and for which the query time is q(n, O(n)).

PROOF. We maintain a sparse certificate for the graph corresponding to each
node of the sparsification tree. The certificate at a given node is found by
forming the union of the certificates at the three or four child nodes, and running
the sparse certificate algorithm on this union. As shown in Lemmas 3.1.1 and 4.1
the certificate of a union of certificates is itself a certificate of the union, so this
gives a sparse certificate for the subgraph at the node. Each certificate at level i
can be computed in time f(n/ 2 i21, O(n/ 2 i)). Each update will change the
certificates of at most one node at each level of the tree. The time to recompute
certificates at each such node adds in a geometric series to f(n, O(n)).

This process results in a sparse certificate for the whole graph at the root of
the tree. We update the data structure for property 3, on the graph formed by
the sparse certificate at the root of the tree, in time g(n, O(n)). The total time
per update is thus O( f(n, O(n))) 1 g(n, cn). e

This technique is very effective at producing dynamic graph data structures for
a multitude of problems, in which the update time is O(n logO(1) n) instead of
the static time bounds of O(m 1 n logO(1) n).

3.3. STABLE SPARSIFICATION. To achieve sublinear update times, we further
refine our sparsification idea.

Definition 3.3.1. Let A be a function mapping graphs to strong certificates.
Then A is stable if it has the following two properties:

(1) For any graphs G and H, A(G ø H) 5 A( A(G) ø H).
(2) For any graph G and edge e in G, A(G 2 e) differs from A(G) by O(1)

edges.

Informally, we refer to a certificate as stable if it is the certificate produced by
a stable mapping. The certificate consisting of the whole graph is stable, but not
sparse.

THEOREM 3.3.2. Let 3 be a property for which stable sparse certificates can be
maintained in time f(n, m) per update, where f is well behaved, and for which there
is a data structure for property 3 with update time g(n, m) and query time q(n, m).
Then 3 can be maintained in time O( f(n, O(n))) 1 g(n, O(n)) per update, with
query time q(n, O(n)).
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PROOF. As before, we use the sparsification tree described above. After each
update, we propagate the changes up the sparsification tree, using the data
structure for maintaining certificates. We then update the data structure for
property 3 which is defined on the graph formed by the sparse certificate at the
tree root.

At each node of the tree, we maintain a stable certificate on the graph formed
as the union of the certificates in the three or four child nodes. The first part of
the definition of stability implies that this certificate will also be a stable
certificate that could have been selected by the mapping A starting on the
subgraph of all edges in groups descending from the node. The second part of
the definition of stability then bounds the number of changes in the certificate by
some constant s, since the subgraph is changing only by a single edge. Thus, at
each level of the sparsification tree, there is a constant amount of change.

When we perform an update, we find these s changes at each successive level
of the sparsification tree, using the data structure for stable certificates. We
perform, at most, s data structure operations, one for each change in the
certificate at the next lower level. Each operation produces at most s changes to
be made to the certificate at the present level, so we would expect a total of s2

changes. However, we can cancel many of these changes since, as described
above, the net effect of the update will be at most s changes in the certificate.

In order to prevent the number of data structure operations from becoming
larger and larger at higher levels of the sparsification tree, we perform this
cancellation before passing the changes in the certificate up to the next level of
the tree. Cancellation can be detected by leaving a marker on each edge, to keep
track of whether it is in or out of the certificate. Only after all s2 changes have
been processed do we pass the at most s uncanceled changes up to the next level.

Each change takes time f(n, O(n)), and the times to change each certificate
then add in a geometric series to give the stated bound. e

3.4. ASYMMETRIC SPARSIFICATION. Theorem 3.2.1 can be used to dynamize
static algorithms, while Theorem 3.3.2 can be used to speed up existing fully
dynamic algorithms. In order to apply effectively Theorem 3.2.1, we only need to
compute efficiently sparse certificates, while, for Theorem 3.3.2, we need to
maintain efficiently stable sparse certificates. Indeed stability plays an important
role in the proof of Theorem 3.3.2. In each level of the update path in the
sparsification tree, we compute s2 changes resulting from the s changes in the
previous level, and then by stability obtain only s changes after eliminating
repetitions and canceling changes that require no update. Although in most of
the applications we consider stability can be used directly in a much simpler way,
we describe it in this way here for sake of generality.

In some applications, we may expect to perform many more insertions than
deletions, so it might be appropriate to speed up insertion time even at some
expense in the deletion time. One way of doing this would be to use a partially
dynamic data structure, that only allows for insertions, and rebuild the data
structure from scratch after each deletion. As we now show, sparsification can
provide an improvement in this situation as well.

For this method, we define our sparsification tree differently: we group the
edges arbitrarily into subgraphs of exactly n edges each, with one small subgraph
of at most n edges. We then form a balanced binary tree with these subgraphs as
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leaves. Each internal node corresponds as before to a subgraph formed as the
union of its descendant leaves. We can maintain such a sparsification tree as
edges are inserted or deleted, as follows: to delete an edge, remove it from its
subgraph and replace it with an edge from the small subgraph. To insert an edge,
place it in the small subgraph. If a deletion removes the last edge from the small
subgraph, another subgraph (one at the greatest depth in the balanced tree) can
be designated as small. If an insertion causes the small subgraph to have n 1 1
edges, it can be split into two subgraphs and some minor modification to the tree
will cause it to remain balanced. In this way, each update affects O(log(m/n))
nodes of the tree.

This alternate sparsification tree is simpler than the one defined earlier, but
has the disadvantage that certificates at lower levels of the tree do not decrease
in size, so using this tree creates an additional O(log(m/n)) factor in time.
However, as we now describe, we can use this structure to perform edge
deletions in a similar amount of time to Theorem 3.1.1, while allowing insertions
to be performed much more quickly.

THEOREM 3.4.1. Let 3 be a property for which we can find sparse certificates in
time f(n, m), and such that we can construct a partially dynamic data structure for
testing property 3 in time g(n, m) which can handle edge insertions in time p(n, m)
and answer queries in time q(n, m). Then there is a fully dynamic data structure for
testing whether a graph has property 3, for which edge insertions can be performed
in time O( f(n, O(n)))/n 1 g(n, O(n))/n 1 p(n, O(n)), edge deletions can be
performed in time f(n, O(n))O(log(m/n)) 1 g(n, O(n)), and for which the query
time is q(n, O(n)).

PROOF. We construct a sparsification tree as described above. The root of the
tree corresponds to a sparse certificate for the entire graph. We maintain a
partially dynamic data structure on the graph formed by that certificate. Each
inserted edge is not immediately added to the sparsification tree; instead it is
inserted in the partially dynamic data structure and added to a list of edges not
yet in the tree. If there have been k insertions, the time for this part of the
algorithm is p(n, O(n) 1 k) per insertion. However, k might be larger than n,
so we must keep the graph sparse. After each sequence of n consecutive
insertions, we perform a sparsification step in the graph formed by the union of
the root certificate and the list of inserted edges, and reconstruct the partially
dynamic data structure, in time f(n, O(n)) 1 g(n, O(n)), which can be
amortized to f(n, O(n))/n 1 g(n, O(n))/n per insertion.

Whenever we perform a deletion, we also add to the sparsification tree each
edge that has been inserted since the previous deletion, emptying the list of
edges not yet in the tree. If k such insertions have been made, we will need at
most (k 2 1)/n new leaves in the sparsification tree, and the number of tree
nodes involved as ancestors to those leaves will be O(k/n 1 log(m/n)). At each
node, we compute a sparse certificate in time f(n, O(n)). At the root of the tree,
we reconstruct the partially dynamic data structure in time g(n, O(n)). Thus,
the time per deletion is at most f(n, O(n))O(k/n 1 log(m/n)) 1 g(n, O(n)).
The f(n, O(n))O(k/n) term can be charged as an amortized O( f(n/O(n))/n)
time per insertion. e
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The amortized bounds can be made worst case by the use of standard
techniques, such as performing the sparsification and data structure reconstruc-
tion gradually over the course of many insertions.

3.5. BETTER SPACE AND PREPROCESSING. We have seen that sparsification
can lead to good time bounds per operation. We now consider the amount of
space used by this method. For simplicity, we assume that the certificate
computation algorithm takes linear space. Our analysis will apply equally well to
the preprocessing time needed to create the data structure.

In the method presented in Theorems 3.1.1 and 3.3.2, each edge is involved in
data structures in O(log n) nodes, so the total space is O(m log n). However, in
Theorem 3.4.1, the space is O(m): this is the number of edges in certificates at
the bottom level of nodes of the sparsification tree, but at higher levels the
sparsification causes the number of edges to decrease geometrically. As we now
show, this space savings can be applied to the other two sparsification methods.

The idea is simple: we use the sparsification tree we described for basic and
stable sparsification (which subdivides the graph by its vertices), only down to the
level of nodes with O(n2/m) vertices each. Above that level, the space and
preprocessing are proportional to the total number of vertices in all nodes, which
sums to O(m). Below that level, we use the other sparsification tree, described in
Theorem 3.4.1, for which the space is linear.

THEOREM 3.5.1. The time bound of Theorem 3.1.1 can be achieved with O(m)
space, plus any additional space needed to construct certificates or compute the
graph property on the root certificate. For preprocessing time in Theorem 3.1.1, or
either space or preprocessing in Theorem 3.3.6, if the individual processing or space
at a node of the sparsification tree is bounded by h(n), the total bound will be O(m/n
h(O(n))).

PROOF. The time for computing or updating certificates in the upper levels of
the sparsification tree is O( f(n)) by Theorem 3.1.1 or 3.3.2. The time in lower
levels is O( f(n2/m)log(m2/n2)); with the assumption of well-behavedness this
can be rewritten O( f(n)(n/m)log c log(m/n)) 5 O( f(n)).

If m changes by more than a constant factor as a result of many insertions or
deletions, the boundary between the lower and upper parts of the sparsification
tree may shift; we can recompute the new tree in this event without changing the
asymptotic amortized time per operation, or perform this reconstruction gradu-
ally as in Theorem 3.4.1 to achieve a similar worst case bound.

The bound for space and preprocessing comes from the fact that there are
O(m/n) nodes in the tree, with O(n) edges each. e

4. Minimum Spanning Trees and Connectivity

Given an undirected graph with nonnegative edge weights, the minimum span-
ning forest is the subgraph of minimum total weight that has the same connected
components as the original graph. This subgraph will always be a forest, hence
the name. We are interested in maintaining a minimum spanning forest during
updates, such as edge insertions, edge deletions, and edge-weight changes. We
assume that a minimum spanning forest is given as a list of edges: after each
update, we would like to return the new list together with a pointer to the first
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edge in the list. We should be able to quickly test whether any given edge of the
graph is in or out of the list.

A minimum spanning forest is not a graph property, since it is a subgraph
rather than a Boolean function. However, sparsification still applies to this
problem. Alternately, our data structure maintains any property defined on the
minimum spanning trees of graphs. This data structure will also be an important
subroutine in some of our later results.

In the static case, it was well known that a minimum spanning forest can be
computed by either of two dual greedy algorithms:

Blue rule: Add edges one at a time to the spanning forest until it spans the graph.
At each step, find a cut in the graph that contains no edges of the
current forest, and add the edge with lowest weight crossing the cut.

Red rule: Remove edges one at a time from the graph until only a forest is left.
At each step, find a cycle in the remaining graph and remove the edge
with the highest weight in the cycle.

Most classical static minimum spanning tree algorithms use the blue rule, but
the recent breakthrough linear time randomized algorithm of Karger et al. [1995]
uses a combination of both rules.

We will need the following analogue of strong certificates for minimum
spanning trees:

LEMMA 4.1. Let T be a minimum spanning forest of graph G. Then, for any H,
there is some minimum spanning forest of G ø H, which does not use any edges in
G 2 T.

PROOF. If we use the red rule on graph G ø H, we can eliminate first any
cycle in G (removing all edges in G 2 T) before dealing with cycles involving
edges in H. e

Thus, we can take the strong certificate of any minimum spanning forest
property to be the minimum spanning forest itself. Minimum spanning forests
also have a well-known property that, together with Lemma 4.1, proves that they
satisfy our definition of stability:

LEMMA 4.2. Let T be a minimum spanning forest of graph G, and let e be an
edge of T. Then either T 2 e is a minimum spanning forest of G 2 e, or there is a
minimum spanning forest of the form T 2 e 1 f for some edge f.

This fact is implicit, for instance, in Frederickson’s dynamic minimum spanning
tree algorithm [1985].

If we modify the weights of the edges, so that no two are equal, we can
guarantee that there will be exactly one minimum spanning forest. For each
vertex v in the graph, let i(v) be an identifying number chosen as an integer
between 0 and n 2 1. Let e be the minimum difference between any two distinct
weights of the graph. Then, for any edge e 5 (u, v) with i(u) , i(v), we replace
w(e) by w(e) 1 ei(u)/n 1 ei(v)/n2. The resulting MSF will also be a minimum
spanning forest for the unmodified weights, since for any two edges originally
having distinct weights the ordering between those weights will be unchanged.
This modification need not be performed explicitly—the only operations our
algorithm performs on edge weights are comparisons of pairs of weights, and this
can be done by combining the original weights with the numbers of the vertices
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involved taken in lexicographic order. The mapping from graphs to unique
minimum spanning forests is stable, since part (1) of the definition of stability
follows from Lemma 4.1 and part (2) follows from Lemma 4.2.

We base our algorithm on the result of Frederickson [1985], that minimum
spanning trees can be maintained in time O(m1/ 2). We improve this bound by
combining Frederickson’s algorithm with our sparsification technique.

THEOREM 4.3. The minimum spanning forest of an undirected graph can be
maintained in time O(n1/2) per update.

PROOF. Apply the stable sparsification technique of Theorem 3.3.2, with
f(n, m) 5 g(n, m) 5 O(m1/ 2) by Frederickson’s algorithm. e

A more direct and simpler use of stability is possible as the following argument
shows. Consider the insertion of a new edge e that is added to a leaf subgraph Gi

of the sparsification tree. The constant change in all ancestors of Gi is the
following. Let Gj be an ancestor of Gi. Add e to Gj and update the minimum
spanning forest of Gj. If there is no change in the minimum spanning forest, then
the update caused by e is not propagated up in the sparsification tree. Otherwise,
the change is that e enters the minimum spanning forest of Gj, and at most one
edge, say f, leaves it. In this case, we insert e into the parent of Gj and update its
minimum spanning forest accordingly. So the net update that is percolating in
the path from Gi to the root of sparsification tree is given by edge e only. The
reason why we do not need to propagate to the parent of Gj the update given by
the deletion of f is the following. Let Gk be the parent of Gj. If f was not in the
minimum spanning forest of Gk, then deleting f from Gk does not change its
minimum spanning forest. If f was in the minimum spanning tree of Gk, then by
the red rule inserting e into Gk will cause again a swap with f into its minimum
spanning forest. In both cases, propagating the deletion of f from Gj to Gk is
superfluous. A similar argument applies in case of edge deletions or edge weight
changes rather than edge insertions.

Most minimum spanning forest properties can be maintained in the bounds
given by Theorem 4.3 by making use of the dynamic tree data structure of Sleator
and Tarjan [1983], with a query time of O(log n). One such property, namely
testing whether vertices are in the same tree of the forest (which is well known to
be equivalent to testing connected components of the graph), can be maintained
even with an O(1) query time.

COROLLARY 4.4. The connected components of an undirected graph can be
maintained in time O(n1/2) per update, and O(1) time per query.

PROOF. Again, use Theorem 3.3.2 with Frederickson’s algorithm. As noted by
Frederickson [1997], connectivity queries in his data structure can be performed
in constant time. e

Corollary 4.4 shows how our data structure for maintaining a minimum
spanning forest of a graph can be used for maintaining information about the
connected components of a graph. We next list three other applications of the
same data structure.

4.1. BEST SWAPS AND PERSISTENCE. In any connected graph, the minimum
spanning tree (in short, MST) differs from the second-best spanning tree by the
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addition of an edge not already in the MST, and the removal of an MST edge.
Frederickson [1997] described a fully persistent algorithm for maintaining this best
swap: each update operation is performed in one of a number of versions of the
data structure, and creates a new such version without modifying existing
versions. Frederickson’s data structure allows two operations: (1) perform the
best swap, and delete the removed MST edge from the graph; and (2) change to
2` the weight of the MST edge that would be removed by the best swap (forcing
that edge to remain in the MST, so that some other swap becomes best).
Frederickson uses these operations to find the k smallest spanning trees of a
graph in time O(m log b(m, n) 1 k min(k, m)1/ 2). We refer the interested
reader to reference [Frederickson 1997] for the details of the method. We only
mention here that full persistence is crucial for the algorithm, as the ith smallest
spanning (i.e., the new version to be created) tree is derived via best swaps from
one of the jth smallest spanning trees, 1 # j # i (i.e., one of the previous
versions).

THEOREM 4.1. The best swap of an undirected graph can be maintained with
full persistence in time O(n1/2) per update.

PROOF. Theorem 3.3.2 may be easily modified to support full persistence, as
long as one knows a persistent version of the data structure used at each node of
the sparsification tree. We augment the sparsification tree so that each such node
exists in multiple versions. Each version of a node points to a persistent data
structure for maintaining the certificate at that node, to another simple persistent
data structure for determining which of its edges are in which child, and to
appropriate versions of its two child nodes. When we perform an update, we first
find the leaf node containing the updated edge by following pointers from the
appropriate version of the root of the sparsification tree. We update the
certificate data structures at each node, and make new versions of the nodes
along the update path pointing to the new versions of the certificate data
structures.

Frederickson’s data structure can support edge insertions and deletions in
O(m1/ 2) time, and the two update types listed above may be simulated using
O(1) insertions and deletions. The MST and best swap edge do not form a
strong certificate for the best swap, but they are a subgraph of another graph, the
union of the MST T1 of G and the MST T2 of G 2 T1, which forms a stable
certificate for the best swap problem. These two MST’s can be maintained by
Frederickson’s MST algorithm, which can easily be made persistent using the
same techniques as Frederickson’s best swap data structure.

Thus, a combination of a persistent version of Frederickson’s data structure
with a persistent version of sparsification gives the result. e

THEOREM 4.2. The k best spanning trees of an undirected graph can be found in
a total of O(m log log* n 1 k min(n, k)1/2) time, or by a randomized algorithm
taking O(m 1 k min(n, k)1/2) expected time.

PROOF. As Frederickson [1997] shows, this problem can be solved using O(k)
operations in the persistent best swap data structure. The data structure can be
constructed in time O(m log log* n), the bottleneck constructing a minimum
spanning tree in each node of the sparsification tree. This can be improved to
O(m) expected time by using the recent results of Karger et al. [1995]. A
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technique of the first author [Eppstein 1992] combined with recent results on
sensitivity analysis [Dixon et al. 1992; King 1995] allows us to replace n by min(n,
k) and m by min(m, k) in the time bounds. e

COROLLARY 4.3. The k best spanning trees of a Euclidean planar point set can
be found in time O(n log n log k 1 k min(k, n)1/2). For a point set with the
rectilinear metric, the time is O(n log n 1 n log log n log k 1 k min(k, n)1/2), and
for a point set in higher dimensions the time is O(n222/(d/211)1e 1 kn1/2).

PROOF. In an earlier work [Eppstein 1994b], we reduced these geometric
problems to the general graph problem in these time bounds. e

4.2. SAMPLING SPANNING TREES. Consider the random walk used by Feder
and Mihail [1992] to randomly sample spanning trees of a graph G. The state at
each point in the walk consists of a set of edges, which is either a spanning tree
of G, or a forest with n 2 2 edges (i.e., a spanning tree with an edge removed).
At each step, we stay with the current edge set with probability 1/2. If we do not
stay with the current step, we either remove a randomly chosen edge from the
edge set if it is already a spanning tree, or we add an edge chosen randomly
among those edges that augment the set to become a spanning tree. Thus,
whenever the edge set changes, it alternates between being a spanning tree and a
separated forest.

We can implement this random walk if we can perform the following combined
step efficiently: given a spanning tree of the graph, remove a randomly chosen
edge, and then augment the resulting forest to be a spanning tree again by
choosing another edge randomly among the edges that cross the cut spanned by
the removed edge.

THEOREM 4.2.1. We can implement the random walk of Feder and Mihail
[1992] on the spanning forests of a given graph, in time O(n1/2) per step.

PROOF. The input is an unweighted graph, so we are free to assign weights
arbitrarily. We do this in such a way that, at each point in time, the edges in the
current spanning tree are given weight zero. The edges outside the tree are given
weights corresponding to their positions in a permutation chosen uniformly at
random among all possible permutations of these edges.

When we remove an edge from the spanning tree, we insert it into this random
permutation by choosing its position as a randomly chosen integer from 0 to m 2
n, preserving the relative positions in the permutation of all other edges. We
then use our data structure to find a new minimum spanning tree with the
weights described above. In this new tree, some edge will have been added to
replace the removed edge. The random permutation on the edge weights causes
this newly added edge to be selected uniformly at random among the edges
spanning the cut. We remove this selected edge from the random permutation
and give it weight zero. The removal of this edge will not bias the distribution of
permutations of the remaining edges, so the overall permutation will continue to
be chosen uniformly at random.

To implement this, we need to compute minimum spanning trees in a graph
with weights that may change as edges are inserted to and deleted from the
random permutation. Our minimum spanning tree algorithm, and Frederickson’s
algorithm on which ours is based, do not perform arithmetic on edge weights;
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they can operate in the given time bounds if they can merely compare any two
weights in constant time. These comparisons can be performed using a data
structure of Dietz and Sleator [1987] to find which of the two edges occurs
earlier in the permutation. This structure maintains a list of elements, and allows
insertions and deletions within the list; we use an auxiliary data structure to
determine in O(log n) time where in the list to perform each insertion. e

Feder and Mihail show that this walk converges to the uniform distribution in
a total of O((n log m 1 e21)n3) steps; thus, we can select a spanning tree from
the uniform distribution in time O((n log m 1 e21)n7/ 2).

4.3. MATROID INTERSECTION PROBLEMS. Frederickson and Srinivas [1989]
considered the problem of maintaining dynamically a solution to a class of
matroid intersection problems, including the problem of maintaining a colored-
constrained minimum spanning tree of a graph. Before defining the problem, we
need a little terminology on matroids [Lawler 1976].

A matroid M consists of a finite set E of elements, plus certain rules describing
some properties of a family of subsets of E [Lawler 1976]. For our purposes, it is
enough to say that these rules define the notion of independence in subsets of E.
A matroid can be defined as a family of subsets of E, known as independent sets,
satisfying the following two axioms:

(1) Any subset of an independent set is independent.
(2) If A and B are both independent, and uB u . uA u, there is some b [ B 2 A

such that A ø {b} is independent.

(In Section 7, we will see an example of a matroid defined using these axioms.) A
subset of E that is not independent is called dependent. A base B is a maximal
independent subset of E, and the rank( A) of a subset A # E is the cardinality of
a maximal independent subset of A. Let B be a base, e [ B, and f [ E 2 B.
The circuit C( f, B) is the set containing all the elements that can be deleted
from B ø { f} to restore independence. The cocircuit C# (e, B) is the set
containing all the elements that restore rank when added to B 2 {e}.

The matroid that we will be using in this section is the graphic matroid that
defines minimum spanning trees. Let G be a weighted undirected graph. E is the
set of edges in the graph. A base B of the matroid is a spanning tree of G, an
independent set is a forest, and the rank is the number of edges in a spanning
tree. A circuit is a cycle: C( f, B) is the cycle induced by adding edge f to the
spanning tree B (namely, C( f, B) contains all the edges that f can replace in B).
A cocircuit is a cut: C# (e, B) contains all the edges that can replace e in B. A
minimum spanning tree is a minimum weight base in a graphic matroid.

Assume that each edge of a graph is labeled with one out of d different colors.
We would like to maintain a minimum spanning tree that contains a certain
number of edges of each color, as edges are inserted, deleted, or have their
weight changed. We call this the color-constrained minimum spanning tree
problem. Frederickson and Srinivas [1989] gave a very sophisticated algorithm to
update a solution of a family of matroid intersection problems, which include the
dynamic maintenance of color-constrained minimum spanning trees. Their algo-
rithm makes use of the following three low-level primitives:
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maxcirc( f, B): find the maximum weight element in the circuit C( f, B)
(assuming that f ¸ B).

mincocirc(e, B): find the minimum weight element in the cocircuit C# (e, B)
(assuming that e [ B).

swap(e, f, B): change B into B 2 e 1 f (assuming that f ¸ B, e [ C( f, B)).

Note that when the base B is a spanning tree of a graph, these primitives
correspond to the operations used to update a minimum spanning tree in an
uncolored graph. Namely, the primitives are finding the maximum weight edge in
the cycle induced by edge f ¸ B (used when a new edge is inserted or when the
weight of nontree edge is decreased), finding the minimum weight edge in the
cut obtained after removing e [ B (used when a tree edge is deleted or has its
weight increased), and swapping edges e and f (used to update the solution after
a change).

THEOREM 4.3.1. Let G be a graph with n vertices and m edges of d colors. A
solution to the color-constrained minimum spanning tree problem can be main-
tained in O(d2n1/2 1 d11/3 (d!)2n1/3 log n) time per update, and O(dm 1 d3n) space.

PROOF. Frederickson and Srinivas [1989] showed that, if U(m, n) denotes
the time needed to perform maxcirc, mincocirc, and swap on spanning trees in
uncolored graphs, and U(m, n) 5 O(m1/ 2), then a solution to the color-
constrained minimum spanning tree problem can be maintained in O(d2U(m, n)
1 d11/3 (d!)2n1/3 log n) time per update, and O(dm 1 d3n) space.

Our data structure for updating a minimum spanning tree lets us solve maxcirc,
mincocirc, and swap in time U(m, n) 5 O(n1/2) 5 O(m1/2). Thus, the bounds in
Frederickson and Srinivas’ algorithm become the ones claimed in the theorem. e

5. Edge Connectivity

In this section, we consider the problem of maintaining information about the
k-edge connectivity of an undirected graph during edge insertions and deletions.
Typical query operations we would like to perform include checking if the graph
is k-edge-connected, or checking whether any two given vertices are k-edge-
connected. The best previous data structure for 2-edge connectivity is due to
Frederickson [1997], who improved a previous O(m2/3) time bound per update
[Galil and Italiano 1992] to O(m1/ 2). Galil and Italiano [1993] and La Poutré
[1991] gave algorithms for maintaining 3-edge connectivity with insertions only,
in amortized time O(a(q, n)) per insertion. Galil and Italiano [1991a] discov-
ered a fully dynamic algorithm for 3-edge connectivity, with an O(m2/3) time
bound. No nontrivial dynamic algorithm was known for any higher order of
connectivity.

If a graph is k-edge-connected, we could use a minimal k-edge-connected
subgraph as a sparse certificate. However, it has only been recently that
algorithms were developed for finding such subgraphs in linear time, even for
2-edge connectivity [Han et al. 1995]. Further, no sublinear-time algorithms are
known for maintaining such graphs, let alone with any sort of stability properties.

Instead we use the following technique, which produces certificates guaranteed
to be both sparse and stable. Given a graph G, let T1 5 U1 be a spanning forest
of G. Let T2 be a spanning forest of G 2 U1, and let U2 5 U1 ø T2. In general,
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let Ti be a spanning forest of G 2 Ui21, and let Ui be Ui21 ø Ti. Both
Thurimella and Nagamochi and Ibaraki noted the following connection between
these graphs and edge connectivity:

LEMMA 5.1 ([THURIMELLA 1989; NAGAMOCHI AND IBARAKI 1992]). Uk is a
certificate of k-edge connectivity for G.

More generally, Uk and G have the same set of (k 2 1)-cuts, and the same set
of k-edge-connected components. We need the following stronger result:

LEMMA 5.2. Uk is a strong certificate of k-edge connectivity for G.

PROOF. Consider any k-edge-connected graph G ø H, and build a certificate
in the following way. Start with T1, and augment it with edges of H to be a
spanning forest for G ø H. Then start with T2, and augment it with some of the
remaining edges of H to be a spanning forest for G ø H. In this way, we obtain
a collection of forests, which by Lemma 5.3 is a certificate for G ø H, and which
is a subgraph of Uk ø H. Therefore, if G ø H is k-edge-connected, so is Uk ø
H. On the other hand, if G ø H is not k-edge-connected, then neither can its
subgraph Uk ø H. So Uk is a strong certificate for G. e

For any fixed k, we can maintain a graph Uk in time O(km1/ 2) per update,
using k copies of Frederickson’s minimum spanning forest algorithm. The
resulting certificate is stable, since each update involves at most a single edge flip
in each of k minimum spanning trees.

We are now ready to state our results for edge connectivity.

THEOREM 5.3. The 2-edge-connected components of an undirected graph can
be maintained in time O(n1/2) per update. Queries asking whether two vertices are in
the same component can be answered in O(log n) time.

PROOF. We use Frederickson’s minimum spanning tree algorithm [Frederick-
son 1985] to maintain the stable strong certificate U2, giving f(n, m) 5
O(m1/ 2). Each update to the graph translates to O(1) changes to U2. The
2-edge-connected components of U2 can be maintained in time g(n, m) 5
O(m1/ 2), with queries whether two vertices are in the same component answered
in time q(n, m) 5 O(log n) [Frederickson 1997]. Applying Theorem 3.3.2 gives
our result. e

THEOREM 5.4. The 3-edge-connected components of an undirected graph can
be maintained in time O(n2/3) per update and O(n2/3) per query.

PROOF. We use the same technique, maintaining the 3-edge-connected com-
ponents in U3 with the O(m2/3)-time algorithm of Galil and Italiano [1991a].
f(n, m) 5 O(m1/ 2) as before, and g(n, m) 5 q(n, m) 5 O(m2/3), so the total
time is O(n1/ 2 1 n2/3) 5 O(n2/3). e

THEOREM 5.5. The 4-edge-connected components of an undirected graph can
be maintained in time O(na(n)) per update.

PROOF. We maintain U4, and after each update recompute whether the
resulting graph is 4-edge-connected. We transform the problem into one of
testing 4-vertex connectivity by replacing every vertex by a 2-hub wheel [Galil and

684 D. EPPSTEIN ET AL.



Italiano 1991c], and then use the O(m 1 na(n))-time 4-vertex connectivity
algorithm of Kanevsky et al. [1991]. e

THEOREM 5.6. For any fixed constant k, information on whether an undirected
graph is k-edge-connected can be maintained in time O(n log n) per update.

PROOF. We maintain the stable strong certificate Uk using our dynamic
minimum spanning tree techniques, and check if Uk is k-edge-connected after
each update using Gabow’s O(m 1 n log n)-time algorithm [Gabow 1991a]. e

6. Vertex Connectivity

Vertex connectivity seems to be harder in general than edge connectivity. The
best connectivity testing algorithms are significantly faster for edge connectivity
than for vertex connectivity. This relative hardness was made explicit by Galil and
Italiano [1991c], who showed how computations of edge connectivity could be
reduced to computations of vertex connectivity; no reduction in the reverse
direction is known.

Nevertheless, our sparsification technique is still useful here, and provides the
first nontrivial fully dynamic algorithms for vertex connectivity. As usual, we
must first define our certificates; they will turn out to be a restricted form of the
certificates Uk used for edge connectivity.

Given a graph G, let B1 5 C1 be a breadth-first spanning forest of G; that is,
we start from any vertex and perform a breadth-first search until all edges are
exhausted; then we continue by restarting at any unvisited node until all
connected components of the graph are covered. Such a search is well known to
take linear total time. Similarly, let B2 be a breadth first forest of G 2 C1, and
let C2 5 C1 ø B2. In general, let Bi be a breadth first forest of G 2 Ci21, and
let Ci 5 Ci21 ø Bi. Cheriyan and Thurimella [1991] prove that Ck is a
certificate for the k-vertex-connectedness of G. Nagamochi and Ibaraki [1992]
showed that a sparse certificate for k-vertex connectivity can be found in time
O(m 1 n). As before, we need a strengthening of these results.

LEMMA 6.1. Ck is a strong certificate of k-vertex connectivity for G.

PROOF. Consider a (k 2 1)-vertex cut S in any graph Ck ø H, partitioning
the remaining vertices into two components A and B. Obviously, H can contain
no edges from A to B. Let x be the vertex of S first visited by the breadth first
search defining forest B1. Suppose x was visited from a vertex in A. Then, all the
edges from x to B in G will be visited before any edge from another vertex of S
to B. So all such edges will be in B1 instead of Ck 2 B1, and S 2 x forms a (k 2
2)-vertex cut in Ck 2 B1. Continuing in the same way, we see that each
breadth-first search eliminates a vertex, and so Bk must be disconnected. But this
can only happen if S is also a cutset in G, and hence in G ø H.

Thus, we see that any cut in Ck ø H is also a cut in G ø H. The converse
follows immediately from the fact that Ck is a subgraph of G. Hence, Ck is a
strong certificate. e

THEOREM 6.2. The 2- and 3-vertex connected components of an undirected
graph can be maintained in time O(n) per update. The 4-vertex connectivity of an
undirected graph can be maintained in time O(na(n)) per update.
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PROOF. Each certificate Ck can be found in time f(n, m) 5 O(km) by
repeated application of breadth-first search. At the root of the sparsification
tree, k-vertex connectivity can be tested, and k-vertex-connected components
identified, in linear time for k 5 2 and k 5 3 [Hopcroft and Tarjan 1973; Tarjan
1972]. 4-vertex connectivity can be tested in time g(n, m) 5 O(m 1 na(n))
[Kanevsky et al. 1991]. Applying the basic sparsification technique of Theorem
3.1.1 proves the results. e

7. Bipartiteness

In this section, we show how to maintain efficiently information on whether a
graph is bipartite, during insertions and deletions of edges. We first give a simple
algorithm based on Theorem 3.1.1, which supports each update in O(n) time.

THEOREM 7.1. We can perform edge insertions or deletions in a graph, and
compute whether the graph is bipartite after each update, in time O(n) per update.

PROOF. Recall that a graph G is bipartite if and only if G does not contain an
odd cycle. Therefore, a spanning forest of G together with one more edge
inducing an odd cycle, or just a spanning forest if no such edge exists, is a sparse
strong certificate of bipartiteness. Since this certificate can be found in linear
time, Theorem 3.1.1 proves the result. e

Next, we show how to improve this bound to O(n1/ 2), by using more
sophisticated data structures combined with the results of Theorem 3.3.2. Note
that in order to apply Theorem 3.3.2, we need a stable sparse certificate and a
fully dynamic algorithm to be sped up. We use the same certificate as before:
namely, we use a spanning forest of G plus one additional edge inducing an odd
cycle (if there is such an edge).

LEMMA 7.2. The certificates described above form the bases of a matroid.

PROOF. We described in Section 4.3 one of a number of standard definitions
of a matroid, in terms of certain axioms on a family of independent sets; here we
need only verify those axioms for these certificates. What we want to prove is
that the subgraphs of G formed either as forests or as forests together with a
single edge spanning an odd cycle form the independent sets of a matroid.
Clearly, a subgraph of such a subgraph is itself of the same form, so the key
property we need to show is the other axiom defining a matroid: if we have two
such subgraphs C1 and C2, with uC1u . uC2u, then there is some edge e [ C1
such that C2 ø {e} is also of the above type.

If C1 spans a larger portion of the graph than C2, we can add an edge from C2
to C1 and span a larger graph than C2 alone (this is simply the matroid basis
exchange rule applied to the standard spanning forest matroid). Otherwise, C1
and C2 span the same portion of G, but C1 contains an odd cycle whereas C2 is
a forest. Two-color the connected component of C2 containing the odd cycle in
C1. Since the cycle is odd, some edge of it must have both endpoints the same
color. But then that edge spans an odd cycle in C2, and can be added to C2 to
form a larger independent set. e

COROLLARY 7.3. If we arbitrarily supply distinct edge weights to a graph, then
the subgraph formed by using the minimum spanning forest of a graph together with
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the minimum weight additional edge forming an odd cycle, is a stable certificate for
bipartiteness.

PROOF. The red and blue rules described for minimum spanning trees work
for any matroid—the generalized version of the red rule removes the minimum
element in any circuit of the matroid, and the generalized blue rule adds the
minimum element in each cocircuit of the matroid. The correctness of the blue
rule can easily be seen from the more common greedy algorithm for finding the
minimum weight base: If we add elements one by one in sorted order, the
minimum element of the cocircuit will be examined first, at which point it will
certainly be independent of the previously added elements, and so must be part
of the minimum weight base. The red rule is just the matroid dual of the blue
rule.

The certificate used here is the minimum weight base in the matroid of Lemma
7.2: By the blue rule, we can add the edges of the minimum spanning forest first,
at which point the only edge to add is the minimum weight edge inducing an odd
cycle. Lemmas 4.1 and 4.2 were proved using only the correctness of the red and
blue rules, so their analogues hold and show that the minimum base for any
matroid is stable. e

A form of stability would be preserved if we used any additional edge inducing
an odd cycle, not necessarily that of minimum weight, since an O(1) bound on
the amount of change per update would follow from the minimum spanning
forest’s stability. However, there would not then be a unique certificate for each
graph, so the mapping required in the definition of stability would not exist.
Stable sparsification could still be made to work in this case, but using the
minimum weight certificate saves us from having to complicate the definition of
stability. The use of matroids in Corollary 7.3 also shows that as in the case of
minimum spanning forests stability can be used directly in a simpler way than our
general stable sparsification technique.

We next describe a fully dynamic algorithm that maintains the certificates
described above in O(m1/ 2) time per update. This algorithm is an application of
the topology tree of Frederickson [1997], and can be viewed as a version of
Frederickson’s ambivalent data structures. We refer the reader to Frederickson
[1997] for the details of the method. For our purposes, it is enough to recall from
Frederickson [1997] some definitions on restricted multi-level partitions, topol-
ogy trees, and 2-dimensional topology trees.

We first perform a standard transformation to convert the graph G into a
graph with maximum vertex degree 3 [Harary 1969]: Suppose v [ V has degree
d(v) . 3, and is adjacent to vertices u1, u2, . . . , ud. In the transformed graph,
v is replaced by a chain of d 2 1 dashed edges: namely, we substitute v by d
vertices v1, v2, . . . , vd. For each edge (v, u) of the original graph, in position i
among the list of edges adjacent to v and position j among the edges adjacent to
u, we create an actual edge (vi, uj). We also create dashed edges (vi, vi11) for
1 # i # d 2 1. As a result of this transformation, the graph keeps its actual
edges, and has an additional O(m) dashed edges.

Throughout the sequence of updates, a spanning tree T of G containing all the
dashed edges is maintained. A vertex cluster with respect to T is a set of vertices
that induces a connected subgraph on T. An edge is incident to a cluster if exactly
one of its endpoints is inside the cluster. Two clusters are adjacent if there is a
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tree edge that is incident to both. A boundary vertex of a cluster is a vertex that is
adjacent in T to some vertex not in the cluster. The external degree of a cluster is
the number of tree edges incident to it.

A restricted partition of order z of G is a partition of its vertex set V into
O(m/z) vertex clusters such that:

(1) Each set in the partition yields a vertex cluster of external degree at most 3.
(2) Each cluster of external degree 3 is of cardinality 1.
(3) Each cluster of external degree less than 3 is of cardinality less than or equal

to z.
(4) No two adjacent clusters can be combined and still satisfy the above.

Any cluster in such a partition with more than one vertex will have maximum
external degree 2, and therefore all clusters will have at most two boundary
vertices.

A restricted multi-level partition consists of a collection of restricted partitions
of V satisfying the following:

(1) The clusters at level 0 (known as basic clusters) form a restricted partition of
order z.

(2) The clusters at level l $ 1 form a restricted partition of order 2 with respect
to the tree obtained after shrinking all the clusters at level l 2 1.

(3) There is exactly one vertex cluster at the topmost level.

Frederickson showed that the number of levels in a restricted multi-level
partition is Q(log n) [Frederickson 1997].

The topology tree is a hierarchical representation of G based on T. Each level
of the topology tree partitions the vertices of G into connected subsets called
clusters. More precisely, given a restricted multi-level partition for T, a topology
tree for T is a tree satisfying the following:

(1) A topology tree node at level l represents a vertex cluster at level l in the
restricted multi-level partition.

(2) A node at level l $ 1 has at most two children, representing the vertex
clusters at level l 2 1 whose union gives the vertex cluster the node
represents.

As shown in Frederickson [1997], the update of a topology tree because of an
edge swap in T consists of two subtasks. First, a constant number of basic clusters
(corresponding to leaves in the topology tree) have to be examined and possibly
updated. Since each basic cluster has size O( z), this can be supported in O( z)
time. Second, the changes in these basic clusters percolate up in the topology
tree, possibly causing vertex clusters in the multilevel partition to be regrouped
in different ways. This is handled by rebuilding portions of the topology tree in a
bottom-up fashion, and involves a constant amount of work to be done on at
most O(log n) topology tree nodes. Consequently, the update of a topology tree
because of an edge swap can be supported in time O( z 1 log n) [Frederickson
1997].

A 2-dimensional topology tree for a topology tree is defined as follows: For
every pair of nodes Va and Vb at the same level in the topology tree there is a
node labeled Va 3 Vb in the 2-dimensional topology tree. Let ET be the tree
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edges of G (i.e., the edges in the spanning tree T): node Va 3 Vb represents all
the non-tree edges of G (i.e., the edges of E 2 ET) having one endpoint in Va

and the other in Vb. The root of the 2-dimensional topology tree is labeled V 3
V and represents all the non-tree edges of G. If a node is labeled Va 3 Vb, and
Va has children Vai, 1 # i # p, and Vb has children Vb j

, 1 # j # q, in the
topology tree, then Va 3 Vb has children Va i

3 Vb j
, 1 # i # p, 1 # j # q, in

the 2-dimensional topology tree.
The update of a 2-dimensional topology tree during a swap in its correspond-

ing topology tree can be performed in O(m/z) time [Frederickson 1997]. The
crucial point of this analysis is that only O(m/z) nodes in the 2-dimensional
topology tree need to be looked at and eventually updated during a swap.

The last concept needed from Frederickson [1997] is the concept of ambivalent
data structure. This is based upon the idea of maintaining a small number of
possible alternatives in a data structure, even though only one of them can be
valid at any time. The ambivalence in our application comes from not knowing
whether a given edge induces an even or odd cycle in the MST; we solve this
difficulty by storing two edges at each node of the two-dimensional topology tree,
one inducing a cycle of each parity.

We now describe the details of our application of Frederickson’s clustering
method to bipartiteness. Throughout the sequence of operations, we maintain a
spanning tree T containing all of the dashed edges, and we make use of a
2-dimensional topology tree to keep track of the parity of the cycles induced by
non-tree edges of G in this spanning forest. Note that non-tree edges are actual
edges, that is, edges of the original graph (before applying the transformation to
have vertex degrees no larger than three). Given a non-tree edge e [ E 2 ET,
we denote by le the cycle induced in the spanning tree T by e.

Our data structure will be a topology tree for T, and the corresponding
2-dimensional topology tree, both augmented with the following additional
information. For each node Vj 3 Vr in the 2-dimensional topology tree, we
maintain at most two non-tree edges of G between Vj and Vr, one for each parity
of their induced cycle in T.

The other information we maintain is the following: For each selected edge, we
maintain in node Vj 3 Vr of the 2-dimensional topology tree the distances
between its endpoint in a cluster (either Vj or Vr) and all boundary vertices in
the same cluster. By distance between two vertices u and v, we mean the number
of actual edges (i.e., not dashed) in the spanning tree path between u and v.
Finally, for each cluster Vj we maintain in the corresponding node of the
topology tree the distances between all pairs of boundary vertices of Vj. Given
two vertices vi and vj, we denote their distance by d(vi, vj). Since each cluster
contains at most three boundary vertices, there will be at most O(1) distances to
be stored at each node of the topology tree and of the 2-dimensional topology
tree. As seen before, in order to decide which non-tree edge is to be maintained
between Vj and Vr, we must be able to check whether two cycles l f1

and l f2
have

the same parity. The following lemma shows that in order to accomplish this task
it is enough to know the distances between the endpoints of f1 and f2, and the
boundary vertices in Vj and Vr.

LEMMA 7.4. Let Vj and Vr be any two clusters at the same level of the topology
tree, and let f1 and f2 be any two non-tree edges between Vj and Vr. Let wj be a
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boundary vertex of Vj, and let wr be a boundary vertex of Vr. Let j1 and j2 be
respectively the endpoints of f1 and f2 in Vj and let r1 and r2 be respectively the
endpoints of f1 and f2 in Vr. The two cycles lf1

and lf2
have the same parity if and

only if the quantity d( j1, wj) 1 d( j2, wj) 1 d(r1, wr) 2 d(r2, wr) is even.

PROOF. Let p j be the tree path (which is entirely contained in cluster Vj)
between j1 and j2, and let p r be the tree path (which is entirely contained in Vr)
between r1 and r2. Note that p j, f1, pr and f2 form a cycle C( f1, f2) in G. We
prove the lemma by proving the following two claims:

(1) l f1
and l f2

have the same parity if and only if C( f1, f2) has an even number
of edges.

(2) C( f1, f2) has an even number of edges if and only if d( j1, wj) 1 d( j2, wj) 1
d(r1, wr) 1 d(r2, wr) is even.

We first prove claim (1). Consider the subgraph formed by the symmetric
difference of l f1

and l f2
. It is easy to see that it consists of p j, p r, f1, and f2 and

therefore (1) follows.
We now turn to claim (2). The length of C( f1, f2) is ( up ju 1 up ru 1 2). The

tree path between j1 and wj unioned with the path between j2 and wj gives a path
(not necessarily simple) between j1 and j2. Consequently, it must contain p j as a
subpath and d( j1, wj) 1 d( j2, wj) must be equal to ( up ju 1 2qj) for some qj $
0 (qj 5 0 if and only if wj is in p j). Similarly, d(r1, vr) 1 d(r2, vr) 5 ( upru 1
2qr) for some qr $ 0 (qr 5 0 if and only if wr is in p r). So, d( j1, wj) 1 d( j2,
wj) 1 d(r1, wr) 1 d(r2, wr) 5 ( upju 1 upru 1 2qj 1 2qr), which has the same
parity as ( upju 1 upru 1 2) 5 uC( f1, f2) u. e

Since the cycles l f1
and l f2

depend on how clusters Vj and Vr are connected in
the spanning tree T, we cannot determine the parity of either l f1

or l f2
by

looking only at Vj and Vr. However, Lemma 7.4 tells us that knowing the
distances between the endpoints of f1 and f2 and the boundary vertices of Vj and
Vr is enough to decide whether these two cycles have the same parity or not. This
is particularly important, since (contrary to the parity of a cycle) the information
about these distances is local to a cluster and needs no update as long as the
cluster does not change.

We now show how to maintain the extra information stored in the nodes of the
augmented topology tree and of the augmented 2-dimensional topology tree
whenever these trees undergo an update such as an edge swap.

The extra information stored in the augmented topology tree can be updated
as follows. If the swap causes a basic cluster to be split or merged, we recompute
the new cluster Vj, together with all the edges incident to it, and their distance
from the boundary vertices of Vj. While percolating this update up in the
topology tree, we follow the algorithm of Frederickson [1997]. The only differ-
ence is in how we update the information about the distance of the boundary
vertices. Assume we are handling an affected cluster Vj, that consists of two
children clusters Vj9 and Vj0 joined by edge (w9, w0). Let w9 be a boundary
vertex of Vj9, and w0 be a boundary vertex of Vj0. The distance d(v9, v0) in Vj

between a boundary vertex v9 previously in Vj9 and a boundary vertex v0
previously in Vj0 can be computed in O(1) time by considering d(v9, w9)
(available in Vj9), d(w0, v0) (available in Vj0) and the edge (w9, w0). This adds
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only extra O(1) time per node considered, and consequently keeps the bound
required to update the augmented topology tree O( z 1 log n).

We now turn to the update of the augmented 2-dimensional topology tree.

LEMMA 7.5. The augmented topology tree and 2-dimensional topology tree can
be initialized in O(m) time and space, and updated in O(m1/2) time.

PROOF. Recall that as shown in Frederickson [1985; 1997] updating a 2-
dimensional topology tree can be done by performing a constant amount of work
on O(m/z) nodes. To generate the new augmented 2-dimensional topology tree,
we follow the same ideas as in Frederickson [1985; 1997]. We only sketch here
the differences with that algorithm. For each basic cluster Vj that has changed,
do the following. For each other basic cluster Vr and for each set of nontree
edges between Vj and Vr, find the edges (at most two) that will be stored in Vj 3
Vr. By Lemma 7.4, this can be done by using the distances computed for clusters
Vj and Vr and stored in the topology tree. We now describe how to update the
selected edges for an internal node Vj 3 Vr of the 2-dimensional topology tree.
Denote by Vj9 and Vj0 the subclusters children of Vj in the topology tree, and by
Vr9 and Vr0 the subclusters children of Vr. (This is the more general case, since
either Vj or Vr can consist of only one subcluster). We compute the selected
edges of Vj 3 Vr starting from the selected edges of the four nodes Vj9 3 Vr9,
Vj9 3 Vr0, Vj0 3 Vr9, and Vj0 3 Vr0, as follows.

The minimum weight edge between Vj and Vr of a given parity must come
from some combination of Vj9 3 Vr9, Vj9 3 Vr0, Vj0 3 Vr9, and Vj0 3 Vr0, and
will be the minimum weight edge of its parity in that combination. We compare
the parities of the (at most eight) such edges, using Lemma 7.4, to determine the
selected edges for Vj 3 Vr. Again, this shows how the augmented 2-dimensional
topology tree can be updated in O(m/z) time. e

THEOREM 7.6. We can perform edge insertions or deletions in a graph, and
compute whether the graph is bipartite after each update, in time O(n1/2) per update.

PROOF. After performing any update on the augmented 2-dimensional topol-
ogy tree, the minimum weight edge inducing an odd cycle in the minimum
spanning forest must be one of the two selected edges for the node V 3 V at the
root of the 2-dimensional topology tree. We can test one or both such edges by
computing the length of the induced cycle, using Sleator and Tarjan’s dynamic
tree data structure. If no such edge is selected, or one edge is selected but yields
an even cycle, then the graph is bipartite and no odd cycle exists. Thus, the
augmented topology tree and 2-dimensional topology tree yields an O(m1/ 2)
update algorithm for maintaining our certificate for bipartiteness, as well as
O(m1/ 2) fully dynamic algorithm for maintaining information about the bipar-
titeness of a graph. Applying Theorem 3.3.2 gives the result. e

Note that we can also answer queries, specifying the colors of two vertices of
the graph and asking whether there exists a two-coloring of the graph with those
colors, in the same time bounds, simply by examining the parity of the length of
the path between the two vertices in the minimum spanning forest.
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8. Faster Insertions

We saw earlier that the property of bipartiteness can be maintained in O(n) time
per update. Using Theorem 3.4.1, we can improve this result by combining
sparsification with a partially dynamic algorithm for the same problem:

LEMMA 8.1. In linear time, we can construct a data structure for a bipartite
graph such that each additional edge can be added, and the bipartiteness of the
resulting graph tested, in amortized time O(a(n)).

PROOF. We modify the well-known union–find data structure. We represent
each vertex by a set element, and each connected component of the graph by a
set. Sets in the union–find data structure are represented by trees; we augment
the data structure so that each tree edge stores a bit of information, denoting the
parity of the paths between the two elements it connects. When a new graph
edge is added between points in different sets, we connect the roots of the two
sets with an edge of the appropriate parity. When a new edge connects points in
the same set, we must test whether it forms an odd cycle, by compressing the
paths from those points to the root of the set, and examining the parity of the
resulting edges. If an odd cycle is found, all further insertions can be ignored. All
operations can be performed in the same time as the basic union–find algorithm,
which is well known to have an O(a(n)) amortized time bound. e

THEOREM 8.2. We can construct a data structure for testing bipartiteness for
which each insertion can be performed in time O(a(n)) and each deletion can be
performed in time O(n log(m/n)).

PROOF. We combine the data structure above with Theorem 3.4.1. e

We next apply this technique to the spanning tree and connectivity problems
we solved using the other versions of our sparsification technique.

THEOREM 8.3. The minimum spanning forest of a graph can be maintained in
time O(log n) per insertion and O(n log(m/n)) per deletion.

PROOF. We apply Theorem 3.4.1 using a partially dynamic algorithm based
on the dynamic tree data structure of Sleator and Tarjan [1983]. e

THEOREM 8.4. The connected, 2- and 3-edge-connected, and 2- and 3-vertex-
connected components of a graph can be maintained in amortized time O(a(q, n))
per insertion or query and O(n log(m/n)) per deletion, where q is the total number of
queries made.

PROOF. For connected components, we use the well known union–find
algorithm as our partially dynamic data structure. For 2-connected components
of either type, we use the partially dynamic algorithms of Westbrook and Tarjan
[1992]. For 3-edge-connected components, we use the algorithm of La Poutré
[1991]. For 3-vertex-connected components we use an algorithm of La Poutré,
van Leeuwen, and Overmars (personal communication cited in Di Battista and
Tamassia [1990]). e

THEOREM 8.5. The 4-vertex connectivity of a graph can be maintained in time
O(log n) per insertion and O(n log n) per deletion.
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PROOF. We use a data structure of Kanevsky et al. [1991], for which a
sequence of l insertions takes time O(n log n 1 l ). Thus, p(n, m) 5 O(1),
f(n, m) 5 O(m 1 n log n), and the result follows from Theorem 3.4.1. e

9. Conclusions and Recent Work

We have presented a new technique, called sparsification, that proves to be very
useful in the design of fully dynamic graph algorithms. As an application, we
have presented new improved algorithms for dynamic minimum spanning forests,
and for several types of dynamic edge and vertex connectivity. Sparsification can
also be applied to static problems such as computing the k smallest spanning
trees of a graph. The technique is quite general and uses previous algorithms as
subroutines. Subsequent research has expanded our results and confirmed the
importance of the sparsification technique.

While sparsification has many applications in algorithms for arbitrary graphs, it
seemed unlikely that it could be used to speed up algorithms for families of
graphs that are already sparse, such as planar graphs. However, in recent work
[Eppstein et al. 1996; 1998], we applied sparsification to dynamic planar graph
problems, by expanding the notion of strong certificate introduced in this paper
to graphs in which a subset of the vertices are denoted as interesting; these
certificates may reduce the size of the graph by removing uninteresting vertices.
Using this notion, we defined a type of sparsification based on separators, small
sets of vertices the removal of which splits the graph into roughly equal size
components. Repeatedly finding separators in these components gives a separator
tree, which we also use as our sparsification tree; the interesting vertices in each
certificate will be those vertices used in separators at higher levels of the tree.

Fernández-Baca et al. [1996] have applied the sparsification technique de-
scribed here to an alternate type of dynamic graph problem: one in which edge
weights do not change by discrete update events, but rather in which the edge
weights are linear functions of a time parameter. They showed how to use these
techniques to quickly construct the sequence of minimum spanning trees pro-
duced by such an input, or to find values of the time parameter satisfying certain
criteria.

Henzinger and La Poutré [1995] used sparsification to solve fully dynamic
2-vertex-connectivity in time O(=n log n log(m/n)), improving the bounds
given here. Henzinger and King have given randomized algorithms for some of
the problems described in this paper, including connectivity, 2-edge connectivity,
2-vertex connectivity, and bipartiteness improving their expected time bounds to
polylogarithmic [Henzinger and King 1995a; 1995b]. Very recently, Henzinger
and King [1997] presented an O(m1/3 log n) algorithm for the dynamic minimum
spanning tree problem: combined with sparsification, this improves the O(n1/ 2)
bound given in this paper.

Sparsification is very simple to implement and likely to be used in practice, as
shown in some recent work. Experimental comparison of some of the dynamic
connectivity algorithms has been performed by Alberts et al. [1997]. The method
compared the basic sparsification algorithm (having a worst-case update bound
of O(n log(m/n))) with a randomized method based on that of Henzinger and
King (having an expected amortized bound of O(log3 n)). The sparsification
method worked well for small update sequences, but the other method was faster
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on longer sequences. It remains to be seen how well stable sparsification would
perform in similar experiments. Alberts et al. [1997] also showed that in the
average case for sufficiently random inputs, a simple sparsification tree based on
edge subdivision performs as well as the vertex-subdivision method we described
in Theorem 3.1.1. Very recently, Amato et al. [1997] performed an extensive
experimental study of dynamic algorithms for minimum spanning tree problems,
and showed that stable sparsification has small constants and yields fast algo-
rithms even on small graphs.

10. Open Problems

Beyond the question of general improvement in any of our bounds, some specific
open questions remain to be solved.

First, to what extent can we take advantage of possible imbalances in insertion
and deletions? Theorem 3.4.1 provides algorithms with extremely fast insertion
times, and relatively slow deletion times. Theorem 3.3.2 on the other hand
provides algorithms in which the insertion and deletion times are approximately
equal. Can we combine these results to trade off the two time bounds against
each other, for situations in which insertions should be faster than deletions by
less than a linear factor? Recent work of Henzinger and King [1995b; 1995a;
1997] seems to shed some light on this direction.

Second, for minimum spanning forests, bipartiteness, connectivity, and 2- and
3-edge connectivity, we can achieve sublinear update times. As noted above, this
was also achieved by Henzinger and La Poutré [1995] for 2-vertex connectivity.
Can these results be extended to higher orders of connectivity?

Third, can we allow other update operations besides edge insertion and
deletion? Vertices can be inserted, and isolated vertices deleted, in the same
times as edge insertion and deletion, if we maintain the size of each group of
edges to be some number N near n that changes less frequently than n itself. Is
there some way of allowing rapid deletion of vertices that may still be connected
to many edges?

Fourth, lower bounds on the problems we solve deserve further study. Berman
et al. [1990] claim such results for dynamic minimum spanning trees and various
connectivity problems, but their bounds only hold if unreasonably small limits are
placed on preprocessing time. Recently, Fredman and Henzinger [1997] proved
an V(log n/log log n) lower bound per operation for fully dynamic k-edge
connectivity in the cell-probe model of computation. Can the gap between upper
and lower bounds for these problems be tightened? Furthermore, can we prove
nontrivial lower bounds for the other problems? We can prove that sparsification
does not work for certain problems; for instance if 3 is the property of having a
perfect matching, the only strong certificate for any graph is the graph itself.
Further work on the inability of sparsification to solve certain problems was
recently presented by Khanna et al. [1996].
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