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Machine interpretation of the shape of a component from CAD databases is an
important problem in CAD/CAM, computer vision, and intelligent manufacturing.
It can be used in CAD/CAM for evaluation of designs, in computer vision for
machine recognition and machine inspection of objects, and in intelligent
manufacturing for automating and integrating the link between design and
manufacturing. This topic has been an active area of research since the late ’70s,
and a significant number of computational methods have been proposed to identify
portions of the geometry of a part having engineering significance (here called
“features”).1 However, each proposed mechanism has been able to solve the
problem only for components within a restricted geometric domain (such as
polyhedral components), or only for components whose features interact with each
other in a restricted manner. The purposes of this article are to review and
summarize the development of research on machine recognition of features from
CAD data, to discuss the advantages and potential problems of each approach, and
to point out some of the promising directions future investigations may take. Since
most work in this field has focused on machining features, the article primarily
covers those features associated with the manufacturing domain. In order to better
understand the state of the art, methods of automated feature recognition are
divided into the following categories of methods based on their approach: graph-
based, syntactic pattern recognition, rule-based, and volumetric. Within each
category we have studied issues such as the definition of features, mechanisms
developed for recognition of features, the application scope, and the assumptions
made. In addition, the problem is addressed from the perspective of information
input requirements and the advantages and disadvantages of boundary
representation, constructive solid geometry (CSG), and 2D drawings with respect to
machine recognition of features are examined. Emphasis is placed on the
mechanisms for attacking problems associated with interacting features.

Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—boundary representations; constructive solid
geometry (CSG); curve, surface, solid and object representation; geometric
algorithms, languages, and systems; 1.3.8 [Computer Graphics]: Applications;

1 Although literature on this subject uses the terms form feature, semantic feature, shape feature,
semantic shape feature, and semantic form feature, we use the term feature exclusively throughout this
article.
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1.5.1 [Pattern Recognition]: Models—geometric; 1.5.2 [Pattern Recognition]:
Design Methodology—pattern analysis; 1.5.0 [Pattern Recognition]: General;
1.2.1 [Artificial Intelligence]: Applications and Expert Systems—industrial
automation; 1.2.10 [Artificial Intelligence]: Vision and Scene Understanding—
shape; 1.2.9 [Artificial Intelligence]: Robotics; J.2 [Computer Applications]:
Physical Sciences and Engineering—engineering

General Terms: Design, Performance, Reliability

Additional Key Words and Phrases: Artificial intelligence, automated process
planning, computer-aided design, computer-integrated manufacturing, feature
recognition, flexible automation
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1. INTRODUCTION

Design is a set of important processes
that occur at different life-cycle stages
of a product. Computer-aided design
(CAD), in general, refers to using com-
puters to assist with the various func-
tions in the design process. Engineers
consider CAD data to be the data that
represent a product or component: in
the domain of mechanical components
these are often represented as a set of
engineering drawings or a solid model
of a component.

Although CAD has been used to assist

with various design tasks, CAPP (com-
puter-aided process planning) has usu-
ally referred to the collection of activi-
ties that convert a part design into
manufacturing instructions that de-
scribe how to produce the part or how to
build an assembly to satisfy the design
specifications. In the domain of ma-
chined components, process planning
involves finding the sequence of pro-
cesses with which parts are to be ma-
chined (such as milling, grinding, dril-
ling, etc.), the fixturing configuration to
set up the part for each process to be
carried out, and the tools to be used to
carry out each operation in the se-
quence. In order to achieve this task for
a component, process planners interpret
the design data (the shape, surface fin-
ish, tolerances, etc.) based on process
and tool capabilities.

Computer-integrated manufacturing
(CIM) systems attempt to integrate
design, process planning, and other
functions (material handling, factory
management, etc.) in a production envi-
ronment. However, developing truly in-
tegrated manufacturing systems has
proved not to be a trivial undertaking.
One important reason has been that
CAD data consisting of annotated engi-
neering drawings or the solid model of a
component are not manufacturing-spe-
cific and generally represent geometry
by a low-level description of edges, ver-
tices, and faces of a component, whereas
process planners work with primitives
such as slots and holes (and properties
of the primitives such as dimensions
and surface finish) that are shapes pro-
duced by processes and tools.
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In order to overcome the integration
barrier between design and process
planning, a task which previously relied
upon a manual interpretation process
by an engineer, several conscious efforts
have been made, all using the concept of
features. As explained later, the strat-
egy has been either to incorporate fea-
tures in the CAD data during the design
process or to extract the features from
CAD data, or a combination of both. In
the next section, we first consider fea-
tures and what they refer to in the
remainder of this article.

1.1 Features

There is no universally accepted defini-
tion of features. In fact, this has been
one of the difficulties researchers have
faced in this area. However, two recent
books [Shah and Mäntylä 1995; Shah et
al. 1994] have described features as
groupings of topological entities from a
component that are semantically signif-
icant in its production and thus need to
be referenced together. Clearly this de-
scription implies that feature defini-
tions are domain-dependent and appli-
cation-oriented. For varied applications
such as design, manufacturing, stress
analysis, and the like, the part is there-
fore to be viewed in terms of different
sets of features [Mäntylä et al. 1996].

From the point of view of process
planning, a feature set can be visualized
as consisting of shapes and technologi-
cal attributes associated with manufac-
turing operations and tools [Shah 1991].
For example, pockets, slots, holes, and
steps are examples of common machin-
ing features, instances of which are
shown in Figure 1(a). Pockets and slots
may be produced by milling and grind-
ing process operations, and holes may
be achieved by drilling processes. Al-
though some researchers have broad-
ened the notion of features to include
such entities as tolerance features, sur-
face finish features, material features,
and the like, in this article the term is
restricted to “shape” features [Shah and
Mäntylä 1995] or groupings of geomet-

ric and topological entities from a com-
ponent that correspond to primitive
shapes produced by given manufactur-
ing operations and tools. Henceforth, we
concentrate on common machining fea-
tures such as pockets, slots, bosses,
holes, and so on because these have
been the predominant features dis-
cussed in the literature: from here on,
the term features refer to them unless
otherwise stated.

In order to develop systems-handling
features, existing research has ap-
proached the definition of features dif-
ferently. Some work has regarded fea-
tures as (closed) volumes with certain
characteristics (rectangular block, with
two opposite ends open, etc.), whereas
other researchers have regarded them
as a group of topologic entities (faces,
edges, etc. that are not necessarily
closed volumes) satisfying certain geo-
metric relationships (four faces, pair-
wise parallel, etc.). Examples of re-
search in each category include Sakurai
and Gossard [1990], where a feature is
defined as a collection of faces, and Van-
denbrande and Requicha [1990, 1993],
who define a feature as a volume. Fig-
ure 1(a) shows the same set of common
features regarded as volumes or as a
group of topologic entities. It is impor-
tant to recognize how features can be
defined differently because the proposed
algorithms for feature recognition from
solid models cannot be used inter-
changeably between the alternate ap-
proaches. Algorithms for feature recog-
nition can deal only with a specific
definition of features.

Although there are infinite possible
shape patterns for features, it may still
be possible to categorize them into
groups or classes. Such a classification
would be useful for feature support, for
developing a standard terminology, and
for data exchange. For example, fea-
tures may be classified as polyhedral or
nonpolyhedral. Features may also be
classified as prismatic or rotational. The
attributes associated with features may
include dimension, orientation, toler-
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ance, spatial relationship, and topologic
components.

1.2 Interpreting Geometric Models to
Obtain Features

An active area that has received much
attention in integrating CAD and CAPP
has been the development of an intelli-
gent interpreter of CAD data (geometric

models) to obtain features. Such an in-
terpreter would serve to translate the
low-level entities (faces) in the geomet-
ric models produced by a CAD system
into a set of features suitable for manu-
facturing by means of an automatic fea-
ture recognition process (AFR) that
would determine the features from an
existing CAD-produced geometric model
of a component such as a boundary rep-

Figure 1. (a) Several common prismatic manufacturing features which can be defined volumetrically
or geometrically; (b) part with interacting features.
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resentation (B-Rep), a constructive solid
geometry representation (CSG), engi-
neering drawings, and so on. We discuss
geometric models of components in the
next section.

Figure 2 shows the component mod-
ules of automatic feature recognition
[Shah 1991]. The constructed features
constitute the high-level primitives that
contain the semantic manufacturing in-
formation used for process planning or
assembly. Once features are hypotheti-
cally found, they must be verified for
correctness. This is generally done
through either a set of rules, which de-
termine if any given feature is not valid,
or through volume-checking methods,
which ensure that each feature gener-
ated is within the volume to be removed
from the machined raw stock. The feed-
back loop shown in the figure is in place
in case the verification fails, in which
case the feature recognition process
must be repeated to search for a differ-
ent set of features and the new features
must be verified in turn. We note that
for a number of systems, some or all of
the tasks of feature recognition are in-
cluded within the duties of (computer-
aided) process planning. For example,
feature verification or even feature rec-
ognition itself may be considered a duty
of the process planner. For clarity, we
separate the feature recognition task
from other process planning tasks (e.g.,
tool selection), and focus only on it.

A number of techniques for automatic
feature recognition have been proposed
in the past decade, but there have been
difficulties associated with a lack of
standard definitions. The multiplicity of
feature definitions has sometimes con-
tributed to different classifications for
the same shape within the literature.

For example, Figure 3 has been classi-
fied as a slot [Marefat and Kashyap
1990; Joshi and Chang 1988], a pocket
[Gupta et al 1994], or a depression [De
Floriani 1989].

Another difficulty in studying and
proposing feature-recognition tech-
niques has been robustness in handling
feature interactions. When two or more
features intersect geometrically, open
into one another, and so on, this pro-
duces what is generally termed a fea-
ture interactions. The definition of fea-
ture interaction depends on the
approach taken in defining features. As
mentioned in the previous section, some
work has regarded features as (closed)
volumes with certain characteristics,
and other studies have regarded them
as groups of topological entities (not
necessarily volumes) satisfying certain
geometric relationships. For volumetric
feature definitions, a feature interaction
corresponds to an intersection of the
volumes of two (or more) features. For
topology-based feature definitions, an
interaction corresponds to modification
of the topological elements and the rela-
tionships between the elements that de-
fine each feature involved in the inter-
action. For example, Figure 1(b) shows
a component with interaction between
its two features, that is, two slots.

Regardless of whether features are
regarded as volumes or as particular
groups of topological elements, the diffi-
culty of feature interactions for pro-
posed techniques has been that the geo-
metric interaction of features often
produces a different version of a fea-
ture, and the characteristics of this new
instance are different from the repre-
sentational characteristics used by the
technique to define the given class of

Figure 2. Component modules in automatic feature recognition.
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features. The new version might have a
different number of faces, a different
number of edges, different geometric
constraints (perpendicularity, etc.) be-
tween adjacent faces, a raw stock
bounded volume that does not corre-
spond to the expected volume for that
class of feature, and so on. Because of
these potential differences, feature-rec-
ognition techniques cannot therefore ex-
pect direct matches between the charac-
teristics expected to represent a feature
and the characteristics of all instances
of that feature. This leads to nonunique-
ness in characteristics defining in-
stances of a feature and a need for capa-
bility and/or intelligence to cope with
nonuniqueness and perform robustly in
spite of it.

Another natural outcome when fea-
tures interact is that there are inevita-
bly alternative ways to describe a com-
ponent according to its features, either
by having alternative sets of matches
among the geometric model of the com-
ponent and the representations for fea-
tures or, if there is no set of complete
matches, by having alternative reason-
ing paths leading to alternative partial
matches. For example, according to the
features shown in Figure 1(a), the com-
ponent in Figure 1(b) can be interpreted
as having two interacting through slots,
but an equally valid interpretation
(based on geometric instances of shown
features) would be four blind slots and a
pocket in the middle. Being able to gen-
erate alternate interpretations system-
atically is very useful, because it allows
manufacturing process planners to ben-
efit from the information and generate
process plans that are superior in terms
of cost, quality, or both. Interpretations

that provide access to all features from
fewer access directions may produce
better machining process plans, because
it is estimated that as much as 80% of
production time is spent in establishing
different setups.

In the remainder of this article, we
first review schemes for representing
components via CAD geometric models
and then discuss a variety of solutions
to the problem of automatic feature rec-
ognition. We study advantages and dis-
advantages, as well as the application
scope of each solution. The mechanisms
for automatic feature recognition are di-
vided into several categories of methods
based on the overall approach: syntactic
pattern recognition, graph-based, rule-
based, volume- and cell-based, and evi-
dence-based reasoning. Such an infor-
mal grouping is useful to better
understand the state-of-the-art technol-
ogy related to feature recognition from
CAD geometric models. Associated with
each technique are important issues re-
lated to feature recognition including
how features are represented, algo-
rithms developed for feature recogni-
tion, application scope of the proposed
technique, underlying assumptions, and
prototype systems developed. One em-
phasis of the article is on mechanisms
for attacking problems associated with
interacting features since, as we have
noted, they have posed difficulties in
feature recognition.

2. CAD AND GEOMETRIC MODELING

Design is an iterative process that in-
volves proposing a design solution, test-
ing and evaluating the design solution,
modifying the proposed solution, and
finally optimizing the solution. Within
CAD, the graphics capabilities of a com-
puter are substituted for the work that
traditionally would have been done with
pencil and paper. Furthermore, the sim-
ulation capabilities of the computer help
the designer test and evaluate a proposed
design solution. CAD can reduce the
design cycle, increase design accuracy,

Figure 3. Example of simple part with slot.
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and free workers from tedious and re-
petitive work.

With the rapid development in data-
base, simulation, and artificial intelli-
gence technology, CAD’s functions have
evolved from simple computer graphics
and computer-aided drawing and draft-
ing to advanced 3D graphical represen-
tation, analysis, and simulation. Cur-
rent CAD systems allow a user to
design a 3D part, study the mechanical
action of the part through simulation,
and automatically produce engineering
drawings of the part. The user can also
analyze stresses and deflection of the
part using finite element analysis tech-
niques. The generic functions of a CAD
system may include geometric model-
ing, engineering analysis, and auto-
mated drafting, as well as kinematics
analysis. For the purposes of this arti-
cle, we are concerned with the geomet-
ric modeling aspect of CAD systems.
Such geometric models are either
searched via automatic feature-recogni-
tion techniques or are augmented with
feature information in feature-based de-
sign. Therefore, it is important to cover
the basic aspects of geometric modeling.

2.1 Geometric Modeling and
Representation Schemes

Geometric models are represented using
wireframes, which represent the part
shape with interconnected edge seg-
ments, or by using 3D solid models,
which model the volume enclosed by the
shape of the physical design. Since solid
models carry more information than
wireframe representations, most re-
search on features has used solid mod-
els as input. In a typical solid-modeling
system, the user constructs a model
with building blocks of elementary solid
shapes called primitives. The user may
generate and/or modify a model by siz-
ing, adding, and subtracting geometric
solid primitives from a base component.
The base component is typically a solid
rectangular block called the stock.

A range of commercial solid modelers
and design packages are available, but

an important distinction must be made
between solid-modeling packages and
design packages. At the heart of a solid-
modeling package is a kernel that sup-
ports solid-modeling operations such as
intersections, differences, center of
mass calculations, and the like. A de-
sign package (or standard CAD tool)
generally allows the construction of de-
sign models (which may or may not
include solid models), but may not allow
access to any of the preceding solid-
modeling operations. There are pack-
ages that combine a solid-modeling ker-
nel and a design tool as well. ACIS
(Spatial Technologies) is an example of
a commercial solid modeler and Pro/
ENGINEER (Parametric Technology
Corporation) is an example of a com-
mercial CAD package or design tool.

A representation scheme for solid
modeling is defined as a mapping S that
maps physical objects from a domain M
into representations in a model space R;
that is, S: M R. In unambiguous repre-
sentation schemes, each representation
in the model space corresponds to one
physical object in the domain. Unique
representation schemes ensure that
each physical object admits (can be
mapped to) only one syntactically cor-
rect representation. Six major tech-
niques (schemes) used to represent and
maintain a 3D model by a CAD solid-
modeling system are:

—pure primitive instancing (PPI),
—spatial occupancy enumeration (SOE),
—cell decomposition (CD),
—sweeping (S),
—constructive solid geometry (CSG),

and
—boundary representation (B-Rep).

PPI involves reusing already stored de-
scriptions of solids, such as blocks,
brackets, and the like, and applying a
transformation to them by instantiating
certain parameters, to generate new ob-
jects. Although the original descriptions
are referred to as generic primitives,
the individual objects created through
this transformation are called primitive
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instances. PPI is a unique representa-
tion scheme, but because it lacks re-
strictions on the generic primitives, it is
not necessarily unambiguous. PPI pro-
vides no way to combine object in-
stances to create structures that repre-
sent new and more complex objects.

SOE subdivides 3D space into small
volumes called voxels (an abbreviation
for volume elements). To represent an
object, it classifies these volumes as ei-
ther empty or containing a solid. This is
a variation of octrees in which 3D space
is recursively subdivided into octants
and classified as full, empty, or par-
tially full. (Juan-Arinyo and Sole [1995]
present a conversion from SOE to a
variant of octrees.) SOE is unique and
unambiguous but has the drawback of
being potentially verbose, due to its
enumerative nature.

Cell decomposition (CD) is similar to
SOE, but it starts the decomposition
with the object, not with 3D space. CD
subdivides the object into primitive
components that are either disjoint or
meet precisely at a common face, edge,
or vertex. The object is then thought of
as being these primitive components
glued together. Figure 4(a) shows the
CD representation for a simple example
object with a slot. Since engineering
objects may be decomposed into consti-
tuting components in different ways,
CD is, in general, not unique.

Sweeping is very closely related to the
concept of a generalized cylinder. It is
based on the notion of moving a two-
dimensional set (a cross-section) along a
three-dimensional space curve (axis) to
sweep out a solid volume (Figure 4(b)).
A sweep can generally be described by
W 5 W(r, f ), where r(s) 5 [x(s), y(s),
z(s)] is a vector function representing
the axis parametrically in terms of the
arc length variable s. Normally, f repre-
sents the boundary of the cross-section
curve; that is, f 5 (x(u, s), y(u, s)),
although f may also be a set member-
ship function describing the interior
points of the cross-section at any point
along the axis. The dependence of the
cross-section on the arc length of the

axis allows the cross-section to shrink,
expand, or change in other fashions as
it is swept along the axis. Although
sweeping is intuitively appealing, like
cell decomposition, it is not a unique
representation scheme.

The last two solid-modeling tech-
niques (CSG and B-Rep) have received
the most attention and therefore are
considered the most significant repre-
sentation schemes. Constructive solid
geometry (CSG) is a volumetric repre-
sentation scheme in which solids may
be represented as compositions, via
(regularized) set Boolean operations, of
primitive shape entities positioned
properly in space via rigid motion oper-
ations. The primitive shape entities
used in CSG are typically parameter-
ized blocks, cylinders, cones, and
spheres, and the Boolean operations in-
clude regularized union, difference, and
intersection [Requicha 1980]. CSG rep-
resents and maintains objects as trees,
the leaves of which are the primitive
entities involved in constructing the ob-
ject and the interior nodes of which are
Boolean operations and motion transfor-
mations (Figure 4(c)). The “*” in the
figure refers to regularized Boolean op-
erations so as to prevent dangling edges
and faces.

The concepts of adding and subtract-
ing elementary volumes, called primi-
tives, at an abstract level can be likened
to manipulating features during the de-
sign process (similar to feature-based
design). These CSG primitives may also
translate into machining operations,
which originally provided further moti-
vation for the scheme. For example,
drilling a hole can be interpreted as
subtracting a cylinder from a base part.
One drawback of the CSG representa-
tion scheme is that, in general, it is not
unique.

Boundary representations (B-Reps)
model objects by hierarchically storing
their boundaries. The object boundary is
segmented into a set of nonoverlapping
faces. Each face is specified by describ-
ing the surface it is embedded on and its
bounding edges. Each edge is, in turn,
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represented by the curve it lies on and
any associated vertices. Vertices are
simple three-dimensional coordinate
points. The example in Figure 4(d)
shows the boundary representation for
a simple component with a slot. One of

the earlier influential systems adopting
this approach [Baumgart 1972] pro-
posed “winged-edge” data structures for
representing this information.

Boundary representation schemes are
unambiguous [Requicha 1980]. They are

Figure 4. Solid model representation schemes for example object with a slot: (a) cell decomposition
subdivides the object into (glued-together) primitive components that meet precisely at a face; (b)
sweeping represents the object by a cross-section ( f ), and a sweep axis (r(s)); (c) CSG represents the
object as a tree whose nodes are primitive volumes, Boolean operations, and rigid motions; (d) B-Rep
scheme represents the object by describing faces, edges, and vertices forming its boundary in a
hierarchical structure.
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also unique when the boundary of the
object is partitioned into maximal and
connected faces. This aspect is desir-
able, because it makes B-Rep, unlike
CSG, independent of the operations (or
their order) used in constructing the
model. Conversion of CSG representa-
tions to boundary representations is rel-
atively well understood [Requicha and
Voelcker 1985]. However, the inverse
problem has not been well addressed
until recently [Shapiro and Vossler
1993].2 Due to CSG’s nonunique nature,
B-Rep is more commonly used for geo-
metric modeling and feature recogni-
tion, but more important, nearly all au-
tomatic feature recognition mechanisms
rely on B-Rep or CSG for their input.

Many of these geometric modeling
systems use procedures based on the
Euler theorem to test and help ensure
validity of the models. Regardless of the
solid-modeling scheme used, the output
of current solid-modeling systems de-
scribes part topology and geometry in
terms of low-level surface entities such
as faces, edges, and vertices, possibly
along with such information as surface
finish, dimensions, density, tolerances,
and so on.

The schemes previously discussed are
“manifold” models with strict rules for
their topological correctness. However,
some applications require “nonmani-
fold” models and some of the rules on
topological correctness need to be re-
laxed. Readers are referred to the selec-
tive geometric complexes (SGC) model
[Rossignac and O’Connor 1990] for a
further discussion.

2.2 STEP: The International Standard for
the Exchange of Product Model Data

Finally, it should be noted that there is
a developed standard for the exchange
of solid model data, although it has
been limited commercial usage thus far.

STEP (the international Standard for
the Exchange of Product Model Data) is
being developed by the International
Standards Organization (ISO) (STEP it-
self is ISO Standard 10303). STEP Ap-
plication Protocol 203 (AP203) is the
standard for the exchange of mechanical
part and assembly data. PDES is the
organization responsible for the testing
and support of STEP within the United
States. STEP consists of schemes to
store and transmit geometric primitives
data (solid models) using the EXPRESS
language. These sequential file formats
are defined to permit the transfer of
product data between different CAD (or
solid modeling) systems. The format is
intended to be independent of the man-
ner in which the information is created
and stored within any particular CAD
system. The information contained in
this format may include geometric and
topological information such as vertices
of an edge, edges of a face, and faces for
an object as well as certain manufactur-
ing information such as density and di-
mension.

3. AN INFORMAL CLASSIFICATION OF
FEATURE RECOGNITION MECHANISMS

All AFR algorithms include two impor-
tant components: the definition of the
features and the feature-recognition
mechanism. Various approaches have
been developed for automatic feature-
recognition mechanisms that can be in-
formally classified into the categories:

—syntactic pattern recognition,
—graph-based methods,
—rule-based methods,
—volumetric methods (including “cell-

based” techniques), and
—evidence-based reasoning methods.

Syntactic pattern recognition character-
izes the overall part shape as the com-
position of certain geometric primitives.
Feature recognition proceeds by parsing
the input syntactic expression of a part
using grammar rules to identify the
syntactic patterns representing fea-

2 Due to the nonuniqueness of CSG, conversion to
CSG representations is a difficult problem. Re-
cently, however, Chirehdast and Papalambros
[1994] developed a routine to convert SOE to CSG.
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tures. In graph-based feature recogni-
tion, the topological shape of a part is
represented as a graph (generally with
nodes of the graph corresponding to the
faces of the object and the arcs of the
graph corresponding to the edges of the
object. However, other graph represen-
tations, for example, Chuang and Hend-
erson [1990], represent the object with a
graph whose nodes are vertices of the
object and whose arcs correspond to its
edges). This graph representation is
then searched for certain properties to
identify the features embedded in the
part. In rule-based methods, rules at-
tempt to specify a set of necessary and
sufficient preconditions for the patterns
found in a feature. Recognition is car-
ried out through an inference control
mechanism that determines how to ap-
ply these rules to the input data. This
includes forward chaining, backward
chaining, or opportunistic rule firing. In
volumetric methods, the finished mate-
rial is represented as a combination of a
set of volumes. If a CSG representation
of the part is the input, the nonunique-
ness of the representation would be a
hurdle—there are many ways to define
the same feature by different combina-
tions of Boolean operations on the CSG
primitives. Thus, the nonunique repre-
sentation must be simplified before it
can be recognized through pattern
matching. In the convex-hull method,
the part (or the volume to be removed
from the part) is partitioned into sub-
volumes. The convex-hull algorithms
compute the difference between the ob-
ject and its convex hull recursively until
the difference is a null set. The convex
hulls are then rearranged to obtain re-
moval volumes for machining. Cell-
based techniques also decompose the
part (or the volume to be removed from
the part) into primitive volumes (cells).
These cells are then recombined to pro-
vide the features of the original part. In
the evidence-based reasoning method
only hints or evidence, and not full-
fledged features, are generated at first.
Then the patterns are elaborated
through hint recombination or evidence

accumulation. Finally, there are a few
methods that do not entirely fall into
any of these categories, and we have
classified them as “other” due to their
unique or hybrid nature. (Note that
many of the classified techniques still
utilize several different feature-recogni-
tion strategies. In this sense, even the
classified techniques could be called hy-
brid.)

4. MACHINE FEATURE IDENTIFICATION
AND RECOGNITION TECHNIQUES

In this section, we survey various AFR
techniques and summarize each tech-
nique’s approach to feature definition,
mechanisms developed for feature rec-
ognition, application scope, assumptions
made, and limitations. AFR techniques
are classified into three groups based on
the their input information: B-Rep,
CSG, and 2D models.

4.1 AFR Using B-Rep

The majority of AFR techniques pro-
posed by researchers use B-Rep as their
input information. These methods in-
clude syntactic, graph-based, rule-
based, cell-based, and evidence-based
reasoning methods, as well as some hy-
brid methods.

4.1.1 Syntactic Pattern Recognition.
The syntactic pattern approach for fea-
ture recognition from boundary repre-
sentations received much attention in
the early ’80s [Fu 1982]. Prior to that, it
had been successfully applied to 2D rec-
ognition in computer vision. Syntactic
pattern recognition is a formalized tech-
nique for representing complex patterns
in terms of simple subpatterns and rela-
tions among subpatterns. A given pat-
tern is decomposed recursively into sim-
pler subpatterns called primitives. Just
as an alphabet in a formal language
may be combined into words and sen-
tences, sequences of geometric primi-
tives can be combined to form an ex-
pression that represents the complex
patterns of features. The possible com-
bination sequences can be organized ac-

274 • Q. Ji and M. M. Marefat

ACM Computing Surveys, Vol. 24, No. 3, September 1997



cording to syntactic language rules, just
like the grammar for a formal language.
The resulting language (or expression)
is called a pattern description language.
The rules that define valid compositions
of primitives into patterns are specified
by the grammar of the pattern descrip-
tion language. The grammar is defined
by the ordered tuple (Vt, Vn, P, S),
where Vt is the set of terminal symbols,
Vn is the set of nonterminal symbols, P
is the set of productions, and S is the
start symbol of the language. Correct
sentences in this language are con-
structed by sequentially using produc-
tions from P after the start symbol S
until a terminal symbol is reached. The
recognition process proceeds by first
constructing an expression for a pattern
or object based on the defined primi-
tives and the grammar rules. This ex-
pression, consisting of the string of
primitives, is then parsed using the set
of productions in P to identify the fea-
ture pattern it represents. In most ap-
plications, patterns refer to contours of
the cross-sections of a part and the
primitives are usually line segments
and curve segments (such as edges) that
form the contours.

Jakubowski [1982] uses the syntactic
approach for automatically interpreting

rotational parts—parts that have an
axis of symmetry—and polyhedral
parts. With this approach, machine
parts are described by such contour
primitives as line segments (e.g., edges),
curve segments, and surface segments,
coupled with a set of operators such as
revolution and sweeping, to describe the
operations for generating a 3D part
from its 2D cross-sections. Figure 5
shows an example based on this
method. Figure 5(a) shows some of the
basic geometric primitives. Groups of
similar parts can be described by in-
stantiating a generic description with
certain parameters (e.g., the part shown
in Figure 5(d) is represented (Figure
5(b)) by the instantiation of several of
the s1–s4 primitives). A part is de-
scribed by organizing the primitives
into an expression according to gram-
mar rules. Two grammar rules have
been applied to construct the expres-
sions for a part and to develop their
parsers: extended context-free grammar
and regular right part grammar. The
most important task of the grammar
rules is to distinguish the repetitive
parts of contours from the nonrepetitive
ones [Jakubowski 1982]. Figures 5(c)
and (d) show a regular expression for
the cross-section of a class of rotational

Figure 5. (a) Examples of basic primitives for line segments and curve segments; (b) described
cross-section; (c) regular expression for the cross-section; (d) part corresponding to the contour.
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parts, along with the contours repre-
sented by the expression and a part
instance having such contours. To iden-
tify the features represented by the ex-
pression, parsers are constructed using
the same grammar rules and are subse-
quently applied to the input expressions
for the parts.

Similar techniques have been devel-
oped for more specific classes of parts.
For example, Li [1986] uses a similar,
but simpler, approach to identify turn-
ing features from the cross-sections of a
rotational part. Choi [1982] focuses on
an approach identifying hole geome-
tries. Staley et al. [1983] developed a
method designed for primitive depres-
sions or protrusions whose cross-sec-
tions consist entirely of the chosen set of
2D primitive patterns, but cannot be
extended to a feature for which the
cross-section is inconsistent along dif-
ferent sections on the sweep axis. This
is a common thread among all of these
methods—since they all interpret a 3D
part from its cross-section, they fail if
the cross-section varies. All the methods
use similar primitives from the part
cross-section, and if the pattern does
not match the symbols in the given
grammar the methods do not work.

To recognize features in a general 3D
part, Kyprianou [1980] proposed one of
the earliest methods, which directly
used syntactic pattern recognition cou-

pled with a graph representation of the
part. In this approach, the B-Rep of a
part is first converted into a face-edge
graph with nodes of the graph repre-
senting faces and arcs representing
edges of the part. The arcs are labeled
with the edges’ concavity. The features
are generated by parsing the face-edge
graph. The significance of this work is
that surfaces and edges are the basis for
the pattern primitives instead of line
and curve segments. Hence, it is possi-
ble to recognize 3D features directly
without first converting to a 2D repre-
sentation. The three basic structural
primitives used in constructing the fea-
ture grammar are convex loop, concave
loop, and smooth. A loop is an ordered
set of faces, such that the first and last
faces, and each pair of adjacent faces,
each share an edge. A loop is defined as
convex if its successive faces are sepa-
rated by only convex edges. It is concave
if it contains at least one concave edge
and smooth if it contains edges on
which there is no change in surface
normal between the adjacent faces.
Based on these primitives, a depression
is identified if convex edges are on the
inner loop of a face, and, similarly, a
protrusion is identified by concave
edges on the inner loop of a face. It is
possible to identify different categories
of features such as slots, pockets, simple
or nested depressions, protrusions, and

Figure 6. Cube and its face adjacency hypergraph representation.
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the like, using this technique. The rec-
ognition consists of several steps. First,
all edges and loops of the graph for a
part are examined and the edges are
classified as either concave, convex, or
smooth. Then a list of faces to which
features are attached is created. Fi-
nally, all the faces belonging to a fea-
ture are identified and the recognized
feature is classified as either a depres-
sion or a protrusion of the part. Since
the syntactic pattern definition of a fea-
ture may not define a closed volume, the
recognized features are then completed
by adding dummy entities such as
edges, faces, and vertices to form closed
solid volumes.

Choi et al. [1984] describe a similar
approach except that they do not retain
edge-concavity information in the graph
of the part. Consequently, this approach
can only recognize prismatic depression
features. More recently, Falcidieno and
Giannini [1989] extended the work in
Kyprianou [1980] to parse structured
face adjacency hypergraphs (SFAHs)
rather than simple face-edge graphs. A
face adjacency graph (FAH) is first de-
fined as a triple G 5 (N, A, H), where
N is the set of nodes in the graph corre-
sponding to the faces in the object, A is
the set of all arcs in the graph corre-
sponding to the edges in the object, and
H is the set of hyperarcs in the graph
that, for each vertex of the object, con-
nects all the nodes corresponding to the
faces incident on the vertex. Figure 6
shows a cube and its FAH representa-
tion.

The features recognized by parsing
the FAH graph are arranged into a hier-
archical graph, the SFAH, which de-
scribes the hierarchy through adjacency
relationships among the extracted fea-
tures. That is, the SFAH is a graph
whose nodes are the features of the
part, and the arcs represent adjacency
(or containment) of the features. The
advantage of such a hierarchical de-
scription of the extracted features is
that it provides a more global view of
the part. The limitation of this method
is that the system can only recognize

features that define loops on the bound-
ary of the object, that is, prismatic pro-
trusion and depression features. As a
result, it is not applicable to feature
entities such as bevels, chamfers, and
steps (area-features), since the loops for
such features defined on the boundary
of the object coincide with the external
loop of a face.

To summarize, the syntactic pattern
approaches have successfully been ap-
plied to 2D prismatic parts, rotational
parts with turning features, and axis-
symmetric volumes. However, success
for nonaxis-symmetric 3D parts or rota-
tional parts with nonturning features
has been limited. This may be partially
due to lack of a suitable language for 3D
objects. Another limitation has been the
ambiguity of the syntactic patterns
[Wang 1992]. The primitives involved in
the syntactic approach usually cannot
represent certain geometric properties,
such as the size of the primitive, rela-
tive orientation, edge concavity, and the
like, that are important for distinguish-
ing among features. This aspect may
lead to one syntactic expression’s corre-
sponding with several different features
and may, therefore, cause invalid shape
constructs to be identified. Subsequent
validation rules in many cases may be
too difficult to derive and these rules
may not be sufficient to filter out these
spurious constructs. Since using the 2D
patterns in syntactic pattern recogni-
tion severely limits the ability of the
language to deal with the world of CAD
parts (which are generally 3D), it is
possible to write the rules as general
inference rules. However, this technique
will make the method more like a rule-
based approach than syntactic pattern
recognition and, therefore, largely de-
feats the purpose of syntactic parsing.
The majority of syntactic pattern recog-
nition techniques were developed al-
most a decade ago, and few current fea-
ture-recognition schemes employ this
strategy.

Neural networks have been used
recently in Prabhakar and Henderson
[1992] to attack the problem of feature
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recognition. The neural networks in this
research perform pattern matching on a
modified B-Rep input to recognize fea-
tures. (Although this pattern matching
could also be considered a type of rule
firing, it is justifiable to discuss this
approach here.) For this approach the
B-Rep model of a part is converted to an
adjacency matrix that describes the ad-
jacencies between each pair of faces in
the part. The matrix is then parsed for
patterns (i.e., pattern matching) with a
different neural network for each de-
fined feature. If the neural network for
a given feature finds a match within the
adjacency matrix, then that particular
feature is recognized.

4.1.2 Graph-Based Approaches. The
graph-based approach, which gained
momentum toward the end of the ’80s,
is currently one of the most prevalent
feature-recognition techniques. Al-
though many of the very recent feature-
recognition works have moved away
from graph-based techniques, they still
present an important school of thought
on the feature-recognition problem. One
reason the graph-based approach is pop-
ular is that it can directly use many
developed concepts and algorithms from
applied mathematics, especially in
graph theory and topology. In graph-
based feature recognition, the B-Rep of
a part is translated into a graph repre-
senting its topology. Primitive features
are also represented by graphs as tem-
plates. Usually, the graph representa-
tion consists of nodes and links corre-
sponding, respectively, to the faces and
edges of the part. Additional informa-
tion may be incorporated into the graph
to represent the properties of geometric
entities such as concavity and face ori-
entation. The graph representation is
then searched, using subgraph isomor-
phism, for certain properties to identify
the features embedded in the part that
match the templates of the primitive
features. The identified subgraphs are
subsequently extracted as the features
embedded in the part.

Graph-based feature extraction was

first introduced in Joshi & Chang [1988]
through the attributed adjacency graph
(AAG) for a part. The AAG makes use of
the B-Rep information on faces and
edges. An AAG is defined as a triple
G 5 (N, A, T), where N is the set of
nodes, A is the set of arcs (links), and T
is a set of attribute values for arcs in A.
The arc values in T are either 0 or 1,
marking the arcs as concave or convex,
respectively. Figure 7(a) shows a part
(an object with a slot feature) and its
AAG. The nodes F1–F10 represent the
faces and the arcs represent the edges.
An arc is labeled 0 if the corresponding
edge is concave and 1 if the edge is
convex.

In this method, the topological and
geometric relationships for a depression
feature are first translated into a local
AAG that represents feature faces and
has only concave links. Unique proper-
ties for a particular feature are subse-
quently extracted from the local AAG of
a feature and represented in terms of
heuristics that define the feature. For
example, Figure 7(b) shows the AAG for
a pocket and a generic rule for the defi-
nition of a pocket may be given as:

—its graph is cyclic,
—it has exactly one node “n” with the

number of incident 0-arcs equal to the
total number of nodes 21,

—all other nodes have degree three, and
—after deleting node “n” the number of

0-arcs is greater than the number of
1-arcs.

Such a definition of a pocket is general
enough to identify a wide range of in-
stances of this feature. It also allows the
recognition of nested features.

Instead of directly applying subgraph
isomorphism to the AAG of the part,
which is computationally intensive, a
heuristic method is proposed to divide
the part graph into components that
could contain features. The heuristic is
based on the following observation: a
face that is convexly adjacent to all its
neighboring faces (a convex node) is not
likely to belong to a depression feature.
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The removal of such convex nodes will
separate the AAG into several con-
nected components, and if there are no
interactions between features, each of
these connected components (a sub-
graph) will represent an isolated fea-
ture or a depression in the original part.
The recognition method, which is based
on subgraph isomorphism and graph-
based heuristics, is then applied to each
component to identify the kind of fea-
ture represented by the component. To
handle interacting features, Joshi im-
plemented a heuristic rule that splits
arcs and nodes to form complete feature
subgraphs. However, this heuristic
splitting can handle only some interac-
tions between features. The difficulty
arises when there are interactions that
can possibly destroy an adjacency be-
tween two faces. This in turn means
that the pattern of the feature within

the AAG is lost, and hence unrecogniz-
able. Therefore, more complex interac-
tions in which the graph patterns of the
features involved are modified are be-
yond the capability of this method,
which requires more information than
simple heuristics.

The significance of this research is in
being among the first to propose the
graph-based approach for extracting
machining features. The advantage of
Joshi’s method is its use of both forward
chaining and a heuristic method to re-
duce the computational effort. Figure 8
shows a simple part whose constituting
primitive features are not correctly
identified by the previous approach. The
heuristic eliminates face 1 and thus the
feature formed by faces 1 and 2 (a step
as defined by Joshi) will not be recog-
nized. Another limitation of this ap-
proach is that the derived rule set rep-

Figure 7. Examples of AAGs for (a) part with a slot, and (b) pocket.
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resentation used for the description of a
feature may be ambiguous. Specifically,
the same rule may describe two differ-
ent features as shown in Figure 9,
where two different features are repre-
sented by the same rule set due to the
ambiguity of the feature definition rule.

De Floriani [1989] introduces a simi-
lar graph-based approach to identifying
the topological features of an object. The
graphs used in this technique are called
edge-face graphs (EFG). In an edge-face
graph, a cut node corresponds to a face
in the object that splits the graph into
two or more connected parts described
as biconnected components. Similarly,
separation pairs correspond to pairs of
faces on the object which, when re-
moved, may split the object into con-
nected pairs. Thus, the feature extrac-
tion algorithm decomposes the EFG into
biconnected and triconnected compo-
nents. The components are subse-
quently organized into what is called an
object decomposition graph (ODG).
Based on arcs incident on a component
in the ODG, an entity is classified as a
DP-feature or an H-feature. DP-features
are protrusions or depressions on a set
of faces of the object and H-features are
through-holes, handles, or bridges. Fig-
ure 10 shows examples of some objects
with their associated ODGs. The
method provides a global understanding
of the object shape. Construction of the
ODG provides not only a list of features
but also their relationships in the global
shape of the part. Unlike local extrac-
tion based on geometric information,
this method can identify “compound”
features formed by a combination of
through-holes and protrusions or de-

pressions. However, the identification
does not provide a sufficiently detailed
classification for manufacturing and en-
gineering purposes. In order to be ap-
propriate for automation and planning
functions, additional mechanisms to
identify manufacturing-related primi-
tives, such as pockets, slots, and holes
that comprise the DP- and H-features,
would be necessary.

Henderson et al. [1990] proposed a
similar graph-based approach based on
the assumption that distinct feature
subgraphs can be isolated from their
environments (the body graph) by detec-
tion of so-called cut vertex nodes. Cut
vertex nodes represent the entrance
faces linking the features to the body
part. Another graph-based algorithm for
feature extraction suggested by the
same research group is called vertex-
edge pattern extraction [Chuang and
Henderson 1990]. According to this
technique, the topological and geometric
properties around a vertex can be used
for its classification. Several types of
vertices are suggested. Based on this
vertex classification, each feature can
be represented by a vertex-edge (V-E)
graph, in which the nodes represent the
type of vertices and the links represent
the edges. This approach follows the
concepts of bi- and triconnected compo-
nents proposed earlier in De Floriani
[1989]. Pattern-matching algorithms
are then used to find the subgraphs of
an object V-E graph that match V-E
graphs for features.

The limitation of the cut-vertex
method is that there is no proof that a
cut vertex node always represents an
entrance face that links a feature to the
body of the part. This aspect is further
complicated by situations in which a
feature may have more than one en-
trance face in the part.

Sakurai and Gossard [1990] proposed
a different approach to graph-based fea-
ture definition and recognition. A fea-
ture can be a cavity, a protrusion, or
neither. In this technique, a feature is
represented by a feature graph. A fea-
ture graph is a B-Rep of the feature’s

Figure 8. Interacting feature not correctly recog-
nized using AAG.
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faces augmented with user fact nodes
and parameter nodes. Both user fact
nodes and parameter nodes can refer to
the same entity in the B-Rep graph.
Although parameter nodes specify an
attribute of a feature such as width,
length, and the like, user fact nodes
may supply additional geometric infor-
mation such as parallelism, coaxiality,
and perpendicularity among faces. Fig-
ure 11 shows a generic feature graph. A
template feature is the generic defini-
tion of a feature, and a recognized fea-
ture is an instance of a template fea-
ture. The template feature is defined by
interactively selecting a set of faces in a
graphical display of the solid model and
coupling them with user facts and pa-
rameters. Feature recognition is accom-
plished through graph matching by
searching the entire solid model to find
instances for each template feature. The
graph matching is implemented by com-
paring each face of the template feature
with every face of the solid model to
determine whether the two faces have

the same geometric type, a matching
number of loops, and a matching num-
ber of edges.

To recognize interacting features, the
algorithm first removes the recognized
features from the original object. When
the recognized feature is a cavity, the
feature removal generates a volume
that fills the cavity and it is added to
the solid model. On the other hand,
when the recognized feature is a protru-
sion, the procedure generates the vol-
ume of the protrusion and subtracts it
from the solid model. The purpose of
such removal is to simplify the shape of
the solid model so that other yet unrec-
ognized features can be identified.

The advantage of this method is that
each feature can be defined easily and
interactively without requiring a so-
phisticated language. However, there
are interacting situations in which the
features are not correctly identified, as
when intersecting features have coinci-
dent faces when features have volumes
that split each other completely (i.e.,

Figure 9. Ambiguity of feature description using rules.
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the volumetric difference between the
two features is two strictly disjoint re-
gions of space). A general problem with

such face-based pattern recognition
methods is that it is difficult to create a
feature volume from a set of faces that

Figure 10. Biconnected components and their object decomposition graphs: (a) protrusion, handle, and
bridge, with associated ODGs depicted in (b) [De Floriani 1989].

Figure 11. Schematic representation for feature graph [Sakurai and Gossard 1990].
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do not enclose a volume. The removal of
a volumetric feature also tends to com-
plicate further recognition in cases of
arbitrary interactions between features
because it tends to generate extraneous
elements or alterations that may com-
plicate recognition of the involved fea-
tures.

Corney and Clark [1991] developed a
graph-based algorithm for identifying
holes and pockets with interactions in
the form of nonunique entrance faces.
The method first constructs an aspect
face-edge graph from the edge-face
graph by deleting nodes that are paral-
lel or antiparallel to a particular direc-
tion of view. Simple cycles in this aspect
graph are identified and line segments
linking the vertices associated with ev-
ery pair of adjacent faces are drawn. By
considering the loop formed by a projec-
tion of these line segments the partially
destroyed face adjacency is recovered.
The projection is taken on a plane nor-
mal to the direction of view. In recent
related work, Clark and Corney [1994]
described similar steps for recognizing
general depressions and protrusions of
a part, which can then be mapped into
domain-specific features.

Fields and Anderson [1994] intro-
duced an oriented face adjacency graph
(OFAG), similar to the face adjacency
hypergraph, to address the problem of
feature recognition. As with the FAH,
the OFAG for a part has nodes that
correspond to the faces of the part and
arcs that correspond to the edges of the
part. However, between any two nodes
(faces) there are two directed arcs, each
augmented with concavity/convexity in-
formation as well as information about
where each face intersects with another.
One face can intersect the exterior or
interior of another face. Using this new
graph, Fields presents a linear-time al-
gorithm for matching templates within
it for the recognition of features. The
sacrifice involved in a time-efficient al-
gorithm is that this approach classifies
sets of faces in the part into categories
of features. Although such a categoriza-
tion is not necessarily a drawback, it

does mean the features extracted are
further removed from domain-specific
features than in the approaches previ-
ously described.

It has been pointed out [Marefat et al.
1990] that one shortcoming of many
graph-based techniques is that the repre-
sentations carry insufficient information
for unique identification and recogni-
tion of features. Important information
such as the relative orientation between
object faces is not effectively used,
which may lead to ambiguity and non-
uniqueness in the representation and
recognition of features, especially in the
cases involving interacting features.
Another problem that needs to be ad-
dressed is related to the mechanisms
needed to validate the extracted fea-
tures.

The success of graph-based methods
has focused for the large part on polyhe-
dral objects. In addition, most graph-
based approaches consider only a lim-
ited set of patterns for the definitions of
features. Searching for more general
definitions becomes complicated due to
the large number of patterns. Also, an
important inherent problem in all
graph-based techniques is computa-
tional complexity. Graph construction
for both the primitives and parts and
subgraph isomorphism can both be com-
putationally expensive. As discussed in
Sedgewick [1984], the problem of sub-
graph isomorphism corresponds to de-
termining whether two graphs can be
made identical by renaming the verti-
ces. The general problem remains com-
putationally intractable, although effi-
cient algorithms for special types of
graphs are known. To ease this prob-
lem, research is now being directed to-
wards reducing the required subgraph
matching time by applying heuristics.
Peters [1993] presents an example for
the domain of sheet metal parts to show
that engineering knowledge can be used
to reduce a theoretical combinatorial ex-
plosion to tractable bounds. Researchers
have also succeeded in dividing the
graph representation of a part into fea-
ture and body components so that pat-
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tern-matching only applies to feature
components, thus reducing the search
space [Joshi and Chang 1988; Hender-
son 1984; Henderson et al. 1990;
Marefat and Kashyap 1990; Marefat et
al. 1990]. However, simply reducing the
search space does not necessarily ex-
pand the domain of parts that graph-
based methods can handle. To expand
the scope of this work, mathematicians
have developed efficient algorithms
[Wang 1992] for identifying the graph
nodes that separate feature subgraphs
from body subgraphs.

Computational complexity is not the
only drawback of graph-based ap-
proaches. Graph-based approaches are
typically weak at recognizing features
that intersect (interacting features).
The feature graph representations are
built from the topology of the part. How-
ever, in feature interactions the face
adjacencies in the topology that are
changed as a result of interactions
make this information nonunique.
Therefore, when exact matches are re-
quired in graph-based approaches, there
is often difficulty in correctly identify-
ing features within interactions.

Another potential limitation of graph-
based approaches is verbosity in terms
of the number of graphs required to
represent the features. As illustrated in
Gadh and Prinz [1992], for each primi-
tive and its variants, a new set of graph
representations must be created. There-
fore, mechanisms must be developed to
accommodate the variations in feature
shapes. Due to these limitations, much
current feature-recognition research
has moved away from direct graph
searching in favor of other approaches.
Nevertheless, graph-based matching
still appears in some current research,
although generally only at a final stage
in the recognition process when the
problem has been sufficiently reduced
in size.

4.1.3 Rule-Based Approaches. The
rule-based method for feature recogni-
tion gained much momentum in the
mid-’80s, after successful applications of

expert systems to other domains. As in
other expert systems, in which rules are
used for knowledge representation, in-
ference rules in feature recognition are
used to capture knowledge about geo-
metric and topological properties of fea-
tures. A rule-based feature system con-
sists of rules, an inference mechanism
(or rule interpreter), and working mem-
ory. Rules attempt to specify a set of
necessary and sufficient preconditions
for the patterns found in a feature. The
antecedents of the rules are statements
describing the geometric and topological
properties of a pattern such as adja-
cency relationships among entities, ori-
entation relationships among entities,
and the types of entities involved. The
consequence of a rule is usually identifi-
cation of a feature such as a slot, pocket,
or hole. A generic rule looks like

(rule , rule#. (if (, condition 21 .)
(, condition 22 .) . . . (, condition 2N .))
(then (,action21.) (,action22.) . . .

(,action2N.)))

In the preceding, action could represent
a recognized primitive feature given
that all the required (geometric and to-
pological) conditions are satisfied. The
inference mechanism controls how these
rules are applied to the input data and
may employ forward chaining, back-
ward chaining, or opportunistic rule fir-
ing [Henderson 1984]. The working
memory contains the intermediate in-
ference results from firing rules and the
features that have been recognized at
any time. These types of systems are
usually implemented in a logic pro-
gramming language or a production sys-
tem that directly supports logical infer-
ence, such as Prolog or OPS5.
Henderson [1984], Kung [1984], and
Hummel [1989] are examples in this
category.

Henderson [1984] uses logic program-
ming rules to extract swept subtractive
features such as cylindrical holes, pock-
ets, and slots. With this method, a 3D
model in boundary representation is
converted into facts in PROLOG. These
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facts are used by production rules that
encode the necessary and sufficient con-
ditions for a feature. An example rule
describing a cylindrical hole feature
shown in Figure 12 may look like

IF A face of type planar exists
which is a hole entrance
face,
and the face adjacent to the
entrance face is of cylindrical
type,
and the face is convex,
and the next adjacent face is
of planar type,
and this planar face is only
adjacent to the cylindrical
face,

THEN the entrance face, the
cylindrical face, and the
planar face comprise a
cylindrical hole.

To implement this in PROLOG, these
rules are then formalized using predi-
cate calculus (predicates and terms) as
shown:

Cylindrical-hole (set-of-faces):-
entrance-face (face1),
Adjacent (face1, face2)
Cylindrical (face2)
Convex (face2)
Adjacent (face2, face3)
Not-equal (face3, face1),
Plane (face3)
Adjacent-faces (face3, face1)

Set-of-faces (face1, face2, face3).

When this rule is applied to the input
B-Rep file, it returns a set of faces that
comprise a feature if the execution of
the rule is successful. Similarly, rules
may be defined for other features,
whether cylindrical or polyhedral.
Henderson’s method begins with sub-
tracting the solid model of the desired
part from a stock, generating the vol-
ume corresponding to the material to be
removed. Feature recognition then is
performed on this removed material vol-
ume by applying rules. When a feature
is recognized, the machined volume for
the feature is generated and subtracted
from the original removal volume. The
concept of an entrance face in the rules
allows extra information about machin-
ing operations to be derived. Specifi-
cally, the accessibility (the orientation
in which a feature can be machined, or
“accessed”) can be derived for each fea-
ture recognized using the entrance face
for the feature. The recognized features
are then bound into a feature graph in
an order based on these accessibilities
that is convenient for machining opera-
tions.

Kung [1984] developed a similar sys-
tem that converts B-Reps into symbolic
facts describing geometric and topologi-
cal properties. The boundary faces of
the objects are decomposed into edge
loops and ultimately into items called
F-faces, which are surfaces that can be
formed by a single machining operation.
Using rules, these surfaces are then
classified as being cylindrical, noncylin-
drical, basic, or secondary. Further rec-
ognition can be performed using this
classification. Two hierarchies of fea-
ture pattern rules are implemented, one
for cylindrical features and one for poly-
hedral features. The rules for the cylin-
drical features and polyhedral features
are applied sequentially and in the de-
creasing order of complexity in each
case. This system does not consider fea-
ture interactions at all, but it does dem-
onstrate that cylindrical features can be

Figure 12. Example feature (cylindrical hole)
and its associated rule.
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recognized just as easily as polyhedral
features.

Dong and Wozny [1988] propose a
rule-based feature recognition system
that utilizes the concept of frames.
Frames are data structures containing
multiple slot/value pairs. In the context
of this work, frames are created for both
the part representation and the feature
representation. For example, the frame
for a part consists of slots (and appro-
priate values) for the number of faces
and edges in the part, the material of
the part, and frames for each face in the
part. The frames for the faces in turn
consist of the number of edges in the
face, as well as the type of face (planar,
etc.), and a normal to the face. Feature
frames consist of slots for width and
height of the feature, as well as the
geometry and topology that define the
feature. The recognition is then per-
formed by exhaustively searching the
part frame for matches to all instances
of feature frames.

PART (Planning of Activities, Re-
sources and Technology) is a commer-
cial process-planning system originally
developed at the University of Twente
[van Houten et al. 1989]. PART incorpo-
rates a rule-based feature recognition
system. The patterns to be identified as
features are specified in a feature de-
scription language. Feature recognition
was two phases, feature pattern recog-
nition and parameter extraction. The
feature patterns are recognized and
compared by using a set of predefined
functions (rules). These functions oper-
ate on lists of geometric entities such as
faces or edges. A check for subsuming
and equal features eliminates redun-
dant features. Parameter extraction ob-
tains the position, orientation, and di-
mensions of the features. Adjacent
features may be combined to form com-
pound features for a hierarchy of fea-
tures.

Although the rule-based method for
feature representation is simple and
successful for isolated features and sim-
ple interacting features, it has some
limitations. First, it is verbose: to repre-

sent a simple feature like a slot, we may
need up to 15 statements. Second, it is
impossible to encode all properties
about all the different occurrences of a
feature in a rule set since feature char-
acteristics are nonunique. It is possible
that one rule representation may corre-
spond to more than one feature. Rule-
based systems look for exact matches
with rule preconditions; to recognize all
instances we may need rules for every
conceivable pair of interactions between
features and/or every configuration of
an abstract feature. Due to this enumer-
ative nature, with n feature types, consid-
ering only pairwise interactions the rec-
ognition algorithm would at best be
O(n2), since n2 cases have to be consid-
ered.

Although syntactic pattern recogni-
tion is the formalization of pattern rules
using pattern grammars, the rule-based
method uses the rules themselves in
place of the formalized language to pre-
vent the limitations that grammar
primitives impose. Since no grammar or
primitives are required in a rule-based
method, any definable feature concept,
whether 2D or 3D, can be described by
rules.

4.1.4 Convex-Hull Techniques. Un-
like other feature-recognition methods
introduced earlier, which rely on prop-
erties of surface entities for feature rec-
ognition, convex-hull techniques use
volumetric properties to extract features
from solid models. The technique is based
on the idea of finding the materials that
must be removed from a raw stock to
produce a part. Instead of relying on pat-
tern matching like the techniques previ-
ously mentioned, this approach exploits
convex hull algorithms and Boolean oper-
ations for feature analysis. The convex
hull is the smallest convex set that con-
tains the polyhedral object. The recogni-
tion is attained by decomposing the object
in stages as the (regularized) set differ-
ence from its convex hull.

To reflect the nature of this decompo-
sition method, Woo [1982] called the
convex decompositions alternating sum
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of volumes (ASV). ASV decomposition
represents an object by a series of con-
vex volumes with alternating signs (for
volume addition and subtraction). ASV
decomposition works by first construct-
ing a convex hull for the given object
and then finding the regularized set
difference between the object and its
convex hull. If this set difference is
empty, the ASV returns the object as a
single convex object and terminates;
otherwise, the object is partitioned into
connected components and each con-
nected component represents its defi-
ciency. ASV decomposition is then reap-
plied recursively to each deficiency until
the resulting set differences for all defi-
ciencies are empty. Figure 13 shows the
ASV decomposition for a polyhedral

part with a through slot and a blind
slot. Here P stands for the object,
CH(P) is the convex hull of P, and
CHD*(P) represents the regularized
convex-hull difference (deficiency).

Using the ASV technique, a noncon-
vex polyhedron can be represented by a
hierarchical tree (similar to a CSG tree)
whose root node represents the object,
intermediate nodes represent the union
and set difference operators, and leaf
nodes represent the primitive convex
polyhedral sets or an empty set. There
are certain major issues in convex-hull
based techniques. The first is noncon-
vergence: ASV decomposition does not
always terminate, which limits the do-
main of geometric objects that ASV
decomposition can handle. The ASV de-

Figure 13. ASV decomposition of polyhedral object P.
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composition does not terminate when
the convex hull of one volume in the
decomposition is equal to the convex
hull of that same volume’s deficiency.
Intuitively, such a situation creates a
cycle in the ASV decomposition. That is,
the same volume occurs over and over
again within the ASV tree. Another is-
sue is conversion from alternating sum-
of-volumes to features. Although the
components in the hierarchical ASV
tree represent convex hulls and set-dif-
ferences, these convex sets may not rep-
resent features in general. Conversion
into features is therefore required, as
illustrated in Figure 14. The research
by Woo et al., discussed in the follow-
ing, represents the major work in this
field.

Woo’s [1983] work is the earliest ef-
fort in this category. In this approach,
the ASV of an object V can be formally
defined as

V 5 O ~21!iHi,

where Hi represents each convex hull at
different stages of decomposition.

No knowledge concerning the types of
the volumes or their classification is
produced. Human interaction is there-
fore required to guide the manufactur-
ing of each convex hull component. The
difficulties with this earliest effort in-
clude its limitation to convex parts be-
cause of lack of guaranteed convergence
for general nonconvex parts, or of con-
version of the generated volume compo-
nents into features for subsequent ma-
chining. Tang and Woo [1991a, b] also
propose an approach to reducing the
issue of computational complexity in-
volved in the ASV decomposition and
describe an algorithm that checks if a
given object will have a convergent ASV
decomposition. For the computational
complexity issue, they describe a linear
space and an O(n logN)-time algorithm
and data structure for computing the
difference between an object and its
convex hull. An O(N2 log N) algorithm
that determines if a part has a conver-
gent ASV decomposition is also devel-
oped. This algorithm utilizes the algo-
rithm for finding differences between

Figure 14. Conversion of ASV components (a) into features (b).
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objects and their convex hulls to check
whether any given stage of the ASV
decomposition is nonconvergent. It then
must check each such stage.

Kim [1990, 1992, 1993], Kim and Roe
[1992], and Waco and Kim [1994a, b,
1993] are the latest efforts in convex
hull techniques for feature recognition:
they solve the nonconvergence and com-
ponent volume conversion problems and
therefore expand the application scope
to concave parts. To remedy the noncon-
vergence problem, they propose a modi-
fied version of the convex decomposition
algorithm called alternating sum of vol-
umes with partitioning (ASVP). The
ASVP decomposition begins with the
steps for ASV decomposition until non-
convergence is detected. Once noncon-
vergence is detected, remedial partition-
ing is applied. Then, the ASV
decomposition steps are reapplied to
each partitioned component. Figure
14(a) illustrates the ASVP algorithm for
a simple object.

Using the ASVP decomposition, they
propose a novel approach to identifying
and extracting volumetric features from
polyhedral objects: (i) ASVP decomposi-
tion is applied to the boundary repre-
sentation of the given object to obtain
the alternating sum of volumes; (ii) the
ASVP volumes are then converted into
feature entities by various combinations
of these volumes; (iii) recognized fea-
tures are then classified into generic
groups based on volume contribution
and local accessibility information using
the normal vectors of the original faces
of each component. The various combi-
nation operations used to convert ASVP
components into features include combi-
nation of volumes with opposite volume
contributions and combining compo-
nents with positive volume contribu-
tions. Since the resulting features may
have both positive and negative compo-
nents for machining applications, posi-
tive features are subsequently con-
verted to negative features (which
correspond to volumes to be removed
from the part). This task is achieved by

rewriting the Boolean expression of the
positive components.

In summary, the convex-hull ap-
proach can handle most parts with in-
teracting features by finding the alter-
nating sum of volume decomposition.
However, when features interact, cer-
tain common volumes may be shared by
more than one feature, but the decom-
position algorithm allocates the com-
mon volume to only one of the involved
features. This problem may be ad-
dressed either by using feature-growing
techniques or by recognizing features
through hints. Also, it should be noted
that it is difficult to construct convex
hulls for curved objects. Menon and Kim
[1994] suggest that local rounding oper-
ations such as fillets can be separately
recognized and removed from the B-
Rep, and the remaining features can be
found by subsequently applying ASVP
to the approximate part. Finally, after
the gross features are identified, the
local rounding operations can be re-
stored. In terms of cost, the computa-
tional complexity of the approach is at
least as great as that of computing con-
vex hulls and performing set-difference
operations.

4.1.5 Cell-Based Techniques. Cell-
based techniques are similar to convex
hull techniques in that both decompose
the volume of the part. Moreover, cell-
based techniques are also concerned
with decomposing the volume of the
part that is to be removed (called the
delta volume, or -volume) into smaller
volumes. These volumes (or cells) then
either need to be directly recognized as
features or, as in ASV decomposition,
need to be mapped (usually through re-
combination) to features.

Tseng and Joshi [1994] give an exam-
ple of some recent work with cell-based
feature recognition. First the volume to
be machined is identified and decom-
posed into basic removable blocks (cells)
by extending all the bounding faces and
considering all possible intersections.
This intuitively “cuts” the -volume into
pieces according to its own half-spaces.
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The next step involves the reconstruc-
tion of these cells into feature volumes.
Through 1D, 2D, and 3D cell connec-
tions a maximal connected feature block
is created. Next, in order to classify the
feature block, the nonsolid virtual faces
are identified and deleted from the at-
tributed adjacency graph (AAG) of the
feature block. The classification of the
feature block is then performed via
matching of the resultant AAG through
a simple rule-based algorithm. One ad-
vantage of this approach is that by re-
combining the cells in different orders it
is possible to generate all the possible
alternative interpretations of a part.
The most prevalent drawback is that
the faces of the delta volume (i.e., the
faces used in the decomposition into
cells) must sufficiently divide the delta
volume itself. Therefore, the delta vol-
ume must be polyhedral, and if the
delta volume of a part is convex, the cell
decomposition will simply be one large
cell.

Several researchers [Sakurai and
Chin, 1993; Sakurai 1994, 1995; Dave
and Sakurai, 1995] also utilize cell-
based techniques for feature recogni-
tion, extending the work of Tseng and
addressing some of its weaknesses.
Their work also begins by decomposing
the delta volume of a part. However,
they allow for curved faces to be recog-
nized by matching cylindrical faces to
portions of the curved faces. After the
decomposition, these methods must also
recombine the cells into features. The
approach taken is first to combine the
cells into maximal cells, which are sets
of the cells that obey some proximity
and adjacency specifications. These
maximal cells are then used to find the
features of the part: they are subtracted
from each other to produce features. It
should be noted that these methods are
also well suited to generating alternate
interpretations of a part by subtracting
the maximal cells in different orders.

4.1.6 Evidence-Based Reasoning Ap-
proaches. The feature recognition pro-
cess can be realized by a fundamental

AI paradigm: generate-and-test, where
the generate task is realized through
pattern matching and the test task is
accomplished through feature valida-
tion. Generation is a process of finding
hypotheses about possible features us-
ing pattern-recognition techniques. Val-
idation, on the other hand, is a process
in which hypothesized features are ver-
ified based on additional geometric or
topological constraints. Features not
passing the validation test are rejected.
This verification is a necessary step
since feature hypotheses may represent
a feature that is combinatorially possi-
ble but cannot be realized physically on
the original object due to physical and
geometric constraints. A common method
for verification is to use an expert sys-
tem in which rules are used to represent
features and constraint knowledge and
each feature hypothesis is checked
against the rules to see whether any
rules have been violated.

Marefat and Kashyap [1990] and
Vandenbrande and Requicha [1990,
1993] used this generate-and-test strat-
egy. In Marefat and Kashyap [1990],
knowledge is represented by graphs, the
recognition process is guided by an hy-
pothesis generate-and-test process, and
verification is realized through a rule-
based expert system, where rules are
used for representation of features and
constraint knowledge.

The method proposed in Vanden-
brande [1990]; Vandenbrande and
Requicha [1990, 1993]; and Requicha
[1996] represents considerable progress
in recognition of interacting features us-
ing a rule-based approach for generat-
ing hints. In this approach the algo-
rithm searches for hints and incomplete
features in the first stage. Production
rules generate hints on the presence of
a feature. An incompletely specified fea-
ture is associated with each hint. A hint
about a feature may be generated by a
characteristic combination of part faces,
by a design feature from which a manu-
facturing feature can be inferred, or by
certain manufacturing properties such
as dimensions that are associated with
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a particular feature type. For example,
a hint for a slot may be produced from
two parallel planar faces with opposing
normals, and a hint for a hole may be
produced from a thread attribute.
Searching for feature hints rather than
complete feature descriptions enables
the approach to identify interacting fea-
tures. The reason is that when features
interact, their topological properties
may change, and hence they may not be
recognized as unique complete descrip-
tions, but the existing patterns and at-
tributes can still offer many hints about
the feature’s existence. The recognizer
uses a rule-based approach for generat-
ing clues or hints about potential fea-
tures from information gathered from
several sources including nominal and
tolerance geometry, attributes (e.g.,
thread), and functional features speci-
fied by a designer. Hints are subse-
quently validated using geometric test-
ing based on criteria closely associated
with machinability constraints.

Feature hints are passed to a classi-
fier that categorizes them into three
groups: promising, unpromising, and re-
jected. Rejected hints are discarded. Un-
promising hints are stored in a black-
board and all activities on them are
temporarily suspended. A blackboard
model prescribes the organization of the
domain knowledge and all the input,
intermediate, and partial solutions
needed to solve the problem [Nii 1986].
Pieces of knowledge are applied at the
most opportune time, resulting in incre-
mental generation of partial solutions.
The unpromising hints may be reacti-
vated later upon receiving further infor-
mation. Promising feature hints are fur-
ther processed by the feature completer,
which searches for all relevant data
about the feature. The feature comple-
tion is achieved by growing the feature
volumetrically along feature-specific di-
rections and classifying the feature with
respect to the part and the raw mate-
rial. Completion can be one-dimen-
sional, involving linear, radial, or circu-
lar extensions, or two-dimensional,
where a feature cross-section is also ex-

tended laterally in a plane normal to
the translational sweep axis. The com-
pleted features are stored in the black-
board, where another set of rules at-
tempts to combine them with other
features that satisfy certain precondi-
tions. For example, two coaxial and ad-
jacent holes are combined to form a
counterbored hole, which is a type of
composite hole.

Figure 15 shows the proposed archi-
tecture of the system based on hints.
The feature finder operates in several
stages by selectively activating sets of
rules, which are applied to the available
data. In the verification phase, the rules
for verifying clues and resolving con-
flicting hints are activated. A proof-of-
concept implementation is developed in
a Knowledge Craft/PADL-2 testbed.
Vandenbrande’s method can deal effec-
tively with interactions, since the
search process does not rely on complete
information.

As with the generate-and-test method
previously described, evidential reason-
ing, or uncertainty reasoning, has been
used for feature recognition. Evidential
reasoning offers a consistent means for
handling uncertainties. Uncertainty
may arise in design due to conflicting,
redundant, or missing data. When fea-
tures interact, uncertainty develops as a
result of the nonuniqueness of the pat-
terns associated with the topology and
geometry of features in these interac-
tions. When a feature interacts with
another feature, certain kinds of topo-
logic and geometric changes are possible
[Wang 1992].

(1) The new feature modifies the topo-
logic properties of the existing fea-
ture, but its own properties are not
changed.

(2) The topologic properties of the new
feature are modified, but the pat-
terns used in recognition of the ex-
isting feature are not changed.

(3) Both the new and the existing fea-
tures are modified.
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Regardless of the kind of interaction,
the resulting representation of the fea-
tures usually does not correspond to
predefined feature patterns. Thus sim-
ple pattern matching will not be able to
recognize these features. Specifically,
the modified geometric or topological in-
formation may need to be recovered in
order to complete the broken or changed
patterns prior to recognition or match-
ing. Uncertainty reasoning offers a for-
mal and consistent mechanism to ac-
complish this goal through evidence
aggregation. The idea is that even
though there are many uncertainties in
possible conclusions from data pre-
sented by two or more interacting fea-
tures, there is also rich evidence that, if
combined properly, can help in recover-
ing the modified and/or necessary infor-
mation.

With this approach, evidence support-
ing or rejecting the existence of in-
stances of different features can be com-
bined to describe depressions of a part
in terms of manufacturing features. In
such a framework, each piece of evi-
dence may not by itself be sufficient for
recognizing a feature, but generates a
probability (or a weight), which is a
measure of confidence that relates the
evidence (a topological or geometric re-
lationship) to a feature. It is the collec-
tion of evidence and consistent combina-
tion of its components that produces a
description of the features involved.

The two most popular techniques for
handling multiple sources of evidence
are Bayesian belief accumulation [Pearl
1988] and the Dempster–Shafer theory
[Shafer 1976]. In the former, the rela-
tionships between evidence and hypoth-

Figure 15. Architecture of feature finder using feature hints [Vandenbrande 1990a; Vandenbrande
and Requicha 1993].

292 • Q. Ji and M. M. Marefat

ACM Computing Surveys, Vol. 24, No. 3, September 1997



eses are described by three numbers:
the prior probabilities, the likelihoods,
and the posterior probabilities. Evi-
dence (topological and geometric rela-
tionships) supports or disconfirms the
hypotheses about the existence of differ-
ent feature instances through a mea-
sure of confidence or a likelihood assign-
ment. This evidence can then be
combined using probability axioms and
the Bayesian rule. In the Dempster–
Shafer approach, relationships among
the evidence and the hypotheses are
described in terms of the belief intervals
and basic probability assignments,
which are the extent to which a piece of
evidence contributes to the proof of an
hypothesis. In this method, evidence
(topological and geometric relationships
supporting or not confirming the hy-
potheses about the existence of different
feature instances) exerts its influence
through a quantity called a basic proba-
bility assignment, which assigns a mea-
sure of belief to a set of supported hy-
potheses.

Both mechanisms offer consistent and
coherent means to combine available to-
pological and geometric evidence to
overcome the difficulties associated
with the nonuniqueness of features in
interactions. There are several impor-
tant advantages to such a scheme for
extracting and identifying features.
First, since features are recognized by
the collection of evidence, the individual
pieces of evidence need not carry equal
weight, and in fact some of these may
support conflicting conclusions. As long
as the cumulative combination of the
pieces of evidence is in favor of a correct
interpretation, a correct description of
the part will be obtained. Second, one
need not know ahead of time which set
of topological and geometric relation-
ships, or which patterns, will be ob-
served for each feature. In fact, at dif-
ferent times different topological and
geometric relationships may indicate
the same feature class. Third, the same
topological or geometric relationship
may simultaneously support two differ-

ent features with different degrees of
confidence.

In the field of feature recognition
from CAD models, Marefat has pro-
posed a method using uncertainty rea-
soning in analyzing interacting features
[Marefat and Kashyap 1990]. The ap-
proach is tailored towards handling ma-
chining features and uses a new graph
representation, referred to as a cavity
graph, to represent the depressions of a
part. Cavity graphs are an extension of
the attributed adjacency graphs pro-
posed in Joshi and Chang [1988] but
differ from the AAGs in the following
aspects. First, each node in the cavity
graph is labeled with its principal nor-
mal direction, which determines the ori-
entation of a face with respect to other
faces. (Since this orientation is relative
to the other faces, it establishes a rela-
tive spatial relationship between the
face and other faces in the depression of
the part.) Second, the cavity graph in-
troduces the concept of unification,
which uses the same node to represent
two or more distinct object faces when
two or more faces can be merged into a
larger virtual face. Unification of faces
is possible if the unified face does not
interfere with the interior of the object
[Marefat et al. 1990]. Finally, since de-
pressions are usually associated with
concavities, cavity graphs contain only
concave links. A part may have several
cavity graphs associated with its differ-
ent depressions. Figure 16 shows an
example part with a slot feature, the
AAG and the cavity graph for this ex-
ample part.

Primitive features are defined in a
fashion similar to the AAG approach,
but utilizing the new cavity graph. Rec-
ognition is carried out through an hy-
pothesis generate-and-test method. Hy-
pothesis generation is carried out by
partitioning the cavity graph of the part
into the subgraphs that represent the
feature templates. The advantages of
cavity graphs are that they represent a
much smaller search space, conse-
quently reducing the computation re-
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quired for pattern matching, and that
they carry local spatial information.

Although cavity graphs and the gen-
erate-and-test process improve the abil-
ity to extract interacting features by
themselves, a better method is gained
by the incorporation of an evidential
reasoning technique in a graph-based
context. Marefat and Kashyap [1990]
formulate this problem as one of identi-
fying the necessary and most probable
virtual links (links that do not exist but
need to be added to the cavity graph) for
extraction of features from the parti-
tions of the cavity graph. This approach
works by combining available geometric
and topological evidence about each
candidate virtual link using Dempster’s
rule of combination. Dempster-Shafer
theory is exploited to identify the most
probable virtual links among all possi-
ble candidates. The results of this evi-
dence aggregation identify virtual links

that are subsequently augmented to the
original cavity graph, resulting in a su-
pergraph that can readily be partitioned
to extract features.

The major contributions of this ap-
proach include its introduction of evi-
dential reasoning for recognition of fea-
tures. This mechanism uses a clustering
technique to select the virtual links in
its final phase. A similar approach has
been developed based on Bayesian net-
works [Ji and Marefat 1995]. In addi-
tion, a new contribution of this method
is the generation and incorporation of
hierarchical feature-based evidence. No
proof that the technique will always
find the correct virtual link cluster was
provided, but in the experiments per-
formed, the proposed techniques always
provided the correct set of virtual links.

Finally, Trika and Kashyap [1994]
proposed a feature-recognition method
similar to the work of Ji and Marefat

Figure 16. (a) Part with a slot feature; (b1) its global graph, and; (b2) its cavity graph.
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[1995] in which the notion of the cavity
graph is again utilized to represent a
part and features. Furthermore, virtual
arcs that enable interactions of features
to be handled are hypothesized and cre-
ated. However, virtual arcs are created
by extending faces of the part and com-
puting intersections; that is, the faces of
the part are extended and checked for
pairwise intersections. When two ex-
tended faces intersect (at an edge) this
edge becomes a virtual arc. Once the
virtual arcs are restored, the feature
recognition can occur through graph
matching.

Due to the nonuniqueness in feature
representations, evidential reasoning is
an especially well-suited approach to
feature recognition. A nonmonotonic
reasoning approach such as constraint
relaxation would also belong to this cat-
egory. For example, in the case of a
pocket not bounded on one side, a
method relying strictly on pattern rec-
ognition would fail because of its inflex-
ibility, since it expects and recognizes
the pattern of a pocket as an entity with
four walls. Evidential reasoning can
also be advantageous in obtaining mul-
tiple interpretations of a given part in
terms of different sets of features, be-
cause the same set of evidence can point
to the existence of different sets of fea-
tures, each set yielding an alternative
interpretation.

4.1.7 Other Approaches. Many of
the feature-recognition approaches dis-
cussed call upon different techniques
and are in a sense hybrid, but they all
share one underlying mechanism that
categorizes them. Here we discuss sev-
eral approaches that, for one reason or
another, could not be placed in any of
the preceding sections.

De Martino et al. [1994a] propose a
feature-recognition mechanism that in-
corporates both syntactic pattern
matching and graph-based ideas. The
motivation for this combination is the
need for a system that first recognizes
the protrusions and depressions of the
component so that features (suitable to

some domain) then can be recognized by
graph matching. The advantage of de-
composing the problem into these steps
is that the second recognition stage (the
identification of specific features) can be
modified for different domains of fea-
tures.

In recent work, Gupta et al. [1994],
Gupta and Nau [1995], Nau et al.
[1993], and Regli et al. [1994] recognize
a part as a collection of MRSEVs (mate-
rial removal shape element volumes)—a
STEP-based library of machining fea-
tures. MRSEVs are volumetric features
corresponding to machining operations
on three-axis milling machines. From
the CAD model, the algorithm con-
structs sets of MRSEVs occurring in
alternative interpretations of the de-
sign. The different MRSEV models are
then evaluated to yield the optimal in-
terpretation (in terms of machining
cost). The feature-recognition algorithm
is based on the assumption that every
primary valid MRSEV will contribute
some face in the delta volume. That is,
each face in the delta volume of a part is
matched to all possible features that
could create such a face. All the faces in
the delta volume are considered and the
set of all primary MRSEVs is con-
structed. The researchers argue that
within a restricted domain this ap-
proach can find all of the possible inter-
pretations of a part.

4.2 AFR Using CSG

The feature-recognition techniques in-
troduced so far use B-Reps as their in-
put information from the solid modeler.
In this section, we investigate the use of
another solid representation scheme,
namely, constructive solid geometry
(CSG). CSG is a volumetric representa-
tion in which a solid object is explicitly
represented by an ordered binary tree.
The leaves of the tree are instances of
primitive solids. The intermediate
nodes contain regularized Boolean oper-
ations including union, intersection,
and difference. Figure 17 shows a CSG
representation for a part.

Computing Surveys • 295

ACM Computing Surveys, Vol. 24, No. 3, September 1997



A CSG representation is simple and
unambiguous. It is a useful paradigm in
interactive design, but its representa-
tion is not unique. This is the major
problem encountered when using CSG
for feature recognition and other appli-
cations. By nonuniqueness, it is meant
that one solid object may admit several
different valid CSG representations.
Figure 18 shows the same part as in
Figure 17, but with a distinct CSG rep-
resentation. The nonuniqueness is
caused by the fact that any Boolean
expression may have an infinite number
of equivalent expressions and means
that all the CSG nodes involved in a
specific feature could, in general, be
scattered around within the tree. This
aspect in turn may mean that an indi-
vidual CSG primitive, such as a paral-
lelepiped block, a sphere, or a triangu-
lar prism, is too general and ephemeral
to be equated to a feature. In addition,
the difference operation in the CSG tree
may not always correspond to a manu-
facturing material-removal operation.
On the other hand, certain removal op-
erations may be implicit without using
any difference operation. For example,
the union of two partially overlapped
coaxial cylinders of different radii would

represent a cylindrical part after a lathe
operation [Lee and Fu 1987]. Due to
these difficulties, attempts to use CSG
representation for automatic feature
recognition begin by converting them to
a simpler representation.

Lee proposed an approach that con-
verts a CSG representation into a simi-
lar, but unique, tree representation by
identifying the different nodes in the
CSG belonging to the same feature and
merging them into one node. New nodes
are constructed such that each uniquely
represents a machining feature [Lee
and Fu 1987]. The proposed approach
consists of two steps, namely, feature
identification and unification. Feature
identification is used to identify all
primitive nodes in a CSG that may be-
long to one feature. Unification is used
to aggregate these identified nodes into
one node, transferring a specific feature
into a desirable and isolated representa-
tion. Unification not only reduces the
degree of nonuniqueness of the CSG
tree, but also allows manufacturing at-
tributes to be associated with meaning-
ful geometric volumes. Figure 19 shows
the schematic diagram for this method.

Feature identification is accomplished
through pattern matching. Features are

Figure 17. CSG representation for an example part.
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modeled as patterns of volumetric prim-
itives that satisfy certain geometric con-
straints, especially constraints for facial
and axial alignment. The rationale be-
hind classifying features through their
principal axes is that each feature class
has a unique type of axis. Here the type
of axis (or principal axis) is defined by
the coordinate frame it is within, its
orientation, origin, and length. For ex-
ample, features like cones, cylinders,

and tori can all be characterized by a
single axis, features like spheres have
axes with arbitrary orientation, and fea-
tures like cubes, due to their asymme-
try, have 12 axes. During the feature
recognition process, CSG primitives are
first partitioned into equivalent classes
according to the orientations of their
axes, each consisting of members paral-
lel to each other. Within each equiva-
lence class, axes involved in a particular
feature can be located according to the
conditions defined by the feature. This
leads to the recognition of specific fea-
tures within each equivalence class.

Once all the features have been iden-
tified, unification can be initiated. Dur-
ing this phase, the CSG tree is rebuilt
by merging or grouping equivalent CSG
nodes into one node to represent a
unique manufacturing feature. Unifica-
tion consists of these steps:

(1) tree reconstruction in which all par-
ticipating nodes of the feature are
relocated and grouped to form a sub-
tree, and

(2) tree transformation in which the
subtree resulting from the first step
is replaced by an equivalent sub-
tree.

Once all feature nodes have been uni-
fied, the feature subtrees are processed

Figure 18. Nonuniqueness of the CSG representation.

Figure 19. Block diagram for extracting features
from CSG input.
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bottom-up and replaced with simplified
subtrees or primitives that directly cor-
respond to features.

Recently, Perng et al. [1990] also de-
veloped an algorithm for automatic fea-
ture recognition from the CSG tree rep-
resentation. In this technique, the CSG
representation is first transformed into
a different hierarchical volumetric rep-
resentation called destructive solid ge-
ometry (DSG). From the DSG represen-
tation, the required object surface
information is derived in terms of a
boundary representation. The purpose
of this transformation is to overcome
the problem that CSG tree primitives
cannot be used directly by an applica-
tion. The transformation is character-
ized as follows.

Input:
The CSG tree can be expressed in
the “inorder” form as

P 5 P0 6 P1 6 . . . 6 Pn,

where the symbols 6 are defined as
geometric binary union or differ-
ence operations, P is the part, and
Pi are the CSG primitives.
Output:

P 5 S 2 E1 2 E2 2 E3 . . . 2 Em,

where S is the raw stock material
and Ei are the excess material vol-
umes contained in S.

The constraints for the transformation
are that every Ei must belong to one of
the defined feature primitives and all Ei
must be disjoint. The transformation
converts the union operations in the
CSG into difference-only operations and
the CSG primitives into disjoint remov-
able volumes. Figure 20 illustrates this
transformation process, with Figure
20(a) showing the part, Figure 20(b)
showing the CSG representation, and
Figure 20(c) showing the DSG represen-
tation. The DSG is suitable for auto-
matic feature recognition, since the
primitives are disjoint removal volumes,
which correspond to some manufactur-
ing operation.

To recognize features from the DSG
representation, features are first classi-
fied hierarchically for pattern-matching
convenience. The recognized features
are subsequently associated with fea-
ture attributes including dimensions
and possible tooling entrance faces. A
limitation of this approach is that the
technique cannot handle the CSG con-
structs or primitives that result from
intersection operation(s).

Shpitalni and Fischer [1994] propose
a recognition scheme for machining “re-
gions” from CSG input. In this work
machining regions are defined as groups
of features that all interact with one
another, but not with other regions. The
recognition approach is similar to the
preceding approaches in that it first
converts the CSG representation into a
more consistent representation. In this
work, the intermediate representation
is a positive CSG tree in which only
(regularized Boolean) union and inter-
section operations are allowed. Subtrac-
tion operations in the original CSG tree
are represented by negation and inter-
section operations. Once the input is in
positive CSG tree format, the recogni-
tion process recursively divides space
into quadrants until each quadrant is
either full or empty of material in the
part. Then each quadrant is labeled as a
pocket or island (depending on its being
empty or full), and finally these labeled
quadrants are recombined to give the
machining regions of the part. The re-
combination strategy searches through
the CSG nodes within the labeled quad-
rants to group related volumes into
larger regions. Of course, this approach
actually extracts machining features
only if the machining regions of a part
are identically the machining features,
which occurs when there are no feature
interactions.

Another approach to feature recogni-
tion using CSG is that of Parry-Barwick
and Bower [1995], which provides a
novel technique for feature recognition
using set theory. The approach offers
important advantages. First, it allows
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for user-defined features. This approach
essentially performs template matching
with a variable template on a specific
solid model. The advantage of such flex-
ibility is the expanded domain to which
the feature recognizer can be applied.
Second, the approach allows for approx-
imate matching of the templates; that
is, it does not require an exact template
match, but rather can return a feature
that is a slight deviation from the input
template. The mechanism of this ap-
proach is given the template to match
(which is encoded as a set, or volume)
and the solid model input (a set of vol-
umes (CSG)), the template is “moved”
across the model and checked for
matches. The movement is accom-
plished by translating one (or more)
variables in the space of the model. For
example, to match a 3D template to a

solid model, the method would have to
translate the position of the template,
the rotation of the template, and the
scale of the template (in all a 10-dimen-
sional problem). The method described
in this work is applied only to 2D mod-
els although it is not theoretically lim-
ited to any dimension.

In summary, although an important
motivation for CSG development and
use has been that it could more closely
represent machining operations, it has
received less attention for feature iden-
tification and recognition than those
utilizing B-Rep input. The major diffi-
culties have been the nonuniqueness of
the representation and the lack of a
general relationship among the primi-
tives involved in the construction of a
CSG and the features of the resulting
design.

Figure 20. Example of converting CSG into DSG representation: (a) the part; (b) CSG representation;
and (c) DSG representation.
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4.3 AFR from 2D Engineering Drawings

Most research in feature recognition
uses solid models as input, since it is
believed that solid model representa-
tions contain more information. Another
motivation for the use of solid models is
that new generations of CAD systems
provide this information directly. As a
result, comparatively little attention
has been paid to automatic feature rec-
ognition from 2D input (engineering
drawings and sketches), even though
engineering drawings are still fre-
quently used to document design infor-
mation. An engineering drawing here is
a three-view representation in which
front, side, and top views are given from
an orthographic projection, whereas
sketches are a 2D drawing of a 3D part.

CAD-related research on engineering
drawing has focused on the following
aspects. The first is the conversion of
engineering drawings on paper into a
proper computerized representation,
such as a symbolic file [Vaxiviere 1992].
This conversion is usually accomplished
through algorithms that convert raster
images from a scanner into CAD-read-
able vector representations in terms of
lines and curves. This research is a vi-
sual recognition process involving scan-
ning and preprocessing, vectorization,
and post-processing. Although engineer-
ing drawings in a wireframe representa-
tion file are suitable for tasks such as
documentation, wireframe representa-
tions are not conducive to applications
such as automatic process plan genera-
tion because all entities in these files

are in terms of low-level entities such as
lines, edges, or faces.

The second aspect of CAD-related re-
search on engineering drawings has
been to extract high-level features from
computerized engineering drawings.
Some researchers have also attempted
to convert the symbolic 2D representa-
tions obtained into 3D solid model rep-
resentations [Aldefeld 1983; Dori and
Tombre 1995]. Figure 21 illustrates the
schematic diagram of CAD-related re-
search based on engineering drawings.
Markowsky and Wesley [1986] is a good
survey of this area. In the following, we
focus on feature recognition from engi-
neering drawings.

As in research on understanding solid
model representations, the underlying
philosophy for extracting features from
engineering drawings has been to view
a complex part as being composed of
elementary primitives (features) belong-
ing to a set of predefined classes and to
recognize these elementary primitives
by making use of the knowledge about
the class-dependent patterns of the 2D
representations. Research in this field
usually makes the assumption that the
three-orthogonal-view representation is
unambiguous; that is, one drawing cor-
responds to one and only one unique
object. This assumption may not always
be true.

Recently, Meeran and Pratt [1993] in-
troduced a method implemented in
PROLOG for the extraction of features
from engineering drawings. This
method is based on the observation that

Figure 21. Schematic approach for identifying and extracting features from engineering drawings, or
converting them into solid models.

300 • Q. Ji and M. M. Marefat

ACM Computing Surveys, Vol. 24, No. 3, September 1997



most simple manufacturing features,
such as pockets and slots, are mani-
fested in at least one view by closed
loops of constructional entities, using
line and circular arcs. For example, a
cylindrical boss feature may contain a
circle (a closed loop) in the top view and
two rectangles in the front and side
views, respectively. The identification of
these loops through pattern matching
and subsequent combination of the rec-
ognized entities from the three views
are the basis for this feature recognition
method. To recognize closed loops, the
recognizer is provided with a library of
patterns, represented in production
rules, that correspond to a range of iso-
lated features. The recognition process
consists of the following steps. First, all
simple isolated features are recognized
through pattern matching. The corre-
sponding entities for the recognized iso-
lated features in the three views are
subsequently removed from the original
views. Next, the remaining composite
entities are examined using logic-based
production rules to see whether they
belong to interacting features. Those en-
tities belonging to interacting features
are then isolated for further processing.
In the third step, the remaining compos-
ite entities are gathered and grouped
under the heading of generalized pro-
trusion or depression features.

Recognizing an isolated feature is
straightforward. An individual feature
is recognized in terms of its pattern of
edges in the drawings of the three or-
thogonal views. However, for the fea-
ture to be recognized, certain correspon-
dences must be established among
patterns in different views. Given the
same machined entity in each view and
the correspondences among the matched
entities, an isolated feature is subse-
quently recognized. The isolated fea-
tures that can be recognized through
this algorithm include cylindrical holes,
slots, pockets, grooves, and threads.

To recognize interacting features, the
approach must be able to deal with in-
complete patterns and infer the embed-
ded features based on this incomplete

information. The general logic for deal-
ing with feature interactions is complex,
especially in the cases in which more
than two features interact with one an-
other. The logic used in this research
includes two steps: determining the
lines and arcs that terminate at a previ-
ously identified object, and extending
these lines to determine if their exten-
sion ends within the pattern. If so, we
assume that the previously identified
object disrupts the current object, whose
complete outline can be recovered by
extending all terminal points. This sim-
ple logic can only deal with simple two-
feature interactions. Specifically, it is
not appropriate for an interaction in
which both features are disrupted.

Earlier research work in this field
includes Burn [1991], which derives fea-
ture data from drawings and uses them
in the construction of a CSG solid model
of a part, and Perng [1988], which de-
velops an algorithm for automatic 3D
machining feature recognition. Other
research has tackled the feature-recog-
nition problem for rotational parts. This
is an easier problem since in essence,
given the axis of rotation, it can be
reduced to a 2D problem.

Research on automatic reconstruction
of a 3D solid model from engineering
drawings is a bottom-up interpretation
process. Objects are represented hierar-
chically in a network (such as a seman-
tic net), with the top of the network
representing 3D objects and the bottom
representing 2D primitives. The infer-
ence process works up through the hier-
archy by first grouping the 2D primi-
tives to infer primitives at a higher
level, which are in turn used to infer
features at even higher levels, continu-
ing up through to the top of the hierar-
chy for the entire object. This bottom-up
inference process cannot always be suc-
cessful in the absence of auxiliary infor-
mation. It is also vulnerable to compu-
tational explosion due to the huge
search space and the exhaustive nature
of the search. To reduce the search
space, heuristic information is employed
to help formulate an evaluation function
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for a best first search algorithm. In ad-
dition, a model-guided search is also
used by some researchers [Aldefeld
1983] to further reduce the search space
and to validate the hypotheses.

To summarize, the major difficulty
encountered using engineering draw-
ings for feature recognition or 3D solid
model construction is the ambiguous na-
ture of the underlying representation.
This aspect is reflected by the fact that
2D data may not contain sufficient se-
mantic information to uniquely identify
an object. The assumption that three
orthographic views can unambiguously
define a unique object may therefore not
be realistic in real-world applications,
and has limited most developed tech-
niques to application to polyhedral
parts because of inadequate facilities
for dealing with general shapes.

Finally, engineering drawings are not
the only kind of 2D input possible for
feature recognition. Hwang and Ullman
[1994] describe a system to recognize
features from 2D freehand sketches.
The input to this system is a 2D sketch
of a 3D part. The overall system allows
the user to interactively sketch a part,
then have the feature recognized from
this part. The preceding functionality is
broken down into the three subsystems:
a 2D freehand sketching subsystem, a
feature-recognition subsystem, and a
spatial reasoning subsystem. The
sketching subsystem is responsible for
the user input. The feature-recognition
subsystem works through a rule-based

system by matching the user’s sketches
(line segments, arcs, ellipses) to 3D fea-
tures. The spatial reasoning subsystem
incorporates new features being drawn
to include the previously recognized fea-
tures found in the part.

5. OTHER PARADIGMS FOR OBTAINING
FEATURE INFORMATION

In addition to using automatic feature
recognition to automate the link be-
tween CAD geometric models and pro-
cess planning, two other paradigms for
integrating design and manufacturing
process planning have been studied by
researchers. The idea has been either to
incorporate features into the CAD data
during the design process or to devise
systems that recognize features with in-
teractive support from a user. The para-
digms for these approaches have been
respectively called [Shah 1991]:

—design by features (or feature-based
design), and

—human-assisted feature recognition
from geometric models.

Human-assisted feature definition pro-
vides a way for a qualified manufactur-
ing engineer to interactively pick and
group topological entities (edges, faces)
from an image of the part to define a
feature. Figure 22 [Shah 1991] shows
an overview of this approach. One dis-
advantage of this approach is that it
does not provide for automatic transfer
of information between design and pro-

Figure 22. Human-assisted feature definition.
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duction. Its advantage is that it allows
the designer to design a part in what-
ever way is most convenient. Prototype
systems for this purpose have been built
at General Motors Research Laborato-
ries and at the National Bureau of Stan-
dards [Brown and Ray 1987].

In an alternative paradigm, feature-
based design (or design by features),
primitive features are incorporated dur-
ing the design stage (see Rosen [1993]
for a survey of recent work in feature-
based design). The main component of
feature-based design is that it allows
users to design by adding, subtracting,
and manipulating instances of generic
features.

It may be recalled from the discussion
at the beginning of this article that fea-
tures are application-specific and do-
main-dependent. For this reason, fea-
tures usually are suitable either for a
design itself or for an application do-
main (such as manufacturing). If the
features used during design are specific
to design (design features), it will be
necessary later to convert them to man-
ufacturing (or application-specific) fea-
tures so that a manufacturing applica-
tion such as a process planner can
perform its tasks.

Certain feature-based design systems
support inheritance properties in fea-
ture families, thus enhancing the design
environment. Systems for this purpose
have been built for designing injection-
molded parts [Vaghul and Dixon 1985],
aluminum castings [Vaghul and Dixon
1985], and machined parts [Chang et al.
1988].

Although feature-based design can
partially integrate part design and pro-
cess planning, it has posed certain prob-
lems [Karinthi and Nau 1992]. First, it
may require extra knowledge on the
part of the designer since manufactur-
ing and assembly requirements may
need to be considered, especially if the
features used during design are applica-
tion-oriented. This is a task that most
designers are not qualified to under-
take. Second, the approach traditionally
does not address multiple feature inter-

pretations that may exist for the same
component. This is an important issue
related to alternative strategies to pro-
duce a given design. Finally, in feature-
based design, as mentioned earlier, fea-
tures are dependent upon a given
application. This implies that even if
features are incorporated into the CAD
model it may become necessary to rein-
terpret the part with a different set of
features.

Recent work has attempted to address
the preceding difficulties of feature-
based design in one of two ways: fea-
ture-mapping techniques have been de-
veloped to take a feature-based design
and map its features to the features of
other domains; and generic/flexible fea-
ture-definition strategies have been in-
corporated into feature-based design.
The problem of handling multiple fea-
ture interpretations within feature-
based design has been approached by
integrating AFR techniques with fea-
ture-based design. In the following sec-
tion, we discuss the techniques devel-
oped to solve the problems in feature-
based design.

5.1 Feature-Based Design and Feature
Recognition

Feature-based design has sometimes
been regarded as an alternative to fea-
ture recognition. Instead of simply
searching the CAD geometric models for
features, feature-based design incorpo-
rates the features directly into the CAD
description. However, several difficul-
ties have been encountered. First, fea-
ture-based design does not provide a
mechanism for alternative feature de-
scriptions of a part. That is, when a
designer draws a part using feature-
based design, feature interactions can
result in the existence of new, alterna-
tive features within the part. These fea-
tures may or may not have been inten-
tionally introduced by the designer, but
in either case, they may not exist within
the CAD model. Second, the features
used for design may not correspond to
the features used for other applications
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(e.g., manufacturing). Moreover, if the
designer is required to work with fea-
tures specifically suited to an applica-
tion domain, say manufacturing, this
may require too much knowledge on the
part of the designer or impose too many
design limitations. Nevertheless, design
for manufacture is quite popular now,
in view of the lack of robust commercial
feature-recognition systems.

There has been work that addresses
these shortcomings but does not use
feature recognition. For example, some
recent work in feature-based design has
allowed a user-definable set of features
or has helped in the maintenance of
manufacturing consistency.3 This work
is not surveyed in this section since it
has not been concerned with feature
recognition per se. This section ad-
dresses the difficulties in feature-based
design that make use of feature recogni-
tion.

The general strategies for enhancing
feature-based design utilizing feature
recognition have been either to map the
features used in the design to features
in other applications or to incorporate
feature-recognition strategies com-
pletely. The idea of feature mapping has
already been seen in the convex-hull
techniques for feature recognition. Here
the goal is to start with a description of
a part according to one set of features
and then to map (or translate) this de-
scription into a new description using
an entirely new set of features. The
convex-hull techniques demonstrate
feature mapping from ASV decomposi-
tion to machining feature decomposi-
tion.

Chamberlain et al. [1993] describe a
system to map protrusion features to
depression features within a feature-
based design framework so that, during
the design of a part, a designer can
create both depression and protrusion
features. However, only depression fea-

tures roughly correspond to manufac-
turing features. Protrusion features, on
the other hand, are not directly manu-
facturable (i.e., they do not directly cor-
respond to manufacturing features)
since they are produced by removing
surrounding material, not material
within the feature itself. The mapping
process from protrusion features to de-
pression features consists of two major
elements: extending the stock of the
part and recognizing depression fea-
tures within this extension. That is,
when a protrusion feature is called for,
the stock of the part is extended to
include this new protrusion. However,
this extension may create material in
addition to the protrusion feature, so
this extra material needs to undergo a
feature-recognition process.

In work integrating feature-based de-
sign and feature recognition, there has
been some research in a modeling sys-
tem based on incremental feature recog-
nition [Laakko and Mäntylä 1993]. The
approach combines design by features
and feature recognition and gives the
designer the choice of using either
method. The designer’s task is simpli-
fied by allowing both solid and feature
modeling operations. The method also
maintains consistency between the geo-
metric model and the feature-based
model. If a feature is added through
feature-based design methods, not only
is the geometric model updated, but
new features created from the interac-
tions of old features with this new fea-
ture are recognized. The feature recog-
nition strategy is a graph-based
approach.

Han and Requicha [1994] propose a
system to incrementally recognize fea-
tures in a part during the design pro-
cess. This system is based on the earlier
work in Vandenbrande [1990], Vanden-
brande and Requicha [1990, 1993], and
Requicha [1996], as described in Section
4.1.6. After each step of the feature-
based design process, the method com-
putes the new features within the part,
based on the old features found in the
part; the new feature is added, along

3 Please see Duan et al. [1993], Feng and Kusiak
[1995], Chen and Hoffman [1995], Ovtcharova et
al. [1994], Ovtcharova and Jasnoch [1993, 1995],
and Yu et al. [1992].
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with the spatial interactions between
these features.

De Martino et al. [1994b] provide an
approach to integrating feature-based
design and feature recognition. As with
Laakko and Mäntylä [1993], this ap-
proach also maintains geometric and
feature-based design data, but this
work maintains consistency between
the two by also storing an intermediate
feature model. This intermediate model,
which represents features in a generic
format, is mapped to both the geometric
model and the feature-based design
model. Also as with Laakko and Mänty-
lä’s system, when features are added
through feature-based design or by
changing the solid model directly, the
intermediate model is altered and this
information is propagated through the
system. The feature-recognition strat-
egy is rule-based in this method, which
offers another advantage in that feature
mapping can occur from the intermedi-
ate model to any domain-specific fea-
ture model desired. This allows the fea-
tures in the feature-based design model
to differ from those of the application
domain.

Finally, work presented in Ko et al.
[1993] and Ko and Park [1994] provides
another integration of feature-based de-
sign and feature recognition. In it a new
model is created, in addition to the solid
model, to represent the interactions
among the features already recognized
(or designed) within the part. When a
new feature is added (or deleted), the
model checks what other features are
affected (through interaction) by this
new feature. Only the affected features
are updated with the new change. That
is, the model in this approach maintains
a graph whose nodes are features and
whose arcs represent dependencies (in-
teractions) of the features. When a new
feature is removed from the part, only
the other features dependent upon this
feature need be updated. The updating
occurs through feature recognition,
which is accomplished by searching for
closed loops of edges within the solid
model.

6. SUMMARY AND CONCLUSION

This article has explored the issue of
automatic understanding of shapes
from CAD databases. This problem is
particularly important for applications
such as manufacturing and automatic
inspection. The gap in information be-
tween CAD and CAPP or automated
inspection is reflected by the fact that
these applications require as input
high-level semantic information in the
form of features, whereas traditional
CAD representations can provide only
low-level geometric information such as
faces, edges, and vertices. This informa-
tion mismatch has greatly hindered the
progress of manufacturing automation.
Three approaches to bridging the gap
are interactive feature recognition (hu-
man-assisted), feature-based design,
and automatic feature recognition. The
authors have focused on reviewing, clas-
sifying, and discussing in moderate de-
tail each of the automatic feature iden-
tification and recognition (AFR)
techniques including graph-based meth-
ods, logical inference methods, syntactic
methods, volumetric methods, and con-
vex-hull techniques.

6.1 Information-Processing Methods

Features have been defined by some
researchers as collections of faces, and
by others as volumes. The information-
processing methods for AFR correspond-
ing to these feature definitions can be
informally categorized into pattern-
matching or volume-extraction tech-
niques. Pattern-matching methods ac-
complish their task based on the
recognition of features as patterns made
up of topological entities such as faces,
edges, and vertices. The volumetric
methods are based on generation and
classification of volumetric entities.

The pattern-matching methods can
relatively easily and quickly recognize
isolated features and simple interacting
features. The graph-based techniques,
syntactic methods, and logical-inference
methods can be classified as different
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approaches within this category. These
methods, however, exhibit fragile be-
havior in interpreting more complicated
interacting features, because feature in-
teractions may produce unexpected
changes in the topological patterns as-
sociated with different features. For ex-
ample, feature interactions may cause
the deletion, fragmentation, addition, or
merger of topological entities. In addi-
tion, feature-recognition techniques
based on pattern matching have high
computational complexity due to the
need to search (potentially exhaus-
tively) huge search spaces. These as-
pects strongly suggest that pattern
matching alone is not appropriate for
solving real-world feature-recognition
problems. However, with the aid of
other techniques such as evidential rea-
soning, pattern matching can recognize
rather complex interacting features. As
a result, pattern matching coupled with
these techniques seems to offer an at-
tractive approach. An advantage of such
combinations is that they can still fully
exploit the benefits of the various pat-
tern-matching techniques. The recog-
nized features must still be verified to
insure feature validity.

Convex-hull techniques such as ASV
and ASVP are not as sensitive to the
patterns of topological and geometric
entities. However, these methods may
not be mature enough to develop com-
plete interpretations of the interacting
features from the ASV components. The
reason is that in interacting situations,
certain common volumes may be shared
by more than one feature, but decompo-
sition algorithms normally allocate
these common volumes to only one of
the interacting features. This problem
may be addressed by developing fea-
ture-growing techniques, repeatedly se-
lecting primitives and combining them
with their adjacent volumes if they sat-
isfy specific matching conditions.

6.2 Information Requirements

In terms of input information require-
ments, B-Reps are currently the most

popular geometric representation
scheme in mechanisms for automatic
recognition of features from design mod-
els. B-Rep provides a description of an
object in terms of its surface and edge
entities. These surface and edge entities
encourage the use of pattern-matching
techniques for feature recognition. How-
ever, these entities are also sensitive to
feature interactions since interactions
can significantly change the observed
entities or their properties. The main
advantages of this scheme are that it is
unambiguous and unique (ignoring
changes in tessellation) and that both
the volumetric and pattern-matching
techniques can easily use it.

The CSG representation is simple,
concise, unambiguous, and a useful par-
adigm in interactive design. It encour-
ages techniques that are based on the
manipulation of volumes. Interactions
among features are easier to deduce and
resolve at the volumetric level. How-
ever, these operations must eventually
access the boundaries of the interac-
tions between the volumes, and calcu-
lating these boundaries using the CSG
representation scheme is expensive. An-
other major problem with the CSG
scheme is its nonuniqueness (the same
design may have an unlimited number
of CSG representations), which has
greatly hindered efforts in feature rec-
ognition using this scheme. As a result,
CSG has received little attention and,
more important, efforts to use CSG for
automatic recognition of features in-
variably begin by converting it into a
simpler representation.

Although engineering drawings are
still the format by which a majority of
designs are represented and/or trans-
ferred, in comparison with solid model
representation schemes little attention
has been paid to these for feature recog-
nition. The major problems encountered
in employing engineering drawings for
feature recognition or 3D solid model
construction include the ambiguity in
the representation of engineering com-
ponents and the difficulty in converting
engineering drawings on paper into an
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effective computer format. The ambigu-
ity is reflected by the fact that the 2D
data may not contain sufficient seman-
tic information to uniquely identify a
design object. The assumption that
three orthographic views can unambigu-
ously define a unique object is therefore
not realistic, and such an assumption
significantly limits the application
scope of the involved methods. In addi-
tion, the conversion of engineering
drawings from paper to a computer for-
mat such as a symbolic edge-face repre-
sentation is a difficult problem that in-
volves complex image-processing
techniques.

An ideal representation would be a
hybrid representation scheme that
would inherit the advantages of both
B-Rep and CSG. A representation of
this nature could enable us to deal with
interacting features more easily.

6.3 Shortcomings of Existing Systems

Most of the existing approaches to AFR
have been limited to a particular appli-
cation. This is understandable since the
definition of features is application-spe-
cific. For example, the required feature
components might be quite different for,
say, process planning and finite element
analysis, both of which may differ from
the designer’s perception of features.
Application-independent features may
be useful only as an intermediate stage
and have to be processed further to suit
the application. Furthermore, the fea-
tures obtained must be validated for the
given application. For example, a slot
feature is a valid machining feature
only if it can be accessed by the cutter
tool. However, in the existing literature
there has been little focus on the valida-
tion of the recognized features. In fact,
one may argue the validity is specific to
the application and should be left, for
example, to the process planner. Such
arguments separate the issues of valid-
ity of features for application from the
geometric interpretation issues.

For design by features we need to
decide upon a set of features and base

the model on this finite set. However,
the “same” feature may have different
connotations in the different approaches
[Shah 1990]. For example, Figure 7(a),
which is defined to be a slot, can be a
slot, a pocket, or a profile [Vanden-
brande and Requicha 1990, 1993;
Requicha 1996]. It is a pocket in the
MRSEV library used in Gupta et al.
[1994] and is considered as a depression
in the approach used in De Floriani
[1989]. In the convex-hull techniques
[Woo 1982], the model is rendered in
terms of alternating sum of volumes
rather than features such as slots or
pockets. This is a problem, since fea-
ture-based modelers need to interface
well with existing modelers and applica-
tion programs [Shah and Mathew 1991].
When a model is transferred from one
system to another the features must
have the same meaning in both sys-
tems. This should also be true when
interfacing a feature modeler with an
application. Standardization is neces-
sary for this to be possible. Shah and
Mathew discuss the conflict between
transferability of shape information and
versatility versus convenience of any
feature data exchange standard.

Existing approaches primarily deal
with machining features. Recently,
Lentz and Sowerby [1993] developed an
algorithm for feature extraction and
recognition for a limited domain of
sheet metal parts. In addition, informa-
tion such as tolerances and functional
features has not been effectively uti-
lized for feature recognition. A good ex-
ample of a system taking advantage of
such information would be Vanden-
brande and Requicha [1990; 1993] and
Requicha [1996]. In this approach toler-
ances and attributes trigger hints on
the existence of features.

Furthermore, many of the existing
systems deal with an abstraction of real-
world components. As a result, these
methods, though they provide a frame-
work, cannot be applied directly to an
engineering problem. The feature li-
brary chosen may have patterns that
can never be machined. For example,
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slots and pockets are simplified into
rectangular blocks and their corner ra-
dii ignored. A pocket is usually ma-
chined by a milling cutter, which has a
finite radius. Figure 7(b) shows a pocket
that cannot be machined in a milling
machine—a milled pocket would realis-
tically look like Figure 23.
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