
Optimising Purely Functional GPU Programs

Author:
McDonell, Trevor

Publication Date:
2015

DOI:
https://doi.org/10.26190/unsworks/18893

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/55818 in https://
unsworks.unsw.edu.au on 2024-04-28

http://dx.doi.org/https://doi.org/10.26190/unsworks/18893
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/55818
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Optimising Purely Functional GPU Programs

Trevor L. McDonell

a thesis in fulfilment of the requirements for the degree of
Doctor of Philosophy

School of Computer Science and Engineering
University of New South Wales

2015

 COPYRIGHT STATEMENT

‘I hereby grant the University of New South Wales or its agents the right to
archive and to make available my thesis or dissertation in whole or part in the
University libraries in all forms of media, now or here after known, subject to the
provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent
rights. I also retain the right to use in future works (such as articles or books) all
or part of this thesis or dissertation.
I also authorise University Microfilms to use the 350 word abstract of my thesis in
Dissertation Abstract International (this is applicable to doctoral theses only).
I have either used no substantial portions of copyright material in my thesis or I
have obtained permission to use copyright material; where permission has not
been granted I have applied/will apply for a partial restriction of the digital copy of
my thesis or dissertation.'

Signed ……………………………………………...........................

Date ……………………………………………...........................

 AUTHENTICITY STATEMENT

‘I certify that the Library deposit digital copy is a direct equivalent of the final
officially approved version of my thesis. No emendation of content has occurred
and if there are any minor variations in formatting, they are the result of the
conversion to digital format.’

Signed ……………………………………………...........................

Date ……………………………………………...........................

ORIGINALITY STATEMENT

‘I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, or substantial proportions of material which have been accepted for the
award of any other degree or diploma at UNSW or any other educational
institution, except where due acknowledgement is made in the thesis. Any
contribution made to the research by others, with whom I have worked at
UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that
the intellectual content of this thesis is the product of my own work, except to
the extent that assistance from others in the project's design and conception or
in style, presentation and linguistic expression is acknowledged.’

Signed ……………………………………………..............

Date ……………………………………………..............

ii

iii

This thesis is submitted in fulfilment
of the requirements for the degree of

Doctor of Philosophy

School of Computer Science and Engineering
The University of New South Wales

Australia

iv

Contents

Optimising Purely Functional GPU Programs i

Contents v

Figures xi

Listings xiii

Tables xv

Abstract xvii

Acknowledgements xix

1 Introduction 1

2 Basics 5
2.1 Data parallelism . 5
2.2 GPU computing . 6
2.3 CUDA . 7
2.4 Data parallel algorithms in CUDA . 8

2.4.1 Reduction . 8
2.4.2 Scan . 10
2.4.3 Backpermute . 12
2.4.4 Permute . 13
2.4.5 Stencil . 16
2.4.6 Segmented operations . 19

2.5 Embedded domain-specific languages . 20
2.5.1 Shallow embedding . 20
2.5.2 Deep embedding . 21

2.6 Discussion . 21

vi CONTENTS

3 Embedding array computations 23
3.1 The Accelerate EDSL . 23

3.1.1 Computing a vector dot product . 25
3.1.2 Arrays, shapes, and indices . 25
3.1.3 Arrays on the host and device . 26
3.1.4 Array computations versus scalar expressions 27
3.1.5 Computing an n-body gravitational simulation 28
3.1.6 Non-parametric array representation 30
3.1.7 Richly typed terms . 31
3.1.8 Tying the recursive knot . 33

3.2 Manipulating embedded programs . 34
3.2.1 Typed equality . 34
3.2.2 Simultaneous substitution . 36
3.2.3 Inlining . 38
3.2.4 Function composition . 38
3.2.5 Environment manipulation . 39

3.3 Related work . 40
3.4 Discussion . 41

4 Accelerated array code 43
4.1 Embedding GPU programs as skeletons . 43

4.1.1 Array operations as skeletons . 44
4.1.2 Algorithmic skeletons as template meta programs 45

4.2 Instantiating skeletons . 46
4.2.1 Producer-consumer fusion by template instantiation 46
4.2.2 Instantiating skeletons with scalar code 48
4.2.3 Representing tuples . 50
4.2.4 Shared subexpressions . 52
4.2.5 Eliminating dead code . 53
4.2.6 Shapes and indices . 55
4.2.7 Lambda abstractions . 56
4.2.8 Array references in scalar code . 57
4.2.9 Conclusion . 58

4.3 Using foreign libraries . 59
4.3.1 Importing foreign functions . 59
4.3.2 Exporting Accelerate programs . 60

4.4 Dynamic compilation & code memoisation . 60
4.4.1 External compilation . 61
4.4.2 Caching compiled kernels . 62

CONTENTS vii

4.4.3 Conclusion . 65
4.5 Data transfer & garbage collection . 65

4.5.1 Device-to-host transfers . 65
4.5.2 Host-to-device transfers . 66
4.5.3 Allocation & Deallocation . 67
4.5.4 Memory manager implementation . 68
4.5.5 Conclusion . 71

4.6 Executing embedded array programs . 72
4.6.1 Execution state . 73
4.6.2 Annotating array programs . 73
4.6.3 Launch configuration & thread occupancy 76
4.6.4 Kernel execution . 76
4.6.5 Kernel execution, concurrently . 77
4.6.6 Conclusion . 81

4.7 Related work . 81
4.7.1 Embedded languages . 81
4.7.2 Parallel libraries . 82
4.7.3 Other approaches . 83

4.8 Discussion . 83

5 Optimising embedded array programs 85
5.1 Sharing recovery . 85

5.1.1 Our approach to sharing recovery . 87
5.2 Array fusion . 89

5.2.1 Considerations . 90
5.2.2 The Main Idea . 91
5.2.3 Representing Producers . 94
5.2.4 Producer/Producer fusion . 96
5.2.5 Producer/Consumer fusion . 101
5.2.6 Exploiting all opportunities for fusion 103

5.3 Simplification . 108
5.3.1 Shrinking . 108
5.3.2 Common subexpression elimination . 108
5.3.3 Constant folding . 109

5.4 Related work . 112
5.4.1 Shortcut fusion . 112
5.4.2 Loop fusion in imperative languages 113
5.4.3 Fusion in a parallel context . 113

5.5 Discussion . 114

viii CONTENTS

5.5.1 Correctness . 115
5.5.2 Confluence and termination . 116
5.5.3 Error tests eliminated . 116
5.5.4 Work duplication . 117
5.5.5 Ordering and repeated evaluations . 117

6 Results 119
6.1 Runtime overheads . 119

6.1.1 Program optimisation . 120
6.1.2 Memory management & data transfer 120
6.1.3 Code generation & compilation . 121

6.2 Dot product . 121
6.2.1 Too many kernels . 123
6.2.2 64-bit arithmetic . 124
6.2.3 Non-neutral starting elements . 125
6.2.4 Kernel specialisation . 126

6.3 Black-Scholes option pricing . 126
6.3.1 Too little sharing . 127

6.4 Mandelbrot fractal . 128
6.4.1 Fixed unrolling . 129
6.4.2 Loop recovery . 131
6.4.3 Explicit iteration . 132
6.4.4 Unbalanced workload . 133
6.4.5 Passing inputs as arrays . 133

6.5 N-body gravitational simulation . 134
6.5.1 Sequential iteration . 135
6.5.2 Use of shared memory . 135

6.6 Sparse-matrix vector multiplication . 136
6.6.1 Segment startup . 136

6.7 Canny edge detection . 138
6.7.1 Stencil merging . 140

6.8 Fluid flow . 140
6.9 Radix sort . 142
6.10 Shortest paths in a graph . 145
6.11 MD5 password recovery . 146
6.12 K-Means clustering . 150
6.13 Ray tracer . 152
6.14 LULESH . 153
6.15 Discussion . 157

Contents ix

7 Conclusion 159
7.1 Research contribution . 161

7.1.1 A high-performance embedded language 161
7.1.2 A fusion system for parallel array languages 161

7.2 Future work . 162
7.2.1 Nested data parallelism . 162
7.2.2 Type-preserving code generation . 162
7.2.3 Flexibility in the optimisation pipeline 163

Bibliography 165

Index 177

x Contents

Figures

2.1 Block diagram comparing CPU and GPU architectures 6
2.2 A parallel tree reduction . 9
2.3 A parallel inclusive scan . 11
2.4 Application of a 3× 3 stencil in the border region 17
2.5 Overlapping elements in a 3× 3 stencil . 18

3.1 The overall structure of Accelerate . 24

4.1 Impact of varying thread block size on multiprocessor occupancy 77
4.2 Profiling trace of a program which executes kernels concurrently 80

5.1 Recovering sharing in an example term . 87
5.2 Fusion in Accelerate . 93

6.1 Program optimisation runtimes . 121
6.2 Data transfer time and bandwidth measurements 122
6.3 Vector dot product kernel benchmarks . 124
6.4 Black-Scholes kernel benchmarks . 127
6.5 The Mandelbrot fractal . 128
6.6 N-body gravitational simulation kernel benchmarks 134
6.7 Example of the Canny edge detection algorithm 139
6.8 Canny edge detection benchmarks . 139
6.9 Example of the fluid flow simulation . 142
6.10 Fluid flow simulation kernel benchmarks . 144
6.11 Radix sort kernel benchmarks . 145
6.12 Floyd-Warshall shortest path benchmark . 147
6.13 A single round of the MD5 hash algorithm . 148
6.14 K-means clustering kernel benchmarks . 152
6.15 Ray tracer . 153
6.16 Ray tracing kernel benchmarks . 155

xii Figures

6.17 Software architecture of hydrodynamics applications 156
6.18 LULESH kernel benchmarks . 156

Listings

2.1 CUDA kernel for pair wise addition of two vectors 7
2.2 Filtering a vector based on a predicate . 13
2.3 A simple histogram . 14

3.1 Types of array shapes and indices . 26
3.2 Core Accelerate array operations . 27
3.3 A simultaneous substitution to inline terms 38
3.4 A simultaneous substitution to compose unary function terms 38
3.5 Extending an array environment . 39
3.6 Sinking terms to a larger environment . 40

4.1 Accelerate CUDA skeleton for the map operation 45
4.2 Accelerate CUDA skeleton for the foldAll operation 48
4.3 Generated CUDA code for the fused vector dot-product operation 49
4.4 Method to lookup device arrays . 69
4.5 Method to allocate a new device array . 70
4.6 Device memory finaliser . 71
4.7 Example program that executes kernels concurrently 80

5.1 Black-Scholes option pricing . 86
5.2 Producer and consumer operations . 92
5.3 Representation of fusible producer arrays . 95
5.4 Representation of fused producer arrays . 95
5.5 Computing the delayed representation to a manifest array 97
5.6 Smart constructor for fusing the map operation 97
5.7 Smart constructor for fusing the zipWith operation 99
5.8 Producer fusion via bottom-up contraction of the AST 100
5.9 Representation of delayed arrays . 101
5.10 Consumer fusion via top-down annotation of the AST 102
5.11 Smart constructor for let bindings . 106

xiv Listings

5.12 Determining when a let binding should be eliminated 108
5.13 The shrinking reduction . 109
5.14 Example of constant expression evaluation . 112

6.1 Vector dot-product . 121
6.2 Mandelbrot set generator, using fixed unrolling 130
6.3 Mandelbrot set generator, using explict iteration 132
6.4 N -body gravitational simulation, using parallel reduction 135
6.5 N -body gravitational simulation, using sequential reduction 135
6.6 Sparse-matrix vector multiplication . 136
6.7 The Canny edge detection algorithm . 140
6.8 The data-parallel kernels of the Canny edge detection algorithm 141
6.9 Fluid flow simulation . 143
6.10 Radix sort algorithm . 144
6.11 Floyd-Warshall shortest-paths algorithm . 146
6.12 A single round of the MD5 hash algorithm . 149
6.13 K-means clustering for 2D points . 151
6.14 The core ray casting implementation . 154

Tables

6.1 Benchmark summary . 120
6.2 Benchmark code generation and compilation times 123
6.3 Mandelbrot fractal kernel benchmarks . 129
6.4 Sparse-matrix vector multiplication benchmarks 137
6.5 MD5 password recovery benchmarks . 150

xvi Tables

Abstract

It is well acknowledged that the dominant mechanism for scaling processor performance has
become to increase the number of cores on a chip, rather than improve the performance of a
single core. However, harnessing these extra cores to improve single application performance
remains an extremely challenging task. A recent trend has been to use commodity graphics
processing units to explore new algorithms and programming languages that can address the
challenges of parallelism and scalability for devices containing hundreds or thousands of cores.

The research documented in this dissertation builds upon the Accelerate language, an
embedded domain specific language of purely functional collective operations over dense,
multidimensional arrays. Overall, this dissertation explains how to efficiently implement such
a language, ranging from optimisations to the input program and the generation of efficient
target code, to optimisations in the runtime system which executes the resulting programs.

In particular, I add backend-agnostic optimisations to the embedded array language, pri-
marily in the form of a novel approach to array fusion. These optimisations are completely
type preserving, amounting to a partial proof of correctness of the optimisations, checked by
the type checker at compilation time.

In addition, I develop the CUDA backend to Accelerate, which targets parallel execution
on multicore graphics processing units (GPUs). I implement a dynamic quasi quotation-based
code generation system for algorithmic skeletons that are instantiated at runtime. In order
to minimise the overheads of runtime compilation, generated codes are compiled in parallel
and asynchronously with other operations. Here, compiled binaries are cached for later reuse,
including across program invocations. As a significant overhead in GPU programs is the
transfer of data to and from the device, a garbage collection-based memory management
system was implemented which minimises data transfers. Finally, I implement an execution
engine that optimises the loading, configuration, and concurrent execution of the compiled
GPU kernels.

My results show that with these additions, programs written in Accelerate can be compet-
itive in performance to programs written in traditional lower-level languages, while enjoying
a much higher level of abstraction. Through the work done in this thesis, Accelerate has
become the dominant method for GPGPU programming in Haskell.

xviii Abstract

Acknowledgements

My supervisors Manuel and Gabi, for their (usually) gentle guidance, and for allowing me
the opportunity and (most importantly) the time to explore possibilities.

My friends and family, for putting up with me when things got out of hand
(as they inevitably do).

And of course, to Josephine, for her unwavering support and encouragement.

xx Acknowledgements

1

Introduction

Unless someone like you cares a whole awful lot,
nothing is going to get better. It’s not.

—dr. seuss
The Lorax

The beginning of the twenty first century has seen an interesting trend in computing
emerge. General purpose CPUs, such as those provided by Intel, IBM and AMD, have
increased performance substantially, but with nowhere near the increases seen in the late
1980’s and early 1990’s. To a large extent, single threaded performance increases have tapered
off, due to the low level of inter-process communication in general purpose workloads, and the
physical limitations of power dissipation for integrated circuits. The additional millions and
billions of transistors afforded by Moore’s rule1 are simply not very productive in increasing
the performance of single–threaded code.

At the same time, the commodity graphics processing unit (GPU) has been able to use this
ever increasing transistor budget effectively, geometrically increasing rendering performance,
as rasterisation is an inherently parallel operation. Modern GPUs are massively parallel mul-
ticore processors, offering instruction throughput and memory bandwidth rates much higher
than those found on traditional CPUs [98]. However, despite the advertised potential of
100× speedups, development of high-performance general-purpose GPU (GPGPU) programs
requires highly idiomatic programs, whose development is work intensive and requires a sub-
stantial degree of expert knowledge.

Several researchers have proposed methods to ameliorate the status quo by either using a
library to compose GPU code or by compiling a subset of a high-level language to low-level

1Moore’s actual prediction in 1965 referred only to the number of devices that could be fabricated on a
single die, and that this quantity would increase by fifty percent each year [95]. I refrain from using the
commonly held name of “Moore’s Law” as this trend is not a law in the sense defined by the physical sciences,
such as the Laws of Gravity and Thermodynamics — it is simply a description of observed facts, rather than
a principle driven by some fundamental controlling influence.

2 Introduction Chapter 1

GPU code [3, 23, 25, 59, 81, 88, 96]. This thesis is in the same spirit: we propose a domain-
specific high-level language of array computations, called Accelerate, that captures appropriate
GPGPU programming idioms in the form of parameterised, collective array operations. Our
choice of operations was informed primarily by the scan-vector model [31], which is suitable
for a wide range of algorithms and can be efficiently implemented on modern GPUs [120].

The beginning of the Accelerate project predates this thesis, and several researchers have
contributed to it in that time. The following summarises the main areas I have contributed
to, and I have explicitly noted which are my own individual work:

• We have developed an embedded language, Accelerate, of parameterised collective array
computations that is more expressive than previous GPGPU proposals (Section 3.1).

• I implement a dynamic code generator based on CUDA skeletons of collective array
operations that are instantiated at runtime (Sections 4.1 & 4.2).

• I implement an execution engine that caches previously compiled skeleton instances and
host-to-device data transfers, as well as parallelises code generation, data transfer, and
GPU kernel loading, configuration, and execution (Sections 4.4, 4.5, & 4.6).

• We introduce a novel sharing recovery algorithm for type-safe abstract syntax trees,
preserving the structure of the deeply embedded program (Section 5.1).

• I introduce type preserving optimisations of embedded language array programs, in-
cluding a novel approach to array fusion (Sections 3.2, 5.2, & 5.3).

• Benchmarks assessing runtime code generation overheads and kernel performance for a
range of programs (Chapter 6).

Although we motivate and evaluate our work in the context of the Accelerate language,
our contributions are not limited to this context. Specifically, our sharing recovery algorithm
applies to any embedded language based on the typed lambda calculus, and my approach to
array fusion applies to any dynamic compiler targeting bulk-parallel SIMD hardware. The
current implementation targets CUDA, but the same approach works for OpenCL, as well as
traditional CPU programming languages such as C and LLVM.

Our results show that Accelerate programs can be competitive with programs hand-written
in CUDA, while having a much higher level of abstraction. Because of the work undertaken
in this thesis, we have seen Accelerate gain traction within academia and industry, including:

• Simon Marlow has recently published a book on Parallel and Concurrent Programming
in Haskell [83], which includes a chapter on GPU programming using Accelerate.

• Peter Braam of Parallel Scientific is building a high level DSL in Haskell based on
Accelerate, for image reconstruction computations for the Square Kilometer Array, the
largest radio telescope in the world.

Section 1.0 3

• Andy Gill has recently been awarded an NSF grant to research resource-aware DSLs for
high performance computing applications, and is building on top of Accelerate.2

• Flowbox3 is a startup developing tools for composition and visual effects for images and
video that is built on top of Accelerate. Flowbox is generating interest amongst several
Hollywood studios as a promising new technology.

• We commonly see research papers on array-based computations and languages, partic-
ularly in a functional programming context, include a comparison to Accelerate in their
own benchmarks.4

We will discuss related work as each topic arises. The source code for Accelerate including
all benchmark code is available from https://github.com/AccelerateHS.

2http://www.nsf.gov/awardsearch/showAward?AWD_ID=1350901
3http://www.flowbox.io
4However, I modestly refrain from going so far as to claim that my work in this thesis has set a new

standard by which functional array-based programming languages are measured.

https://github.com/AccelerateHS
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1350901
http://www.flowbox.io

4 Introduction Chapter 1

2

Basics

You see a wile, you thwart. Am I right?
—terry pratchett and neil gaiman

Good Omens

2.1 Data parallelism

The major processor manufacturers and architectures have long since run out of room with
most of the traditional approaches to boosting CPU performance. Instead of driving clock
speed and straight-line instruction throughput, the inclusion of multiple cores on a single
chip has become the dominant mechanism for scaling processor performance. Despite this
trend being apparent for a number of years, programming parallel computers still remains an
extremely challenging task — even for expert computer programmers, let alone for scientists
in other disciplines.

One programming model that has shown to make good use of parallel hardware is data
parallelism. Data parallelism focuses on distributing the data over the available processors,
and for each processor to perform the same task on the different pieces of distributed data.
To the programmer, data parallelism exposes a single logical thread of execution that is fairly
easy to understand and reason about. In addition to its simplicity, the data parallel approach
to programming parallel computers has several advantages:

1. The model is independent of the number of processors, so it scales to any number of
processors by decomposing data into the appropriate number of chunks.

2. All synchronisation is implicit, so the programming model is safe from race conditions,
eliminating a major source of errors in parallel programs.

3. As memory bandwidth is often a limiting factor in modern computers, the emphasis on
data layout can assist with both data flow as well as parallelisation.

6 Basics Chapter 2

�&. !'�,.%!&

����
��
��� !"
�������	 !" #$$%&"���%'(����������������L�L�

�! .+8!!'

	 (-,!.. :!!', (-.

7# *(.!8&

<�!!$1%(�'

:(-.$((

2#&'��< %'"(

�()! ,(�)=�����

�()! ,(�@�����6

�()! ,(�D�����6=

�()! ,(�������6=

�()! ,(��6=����

�()! ,(��6=�4�� �()! ,(��6=�@��

�()! ,(��6=�6�6��

6(-�#����@�

6(-�#������

6(-�#�
����

6(-�#�5��=

�

��

@�

��

���

���

���

���

�4�

�D�

���

���� ���4 ���� ���@ ���D ���� ���� ���� ���� ���� ����

6+(! (.%,#���<>-

�	�

�()! ,(��	�

6(-�#��	�

)%"� (L��
($! ��<#&'8%'.+�1! �.+(��	��#&'��	�

'�
��
������
�
���	�
��
���
������
��%���	
�(���
�	������
�
	���
	�

��	�
��$������	�

#$��
��	��	�	�
�#$��
����
�
��
5
��%��������	
�
�	
��
1
-��
(����������
�������	�	
��
��
/��	������	�(����
����
��
�
�(�
������	�������	�
�
%��
��
�
(�
�������	��	����

	����
�	������
��
1�	
��	����	������
��
�(���	�
��	������	������
�(�����%�������	���-���
���
��	
������
����	��	
�����)
(��
�2�

Cache

ALUCont rol

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

)%"� (L�� 6+(��	���(�!.(-�
! (�6 #&-%-.! -�.!��#.#�	 !,(--%&"

�&. !'�,.%!&

����
��
��� !"
�������	 !" #$$%&"���%'(����������������L�L�

�! .+8!!'

	 (-,!.. :!!', (-.

7# *(.!8&

<�!!$1%(�'

:(-.$((

2#&'��< %'"(

�()! ,(�)=�����

�()! ,(�@�����6

�()! ,(�D�����6=

�()! ,(�������6=

�()! ,(��6=����

�()! ,(��6=�4�� �()! ,(��6=�@��

�()! ,(��6=�6�6��

6(-�#����@�

6(-�#������

6(-�#�
����

6(-�#�5��=

�

��

@�

��

���

���

���

���

�4�

�D�

���

���� ���4 ���� ���@ ���D ���� ���� ���� ���� ���� ����

6+(! (.%,#���<>-

�	�

�()! ,(��	�

6(-�#��	�

)%"� (L��
($! ��<#&'8%'.+�1! �.+(��	��#&'��	�

'�
��
������
�
���	�
��
���
������
��%���	
�(���
�	������
�
	���
	�

��	�
��$������	�

#$��
��	��	�	�
�#$��
����
�
��
5
��%��������	
�
�	
��
1
-��
(����������
�������	�	
��
��
/��	������	�(����
����
��
�
�(�
������	�������	�
�
%��
��
�
(�
�������	��	����

	����
�	������
��
1�	
��	����	������
��
�(���	�
��	������	������
�(�����%�������	���-���
���
��	
������
����	��	
�����)
(��
�2�

Cache

ALUCont rol

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

)%"� (L�� 6+(��	���(�!.(-�
! (�6 #&-%-.! -�.!��#.#�	 !,(--%&"

Figure 2.1: Block diagram comparing the relative use of transistors in a CPU (left) compared to
a GPU (right). The GPU is specialised for highly parallel, compute intensive workloads, and so is
designed such that the majority of its transistors are devoted to data processing, rather than data
caching and control flow. Images from [98].

In the world of massively parallel computing with strong locality requirements, data paral-
lelism is the well established, demonstrably successful brand leader. Examples of data parallel
programming environments include High Performance Fortran (HPF) [58], the collective op-
erations of the Message Passing Interface (MPI) [94], Google’s Map/Reduce framework [38],
and NVIDIA’s CUDA API for graphics processors [98].

2.2 GPU computing

General-purpose computing on graphics processing units (GPGPU) is the utilisation of a
graphics processing unit (GPU) — which typically handles the computations for computer
graphics — to perform computations in applications typically handled by the central pro-
cessing unit (CPU). Since general purpose CPUs are designed to optimise the performance
of a single thread of execution, much of the processor’s resources (die area and power) are
dedicated to non-computational tasks such as caching and branch prediction. Conversely, the
highly parallel nature of graphics processing (rasterisation) means the GPU architecture can
instead use these resources to execute many tasks in parallel, improving the computational
throughput for parallel workloads at the expense of decreased single threaded performance.
This difference in architectures between the CPU and GPU is illustrated in Figure 2.1.

More specifically, the GPU is especially well suited to executing problems that can be
expressed as data parallel computations, where the same program is executed by many pro-
cessors on many different data elements in parallel (§2.1). Because the same program is
executed by many processors, there is no need for sophisticated control flow, and because it
is executed on many data elements, memory access latency can be hidden with calculations
rather than by big caches. Many applications that process large data sets can use the data
parallel programming model to speed up calculations, and these applications can often be
coded to execute on the GPU.

Section 2.3 CUDA 7

// Kernel definition
__global__ void VecAdd(float *A, float *B, float *C, int N)
{

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < N) {
C[i] = A[i] + B[i];

}
}

int main()
{

...
// Kernel invocation with N threads
int threadsPerBlock = 128;
int numBlocks = (N + threadsPerBlock − 1) / threadsPerBlock;
VecAdd<<<numBlocks, threadsPerBlock>>>(A, B, C, N);
...

}

Listing 2.1: A CUDA kernel that illustrates pair wise addition of two vectors. The __global__
keyword marks a function as a kernel that should be executed on the GPU in data parallel. The
execution configuration syntax <<<· · · >>> specifies the number of threads that will each execute
the function in data parallel.

2.3 CUDA

The CUDA architecture is the parallel computing platform and programming model created
by NVIDIA and implemented by the graphics processing units (GPUs) that they produce.
Using CUDA, programmers gain direct access to the memory and massively parallel multicore
architecture of the GPU, which can then be used for general purpose computing applications,
not just graphics.

CUDA extends the C programming language by allowing the programmer to define func-
tions, called kernels, that, when called, are executed n times in n data parallel threads on
the available processing elements, rather than only once like regular C functions. These func-
tions are executed by threads in SIMD groups called warps arranged in a multidimensional
structure of thread blocks. Within a warp, all threads execute the same instructions in lock-
step, so divergent control flow must be handled via predicated execution. Threads within
a block can cooperate by sharing data through some shared memory and by synchronising
their execution to coordinate memory access. More precisely, the programmer can specify
synchronisation points in the kernel by calling __syncthreads(), which acts as a barrier at
which all threads in the block must wait before any are allowed to proceed. Each thread block
executes independently of each other, so a GPU with a higher number of CUDA cores — or
streaming multiprocessors (SM) — will execute the program in less time than a GPU with
fewer multiprocessors.

As an example, Listing 2.1 illustrates the pair wise addition of two vectors A and B of
size N each, and stores the result in a vector C. The kernel is defined with the __global__

8 Basics Chapter 2

declaration specifier. The number of CUDA thread blocks and the number of threads in
each block that execute the kernel, at this invocation, is specified in the <<<· · · >>> syntax.
Moreover, Listing 2.1 demonstrates that the GPU programming model as exposed by CUDA
is a data parallel programming model — N threads execute N individual instances of the
kernel function VecAdd, and each thread operates on a single element of each input array to
create a single value in the result. See the CUDA C programming guide for details [98].

2.4 Data parallel algorithms in CUDA

CUDA is a parallel computing platform for programming NVIDIA GPUs. Using CUDA,
the GPU becomes accessible not just for graphics applications, but for computational tasks
much like a CPU. Unlike CPUs, however, GPUs have a parallel throughput architecture that
emphasises executing many concurrent threads slowly, rather than executing a single thread
very quickly. In a GPU, the large caches and complex instruction scheduling logic of the
CPU that increase single-threaded performance are instead replaced with many additional
arithmetic units. See Section 2.3 for more information.

Some collective operations such as map have an obvious mapping to the highly parallel
CUDA architecture, so we elide discussion of their implementation. Other collective opera-
tions such as scan, where the value of each element depends on the value of the previous last,
may at first seem to not admit a parallel interpretation at all. This section outlines the imple-
mentation of this second kind of collective operation, where efficient parallel implementation
in CUDA may not be obvious.

2.4.1 Reduction

Reductions are a common and important data-parallel primitive [30]. Figure 2.2 illustrates
the basic strategy for reducing an array in parallel. Within each thread block a tree-based
approach is used to reduce elements to a single value, and multiple thread blocks each process
a portion of the array in parallel. However, there is no global synchronisation primitive in
CUDA that can be used to combine the partial results. This is because global synchronisation
would be (a) expensive to build in hardware for large numbers of multiprocessors, and (b)
difficult for programmers to use without introducing sources of deadlock. Instead, kernel
launches serve as a global synchronisation point, so thread blocks instead communicate their
partial results by committing them to memory, and the kernel is launched recursively until
the final reduction value is computed.

Note that if we wish to fuse other operations into the fold kernel, only the first line of
reductions at level zero perform the fused operation. All subsequent reductions in that kernel,
as well as the recursive steps at level one and beyond, are pure reductions. We discuss fusion
further in Section 5.2.

Section 2.4 Data parallel algorithms in CUDA 9

Level 0: 8 Blocks

Level 1: 1 Block

Figure 2.2: Illustration of a tree reduction, performed in two steps. In the first step 8 thread
blocks in parallel reduce eight segments of the array to a single element each. The thread blocks
synchronise by writing their result to memory, and the kernel is called recursively until the final
scalar result is computed.

Parallel Reduction Complexity

If each thread combines two elements at a time, then a vector of length N will be reduced in
O (logN) parallel steps. Each step S does N/2S independent operations, so the step complexity
of the algorithm is:

O (logN)

For N = 2D, the algorithm thus performs
∑D

S=1 2
D−S = N − 1 operations. This means that

the work complexity of the algorithm is:

O (N)

and therefore does not perform more work than a sequential algorithm. For P threads running
physically in parallel on P processors, the time complexity is O (N/P + logN). In a thread
block N = P , so the time complexity is:

O (logN)

Compare this to a sequential reduction, which has a time complexity of O (N).

Algorithm Cascading

The cost of a parallel algorithm is the number of processors × time complexity. This implies
that the cost of the algorithm is O (N logN), which is not cost efficient.

Brent’s theorem [30] suggests that instead of each thread summing two elements, algorithm
cascading can be used to combine a sequential and parallel reduction. If each thread does
O (logN) sequential work, this will reduce the cost of the algorithm to O (N/logN logN), or
rather:

O (N)

10 Basics Chapter 2

while keeping the work complexity O (N) and step complexity O (logN).
As an example, this result implies that each block of 256 threads should sum a total of

256× log2 (256) = 2048 elements. In practice it is beneficial to do even more sequential work
per thread, as this will reduce the number of levels in the recursive tree reduction, and provide
better latency hiding by minimising the number of thread blocks launched.

Mapping to CUDA Threads

Reduction of a one dimensional array uses multiple thread blocks to cooperatively reduce
the array, as described above. The number of thread blocks used is limited to the maximum
number which can be simultaneously resident on the current device. This may require each
thread to do more sequential work than that indicated by the algorithm cascading analysis,
but limits the total kernel startup cost associated with launching thread blocks. Since the
maximum number of resident thread blocks is typically much less than the number of threads
in a block, the reduction will require at most two kernel invocations.1

Higher-dimensional reductions reduce the array along the innermost dimension only. In-
stead of all thread blocks cooperatively reducing each segment sequentially, each segment is
reduced by a single thread block which operates independently of all other thread blocks. A
consequence of this is that proper device utilisation depends on the shape of the array and
not simply the total number of elements in the array. For example, reduction of an array
stored as a 1×n matrix will use one thread block to reduce the single matrix row, no matter
how large n is. This simplifies the implementation but is clearly not always ideal.2

2.4.2 Scan

Parallel scan and segmented scan algorithms are a crucial building block for a great many
data-parallel algorithms [18, 31]. They also form the basis for efficiently mapping nested
data-parallel languages such as NESL [20, 21] on to flat data-parallel machines. Because of
their fundamental importance to many algorithms, implementing efficient scan operations in
CUDA has received much attention [39, 55, 92, 120, 121].

The basic binary-tree based scan algorithm proceeds in logN stages. In order to compute
scans efficiently on the GPU, the input array is decomposed into a number of blocks of size
B, such that an inclusive scan of B elements can be computed by an individual thread block,

1Accelerate selects the thread block size in order to maximise thread occupancy. As this depends on both
the specific GPU being used as well as the user function the array is reduced with, an upper bound of two
parallel steps can not be guaranteed. See Section 4.6.3 for more information.

2The number of multiprocessors on a device various between architecture generation and performance of a
given card. For example, a Tesla T10 processor (compute capability 1.3) has 240 cores split over 30 multiproces-
sors, while a Kepler K20X processor (compute capability 3.5) has 2688 cores split over only 14 multiprocessors.
A given architecture generation will have the same number of cores per multiprocessor, and lower performance
processors in a generation are produced by incorporating (or activating) fewer multiprocessors, thereby reducing
the total core count.

Section 2.4 Data parallel algorithms in CUDA 11

Partial sums: 1 Block

Downsweep: 8 Blocks

Upsweep: 8 Blocks

Figure 2.3: Illustration of a parallel inclusive left-to-right scan, which is performed in three steps.
In the first step, 8 thread blocks compute the partial scan result for each eight element section of
the array. The partial results are then scanned by a single thread block in the second step. In the
final phase, the 8 thread blocks use the partial results as the initial element when computing the
final scan result for this section of the array.

locally in shared memory. The inclusive scan algorithm depicted in Figure 2.3 proceeds in
three phases:

1. The input array is divided into chunks of size B elements and distributed to the
thread blocks, which each scan their portion of the array in parallel. The final scan
value (partial result) from each thread block i is stored into an intermediate array
block_results[i].3

2. A single thread block performs a scan of the helper array block_results. Accelerate
is set up such that the number of blocks in the first step is less than the maximum
thread block size (§4.6), so this step does not need to repeatedly apply the global scan
algorithm.

3. All blocks scan their section of the input array in parallel again, where thread block i
uses element i of the result of step 2 as the initial element of the scan.

For an exclusive scan, it is also necessary to ensure that the computation of the partial
block sums includes the seed element.

3We note that computation of the final value requires that elements are processed in the correct left-to-right
or right-to-left order. For simplicity, the current implementation reuses the block scan kernel implemented
here, and therefore, as described, all but the final result of the scan is discarded. Replacing this step with a
directional reduce operation would likely improve performance, but this investigation is left to future work.

12 Basics Chapter 2

Inclusive vs. Exclusive scan

The above description mentions two different flavours of scans. The output of an exclusive
scan at each location is a function of all the elements that came before it, but does not include
the current element. On the other hand, the inclusive scan is a function of all elements up to
and including the current element. At an example, the two methods produce the following
output for a left-to-right prefix sum:

input = [13, 7, 16, 21, 8, 20, 13, 12]
exclusive scan = [0, 13, 20, 36, 57, 65, 85, 98]
inclusive scan = [13, 20, 36, 57, 65, 85, 98, 110]

These methods are well known in data-parallel programming, and some algorithms are
best expressed in terms of one or the other. Accelerate supports both of these flavours of scan,
as well as others that follow the behaviour of the standard Haskell family of scan operations.

Interaction with array fusion

In the scan algorithm described above, the input array to be scanned is read twice: once
when computing the partial block results (step 1), and a second time when computing the
final scanned array (step 3). If the input does not refer to manifest array data, but instead an
array in a symbolic form resulting from array fusion (§5.2), then the elements of the symbolic
array — which might contain arbitrarily expensive computations — will be computed twice
also.

In order to avoid this, in some circumstances it might be beneficial for either (a) the first
phase of the scan to store the entire partial scan result, rather than just the final element; or
(b) to always read in manifest data, effectively disallowing producer/consumer fusion (§5.2)
for scans in the CUDA backend. The latter option is undesirable, and the former may not
work for non-commutative operators, such as the one we used in the operator-transformation-
based definition of segmented scan (§2.4.6). It is left to future work to fully investigate
this interaction between array fusion and operations such as scan, where the underlying
implementation requires multiple passes over the input data.

2.4.3 Backpermute

The backpermute collective operation is specified by a backwards permutation f as an index
mapping from the result array Y into a source array X, which we can write as f : X ← Y .
That is, for every index y in Y , the value at index y is taken from x = f(y) in X. Since each
element of the result can be computed independently of all others, the backpermute operation
is straightforward to implement. However, it is worth defining here it is not commonly found
outside of data parallel programming.

Section 2.4 Data parallel algorithms in CUDA 13

filter :: Elt a ⇒ (Exp a → Exp Bool) → Acc (Vector a) → Acc (Vector a)
filter p vec
= let flags = map (boolToInt . p) vec

(targetIdx, len) = scanl' (+) 0 flags
defaults = backpermute (index1 $ the len) id vec

in
permute const defaults (λix → flags!ix ==* 0 ? (ignore, index1 $ targetIdx!ix)) vec

Listing 2.2: Filtering returns only those elements of a vector which satisfy a predicate. This
operation is included as part of Accelerate’s standard prelude.

2.4.4 Permute

The permute collective operation defines a forward permutation f as an index mapping from
one array X onto the result array Y , which we can write as f : X → Y . Implementation of
the permute function in Accelerate is complicated because we have not placed any particular
restrictions on f , namely:

1. f is not surjective: the range of f may not cover the codomain Y . For every x in X,
f (x) need not yield every index y in Y . This means that the result array must first be
initialised with a set of default values.

2. f is not injective: distinct elements of the domain may map to the same element in the
codomain. For all x and x′ in X, if f (x) = f (x′), we may have that x ̸= x′. This means
we require an associative combination function to combine elements from the domain
that map to the same index in the codomain.

3. f is partial: elements of the domain may be ignored, and thus do not map to elements
in the codomain.

That the permutation function admits partial functions in the index mapping is not partic-
ularly challenging for the implementation, and indeed is useful for implementing the filter
operation, shown in Listing 2.2. The special value ignore is used to drop elements of the
input vector that do not satisfy the predicate, by not mapping those indices to an index in
the codomain.

On the other hand, because we can not prove that filter is surjective, we require the
result vector to be first initialised with default values. Since we do not know anything about
the element type a, the only recourse is to copy elements from the input array vec. This
is doubly wasteful, because we must first execute the backpermute kernel to compute the
defaults array, and then copy those values into the results vector before executing the
permute kernel, even though we know the initialised values will be completely overwritten.

As a second example, Listing 2.3 demonstrates the computation of a simple ten bin his-
togram from a vector of floating point elements in the range [0, 100). In this case the permu-
tation function is neither surjective nor injective, as some bins may contain no elements and

14 Basics Chapter 2

histogram :: Acc (Vector Float) → Acc (Vector Int)
histogram vec
= let bins = 10

zeros = fill (constant (Z :. bins)) 0
ones = fill (shape vec) 1

in
permute (+) zeros (λix → index1 (A.floor ((vec ! ix) / P.fromIntegral bins))) ones

Listing 2.3: A simple histogram written in Accelerate. We assume the input vector contains
elements in the range [0, 100) and accumulate into ten equally sized bins.

thus take the default value, while other bins may contain multiple elements which need to be
combined (accumulated) correctly.

Implementation using compare-and-swap

The semantics of the permute operation is that every permutation from source to result array
is applied at the same time in a single parallel step. If multiple CUDA threads attempt a non-
atomic write to the same memory location at the same time, the writes will be serialised but
the thread which performs the final write is undefined, and so the final value at that memory
slot is also undefined [98]. To support non-injective permutation functions, which are required
to evaluate the histogram program correctly, the atomic compare-and-swap operation is used
to implement write combining.4 For a combination function f on elements of type T, the
following atomically combines a value from the source array x with the value of the result
array y:

T x = source[i];
T y, old_y = result[j];
do {

y = old_y;
old_y = atomicCAS(&result[j], y, f x y);

}
while (y != old_y);

Any atomic operation on simple types can be implemented in terms of compare-and-swap in
this manner, although it would also be possible to use more specific atomic operations such
as atomicAdd in special cases.

Implementation using explicit locking

The implementation for combining elements of the permutation function works well for simple
atomic types, but as Accelerate uses a struct-of-arrays representation (§4.2.3), combining
tuple types must apply the procedure to each component of the tuple separately. Because

4The atomic compare-and-swap operation on 32-bit values into global memory is only available for devices
of compute capability 1.1 and higher, and for 64-bit values on devices of compute capability 1.2 and higher.

Section 2.4 Data parallel algorithms in CUDA 15

the critical section does not apply to all components of the tuple at once, this can lead to
inconsistencies in the result.5

One alternative for combining complex types is to explicitly lock each element of the output
array before threads can access it. Once a thread acquires the lock on a particular element, it
commits all components of the array as a single atomic operation. A straightforward method
to implement this is via a spin lock, where threads trying to acquire the lock simply wait in
a loop (“spin”), repeatedly checking whether the lock is available. Since the thread remains
active but is not performing any useful work, the use of this kind of busy waiting is inefficient
if threads are blocked for an extended period of time — for example, because the lock is
contended by many threads, or the atomic section executed while the lock is held is lengthy.

Implementing a standard spin-lock can be done as follows:

do {
old = atomicExch(&lock[i], 1); // (1)

} while (old == 1); // (2)
/* atomic sect ion */ // (3)

atomicExch(&lock[i], 0); // (4)

1. The spin lock procedure requires a temporary array to represent the lock state for each
element of the output array. We use 1 to represent the locked state, and 0 to indicate
the element is unlocked. To lock element i of the output array, we atomically store 1
into the lock slot for this element, returning the old state of the lock.

2. If the old state of the lock was unlocked (0) then we have just acquired the lock.
Otherwise, it was already locked, so we must retry.

3. Once the lock is acquired, the atomic section can be computed.

4. To release the lock, write zero back into the lock slot for this element. A memory barrier
or atomic operation, as used here, is required for this step to ensure memory consistency
on architectures which do not have a strong memory model, such as CUDA devices.

However, a subtle problem emerges when we attempt to use the above algorithm. In
a CUDA device, all threads within a warp execute instructions in lockstep, and divergent
control flow is handled via predicated execution (§2.3). Once a thread acquires a lock and
exits the loop (2), it must wait for all other threads in the warp to reach the same point,
before execution of the critical section (3) can begin. If two threads in a warp are attempting
to acquire the same lock, once the lock is acquired by one thread, that thread will sit idle
while the second thread spins attempting to grab a lock that will never be released, because
the first thread can not progress. The system is deadlocked.

In order to solve this problem, we must ensure that threads always make progress once
they have acquired the lock:

5https://github.com/AccelerateHS/accelerate/issues/137

https://github.com/AccelerateHS/accelerate/issues/137

16 Basics Chapter 2

done = 0;
do {

if (atomicExch(&lock[i], 1) == 0) { // (2)
/* atomic sect ion */
done = 1;
atomicExch(&lock[i], 0);

}
} while (done == 0); // (1)

1. The key change is that threads loop repeatedly until they have executed the entire
critical section, rather than looping only to acquire the lock.

2. If a thread fails to acquire the lock, it is disabled until the end of the branch. Threads
that successfully acquire the lock enter the body of the conditional, where they execute
the critical section and finally release the lock.

2.4.5 Stencil

Stencil operations are a fundamental building block of many scientific and image processing
algorithms. A stencil computation is similar to a map, that has access to the elements in
the local neighbourhood surrounding the element. For example, at the core of many image
processing algorithms is the convolution operator ∗, whose definition is as follows:

(A ∗K)(x, y) =
∑
i

∑
j

A(x+ i, y + j)K(i, j)

Here A is the image being processed and K is the convolution kernel or stencil. A stencil is
a small matrix that defines a transformation on the image. Typical transformations include
Gaussian blur and the Sobel differentiation operator, both of which are used in the Canny
edge detection algorithm (§6.7).

Bounds checking

Since the stencil has access to elements in the surrounding neighbourhood, an immediate
concern is what to do when the stencil “falls off” the edge of the array. Figure 2.4 shows the
application of a 3 × 3 stencil in this circumstance. The white squares indicate the internal
region where the stencil is entirely within the array, and the grey squares indicate the border
region, where part of the stencil lies outside of the array boundary.

Boundary conditions determine how to handle out-of-bounds neighbours, by specifying
either a constant value to use instead, or by reading the source array at a different index.
However, with the array sizes typical of GPU programs, the border region represents only
a tiny fraction of the entire array. For example, a 512-pixel square image has less than one
percent of its pixels along the edge. This fact implies that for optimal performance, we should
avoid testing of the boundary each time we read an element from the source array. For simple

Section 2.4 Data parallel algorithms in CUDA 17

⋯

× ⋯

× arr(2,0) ⋯

× ⋯

⋯

⋮ ⋮ ⋮ ⋮ ⋮

Figure 2.4: Application of a 3×3 stencil in the border region. If the focal point of the stencil, such
as the indicated element at index (Z:.2:.0), lies in the border region (grey), the neighbouring
elements might fall outside the array bounds, whereas for elements in the internal region (white)
the stencil lies entirely within the array.

convolutions such as those used by Canny (§6.7), this adds significant overhead [75]. The
current implementation does not separate computation of the border and internal regions.

Overlapping elements

Suppose we wish to apply a dense 3× 3 stencil to a single internal point in the array, where
every element of the stencil is utilised. Application of the stencil requires at least nine elements
of the array to be loaded, and one store for the result.

Figure 2.5 shows the evaluation of four horizontally adjacent elements. If we evaluate
these points independently, we would need 4× 9 = 36 loads of the source array, plus the four
stores to the result array. However, if the calculation of these four elements can cooperate
and share loads from the source array into a local temporary array, this would requires only
3×6 = 18 loads, plus the four stores. Sharing of stencil elements can thus significantly reduce
memory bandwidth requirements.

Sharing of stencil elements in CUDA can be achieved by having the thread block first
cooperatively read the stencil elements into shared memory [98], and each thread then com-
putes its stencil function using these shared values. In Accelerate, sharing of stencil elements
is complicated by two main factors:

1. Stencil patterns can be large: up to 9 elements in each dimension. Since the shared mem-
ory region on the GPU is usually very small, this can significantly limit the maximum
thread block size. If the occupancy of the device is too low, there may be insufficient
parallelism to hide global memory transfer latency (§4.6.3).

18 Basics Chapter 2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯

⋯ arrw arrx arry arrz ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Figure 2.5: Overlapping elements in a dense 3× 3 stencil. Computation of each element requires
nine reads from the source array. If the four elements cooperate to share the source data, the
number of loads to the source array is halved.

2. A stencil function does not need to use all elements defined in the pattern, so reading all
elements into shared memory could waste more bandwidth than it saves. The pattern
also does not need to be square nor symmetric, which complicates efficient cooperative
loading of the common elements into shared memory.

The implementation currently ignores this issue and does not explicitly share elements
between threads, and instead, relies on the hardware cache. For older (compute 1.x) devices
that lack a traditional cache mechanism to global memory, we read the source array using the
texture cache.6 It is left to future work to investigate sharing of stencil elements between
threads, either in general or specialised for certain cases such as dense stencils or those
commonly used for convolutions.

Interaction with array fusion

Since the stencil operation has access to the elements surrounding the focal point of the stencil,
if the input is represented by a symbolic array resulting from array fusion (§5.2), rather than
manifest array data, accessing these neighbouring elements implies recomputing the symbolic
computations on every element access. For some operation stencil s . map f, if the results
of f can be shared between threads of the stencil (previous section), or if f is cheap, then the
duplicate computations required to fuse the two operations might be preferable to the extra
memory bandwidth required to store the result of map f to memory. A full exploration of
stencil-aware array fusion is left to future work.

6A holdover from the graphical heritage of the GPU.

Section 2.4 Data parallel algorithms in CUDA 19

2.4.6 Segmented operations

The Accelerate language is restricted to programs which express only flat data parallelism. In
this model, the computation executed in parallel on each data element must itself be sequen-
tial. Although this model admits an efficient implementation on highly parallel architectures
and is ideally suited for computations on dense, regular arrays, flat data parallelism is not
as well suited for algorithms that operate over irregular structures, such as sparse matrices,
graphs, or trees.

On the other hand, nested data-parallel languages [20, 74] allowing recursive data struc-
tures and the application of parallel functions in data-parallel. The key insight is that because
the nested calls are to the same function, the flattening transformation [22] can convert this
nested data-parallelism into an equivalent flat data-parallel program. An essential part of the
flattening transformation is the introduction of segmented operations, which apply a primitive
operation in parallel to subcomponents of a nested structure.

At an example, consider the following nested list of floating-point numbers:

xss :: [[Float]]
xss = [[1,2], [3,4,5], [], [6]]

The insight of the flattening transformation is to instead view this data structure as a flat array
of values, coupled with a segment descriptor encoding the length of each of the subsequences:

xss' :: [Float]
xss' = [1, 2, 3, 4, 5, 6]

seg :: [Int]
seg = [2, 3, 0, 1]

Operations on the nested data structure can then be transformed into segmented operations
over the flattened data:

map (fold f z xss) 7→ foldSeg f z xss' seg

Although we include support for several segmented operations in Accelerate, it is left for
significant future work to add support for the expression of nested parallelism.

Segmented reduction

Segmented reduction is a primitive operations in Accelerate. Is is conceptually similar to
the multidimensional reduction, except that the length of each segment is provided by the
segment descriptor, rather than determined from the extent of the input array.

In the current implementation, a segmented reduction uses a single warp (SIMD group) to
reduce each segment, although it would also be possible to use the entire thread block, as is
done for regular multidimensional reductions. It remains to fully investigate which mapping
is more efficient.

20 Basics Chapter 2

Segmented scan

Segmented scans are not implemented as primitive operations in Accelerate. Instead, seg-
mented scans are implemented in terms of unsegmented scans by operator transformation [18,
119]. Given the operator ⊕ we can construct a new operator ⊕s that operators on a flag-value
pairs (fx, x) as follows:

(fx, x)⊕s (fy, y) = (fx|fy, if fy then y else x⊕ y)

It is expected that implementing segmented scans directly [39, 121], rather than by oper-
ator transformation, will improve performance.

2.5 Embedded domain-specific languages

A domain-specific language (DSL) is a computer language specialised to a specific problem
domain. The DOT language [1, 46] is an example of a DSL for describing graphs. This is in
contrast to a general purpose language such as Haskell [100], which is broadly applicable across
many domains but may lack specialised features for a particular domain. A domain specific
language is created to solve problems in a particular domain, and is not intended to solve
problems outside it (although this may be technically possible, for example, the PostScript [7]
page description language). Restricting the problem domain the language is intended to
solve may allow for more optimisations during compilation, or increased expressivity when
representing problems or defining solutions in that domain.

An embedded (or internal) domain-specific language (EDSL) is a domain-specific language
that is designed to be used from within another host language [61]. The embedded language
is implemented as a library, so is able to reuse the syntax and features of the general purpose
host language compiler, including compilation phases such as lexing, parsing, and semantic
analyses such as type checking, while adding domain specific elements such as data types, or
domain specific optimisations and code generation.

There are two major degrees in which an embedded language can be implemented; as
either a shallow or deep embedding.7

2.5.1 Shallow embedding

In a shallow embedding, operations in the embedded language translate directly into oper-
ations in the target language. A shallow embedding captures the semantics of the data of
that domain in a data type, and provides a fixed interpretation of that data. Thus, it is easy

7One might further categorise combinations of shallow and deep embeddings [126]. This amounts to a
shallow embedding which targets operations in a deeply embedded core language, and is equivalent to, for
example, the definition of filter (Listing 2.2) being a composition of several operations, rather than a core
language primitive.

Section 2.6 Discussion 21

to add new constructs to the language, so long as they can be interpreted in the semantic
domain. The embedded language can also reuse features of the host language, such as variable
bindings.

2.5.2 Deep embedding

A deep embedding captures the semantics of the domain by reflecting the operations of the
object language (or meta language) into a data structure. This data structure — an ab-
stract syntax tree (AST) — then permits transformations, such as optimisations, before being
translated into the target language. Deeply embedded languages therefore enable a variable
interpretation of operations in the domain. This makes it is easy to add new interpretations
of the embedding, for example, by compiling to a different target language. However, adding
new language constructs requires extending the AST data type, and the implementation must
deal explicitly with binding of variables. Sharing and recursion are common problems when
implementing deeply embedded languages [48].

As the deeply embedded language runs inside of the host language, reflecting operations
into an AST, an interpreter for the embedded language must be embedded within the host
application. As the interpreter executes code for the embedded language at program runtime,
code in the embedded language may either be written by the user or generated dynamically
by the application. If the target language is different to that of the host language, this entails
the interpreter generating, compiling, and executing code for the target language at program
runtime.

2.6 Discussion

This chapter has outlined the basic concepts driving the design and implementation of our
embedded language Accelerate. We have introduced the concept of data parallelism, a pro-
gramming model that is simple to reason about yet can efficiently make use of large numbers
of processors. We introduced the idea of using graphics processors for general purpose com-
puting tasks, and show that GPU computing, and CUDA in particular, are data-parallel
programming models. Finally, we have introduced the idea of embedded domain-specific
languages.

The next chapter ties these ideas together to introduce Accelerate: an embedded language
of array computations that has been designed with massive data parallel processors such as
GPUs in mind.

22 Basics Chapter 2

3

Embedding array computations

The trouble with opportunity is that it always comes disguised as hard work.
—herbert v. prochnow

Starting with Fortran, array-based code has played a central role in high-performance
computing. Array-based programming has proved to be successful not only on data-parallel
(SIMD) hardware such as the CM-2, vector computers, and modern graphics processing units
(GPUs), but also on task parallel (MIMD) hardware such as distributed memory, symmetric
multiprocessor (SMP), and multicore machines.

Recent work on stream fusion in the Haskell vector library [37, 82] and the parallel array
library Repa [68, 75, 76] have demonstrated that purely functional array code in Haskell (1)
can be competitive with the performance of imperative array programs; and (2) lends itself
to an efficient parallel implementation on control-parallel multicore CPUs.

So far, the use of purely functional array programs for programming data-parallel SIMD
hardware has been less successful. This chapter describes the Accelerate language, our purely
functional language over regular, multidimensional arrays, which has been designed to allow
efficient execution on massively data-parallel hardware such as GPUs.

3.1 The Accelerate EDSL

The current generation of graphical processing units are massively multicore processors (§2.2).
They are optimised for workloads with a large degree of data parallelism (§2.1) and good
performance depends on highly idiomatic programs with low SIMD divergence and regular
memory-access patterns [98]. These unusual characteristics of GPUs means that the develop-
ment of applications that use the graphics processors for general purpose computations (§2.2)
is work intensive and requires a substantial degree of expert knowledge.

Accelerate is our approach to reducing the complexity of GPU programming: a high-
level, deeply embedded domain-specific language (§2.5) of array computations that captures

24 Embedding array computations Chapter 3

Frontend Multiple Backends First pass Second pass

CUDA.run

LLVM.run

FPGA.run

–
D

at
a

–
–

C
on

tr
ol

 –

Non-parametric array
representation

 → unboxed arrays
 → array of tuples
 ⇒ tuple of arrays

Surface language
↓

Reify & recover sharing
HOAS ⇒ de Bruijn

↓
Optimise (fusion)

Code generation
↓

Compilation
↓

Memoisation

Copy host → device
(asynchronously)

overlap

– GPU –

Parallel execution

– CPU –

Allocate
memory

Link & configure
kernel

Figure 3.1: The overall structure of Accelerate. It comprises a frontend and supports multiple
backends that can target a variety of architectures.

appropriate GPGPU idioms in the form of parameterised, rank-polymorphic [68], collective
operations on arrays [29]. Our choice of operations was informed by the scan-vector model [31],
which is suitable for a wide range of algorithms, and demonstrated that these operations can
be efficiently implemented on modern GPUs [120].

Accelerate’s collective array operations are implemented as algorithmic skeletons (§4.1)
that capture appropriate GPU programming idioms. The dynamic code generator instan-
tiates CUDA implementations of these skeletons (§2.4) to implement embedded array pro-
grams (§4.2). Dynamic code generation exploits runtime information of the target hardware
to optimise GPU code, and enables on-the-fly generation of embedded array programs by
the host program (§4.4). The evaluator minimises the overhead of dynamic code generation
by caching binaries of previously compiled skeleton instantiations and by parallelising code
generation, data transfer (§4.5), and GPU kernel loading, configuration, & execution (§4.6).

To achieve performance competitive with hand-written CUDA [89], we implement two
primary optimisation techniques: sharing recovery (§5.1) tackles code explosion due to the
embedding in Haskell, while array fusion (§5.2) eliminates superfluous intermediate structures,
which often arise due to the high-level nature of the language. Both of these techniques are
well known from other contexts, but they present unique challenges for an embedded language
compiled for execution on a GPU.

Figure 3.1 summarises the overall structure of Accelerate. It comprises a frontend and
support for multiple backends that can target a variety of architectures. Here, we are only
concerned with the CUDA generating GPU backend, but the approach is amenable to target-
ing multicore CPU backends exploiting SIMD instructions,1 backends for OpenCL,2,3 and for
reconfigurable hardware such as FPGAs. In the following, we briefly introduce some features
of the design and use of Accelerate.

1https://github.com/AccelerateHS/accelerate-llvm
2https://github.com/AccelerateHS/accelerate-backend-kit/tree/master/icc-opencl
3https://github.com/HIPERFIT/accelerate-opencl/

https://github.com/AccelerateHS/accelerate-llvm
https://github.com/AccelerateHS/accelerate-backend-kit/tree/master/icc-opencl
https://github.com/HIPERFIT/accelerate-opencl/

Section 3.1 The Accelerate EDSL 25

3.1.1 Computing a vector dot product

Consider computing the dot product of two vectors, using standard Haskell lists:

dotp_list :: [Float] → [Float] → Float
dotp_list xs ys = foldl (+) 0 (zipWith (*) xs ys)

The two input vectors xs and ys are pointwise multiplied, and the resulting list of products
are summed, yielding the scalar result.

Using Accelerate, we implement this computation on arrays as follows:

dotp :: Vector Float → Vector Float → Acc (Scalar Float) −− (1)
dotp xs ys

= let xs' = use xs −− (2)
ys' = use ys

in
fold (+) 0 (zipWith (*) xs' ys') −− (3)

Here, fold and zipWith are taken from the Accelerate library Data.Array.Accelerate,
rather than from the standard Haskell library Data.List. The Accelerate code consumes two
one dimensional arrays (Vector) of values, and produces a single (Scalar) result as output.
It differs from the list version in three main respects:

1. The result is an embedded Accelerate computation, indicated by the type constructor
Acc. It will be evaluated in the target language of dynamically generated parallel code,
rather than the meta language, which is vanilla Haskell (§2.5).

2. We lift the two plain vectors xs and ys into Acc terms with use. This makes the arrays
available to the embedded computation (§3.1.3).

3. We use fold instead of foldl.

The first two points are artefacts of lifting the computation into an embedded language (§2.5),
effectively delaying the computation. Concerning the final point, the list traversal function
foldl guarantees a left-to-right traversal of the elements, whereas fold leaves the order in
which the elements are combined unspecified. This requires that the binary operator supplied
to fold is associative,4 but allows for an implementation using a parallel tree reduction [31,
120].

3.1.2 Arrays, shapes, and indices

Parallelism in Accelerate takes the form of collective operations such as zipWith on arrays of
type Array sh e, where sh is the shape and e the element type of the array. Following the
approach taken in Repa [68], we represent both the shapes and indices of an array using an

4Although floating-point arithmetic is not strictly associative, it is common to accept the resulting error
in parallel applications.

26 Embedding array computations Chapter 3

data Z = Z −− rank zero
data tail :. head = tail :. head −− increase rank by one

type DIM0 = Z −− synonynms for common array dimensionalities
type DIM1 = DIM0 :. Int
type DIM2 = DIM1 :. Int
type DIM3 = DIM2 :. Int
−− and so on

type Array DIM0 e = Scalar e −− synonynms for common array types
type Array DIM1 e = Vector e

Listing 3.1: Types of array shapes and indices

inductive notation of tuples as heterogeneous snoc lists to enable rank-polymorphic definitions
of array functions.

As shown in Listing 3.1, on both the type and value level, the constructor Z is used to
represent the shape of a rank-0 array, and the infix operator (:.) is used to increase the rank
by adding a new (innermost) dimension to the right of the shape. Thus, a rank-3 index with
components x, y, and z, is written (Z:.z:.y:.x) and has type (Z:.Int:.Int:.Int), where
the component x is innermost and varies most rapidly, while the component z varies least
rapidly.

Overall, an array of type Array (Z:.Int:.Int) Float is a rank-2 array of single precision
floating-point numbers. Listing 3.1 also defines synonyms for common array types: a singleton
array of shape DIM0 represent a single scalar value, while an array of shape DIM1 represents a
vector, and so on. While it may appear that the explicit mentioning of Int in each dimension is
redundant, we require indices over types other than Int for rank polymorphic functions, such
as replicating an array into one or more additional dimensions or slicing a lower-dimensional
subarray out of a larger array [29, 68].

3.1.3 Arrays on the host and device

Accelerate is an embedded language (§2.5) that distinguishes between vanilla Haskell arrays
and arrays in the embedded language, as well as computations on both flavours of arrays.
Embedded array computations are identified by types formed from the type constructor Acc,
and must be explicitly executed before taking effect. To make these arguments available to the
Accelerate computation they must be embedded with the use function, which is overloaded
so that it can accept tuples of arrays:

use :: Arrays arrays ⇒ arrays → Acc arrays

In the context of GPU programming, GPUs typically have their own high-performance mem-
ory which is separate from the host CPU’s main memory, and data must be explicitly trans-
ferred to the GPU’s memory before it can be used. The distinction between regular arrays
of type Array sh e and arrays of the embedded language Acc (Array sh e) has the added

Section 3.1 The Accelerate EDSL 27

use :: Arrays arrs ⇒ arrs → Acc arrs embed an array
unit :: Elt e ⇒ Exp e → Acc (Scalar e) create singleton array

reshape :: Exp sh → Acc (Array sh' e) → Acc (Array sh e) impose a new shape

map :: (Exp a → Exp b) → Acc (Array sh a) map a function over an array
→ Acc (Array sh b)

zipWith :: (Exp a → Exp b → Exp c) → Acc (Array sh a) apply funciton to a…
→ Acc (Array sh b) → Acc (Array sh c) …pair of arrays

generate :: Exp sh → (Exp sh → Exp a) → Acc (Array sh a) array from index mapping

replicate :: Slice slix extend array across…
⇒ Exp slix → Acc (Array (SliceShape slix) e) …new dimensions
→ Acc (Array (FullShape slix) e)

slice :: Slice slix remove existing dimensions
⇒ Acc (Array (FullShape slix) e) → Exp slix
→ Acc (Array (SliceShape slix) e)

fold :: (Exp a → Exp a → Exp a) → Exp a tree reduction along…
→ Acc (Array (sh:.Int) a) → Acc (Array sh a) …innermost dimension

scan{l,r} :: (Exp a → Exp a → Exp a) → Exp a → Acc (Vector a) left-to-right or right-to-left…
→ Acc (Vector a) …vector pre-scan

backpermute :: Exp sh' → (Exp sh' → Exp sh) → Acc (Array sh a) backwards permutation
→ Acc (Array sh' e)

permute :: (Exp a → Exp a → Exp a) → Acc (Array sh' a) forward permutation
→ (Exp sh → Exp sh') → Acc (Array sh a)
→ Acc (Array sh' a)

stencil :: Stencil sh a stencil ⇒ (stencil → Exp b) map a function with local…
→ Boundary a → Acc (Array sh a) → Acc (Array sh b) …neighbourhood context

Listing 3.2: Summary of Accelerate’s core collective array operations, omitting Shape and Elt
class constraints for brevity. In addition, there are other flavours of folds and scans as well as
segmented versions of these.

benefit of differentiating between arrays allocated in host memory and arrays allocated in
GPU device memory. Thus, use also implies a host-to-device data transfer. See Section 4.5
for more information on how device memory is managed. Similarly, expressions in Acc are
computations that are executed on the device (the GPU), whereas regular Haskell code runs
on the host (the CPU).

3.1.4 Array computations versus scalar expressions

The signatures of the two operations zipWith and fold, used in the definition of dotp, are
shown in Listing 3.2. These operations are multidimensional variants of the corresponding
list functions, but with arrays wrapped in Acc. In addition to Acc, which marks embedded
array computations, we also have Exp, which marks embedded scalar computations: a term of
type Exp Int represents an embedded expression yielding a value of type Int, and similarly
Exp Float → Exp (Float,Float) characterises an embedded scalar function that takes an
argument of type Float and yields a pair of Floats as the result. As with computations
embedded in Acc, computations in Exp are executed in the target language of GPU code.

28 Embedding array computations Chapter 3

Accelerate distinguishes the types of collective operations and scalar computations to
achieve a stratified language. Collective operations in Acc consist of many scalar compu-
tations in Exp that are executed in data-parallel. However, scalar computations can not
contain collective operations. This stratification excludes nested, irregular data parallelism
statically — instead, Accelerate is restricted to only flat data-parallelism involving regular,
multi-dimensional arrays. This stratification, which restricts the Accelerate language to only
flat data parallelism, ensures that computations can be efficiently mapped to the hardware.

Compared to regular Haskell, Exp computations are rather limited in order to meet the
restrictions of what can be efficiently executed on GPUs. In particular, we do not support
recursion, and provide only a limited form of explicit value iteration. Scalar expressions
support Haskell’s standard arithmetic operations by overloading the standard type classes
such as Num and Integaral, as well as bitwise operations from Bits. Although we can not
overload functions on Bool in standard Haskell, we support equality and comparison operators
as well as logical connectives using the operators (==*), (/=*), (<*), (<=*), and so on. We
also have conditional expressions in the form of c ? (t, e), which evaluates to t if c yields
True, otherwise to e. There are also scalar operations that take array valued arguments;
namely, arr!ix which indexes an array and shape which queries the extent of an array.
The argument to these operations is guaranteed to only be a previously let-bound variable,
ensuring that each invocation of the scalar function can not initiate additional parallel work.
Finally, we have tupling and projection, and auxiliary functions for computing with indices.

3.1.5 Computing an n-body gravitational simulation

As a second example, consider simulating the Newtonian gravitational forces on a set of
massive bodies in 3D space, using a precise (but expensive) O(n2) algorithm. We use the
following type synonyms to represent bodies in the simulation:

type Vec a = (a, a, a)
type Position = Vec Float
type Accel = Vec Float

type Mass = Float
type PointMass = (Position, Mass)

Here, Vec is the type of 3-component vectors, which are used to store the x-, y-, and z-
components of the particle’s position or acceleration in three dimensional space, along each
dimension in Position and Accel respectively. A PointMass is a tuple containing the body’s
Mass and Position.

In a data-parallel setting, the natural implementation of the all-pairs n-body algorithm
first computes the forces between every pair of bodies, before reducing the components ap-
plied to each body using a multidimensional (segmented) reduction. We can calculate the
acceleration each body experiences as it interacts with all other bodies in the system as:

Section 3.1 The Accelerate EDSL 29

calcAccels :: Exp Float → Acc (Vector PointMass) → Acc (Vector Accel)
calcAccels epsilon bodies
= let n = A.size bodies

cols = A.replicate (lift $ Z :. n :. All) bodies −− (1)
rows = A.replicate (lift $ Z :. All :. n) bodies

in
A.fold (.+.) (vec 0) −− (3)
$ A.zipWith (accel epsilon) rows cols −− (2)

1. replicate expands the vector of n bodies into an n×n matrix, where we replicate the
original elements of the source vector, represented by All, such that every element down
the columns or along the rows of the matrix are identical, respectively. The operation
lift is used to push the shape constructors into the expression; that is, in this instance
we have lift :: (Z :. Exp Int :. All) → Exp (Z :. Int :. All).

2. zipWith calculates the interaction between each pair of particles by element wise com-
bining the n×n matrices, which were replicated in opposite directions.

3. fold reduces the result along the innermost dimension only, yielding a vector containing
the sum of interactions for each particle between all others. The auxiliary function (.+.)
performs component-wise addition of the 3-vector.

This is an example of using rank-polymorphic operations in Accelerate. The function
fold requires an argument array of at least rank-1 (such as a matrix), and the result is
computed by reducing the array along the innermost dimension, reducing the rank of the
array by one (in this case yielding a vector). The functions replicate and slice are rank-
polymorphic as well, but require more complex shape constraints that we characterise with
the type family FullShape and SliceShape that statically track changing array dimensions.
For details on the various forms of shape polymorphism, see Keller et al. [68]. Overall, as
shown in Listing 3.2, the collective operations of Accelerate are a multi-dimensional variant
of those underlying the scan-vector model [31, 120].

Computing gravitational potential

I briefly explain how to compute the gravitational potential between a pair of bodies. Given
n bodies with position xi and velocity vi for i ∈ [1, n] (bold face indicates a 3-component
vector), the force fij on a body i caused by its gravitational attraction to body j is given by:

fij = G
mimj

|rij |2
· rij
|rij |

where mi and mj are the masses of the bodies, rij = xj − xi is the vector from body i to
body j, and G is the gravitational constant. The factor on the left represents the magnitude
of the acceleration, and is proportional to the product of the masses and diminishes as the

30 Embedding array computations Chapter 3

square of the separation of the masses. The right factor is the direction of the force, and is
the unit vector from i in the direction of j.

The total force Fi on a body i due to its interactions with the other bodies is thus:

Fi =
∑

1≤j≤n
j ̸=i

fij = Gmi ·
∑

1≤j≤n
j ̸=i

mjrij
|rij |3

Note that as the bodies approach each other, the force between them grows without bound,
which is undesirable for numerical simulations. In astrophysical simulation, collisions between
bodies are generally precluded, which is reasonable if the bodies represent galaxies that may
pass through each other. A softening factor ϵ2 > 0 is added, which models the interaction of
two Plummer point masses [5, 40]. In effect, softening limits the magnitude of forces between
bodies. The denominator is rewritten as follows:

Fi ≈ Gmi ·
∑

1≤j≤n

mjrij
(|rij |+ ϵ2)

3/2

The condition j ̸= i is no longer needed, because fii = 0 when ϵ2 > 0.
Finally, the acceleration experienced by a body is ai = Fi/mi, and we can now present

the Accelerate routine to compute the acceleration between two bodies.

accel :: Exp R → Exp PointMass → Exp PointMass → Exp Accel
accel epsilon pmi pmj = (mj * invr3) *. r
where

mj = massOfPointMass pmj
r = positionOfPointMass pmj .−. positionOfPointMass pmi
rsqr = dot r r + epsilon * epsilon
invr = 1 / sqrt rsqr
invr3 = invr * invr * invr

Here the functions positionOfPointMass and massOfPointMass extract each component of
the PointMass, respectively. The function (.-.) is component-wise subtraction applied to
the 3-vector, and (*.) multiplies each component of a 3-vector by a scalar value.

3.1.6 Non-parametric array representation

Accelerate computations are parameterised by the type classes Shape and Elt, which char-
acterise the types that may be used as array indices and array elements respectively. For
example, the type of map is:

map :: (Shape sh, Elt a, Elt b) ⇒ (Exp a → Exp b) → Acc (Array sh a) → Acc (Array sh b)

We discussed the nature of array indices in Section 3.1.2. The Elt class characterises the
types of values that can be used as array elements, and hence appear in scalar Accelerate
expressions. The supported Elt types are signed & unsigned integers (8, 16, 32, and 64-bit

Section 3.1 The Accelerate EDSL 31

wide), floating point numbers (single & double precision), as well as Char, Bool, and array
indices formed from Z and (:.). Furthermore, there are tuples of all of those, including
nested tuples, as was seen in the n-body example program (§3.1.5).

Accelerate arrays of primitive type, such as Int and Float, are easily represented as
unboxed arrays of the corresponding primitive type. More interesting is the case of arrays
of tuples, where we use a non-parametric array representation so that arrays of tuples are
represented in memory as a tuple of arrays, one array for each primitive type in the structure.
By virtue of this representation, Accelerate is able to make optimal use of the available
memory bandwidth. See Section 4.2.3 for details.

Moreover, consider the following types:

data Point = P Int Int

point :: Exp Point
sh :: Exp (Z :. Int :. Int)
tup :: Exp (Int, Int)

The salient feature of each type is that it carries two integers, albeit each wrapped in different
constructors. We call this the surface type of a term. However, an Accelerate backend
implementation should not need to know about the surface type representation. Indeed, we
do not want to have to extend the backend to support every new user-defined type such as
Point. The Elt class tells us how to convert between the surface type of an expression that
a user programs in, into the representation type that an implementation stores and computes
data in. We use a type family [28, 118] of nested tuples to represent types as heterogenous
snoc-lists of primitive types:

type family EltRepr a :: *
type instance EltRepr () = ()
type instance EltRepr Int = ((), Int)
type instance EltRepr (a, b) = (EltRepr a, EltRepr' b)
type instance EltRepr (a, b, c) = (EltRepr (a, b), EltRepr' c)
−− and so on…

The type EltRepr' is similar, except that it uses a flattened representation for primitive types
in order to avoid overly nested pairs, for example, EltRepr' Int = Int. Arrays of tuples
have a similar mapping into nested tuples of arrays, with the Arrays class acting analogously
to Elt.

3.1.7 Richly typed terms

As a deeply embedded language, the operations of both the array and scalar sub-language
do not directly issue computations; instead, they build term trees to represent embedded
computations (§2.5). The terms in the surface language use higher-order abstract syntax
(HOAS) to embed function-valued scalar expressions as well as type class overloading to
reflect arithmetic expressions. For example, the body of the dotp function is translated into:

32 Embedding array computations Chapter 3

Fold add (Const 0) (ZipWith mul xs' ys')
where

add = λx y → PrimAdd (FloatingNumType (TypeFloat FloatingDict)) −− (1)
`PrimApp`
Tuple (NilTup `SnocTup` x

`SnocTup` y)
mul = −− as add, but using PrimMul ...

where the subterms add and mul have been extracted into the where-clause to improve read-
ability. This is very much like the approach taken by Elliott [45], Gill et al. [50], and Mainland
and Morrisett [81]. The difference is that in our approach we use GADTs [104] and type fam-
ilies [28, 118] to preserve the embedded program’s type information in the term tree (1), and
use type-preserving transformations in the front end (§3.2).

The HOAS representation, while convenient for a human reader, is awkward for program
transformations as it complicates looking under lambdas; i.e. inspecting and manipulating the
bodies of function abstractions. After the frontend reifies the embedded program written in
HOAS, it recovers sharing (§5.1) while converting the HOAS representation into a nameless
representation using typed de Bruijn indices in the style of Altenkirch and Reus [8]. The type
preserving conversion from HOAS to a nameless de Bruijn representation using GADTs [26]
was simultaneously discovered by Atkey et al. [10].

Overall, the nameless form of dotp is:

Fold add (Const 0) (ZipWith mul xs' ys')
where

add = Lam (Lam (Body (
PrimAdd (FloatingNumType (TypeFloat FloatingDict))

`PrimApp`
Tuple (NilTup `SnocTup` (Var (SuccIdx ZeroIdx))

`SnocTup` (Var ZeroIdx)))))
mul = −− as add, but using PrimMul ...

The Lam constructor introduces nameless abstractions and Var wraps a de Bruijn index. At
this point, the program is further optimised by the frontend, for example by applying the
fusion transformation (§5.2).

Terms in the nameless Accelerate AST are encoded by GADTs using open recursion (acc,
§3.1.8) and parameterised over the surface type of the return value (a, t) and the type of the
environment (env and aenv, for scalar and array valued free variables, respectively):

data PreOpenAcc acc aenv a −− collective operations
data PreOpenExp acc env aenv t −− scalar operations

We represent the environment as a heterogenous snoc-list, encoded on the type level as
nested pairs and building this list on the value level with the two constructors:

data Val env where
Empty :: Val ()
Push :: Val env → t → Val (env, t)

Section 3.1 The Accelerate EDSL 33

A nameless de Bruijn index projects out a specific type from the environment:

data Idx env t where −− an index is either…
ZeroIdx :: Idx (env, t) t −− …at the top of the stack, or…
SuccIdx :: Idx env t → Idx (env, s) t −− …under some junk

Indices have type Idx env t, where the type env keeps track of what variables are in scope
using the same encoding of nested tuples used by the environment, while t represents the
type of a distinguished element in this list. At the value level, the constructors of Idx encode
the index of that distinguished element in the list.

As terms are pushed into the environment, the type of the new term becomes wrapped
in the type of the environment; i.e. t is existentially quantified in Push. Our de Bruijn
indices recover the wrapped type of individual elements by projecting the index through the
environment:

prj :: Idx env t → Val env → t
prj ZeroIdx (Push _ v) = v
prj (SuccIdx idx) (Push val _) = prj idx val
prj _ _ = error "inconsistent␣valuation"

Overall, this is an example of using nested datatypes and polymorphic recursion to pre-
cisely enforce constraints and invariants in the type of a term; in this case the type and scope
of bound variables. Since an embedded Accelerate program is constructed and evaluated at
program runtime, encoding properties in the type means that these invariants are checked at
compile time, reducing the number of possible runtime errors in type-correct programs.

3.1.8 Tying the recursive knot

As mentioned in the previous section, terms in the Accelerate language are defined using
open recursion. That is, the GADT used to represent nodes of the program AST is defined
non-recursively, and instead is parameterised by the recursive knot.

Consider the following definition of a binary tree, which stores all data at the leaves of
the tree and is parameterised by the type of the leaf element:

data Tree a
= Leaf a −− Leaves of the tree hold the data
| Node (Tree a) (Tree a) −− Internal nodes record only left and right branches

Note that the internal Nodes of the Tree are defined in terms of itself — that is, Tree is
a recursively defined data type. Alternatively, the tree can be defined non-recursively, by
parameterising the definition by the recursive step:

data PreTree tree a
| Leaf a
| Node (tree a) (tree a)

34 Embedding array computations Chapter 3

A recursive tree type can be recovered from this definition. This however introduces an
additional step of needing to unwrap the Tree constructor before exposing the Leaf and
Node constructors of the PreTree itself:

data Tree a = Tree (PreTree Tree a)

This distinction between the recursive step and the tree constructors is important because
it allows us to use the same basic tree definition, but include additional information as part
of each recursive step. For example, we can define a new binary tree type that records the
size of the subtree at each point, and any existing functions operating over the basic PreTree
structure can still be used:

data SizedTree a = SizedTree Int (PreTree SizedTree a)

3.2 Manipulating embedded programs

The Accelerate core language is richly typed, maintaining full type information of the em-
bedded language in the term tree. In order to apply transformations to these terms while
maintaining the correctness of the program as encoded in its type, we require methods to
manipulate these richly typed terms in a type- and scope-preserving manner. This section
covers several techniques I developed for manipulating embedded Accelerate programs, that
are required to implement the optimisations discussed in the following chapters.

3.2.1 Typed equality

If we want to test whether two Accelerate terms are equal — for example, to determine
whether the subexpressions can be shared — we immediately run into the problem that terms
in the core Accelerate language are existentially typed. That is, how should we implement:

Exp s == Exp t = ??

There is no reason that s and t should be expressions of the same type. In some instances
we might not care, and as such can define standard heterogeneous equality:

instance Eq (PreOpenExp acc env aenv t) where
(==) = heq
where heq :: PreOpenExp acc env aenv a → PreOpenExp acc env aenv b → Bool

heq = · · ·

where we do not care about the result type of each expression, and only require that the
environment type (regarding size) of free scalar and array variables are the same so that we
can test equality of de Bruijn indices.

However, we often do care about the specific types of our existentially quantified terms.
Consider the case of defining equality for let-bindings. The Accelerate scalar language defines

Section 3.2 Manipulating embedded programs 35

let-bindings of the embedded program as a constructor of a GADT [104], whose type tracks
the type and scope of the bound term (§3.1.7):

data PreOpenExp acc env aenv t where
Let :: (Elt bnd, Elt body) −− Local binding of a scalar expression

⇒ PreOpenExp acc env aenv bnd −− bound term
→ PreOpenExp acc (env, bnd) aenv body −− body/scope of binding
→ PreOpenExp acc env aenv body

−− other language constructs…

To apply heq to the body expression, we need to know something about the type of the bound
terms to ensure that the scalar environments are the same, namely s ∼ bnd ∼ t.5 To do
this we must equip terms with some runtime witness to the existentially quantified type. Our
reified dictionaries allow us to do exactly this, so we can define heterogeneous equality for
reified dictionaries:

heqIntegralType :: IntegralType s → IntegralType t → Bool
heqIntegralType (TypeInt _) (TypeInt _) = True
heqIntegralType (TypeWord _) (TypeWord _) = True
· · ·

heqIntegralType _ _ = False

However, doing this is perfectly useless as it only gives us a value of type Bool, with no idea
what that value means or to what its truth might entitle us. The type checker does not gain
any useful knowledge about the types the dictionaries s and t witness simply by knowing
that heqIntegralType s t = True. A boolean is a bit uninformative.

Instead, we can write essentially the same test, but in the positive case deliver some
evidence that the types are equal:

data s :=: t where
REFL :: s :=: s

matchIntegralType :: IntegralType s → IntegralType t → Maybe (s :=: t)
matchIntegralType (TypeInt _) (TypeInt _) = Just REFL
matchIntegralType (TypeWord _) (TypeWord _) = Just REFL
· · ·

matchIntegralType _ _ = Nothing

Matching on Just REFL will inject the knowledge into the type checker that the types s
and t are the same. Now with our evidence-producing heterogeneous equality test for reified
dictionary families, we can compare two terms and gain type-level knowledge when they
witness the same value-level types. These witnesses for existentially quantified types then
allow us to test for equality homogeneously, ensuring that positive results from singleton tests
give the bonus of unifying types for other tests:

5Alternatively we can use Data.Typeable.gcast to provide a type-safe cast, but this quickly becomes
unwieldy, and is a little unsatisfactory as this amounts to a runtime, rather than compile time, test.

36 Embedding array computations Chapter 3

matchPreOpenExp
:: PreOpenExp acc env aenv s
→ PreOpenExp acc env aenv t
→ Maybe (s :=: t)

matchPreOpenExp (Let x1 e1) (Let x2 e2)
| Just REFL ← matchOpenExp x1 x2 −− if the bound expressions match
, Just REFL ← matchOpenExp e1 e2 −− then the environment of the body term will also match
= Just REFL

matchPreOpenExp · · ·

Congruence

If we are interested in the facility of matching terms for the purposes of optimisations such as
common subexpression elimination (§5.3.2), it is beneficial to define not equality but instead
congruence of terms. Two nodes are considered congruent if (1) the nodes they label are
constants and the constants are equal; or (2) they have the same operator and the operands
are congruent. The crux of the latter condition refers to commutative relations, such as
scalar addition, where an operator yields the same result when the order of the operands
are reversed. When checking congruence of primitive applications, we discriminate binary
functions whose arguments commute, and return those arguments in a stable ordering by
comparing a hash of each of the sub-terms.

commutes
:: PrimFun (a → r)
→ PreOpenExp acc env aenv a
→ Maybe (PreOpenExp acc env aenv a)

commutes f x = case f of
PrimAdd _ → Just (swizzle x)
· · · → Nothing

where
swizzle :: PreOpenExp acc env aenv (a,a) → PreOpenExp acc env aenv (a,a)
swizzle exp
| Tuple (NilTup `SnocTup` a `SnocTup` b) ← exp
, hashPreOpenExp a > hashPreOpenExp b = Tuple (NilTup `SnocTup` b `SnocTup` a)
| otherwise = exp

Future work on the term matching system could look into the work of rewriting modulo
associative and commutative (AC) theories [12, 41–43, 70].

3.2.2 Simultaneous substitution

In order to do things like renaming and substitution, we require a value-level substitution
algorithm for the richly typed terms. The implementation follows the method of McBride
[85, 86], where it is seen that renaming and substitution are both instances of a single traversal
operation, pushing functions from variables to “stuff” through terms, for a suitable notion of
stuff. The trick is to push a type-preserving but environment changing operation structurally
through terms:

Section 3.2 Manipulating embedded programs 37

v :: ∀ t'. Idx env t' → f env' t'

Where the operation differs is in the image of variables: renaming maps variables to
variables while substitution maps variables to terms. We then lift this to an operation which
traverses terms, with appropriate lifting to push under binders, and rebuild the term after
applying v to the variables:

rebuild :: Syntactic f
⇒ (∀ t'. Idx env t' → f env' t')
→ Term env t
→ Term env' t

The Syntactic class6 tells us everything we need to know about f — our notion of “stuff”
— in order to rebuild terms: a mapping in from variables, a mapping out to terms, and a
weakening map which extends the context. Renaming will instantiate f with Idx, whereas
for substitutions we may choose Term instead.

class Syntactic f where
varIn :: Idx env t → f env t −− variables embed in f
termOut :: f env t → Term env t −− f embeds in terms
weaken :: f env t → f (env, s) t −− f allows weakening

instance Syntactic Idx
instance Syntactic Term

A key component of this toolkit, weakening describes an operation we usually take for
granted: every time we learn a new word, old sentences still make sense; if a conclusion is
justified by a hypothesis, it is still justified if we add more hypotheses; a term remains in
scope if we bind new (fresh) variables. Weakening is the process of shifting things from one
scope to a larger scope in which new things have become meaningful, but no old things have
vanished. When we use a named representation (or HOAS) we get weakening for free, but in
the de Bruijn representation weakening takes work: we need to shift all the variable references
to make room for new bindings. To do this we need to explain how to shift the v operation
into an extended environment; saying what to do with the new variable and how to account
for it on the output side.

shift :: Syntactic f
⇒ (∀ t'. Idx env t' → f env' t')
→ Idx (env, s) t
→ f (env', s) t

Overall, the crucial functionality of simultaneous substitution is to propagate a class of oper-
ations on variables closed under shifting, which is what Syntactic and rebuild offer.

6Since Accelerate is a stratified language there are separate implementations of this toolkit on syntactic
elements for the scalar and collective operations, but the details are identical. The discussion uses the generic
Term to mean either of these operations.

38 Embedding array computations Chapter 3

subTop :: Term env s → Idx (env, s) t → Term env t
subTop s ZeroIdx = s
subTop _ (SuccIdx ix) = Var ix

inline :: Term (env, s) t → Term env s → Term env t
inline body bnd = rebuild (subTop bnd) body

Listing 3.3: A simultaneous substitution to inline terms

dot :: Term (env, b) c → Term (env, a) b → Term (env, a) c
dot f g = Let g (rebuild split f)
where

split :: Idx (env, b) c → Term ((env, a), b) c
split ZeroIdx = Var ZeroIdx
split (SuccIdx ix) = Var (SuccIdx (SuccIdx ix))

compose :: Fun env (b → c) → Fun env (a → b) → Fun env (a → c)
compose (Lam (Body f)) (Lam (Body g)) = Lam (Body (f `dot` g))
compose _ _ = error "compose:␣impossible␣case"

Listing 3.4: A simultaneous substitution to compose unary function terms

3.2.3 Inlining

The final question, then, is how to write the function v which we push through terms, as the
type ∀ t' could be anything. After all, what is the point of having a simultaneous substitution
algorithm if we can’t specialise it to one-at-a-time substitution.

The function subTop in Listing 3.3 takes a replacement for the top variable and returns a
simultaneous substitution which eliminates ZeroIdx. If we have a term with one free variable,
we can use this to replace that variable with a term. That is, inline a term into all use sites
of the free variable.

The demonic ∀ — which is to say that the quantifier is in a position which gives us
obligation, not opportunity — of the operator v forces us to respect type: when pattern
matching detects the variable we care about, we happily discover that it has the type we
must respect. The demon is not so free to mess with us as one might at first fear.

3.2.4 Function composition

The equivalent of unary function composition (.) on terms can be defined in a similar manner.
A function (a → b) is equivalent to a Term of type b and free variable a. Similar to inlining,
we replace an expression that uses the top variable with one that uses another, remembering
to bind the result of the first expression so that it can be reused in the second without
duplication.

Note the type of split in Listing 3.4, which creates space in the environment at the
second index (SuccIdx ZeroIdx) for the free variable a to appear in the resultant Term, as
the first index will be bound to the result of the first expression g.

Section 3.2 Manipulating embedded programs 39

data Extend acc aenv aenv' where
BaseEnv :: Extend acc aenv aenv
PushEnv :: Arrays a

⇒ Extend acc aenv aenv'
→ PreOpenAcc acc aenv' a
→ Extend acc aenv (aenv', a)

Listing 3.5: Extending an array environment

Finally, compose lifts this to a function on terms by unwrapping the lambda abstractions.
Unfortunately, GHC’s type checker can not determine that the function type prohibits any
valid term except those with a single lambda, so we need a second catch-all case to suppress a
compilation warning. In the remainder of the text, we elide such impossible cases for brevity.

3.2.5 Environment manipulation

As part of the fusion transformation (§5.2) we often need to lift array valued inputs to be
let-bound at higher points in the term tree, but at the same time we can not immediately
add these bindings to the output term because they will interfere with further fusion steps.
Instead, we collect these extra bindings separately from the main term, and splice them back
into the output term at some later point. This ensures that we correctly track the types of
the environments between the fused terms and the collected let-bindings.

Listing 3.5 defines a heterogeneous snoc-list of array terms that witnesses how an array
environment is extended by the application of these operations. In the style of the de Bruijn
indices used for projecting environment variables (§3.1.7), Extend uses an inductive notion of
tuples as heterogeneous snoc lists. In contrast to environment indices, the base case does not
refer to an empty environment, but instead the environment aenv which we are extending.
This witnesses how to construct an extended environment aenv' by bringing new terms into
scope, one at a time.

bind :: Arrays a
⇒ Extend acc aenv aenv'
→ PreOpenAcc acc aenv' a
→ PreOpenAcc acc aenv a

bind BaseEnv = id
bind (PushEnv env a) = bind env . Alet (inject a) . inject

The auxiliary function inject :: PreOpenAcc acc aenv a → acc aenv a completes the
definition of each of the array terms.

Sinking

We define sinking as the operation of shifting a term from one (array) environment into
another, where new things have come into scope according to some witness, and no old things
have disappeared.

40 Embedding array computations Chapter 3

type env :> env' = ∀ t'. Idx env t' → Idx env' t'

class Sink f where
weaken :: env :> env' → f env t → f env' t

sink :: Sink f ⇒ Extend acc env env' → f env t → f env' t
sink env = weaken (k env)
where

k :: Extend acc env env' → Idx env t → Idx env' t
k BaseEnv = id
k (PushEnv e _) = SuccIdx . k e

Listing 3.6: Sinking terms to a larger environment

Listing 3.6 generalises weaken from Section 3.2.2 to increase the environment of an object
f based on some function on indices rather than shifting by a single de Bruijn index. Thus
we only need to traverse a term once no matter how many positions the variable indices shift
by. Using sink, we can weaken terms based on the witness provided by Extend.

3.3 Related work

This section compares several Haskell-based domain specific embedded languages, particularly
focusing on the expressivity of the object language.

Vertigo [45] is an embedded language in Haskell that exposes a functional language for
3D graphics, together with an optimising compiler that generates DirectX shader code for
the graphics processor. As Vertigo is a first order language, it does not provide higher-order
combinators such as map and fold.

Paraiso [96] is a deeply embedded language in Haskell for solving systems of partial dif-
ferential equations, such as hydrodynamics equations. While Accelerate supports stencil
operations that can be used to express such programs, it lacks the more domain-specific
language features or compiler optimisations offered by Paraiso for this class of problem. Pro-
grams in Paraiso are written using a monadic style, whereas Accelerate has a purely functional
interface.

Obsidian [127, 128] and Nikola [81] are embedded languages in Haskell for array pro-
gramming, both of which are similar in intent to Accelerate. Compared to Accelerate, the
programming languages of both Obsidian and Nikola are severely restricted. Both are limited
to a single computation over one dimensional vectors of primitive type, whereas Accelerate
supports multidimensional arrays, product types, and computations can span multiple oper-
ations and kernels. Due to its compilation method, Nikola only supports map-like functions,
while Obsidian is able to encode more complex operations such as scan because its lower level
interface exposes more details of the target hardware.

None of these embedded languages encode the types of the source program into the em-
bedded language terms to the degree with which Accelerate does. Encoding properties of the

Section 3.4 Discussion 41

source language in types means that these invariants are checked at compile time, reducing
the number of possible runtime errors in type-correct programs (§3.1.7).

3.4 Discussion

This chapter has covered the design of our Haskell-based purely functional embedded lan-
guage, which can express a wide range of programs over regular multidimensional arrays. We
have also discussed methods for the type safe representation of programs, and several base
techniques for type preserving manipulation of those programs.

The next chapter covers my implementation of the CUDA based Accelerate backend which
executes Accelerate programs on massively parallel GPUs. The next chapter also covers issues
such as caching, which must be considered in order to ensure that the embedded language
exhibits performance competitive to traditional offline compiled languages.

42 Embedding array computations Chapter 3

4

Accelerated array code

At the beginning of a novel, a writer needs confidence, but after that what’s required
is persistence. These traits sound similar. They aren’t. Confidence is what politicians,
seducers and currency speculators have, but persistence is a quality found in termites.

It’s the blind drive to keep on working that persists after confidence breaks down.
—walter kirn

The previous chapter described the design of the Accelerate language, an embedded DSL
of purely functional operations over regular multidimensional arrays. Accelerate is a rich
language based on the scan-vector model, and is able to express some interesting real-world
problems. The Accelerate language is designed with the idea of executing purely functional
array programs on massively data-parallel hardware. This chapter details my implementation
of the Accelerate backend targeting parallel execution on CUDA graphics processing units.

4.1 Embedding GPU programs as skeletons

Accelerate offers a range of aggregate operations on multi-dimensional arrays. They include
operations modelled after Haskell’s list library, such as map and fold, but also array-oriented
operations, such as permute and stencil convolutions.

As a simple example, consider the dot product of two vectors:

dotp :: Acc (Vector Float) → Acc (Vector Float) → Acc (Scalar Float)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

The crucial difference to vanilla Haskell is the Acc type constructor representing embedded
array-valued computations. The types Vector e and Scalar e represent one-dimensional
and zero-dimensional (singleton) arrays, respectively.

The expression zipWith (*) xs ys implements point-wise multiplication of the two ar-
gument vectors, and fold (+) 0 sums the resulting products up to yield the final, scalar
result, wrapped into a singleton array. The type of fold is:

44 Accelerated array code Chapter 4

fold :: (Shape sh, Elt a)
⇒ (Exp a → Exp a → Exp a)
→ Exp a
→ Acc (Array (sh:.Int) a)
→ Acc (Array sh a)

It uses a binary folding function operating on embedded scalar computations of type Exp a to
implement a parallel reduction along the innermost dimension of an n-dimensional, embedded
array of type Array (sh:.Int) a. The shape sh:.Int consist of a polymorphic shape sh
with one added (innermost) dimension, which is missing from the shape of the result array.

4.1.1 Array operations as skeletons

The Accelerate CUDA backend is based on the idea of algorithmic skeletons [34], where
a parallel program is composed from one or more parameterised skeletons, or templates,
encapsulating specific parallel behaviour. In our case, the backend implements each of the
aggregate array operations, such as map, by way of a CUDA (§2.3) code template that is
parameterised with array types and worker functions, such as the function to be mapped, to
be injected at predefined points.

This generative approach is attractive for specialised hardware, such as GPUs, as the
code templates can be hand-tuned to avoid expensive control flow, ensure efficient global-
memory access, and use fast on-chip shared memory for local communication — all of which
is necessary to ensure good performance on the GPU [98].

In the first version of Accelerate, I implemented CUDA code templates and template
instantiation with a mixture of C++ templates and C preprocessor (CPP) macros, which was
described in [29]. While workable, this approach turned out to have a number of problems:

• The use of CPP was fragile and difficult to maintain. Template instantiation by inlining
of CPP macros required the use of fixed variables with no static checking to ensure the
consistent use of names, or that used names were defined before their use. Moreover, it
was easy to generate code that wasn’t even syntactically valid.

• The approach led to the generation of dead code whenever specific template instances
did not use all of their parameters or fields of structured data, which the CUDA compiler
was unable to remove as dead code.

• Most importantly, the use of CPP did not scale to support the implementation of
producer-consumer skeleton fusion, which is a crucial optimisation, even for code as
simple as dot product.

The next sections discuss the new approach to template instantiation that avoids these
problems, and appeared in [33].

Section 4.1 Embedding GPU programs as skeletons 45

[cunit |
$esc:("#include␣<accelerate_cuda.h>")
$edecls:texIn

extern "C" __global__ void map
(

$params:argIn, −− (3)
$params:argOut

){
const int shapeSize = size(shOut);
const int gridSize = $exp:(gridSize dev);

int ix;

for (ix = $exp:(threadIdx dev); ix < shapeSize; ix += gridSize)
{

$items:(dce x .=. get ix) −− (2)
$items:(setOut "ix" .=. f x) −− (1)

}
}

|]

Listing 4.1: Accelerate CUDA skeleton for the map operation

4.1.2 Algorithmic skeletons as template meta programs

The code generator includes CUDA code skeletons implementing each of the collective oper-
ations in Accelerate. Each skeleton encodes the behaviour for each thread for this collective
operation, fixing the parallel algorithmic structure of the operation. Each skeleton contains
placeholders for the inputs that parameterise the skeleton, such as the array types and worker
functions. Due to the shortcomings of C++ templates and CPP, we instead use Mainland’s
quasiquotation extensions [80] to Template Haskell [122] to define skeletons as quoted CUDA
C templates with splices for the template parameters.

Listing 4.1 shows the skeleton code for the map operation. The [cunit|· · · |] brackets
enclose CUDA C definitions comprising this skeleton template. CUDA uses the __global__
keyword to indicate that map is a GPU kernel — a single data-parallel computation launch
on the GPU by the CPU (§2.3). Antiquotations $params:var, $exp:var, $items:var, and
$stms:var denote template parameters using a Haskell expression var to splice CUDA C
parameters, expressions, items, and statements, respectively, into the skeleton.

In order to instantiate the map skeleton, the code generator needs to generate concrete
parameters for all of the holes in the skeleton template. In particular:

1. The function f which is applied to each individual array element;

2. The function get, which extracts the appropriate input array element for the array
index ix; and finally

3. The types of the input and output array arguments that are collected and spliced into
argIn and argOut, respectively.

46 Accelerated array code Chapter 4

The meaning of the auxiliary combinators get, setOut, dce, and (.=.) will be explained in
the following sections.

As the quasiquoter [cunit|· · · |] is executed at Haskell compile time, syntactic errors in
the quotations and antiquotations, as well as their composition, are detected at compilation
time. Thus, we can be sure that the generated skeleton code will be syntactically correct if
the backend compiles. See [80] for more information on quasiquoters.

4.2 Instantiating skeletons

Accelerate is a deeply embedded language (§2.5), meaning that while we write programs
using Haskell syntax, we do not compile arbitrary Haskell programs directly to GPU machine
code. Rather, an Accelerate program generates at program runtime an abstract syntax tree
(AST) that represents the embedded program. The job of Accelerate’s CUDA backend code
generator is to instantiate CUDA implementations of these collective operations, which are
then compiled, loaded onto the GPU, and executed.

For the most part, translating Accelerate scalar expressions to plain CUDA C code is
a straightforward syntactic translation of the de Bruijn AST to C. The quasiquoting li-
brary language-c-quote1 allows the code generator to construct a term representation of
the CUDA code in concrete syntax, which is then spliced into our skeleton templates at
predefined points (§4.1). The following sections describe some particular features of code
generation.

4.2.1 Producer-consumer fusion by template instantiation

In the first version of Accelerate’s CUDA backend, which was based on C++ templates and
CPP macros [29], I generated one or more CUDA GPU kernels for each aggregate array
operation. This schema is undesirable as it leads to many intermediate arrays and array
traversals. Recall the definition of vector dot product:

dotp :: Acc (Vector Float) → Acc (Vector Float) → Acc (Scalar Float)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

The zipWith and fold operations would each compile to separate skeletons, and as a result
the execution of zipWith produces an intermediate array that the fold kernels immediately
consume.

This is not what a CUDA programmer would manually implement. It is more efficient
to inline the zipWith computation into the kernel of the fold. This strategy eliminates one
GPU kernel, as well as one intermediate array that is of the same extent as the [intersection
of the] two input arrays. To achieve the same performance as handwritten CUDA code, we
developed the shortcut fusion technique described in chapter 5, and which appeared in [89].

1http://hackage.haskell.org/package/language-c-quote

http://hackage.haskell.org/package/language-c-quote

Section 4.2 Instantiating skeletons 47

The fusion system distinguishes producer-producer and consumer-producer fusion. The
former combines two skeletons where threads produce array elements independently, such as
zipWith, from skeletons where threads cooperate to produce an array, such as fold. Central
to this approach is a representation of arrays as functions, which we called delayed arrays (in
contrast to manifest arrays) which are represented as follows:

Delayed :: (Shape sh, Elt e) ⇒
{ extentD :: PreExp DelayedOpenAcc aenv sh −− array extent
, indexD :: PreFun DelayedOpenAcc aenv (sh → e) −− generate element at index…
, linearIndexD :: PreFun DelayedOpenAcc aenv (Int → e) −− …at linear index
} → DelayedOpenAcc aenv (Array sh e)

Instead of generating a skeleton instance for zipWith straight away, we represent the com-
putation implemented by zipWith as a scalar function (actually, a pair of functions) that
generates an element of the array at a given array index, together with the extent (domain)
of the array, as a value of type DelayedOpenAcc. For details of the representation see Sec-
tion 5.2.

The crucial step in enabling producer-consumer fusion in Accelerate’s CUDA backend
is in the function codegenAcc, which turns an AST node of type DelayedOpenAcc aenv a
producing a manifest array, into an instantiated CUDA kernel of type CUSkeleton aenv a:

codegenAcc
:: DeviceProperties
→ DelayedOpenAcc aenv a
→ Gamma aenv
→ CUSkeleton aenv a

codegenAcc dev (Manifest pacc) aenv =
case pacc of

Fold f z a → mkFold dev aenv (codegenFun2 f) (codegenExp z) (codegenDelayed a)
· · ·

Here we see that mkFold, which generates an instance of the fold template, gets as its last
argument the code generated for a delayed array resulting from the call to codegenDelayed.
The use of template meta programming to implement CUDA skeletons is crucial to enable
producer-consumer fusion by way of template instantiation. In the dot product example, the
delayed producer is equivalent to the scalar function λix → (xs!ix) * (ys!ix). The call
to mkFold receives a CUDA version of this function, which can be inlined directly into the
fold skeleton. The delayed producer function is bound to the argument getIn in the fold
skeleton given in Listing 4.2, which is used in the line marked (1) and expands to the following
CUDA code:

const Int64 v1 = ({ assert(ix ≥ 0 && ix < min(shIn0_0, shIn1_0)); ix; });
y0 = arrIn0_0[v1] * arrIn1_0[v1];

Here the assert checks whether the array index is in bounds, and is only active when Accel-

48 Accelerated array code Chapter 4

[cunit |
$esc:("#include␣<accelerate_cuda.h>")
$edecls:texIn

extern "C" __global__ void foldAll
(

$params:argIn,
$params:argOut

)
{

// ommitted variable declarations

$items:(sh .=. shIn)
const int shapeSize = $exp:(csize sh);
const int gridSize = $exp:(gridSize dev);

int ix = $exp:(threadIdx dev);

if (ix < shapeSize) {
$items:(y .=. getIn ix)

for (ix += gridSize; ix < shapeSize; ix += gridSize) {
$items:(x .=. getIn ix) −− (1)
$items:(y .=. combine x y)

}
}

ix = min(shapeSize − blockIdx.x * blockDim.x, blockDim.x);
$items:(sdata "threadIdx.x" .=. y) −− (2)
$items:(reduceBlock dev combine x y sdata ix)

// first thread writes the final result to global memory
}

|]

Listing 4.2: Accelerate CUDA skeleton for the foldAll operation

erate is compiling kernels in debugging mode.2 In this case the embedded zipWith operation
is over two vectors, so no conversion to and from multidimensional indices was required to
generate the array elements.

In contrast to the map skeleton shown in Listing 4.1, the code generated by mkFold proceeds
in two parallel phases. The first phase is a sequential for loop including the use of the getIn
embedded producer function. The second phase begins at the line marked (2) and implements
a parallel tree reduction. See Section 2.4.1 for further details on the implementation of parallel
reductions in CUDA. The instantiated skeleton for the fused dotp operation is shown in
Listing 4.3.

4.2.2 Instantiating skeletons with scalar code

Most aggregate array operations in Accelerate are parameterised by scalar functions, such as
the mapping function for map or the combination function for fold. Thus, a crucial part of
template instantiation is inlining the CUDA code implementing scalar Accelerate functions

2Kernel debug mode is activated when the Accelerate CUDA backend is installed in debug mode, and the
command line flag -ddebug-cc is provided.

Section 4.2 Instantiating skeletons 49

#include <accelerate_cuda.h>
extern "C" __global__ void foldAll
(

const Int64 shIn0_0, const float* __restrict__ arrIn0_0,
const Int64 shIn1_0, const float* __restrict__ arrIn1_0,
const Int64 shOut_0, float* __restrict__ arrOut_0

)
{

// omitted variable declarations

const Int64 sh0 = min(shIn1_0, shIn0_0);
const int shapeSize = sh0;
const int gridSize = blockDim.x * gridDim.x;
int ix = blockDim.x * blockIdx.x + threadIdx.x;

// Phase 1: Each thread performs a local, sequential reduction
if (ix < shapeSize) {

const Int64 v1 = ({ assert(ix >= 0 && ix < min(shIn1_0, shIn0_0)); ix; });
y0 = arrIn1_0[v1] * arrIn0_0[v1];

for (ix += gridSize; ix < shapeSize; ix += gridSize) {
const Int64 v1 = ({ assert(ix >= 0 && ix < min(shIn1_0, shIn0_0)); ix; });
x0 = arrIn1_0[v1] * arrIn0_0[v1];
z0 = y0 + x0;
y0 = z0;

}
}

// Phase 2: Threads cooperatively reduce the local sums to a single value
ix = min(shapeSize − blockIdx.x * blockDim.x, blockDim.x);
sdata0[threadIdx.x] = y0;
__syncthreads();
if (threadIdx.x + 512 < ix) {

x0 = sdata0[threadIdx.x + 512];
z0 = y0 + x0;
y0 = z0;

}
__syncthreads();
sdata0[threadIdx.x] = y0;
__syncthreads();
if (threadIdx.x + 256 < ix) {

x0 = sdata0[threadIdx.x + 256];
z0 = y0 + x0;
y0 = z0;

}
__syncthreads();
sdata0[threadIdx.x] = y0;
// cooperative tree reduction in shared memory continues…

// first thread writes the final result to global memory
if (threadIdx.x == 0) {

if (shapeSize > 0) {
if (gridDim.x == 1) {

x0 = 0.0f;
z0 = y0 + x0;
y0 = z0;

}
arrOut_0[blockIdx.x] = y0;

} else {
arrOut_0[blockIdx.x] = 0.0f;

}
}

}

Listing 4.3: Generated CUDA code for the fused vector dot-product operation

50 Accelerated array code Chapter 4

into the predefined points of the template code. Inlining of scalar functions is always possible
as the scalar sub-language of Accelerate is first-order and does not support recursion. These
restrictions are necessary in order to generate GPU code, as GPU hardware neither supports
large stacks (for recursion) nor closures (for higher-order functions).

To splice scalar code fragments into the skeleton code of array operations, we define a
typeclass of l-values and r-values to define a generic assignment operator (.=.). For example,
the operator was used in lines (1) and (2) of Listing 4.1. This representation abstracts over
whether our skeleton uses l-values in single static assignment-style to const declarations, or
as a statement updating a mutable variable. The class declarations are the following:

class Lvalue a where
lvalue :: a → C.Exp → C.BlockItem

class Rvalue a where
rvalue :: a → C.Exp

class Assign l r where
(.=.) :: l → r → [C.BlockItem]

instance (Lvalue l, Rvalue r) ⇒ Assign l r where
lhs .=. rhs = [lvalue lhs (rvalue rhs)]

The Assign class allows for flexibility when dealing with tuples (§4.2.3), shared subex-
pressions (§4.2.4), and the removal of unused expressions (§4.2.5).

4.2.3 Representing tuples

Accelerate arrays of primitive type, such as Float and Int, are easily represented in CUDA
using the corresponding floating point and integral types. More interesting is the case of
arrays of tuples. A naïve implementation of tuples in CUDA might use arrays of struct
type — that is, we might consider representing values of type Array DIM1 (Int, Float) in
CUDA C by a value of type:

typedef struct { int a; float b; } arrayIntFloat[];

Known as the array-of-struct (AoS) representation, this strategy is in general not efficient
as it easily violates the strict memory access rules imposed on CUDA devices, decreasing
effective bandwidth by as much as an order of magnitude [98].

Non-parametric array representation

To avoid this inefficiency, Accelerate uses a non-parametric array representation: arrays of
tuples are represented as tuples of arrays of primitive type. This struct-of-array (SoA) rep-
resentation stores arrays of type Array DIM1 (Int, Float) by values of the type:

typedef struct { int a[]; float b[]; } arrayIntFloat;

Section 4.2 Instantiating skeletons 51

By virtue of this non-parametric array representation, Accelerate (1) maintains global memory
access coalescing rules; and (2) is able to avoid redundant reads of array elements that are
never used. The second point will be discussed further in the following section.

Non-parametric scalar expressions

This non-parametric array representation also existed in the old version of Accelerate [29].
However, since code generation was based on C++ templates and CPP macros, and moreover,
the skeleton code was required to abstract over array element types, C structs were used to
represent tuples of scalar values. A family of getter and setter functions were then generated to
create and consume these structs when reading and writing elements of the non-parametric
array representation.

However, this leads to the generation of dead code whenever specific template instances
don’t use some of their parameters or fields of the structured data. As an example, consider
the following Accelerate function that projects the first component of each element of a vector
of quadruples:

fst4 :: Acc (Vector (a,b,c,d)) → Acc (Vector a)
fst4 = map (λv → let (x,_,_,_) = unlift v in x)

The function unlift turns an embedded scalar expression that yields a quadruple, into a
quadruple comprising four embedded scalar expressions — hence, we can perform pattern
matching in the let binding in order to unpack the expression. Moreover, in fst4 under
the old code generation strategy, array elements are copied into a struct, only for the first
element to be extracted again and the struct to be discarded. One might hope that the
CUDA compiler (1) spots the redundant copying of array elements; and (2) that the elements
of three of the four arrays are never used. Alas, this does not happen, and as a result fst4
generates considerable memory traffic.

With template meta programming and the Assign type class introduced previously, we
fare much better. As the entire skeleton template is quasiquoted, we can inline the definitions
of scalar expressions, including array accesses, directly into the skeleton template. Instead of
packaging the tuple components into a struct, we represent it by a list of primitive values,
one per component. During code generation, we keep track of the values constituting a
tuple by maintaining a list of expressions, one for each component of the tuple. The (.=.)
operator allows us to assign all values constituting the tuple with one assignment in the meta
programming system; i.e., we have lists of l-values and r-values:

instance Assign l r ⇒ Assign [l] [r] where
[] .=. [] = []
(x:xs) .=. (y:ys) = assign x y ++ assign xs ys

52 Accelerated array code Chapter 4

4.2.4 Shared subexpressions

A well known problem with deeply embedded languages is the issue of sharing, where, without
sharing recovery, each occurrence of a let-bound variable in the source program creates a
separate unfolding of the bound expression in the reified program. To avoid this problem,
we implemented a sharing recovery algorithm that recovers exactly those let-bindings used in
the source language. See Section 5.1 for details on our approach to sharing recovery, which
appeared in [89] and is a variant of Gill’s observable sharing [48] — his paper also discusses
the issue of sharing in embedded languages in greater detail.

Following sharing recovery and conversion of the source program into the internal de Bruijn
representation, sharing of scalar subcomputations is represented explicitly by the term:

Let :: (Elt bnd, Elt body)
⇒ PreOpenExp acc env aenv bnd −− (1) bound expression
→ PreOpenExp acc (env, bnd) aenv body −− (2) body expression, scope of local binding
→ PreOpenExp acc env aenv body

Note that the result of evaluating the let-bound expression (1) is only in scope while evaluating
the body of the let-binding (2). This property is encoded in the type of the environment of
the body expression.

To support code generation including shared subexpressions, the CUDA code generator
uses a monad to generate fresh names. The monad is also used to store the expressions
representing let-bound terms, which must be evaluated before evaluation of the body.

data Gen = Gen { unique :: Int −− fresh name generation
, localBindings :: [C.BlockItem] −− let-bound terms
, usedTerms :: Set C.Exp } −− see Section 4.2.5

Although we use generated names to avoid accidental name capture, since the code generation
state is refreshed for each kernel that is generated, the same names will be generated for
equivalent kernels, so we will still be able to reuse generated kernels (§4.4.2).

When code generation encounters a let binding, we first generate code for the bound
expression, assign this result to a new (fresh) variable, then use this stored variable throughout
the evaluation of the body:

codegenOpenExp (Let bnd body) env = do
bnd' ← codegenOpenExp bnd env >>= pushEnv bnd
body' ← codegenOpenExp body (env `Push` bnd')
return body'

Recall that Accelerate’s CUDA code generator uses a non-parametric representation of
tuples, where a scalar expression is represented as a list of C expressions, one per component
of the (flattened) tuple (§4.2.3). The function pushEnv generates a fresh name for each
expression in the tuple, assigns the expression to a new variable, and returns the new variable
names to be used throughout evaluation of the body expression.

Section 4.2 Instantiating skeletons 53

pushEnv :: exp env aenv a → [C.Exp] → Gen [C.Exp]
pushEnv dummy exps = zipWithM go (expType dummy) exps
where

go t c = case c of
C.Var{} → return c −− (1)
_ → do name ← fresh

let next = [citem | const $ty:t $id:name = $exp:c; |]
modify (λs → s { localBindings = next : localBindings s })
return (cvar name)

Note that there is no need to create a fresh name if the input term is a variable (1). That is,
we avoid creating additional declarations in the generated code such as:

const int x0 = ...
const int x1 = x0;

This observation also simplifies the implementation of dead-code analysis (§4.2.5). The output
of code generation is the list of C expressions representing the final computation, together
with a list of local declarations to be evaluated first (localBindings). With the Assign type
class introduced previously, we can transparently bring these extra terms into scope before
evaluating the body, with the addition of the following instance:

instance Assign l r ⇒ Assign l ([C.BlockItem], r) where
lhs .=. (env, rhs) = env ++ (lhs .=. rhs)

Future work

One disadvantage of the current implementation is that the scope of let bindings is lost: once
a new variable is declared, it remains in scope to the end of the skeleton. This is in contrast
to the definition of the Let AST node, where the binding is only in scope during evaluation of
the body. Adding explicit scoping to specify the lifetime of expressions may help the CUDA
compiler improve register allocation.

Generating code with explicit scoping may also remove the need for a monad to generate
fresh names, since unique names can be derived based on the de Bruijn level of the expression,
which can be determined directly from the size of the environment.

4.2.5 Eliminating dead code

As discussed in Section 4.2.3, one problem of the original code generator based on CPP and
C++ templates was its inability to remove some forms of dead code. This was seen in the fst4
example of Section 4.2.3, which generates significant memory traffic if tuples are represented
as structs, even though three of the four values read from memory were never used. With
the use of template meta programming to inline the definition of scalar expressions directly
into the skeleton template, the situation is greatly improved.

54 Accelerated array code Chapter 4

Unfortunately, the CUDA compiler does not always eliminate memory reads, as it does
not always detect if the values are used. Hence, rather than rely on the CUDA compiler, the
code generation process explicitly tracks which values are used in the generated scalar code,
and elides statements whose results are not used when splicing assignments into a skeleton
template. The following instance of the Assign class uses a flag that is False to indicate that
the assigned value is not used.

instance Assign l r ⇒ Assign (Bool,l) r where
(used,lhs) .=. rhs
| used = assign lhs rhs
| otherwise = []

The map skeleton of Listing 4.1 exploits this: when generating code for the mapped func-
tion f, the function dce :: [a] → [(Bool,a)] on the line marked (2) is also generated,
and determines for each term whether it is subsequently used. Then, when the code generated
by get reads data from the input array, it does not read in any unused values. Consequently,
the function fst4 will only touch the array representing the first component of the quadruple
of arrays.

To generate the function dce, which ultimately computes the used flags, we need to
determine which inputs to the generated scalar function are ultimately used in the calculation.
Code generation for a function such as fst4 begins by initialising the scalar environment of
the function body with input variables of a known name (1):

codegenFun1
:: DeviceProperties
→ Gamma aenv
→ DelayedFun aenv (a → b)
→ CUFun1 aenv (a → b)

codegenFun1 dev aenv (Lam (Body f)) =
let

dummy = locals "undefined_x" (undefined :: a) −− (1)
Gen _ _ used = execGen $ codegenOpenExp dev aenv f (Empty `Push` dummy) −− (2)

· · ·

During code generation we build a set containing the variables that are used in the function
body. In (2) code generation proceeds with the dummy variables, returning the final state
which contains the set of used variables. Dead-code analysis then builds the function dce by
testing whether each input variable is present in the set:

deadCodeElim :: Set C.Exp → [C.Exp] → [a] → [(Bool,a)]
deadCodeElim used vars =
let flags = map (λx → x `Set.member` used) vars
in zipWith (,) flags

During code generation, we must decide when to add variables to the set. In general, we
check the result from each step of codegenOpenExp with the function visit, and test if the
result was a scalar C variable:

Section 4.2 Instantiating skeletons 55

visit :: [C.Exp] → Gen [C.Exp]
visit exp
| [x] ← exp = markAsUsed x >> return exp
| otherwise = return exp

markAsUsed :: C.Exp → Gen ()
markAsUsed x@C.Exp{} = modify (λs → s { usedTerms = Set.insert x (usedTerms s)})
markAsUsed _ = return ()

Future work

Completing our definition of codegenFun1, we return the result of dead-code analysis pro-
duced by deadCodeElim, together with a function that re-runs code generation with the
actual input variables. Thus, our method requires performing code generation at least twice
for every scalar function: once to generates usage information, and then again each time the
function is instantiated with a particular set of variables.

codegenFun1 dev aenv (Lam (Body f)) =
let

dummy = · · ·
Gen _ _ used = execGen $ codegenOpenExp · · ·

in
CUFun1 (deadCodeElim used dummy)

(λxs → evalGen $ codegenOpenExp dev aenv f (Empty `Push` xs))

Furthermore, this method only eliminates unused inputs to a scalar function. If the
generated code produced intermediate values (§4.2.4) based on these unused inputs, these
expressions will still appear in the generated code. We leave addressing both of these issues
to future work.

4.2.6 Shapes and indices

Parallelism in Accelerate takes the form of collective operations on arrays of type Array sh e,
where sh is the shape and e is the element type of the array. As discussed in Section 3.1.2,
we use an inductive notation of snoc lists to enable rank-polymorphic definitions of array
functions. Listing 3.1 shows the types of array shapes and indices.

During code generation, the old version of Accelerate [29] represented multidimensional
shapes and indices as a struct. This representation additionally came with a family of
overloaded C functions for operating on shapes and indices, such as toIndex and fromIndex,
so that skeletons were not specialised to a particular dimensionality.

The new code generation method3 does not require the use of structs to represent shapes.
The new approach represents shapes during code generation in the same manner as tuples; as
a list of expressions representing each of the individual components of the shape. Operations
such as toIndex are implemented directly in the skeleton, rather than packing the shape

3Subsequent to, but not affecting the result of [33]

56 Accelerated array code Chapter 4

components into a struct and then calling the family of overloaded functions which were
provided separately in a header file.

Recall the vector dot product example from Section 4.2.1, where the pairwise multipli-
cation of the two arrays resulted in the scalar function λix → (xs!ix) * (ys!ix) being
embedded into the consumer template. If a struct-based representation of shapes is used,
this results in the following C code [33]:

const Int64 v2 = ix;
const int v3 = toIndex(shIn0, shape(v2));
const int v4 = toIndex(shIn1, shape(v2));
y0 = arrIn0_a0[v3] * arrIn1_a0[v4];

Here, shape and toIndex are C functions provided by the library, which map multidimen-
sional indices to the linear array representation. Since the source arrays are vectors, they do
not contribute anything to the example, in particular, their definitions are:

static __inline__ __device__ int toIndex(const DIM1 sh, const DIM1 ix)
{

assert(ix >= 0 && ix < sh);
return ix;

}

static __inline__ __device__ DIM1 shape(const int a)
{

return a;
}

Thus, v3 and v4 map, indirectly, to v2. Luckily, in this case the CUDA compiler is able to
remove the superfluous assignments. With the new code generator method, we produce the
following code which does not introduce the redundant assignment, and thus does not rely
on optimisations performed by the CUDA compiler:

const Int64 v1 = ({ assert(ix ≥ 0 && ix < min(shIn0_0, shIn1_0)); ix; }); // (1)
y0 = arrIn0_0[v1] * arrIn1_0[v1];

The r-value at (1) is a statement expression:4 a compound statement enclosed in parentheses
that may be used as an expression, where the last thing in the compound statement is an
expression followed by a semicolon, and serves as the value for the entire construct.

4.2.7 Lambda abstractions

Concerning lambda abstractions, Accelerate’s scalar expression language is first order in the
sense that, although it includes lambda abstractions, it does not include a general application
form. This ensures that lambda abstractions of scalar expressions can only be used as the
arguments to collective operations, such as zipWith. This restriction is necessary in order
to generate code for GPU hardware. As a consequence, lambda abstractions are always

4http://gcc.gnu.org/onlinedocs/gcc/Statement-Exprs.html

http://gcc.gnu.org/onlinedocs/gcc/Statement-Exprs.html

Section 4.2 Instantiating skeletons 57

outermost (in type correct programs) and we can always translate them into either (a) plain
C functions, or (b) inline them directly into the use site. The old code generator had no
choice but to select the first alternative, whereas the new method can make use of several
optimisations by using the second approach, such as def-use analysis (my implementation of
restricted dead code elimination; see Section 4.2.5).

A recent change to the array and scalar language has been the introduction of explicit
value iteration. In the scalar language, this is encoded with the following AST node, which
behaves analogously to a standard C while loop:

While :: Elt a
⇒ PreOpenFun acc env aenv (a → Bool) −− (1) continue while true
→ PreOpenFun acc env aenv (a → a) −− (2) function to iterate
→ PreOpenExp acc env aenv a −− initial value
→ PreOpenExp acc env aenv a

Although we use scalar functions to represent the iteration test (1) and loop body (2), the
operation is suitably restricted such that, so long as some care is taken when generating the
code for the loop, we do not need to perform lambda lifting of the function valued arguments.
Unfortunately, we can not use the standard codegenFun1 operation to generate the CUDA
code for the unary function, as this interferes with our implementation of def-use analysis.

The following function is used to generate C code for the loop operations, which generates
code for the function body in a clean environment (1), and restores the outer environment on
exit (2), including any newly introduced bindings as part of the return value (3).

cvtF1 :: DelayedOpenExp env aenv t → Val env → Gen ([C.BlockItem], [C.Exp])
cvtF1 (Lam (Body e)) env = do
old ← state (λs → (localBindings s, s { localBindings = [] })) −− (1)
e' ← codegenOpenExp e env
env' ← state (λs → (localBindings s, s { localBindings = old })) −− (2)
return (reverse env', e') −− (3)

Thus, any shared subexpressions (§4.2.4) encountered during code generation are evaluated
before executing the function body, using the Assign class discussed earlier.

4.2.8 Array references in scalar code

Accelerate includes two scalar operations that receive an array-valued argument, namely
array indexing (!) and determining the shape of an array. These are, for example, used in
the sparse-matrix vector multiplication operation shown in Listing 6.6. Specifically, this code
includes the following use of backpermute (§2.4.3) to extract the values of the vector that are
to be multiplied with the non-zero elements of the sparse matrix:

A.backpermute (shape inds) (λi → index1 $ inds!i) vec

Here the array computation inds :: Acc (Array DIM1 Int) is used in the first and second
argument of backpermute. In the code for smvm, inds is a previously let-bound variable. If

58 Accelerated array code Chapter 4

instead, a collective operation would have been used in place of inds in the scalar function
λi → index1 $ inds!i, we would lift it out of the scalar function and let bind it. After all,
we do not want to execute an arbitrarily complex array computation once for every invocation
of a scalar function. In fact, CUDA does not permit us to do this, as the scalar function is
translated into GPU kernel code, which can not include further parallel operations.5

Nevertheless, even though array valued arguments to scalar functions will always be let-
bound variables, code generation is not straightforward. Recall that in the old version of
Accelerate [29], skeleton templates were static, and were instantiated by the code generator
by combining them with scalar code fragments at CUDA compilation time. Since the skele-
ton template — and in particular the parameters to the skeleton function — were static, we
could not add a new argument to the prototype of the backpermute function. This problem
was worked around by using texture references, a CUDA feature that comes from its graphics
heritage, to define what are essentially read-only arrays as global tables on a per skeleton
instantiation basis. The use of texture references also had another happy consequence: skele-
tons such as backpermute allow unconstrained indexing patterns, which may not follow the
strict requirements for coalesced and aligned access to global memory. Not following these
memory access rules can incur a severe performance penalty [98], but since texture memory
access is cached, it may be more efficient in these circumstances.

In contrast to traditional caches, although the texture cache reduces bandwidth require-
ments to global memory, it does not reduce access latency [98, §5.3.2]. However, beginning
with compute capability 2.0, the GPU also comes equipped with a more traditional L2 cache.
Since the new code generator based on quasiquoting [33] is able to dynamically rewrite the
entire skeleton — including the function prototype — we are no longer forced to access array-
valued arguments via global variables. In order to use the inbuilt L2 cache available devices
of compute capability 2.0 and higher, arrays referenced from scalar code are marshalled to
the kernel via the kernel function parameters, and read using standard array indexing. For
older series 1.x devices that do not have a L2 cache, the texture cache is still used instead.

4.2.9 Conclusion

The use of template meta programming for skeleton definition and instantiation enables us
to combine the advantages of conventional code generators, such as def-use analysis for dead
code elimination, with those of generative skeleton-based code generators, such as handwritten
idiomatic code for special-purpose architectures. Finally, and most importantly, the use of
quasiquotation for template instantiation permits the implementation of producer-consumer
skeleton fusion, which is a crucial optimisation even for code as simple as dot product (§5.2).

5The most recent Kepler architecture (compute capability 3.5) introduced dynamic parallelism, whereby
GPU threads are able to launch new parallel operations. At this time Accelerate does not make use of this
feature. Moreover, in this case this is not what we want, because each thread would spawn a new instance of
the same parallel operation, rather than computing the array once and sharing the result.

Section 4.3 Using foreign libraries 59

4.3 Using foreign libraries

Accelerate is a high-level language capturing idioms suitable for massively parallel GPU ar-
chitectures, without requiring the expert knowledge required to achieve good performance at
the level of CUDA. On the other hand, there exist highly optimised libraries that implement
well known algorithms, such as operations from linear algebra and fast Fourier transforms.
For Accelerate to be practically useful, we need to provide a means to use those libraries.
Moreover, access to native code also provides the developer the opportunity to drop down to
raw CUDA C in those parts of an application where the code generated by Accelerate is not
fast enough. We achieve this with the Accelerate Foreign Function Interface (or FFI).

The Accelerate FFI is a two-way street: (1) it enables calling native code from embedded
Accelerate computations; and (2) it facilitates calling Accelerate computations from C code.
A developer can implement an application in a mixture of Accelerate and foreign libraries
while maintaining that the source code is portable across multiple Accelerate backends.

Given that Accelerate is an embedded language in Haskell, it might seem that Haskell’s
standard FFI should be sufficient to enable interoperability with foreign code. However, this
is not the case. With Haskell’s standard FFI, we can call C functions that in turn invoke
GPU computations from Haskell host code. However, we want to call GPU computations
from within embedded Accelerate code and pass data structures located in GPU memory
directly to native CUDA code and vice versa. The latter is crucial, as transferring data from
CPU memory to GPU memory and back is very expensive.

The Accelerate FFI is the, to our knowledge, first foreign function interface for an embed-
ded language. The design of the Accelerate FFI was largely completed by another student,
Robert Clifton-Everest, and so I mention only the main points here. See [33] for details.

4.3.1 Importing foreign functions

Calling foreign code in an embedded Accelerate expression requires two steps: (1) the foreign
function must be made accessible to the host Haskell program; and (2) the foreign function
must be lifted into an Accelerate computation to be available to embedded code. For the first
step, we use the standard Haskell FFI. The second step requires an extension to Accelerate.

To address the second step, we extend the Accelerate language with a new AST node type
Aforeign representing foreign function calls. One instance of an Aforeign node encodes the
code for one backend, but also contains a fallback implementation in case a different backend
is being used. The AST data constructor is defined as:

Aforeign :: (Arrays as, Arrays bs, Foreign f)
⇒ f as bs −− (1) foreign function
→ (Acc as → Acc bs) −− (2) fallback implementation
→ Acc as −− input array
→ Acc bs

60 Accelerated array code Chapter 4

When code generation encounters an Aforeign node, it dynamically checks whether it can
execute the foreign function (1). If it can’t, it executes the fallback implementation (2).
The fallback implementation might be another Aforeign node with native code for another
backend (for example, for C instead of CUDA), or it could simply be a vanilla Accelerate
implementation of the same function. In this way, a cascade of Aforeign nodes can provide
an optimised native implementation of a function for a range of backends.

Similarly, we extend the Accelerate scalar language with a Foreign node, to insert calls
to foreign CUDA functions directly into the generated skeleton code.

4.3.2 Exporting Accelerate programs

Accelerate simplifies writing GPU code as it obviates the need to understand most low-level
details of GPU programming. Hence, we would like to use Accelerate from within other
languages. As with importing foreign code into Accelerate, the foreign export functionality of
the standard Haskell FFI is not sufficient for efficiently using Accelerate from other languages.

To export Accelerate functions as C functions, we provide a Template Haskell [122] func-
tion exportAfun that generates the necessary export declarations for a given Accelerate func-
tion. Compiling a module, say, M.hs, that exports Accelerate computations:

dotp :: Acc (Vector Float, Vector Float) → Acc (Scalar Float)
dotp = uncurry $ λxs ys → A.fold (+) 0 (A.zipWith (*) xs ys)

exportAfun 'dotp "dotp_compile"

generates the additional file M_stub.h containing the C prototype for the foreign exported
function:

#include "HsFFI.h"
#include "AccFFI.h"
extern AccProgram dotp_compile(AccContext a1);

The C function provided by exportAfun compiles the Accelerate code, returning a reference
to the compiled code. The provided C function runProgram is then used to marshal input
arrays, execute the compiled program, and marshal output arrays. This design mirrors the
behaviour of separating the compilation and execution phases provided by the run1 function
from Haskell. See Section 4.6 for details.

4.4 Dynamic compilation & code memoisation

When you write a program in Accelerate, what you are really doing is writing a Haskell
program that generates a CUDA program, that is compiled, loaded, and executed on the GPU.
Thus, one major difference between using Accelerate for general purpose GPU programming
compared to programming in CUDA directly, is that kernels are generated dynamically, at
application runtime, whereas plain CUDA code is pre-compiled.

Section 4.4 Dynamic compilation & code memoisation 61

Dynamic code generation has significant advantages, especially for embedded languages.
In particular, the code generator can query the capabilities of the hardware on which the
code will be executed, and optimise the generated program accordingly, as well as specialise
the code to the available input data. The host program can also be used to generate the
embedded program.

The main drawback of dynamically generating and compiling GPU kernels is the additional
execution time required to do so, so attempts must be made to mitigate these overheads. In
general purpose GPU programming, it is only worthwhile to offload computations to the GPU
if they are computationally intensive. This implies a significant runtime and usually the use
of significant amounts of input and/or output data. Hence, the overhead of dynamic kernel
compilation is not necessarily problematic in the face of long kernel runtimes and long data-
transfer times between host and device memory, especially if those kernels are compiled once
and executed many times.

4.4.1 External compilation

In unison with the AST traversal that extracts Use subterms that initiates data transfers
(§4.5.2), the CUDA backend initiates code generation for each collective array operation it
encounters, by template instantiation (§4.1). After the CUDA code is generated, it must be
compiled with the standard, external nvcc CUDA compilation tool-chain to produce binary
object code for each of the kernels implementing the collective operation.

As with data transfer, the compilation of the generated CUDA code proceeds asyn-
chronously and in parallel with other operations, including compilation of other kernels. For
each generated kernel, the CUDA compiler is invoked by spawning an external process that
executes the raw system command. However, if the program requires the compilation of many
kernels, carelessly spawning a new process for every instantiated skeleton can cause the IO
bus to become saturated, increasing overall compilation time, or even exhaust the host oper-
ating system’s available process handles. Rather than spawn each external process directly,
a worker pool is created that is used to process jobs in first-in first-out (FIFO) order:6

{−# NOINLINE worker #−}
worker :: Queue.MSem Int
worker = unsafePerformIO $ Queue.new =<< getNumProcessors

The worker pool is defined as the Haskell equivalent of a global variable7 and is initialised
once per program execution. The number of slots in the queue is set to the number of physical
CPU cores present in the host system8 which specifies the maximum number of kernels to
compile concurrently. Instead of initiating the compilation process directly, it is instead added
to the work queue:

6Queue denotes the SafeSemaphore package: http://hackage.haskell.org/package/SafeSemaphore.
7The idiom popularly known as “the unsafePerformIO hack”.
8Note that this is not limited by the RTS option -N that specifies the number of processors to use.

http://hackage.haskell.org/package/SafeSemaphore

62 Accelerated array code Chapter 4

enqueueProcess :: FilePath → [String] → IO (MVar ())
enqueueProcess nvcc flags = do
mvar ← newEmptyMVar −− (2)
_ ← forkIO $ do −− (1)

Queue.with worker $ do −− (3)
(_,_,_,pid) ← createProcess (proc nvcc flags)
waitFor pid

putMVar mvar () −− (4)
return mvar

1. The process is spawned from a separate thread so that the thread can block waiting for
both the worker queue and the external process, without interrupting the main thread.
Thus compilation proceeds asynchronously with other host processing tasks.

2. An empty MVar is created that will act as a signal to the main thread that the external
process has completed. Since takeMVar on an empty MVar blocks the thread until that
MVar is filled, the main thread can wait for the external process to complete if the
compiled code is not yet available by the time it is required during the execution phase.

3. The thread waits for a worker to become available from the queue. Blocked threads
are woken up by the runtime system and are serviced in a first-in first-out order; that
is, threads do not actively poll the queue continually testing for an open slot. Once a
worker becomes available, the external process is launched and the thread once again
blocks until that process completes.

4. Once the process completes the worker is returned to the queue where it can be assigned
to handle any further tasks. Finally, the thread fills the MVar to signal the main thread
that the compilation has completed.

We return to the question of linking in the compiled code when we discuss the process of
executing the program (§4.6).

4.4.2 Caching compiled kernels

The CUDA backend associates each CUDA binary with the skeleton instantiation whose
computation that binary implements. The binary object code is keyed on a skeleton and the
parameters of its instantiation, not to the specific AST node used to instantiate the skeleton.
As a result, compiled binaries are reusable when the same skeleton instantiation is required
again, whether that is in the same Accelerate computation applied to a different set of input
arrays, or an entirely different computation. For example, operations such as scanl (+) 0
are common, and it would be wasteful to dynamically generate and compile the same code
multiple times.

Section 4.4 Dynamic compilation & code memoisation 63

The program cache is a hash table which is keyed by an MD5 [110] digest of the generated
CUDA code which instantiates the skeleton, as well as the compute capability the generated
code was specialised and compiled for.

type ProgramCache = MVar (HashTable KernelKey KernelEntry)

type KernelKey = (CUDA.Compute, ByteString)
data KernelEntry

= CompileProcess FilePath (MVar ()) −− (1)
| KernelObject ByteString (FullList CUDA.Context CUDA.Module) −− (2)

The hash table value represents the state of compilation, which can be either:

1. A currently compiling external process. This records the path of the file currently being
compiled, which will be rooted in a temporary directory, as well as the MVar that will
signal when the external process has completed (§4.4.1). If a kernel is requested that
is currently compiling, the thread blocks on the MVar until the result is available and
then updates the hash table with;

2. The raw compiled data with a non-empty list of CUDA contexts that the object code
has been linked into. The entry may have been added to the cache by an alternate
context of the same compute capability, for example on a system with multiple CUDA
devices, in which case the code simply needs to be re-linked for the current context.

This scheme effectively caches kernels both within the same Accelerate computation and
across different Accelerate expressions. However, it must be regenerated every time the pro-
gram is executed, which increases program startup time. To alleviate this, once a kernel is
compiled, the binary object code is saved in the user’s home directory so that it is available
across separate runs of the program, or indeed different programs. This information is stored
in a persistent cache:

type PersistentCache = MVar (HashTable KernelKey ())

The persistent cache is a hash table indexed by the same key used by the in-memory
cache described above, but without a value component. Instead, the presence of a key in
the persistent cache indicates that the compiled binary represented by that key is available
to be loaded from disk. The location of the object code is determined from the MD5 digest
by creating a ASCII representation of the digest, replacing special characters with z-encoded
strings.

encode_ch :: Char → String
encode_ch c | unencodedChar c = [c] −− regular characters except ‘z’ and ‘Z’
encode_ch '(' = "ZL" −− punctuation using two-character sequences
encode_ch ')' = "ZR"
· · ·

encode_ch c = encode_as_unicode_char c −− other characters using hexadecimal

64 Accelerated array code Chapter 4

Initialising the persistent cache populates the hash table by reading an index file from
disk, which is simply a binary file containing the number of entries at the start of the file,
followed by the keys.

restore :: FilePath → IO PersistentCache
restore db = do
exist ← doesFileExist db
pt ← case exist of

False → encodeFile db (0::Int) >> HashTable.new
True → do
store ← L.readFile db
let (n,rest,_) = runGetState get store 0
pt ← HashTable.newSized n

let go [] = return ()
go (!k:xs) = HashTable.insert pt k () >> go xs

go (runGet (getMany n) rest)

newMVar pt

The binary package is used to deserialise the data from file. Note that the default
implementation for serialising lists of elements provided by the binary package preserves the
order of elements in the list, which requires creating the entire list structure in memory.9

Since we do not require this property, we provide our own deserialisation routine that allows
the elements to be lazily consumed and added directly to the hash table as they are read from
file.

getMany :: Binary a ⇒ Int → Get [a]
getMany n = go n []
where

go 0 xs = return xs
go i xs = do x ← get

go (i−1) (x:xs)

Finally, we present the entire kernel table data structure used to cache compiled kernels,
consisting of in-memory kernels tracked by the program cache as well as the on-disk kernels
tracked by the persistent cache.

data KernelTable = KT ProgramCache −− first level, in-memory cache
PersistentCache −− second level, on-disk cache

Looking for entries in the kernel table entails first searching the in-memory program cache,
which represents kernels that are (a) currently compiling; (b) compiled, but not linked into
the current context; or (c) compiled and linked into the current context. If the kernel is not
available in the program cache, then (d) the persistent cache is searched. If found in the

9A tail-recursive loop that accumulates the list structure as the file is read sequentially from disk produces
list elements in reverse order. Thus, the list must be reversed before being returned, making the structure
spine-strict and preventing elements being consumed as they are read from file.

Section 4.5 Data transfer & garbage collection 65

persistent cache, the associated object file is linked into the current context, and the program
cache is updated to include this entry. As each new kernel is compiled, it is added to the
program cache, and the on-disk persistent cache file is updated once compilation completes
and the file is linked. Note that the implementation does not need to keep the in-memory
and on-disk representations of the persistent cache synchronised.

4.4.3 Conclusion

This section discusses the implementation of a dynamic compilation system for an embedded
language. To make such a system practicable, much attention must be paid to amortising the
additional overheads of runtime code generation and compilation. In the Accelerate CUDA
backend, this is achieved through a system of (a) kernel caching, which eliminates duplicate
compilations; (b) asynchronous compilation, which compiles multiple kernels simultaneously
and overlaps compilation with other execution tasks; and (c) a method of annotating the Ac-
celerate program which associates each collective operation in the program with the compiled
kernels that implement the operation. This last feature is described in Section 4.6.2.

4.5 Data transfer & garbage collection

In a standard Haskell program, memory is managed entirely automatically by the runtime
system. This relieves a large burden from the programmer and eliminates a source of poten-
tial runtime errors. In contrast, in the CUDA programming model all memory management
is explicit and handled by the programmer. CUDA devices typically have their own mem-
ory, physically separate from the memory of the host CPU, which data must be explicitly
transferred to and from.

In order to keep Accelerate programs as close to idiomatic Haskell as possible, the Ac-
celerate runtime system must do the job of managing the CUDA memory space. Moreover,
host-device data transfers are expensive, given the relatively high latency and low bandwidth
of the PCI-E bus, so minimising data transfer is an important pressure point for achieving
high performance [98]. There are several considerations in order to realise this.

4.5.1 Device-to-host transfers

Evaluating Accelerate expressions is done with the following function, which encapsulates the
entire process of compiling and executing a program on the GPU. See Section 4.6 for more
information.

CUDA.run :: Arrays a ⇒ Acc a → a

The result of evaluating this program is made available for use in vanilla Haskell, so run must
copy the final array result back to the host. However, any intermediate results computed
during evaluation of the program are not copied back to the host.

66 Accelerated array code Chapter 4

4.5.2 Host-to-device transfers

Accelerate distinguishes between vanilla Haskell arrays (in CPU host memory) from embedded
arrays (in GPU device memory). Every array on the host is uniquely associated to an array
on the device, which defines where data is copied when transferred between the host and
device. The function use embeds a Haskell array into an embedded array computation, and
thus implies host-to-device data transfer:

use :: Arrays arrays ⇒ arrays → Acc arrays

At a first approximation, we simply copy the data to the GPU as soon as we encounter
the Use node in an expression. This occurs during the first phase of program execution,
and is done asynchronously so that it may overlap code generation and compilation (§4.4).10

However, we can do better.

Intra-expression sharing

Consider the following example, where we use a single array twice. Since Accelerate operations
are pure and thus do not mutate arrays, the device arrays can be safely shared. Thus, we
would like these two arrays to refer to the same data in GPU memory. This reduces the
amount of memory required to store the data as well as reducing memory traffic.11

square :: (Elt e, IsNum e, Shape sh) ⇒ Array sh e → Acc (Array sh e)
square xs = zipWith (*) (use xs) (use xs)

As we shall see, since the two use nodes refer to the same array on the heap, they will
share the same array in GPU memory, and thus the data is only copied once. This is a happy
consequence of the method we use to uniquely associate host and device arrays.

Inter-expression sharing

As a second example, given an array describing the particle density df and the direction and
magnitude of a velocity field vf at each point, the following computes how the density and
velocity fields evolve under advection and diffusion:

fluid :: Timestep −− time to evolve the simulation
→ Viscosity −− viscous damping factor
→ Diffusion −− mass diffusion rate
→ DensityField −− particle densitey at each point in the field
→ VelocityField −− velocity at each point in the field

10The implementation could be improved, but this is left for future work. See Section 4.5.5.
11Why doesn’t sharing recovery (§5.1) notice that the two uses of xs are the same and combine them? The

sharing recovery algorithm observes the sharing of Accelerate terms, and because we have called use twice,
we are effectively constructing two separate Accelerate terms (Use nodes). Furthermore, since GHC does not
do common subexpression elimination, as it can affect the strictness/laziness of the program and potentially
introduce space leaks (http://ghc.haskell.org/trac/ghc/ticket/701), these common subexpressions are
not combined, two separate values are created on the heap, and there is no sharing to be observed.

http://ghc.haskell.org/trac/ghc/ticket/701

Section 4.5 Data transfer & garbage collection 67

→ Acc (DensityField, VelocityField)
fluid dt dp dn df vf =
let vf' = velocity steps dt dp vf −− dampen velocity field

df' = density steps dt dn vf' df −− move particles based on forces
in
A.lift (df', vf')

This is the entry function to the program that implements Jos Stam’s stable fluid algo-
rithm [123] (§6.8). As is typical with numerical simulations, to evolve the simulation over a
period of time the function is called repeatedly over many small time steps, with the output
of each step of the simulation forming the input to the next step in the sequence. That is,
given some initial values df0 and vf0 the simulation proceeds as:

simulation dt dp dn df0 vf0 =
let (df1, vf1) = run $ fluid dt dp dn df0 vf0 −− first step using initial conditions

(df2, vf2) = run $ fluid dt dp dn df1 vf1 −− second step progresses result of the first
(df3, vf3) = run $ fluid dt dp dn df2 vf2 −− …and so on
· · ·

Thus, the results of the first step df1 and vf1 will be the inputs to the second step of the
simulation, and so on. Since these arrays were just copied from the GPU, we should avoid
immediately copying the same data back again in the subsequent step.

To be able to avoid this redundant transfer, the Accelerate memory manager needs to op-
erate over the lifetime of the entire Haskell program, and not be constrained to work within
a single run invocation. Otherwise, all device memory needs to be deallocated after evaluat-
ing the expression, or the program will leak memory. Thus, localised memory management
techniques such as reference counting or syntax directed allocations are insufficient.

The key observation is that the Haskell runtime system knows when objects will be reused
(the result of the first step df1 is used in the second step), and when they are no longer
required and can be garbage collected (df1 is no longer needed after evaluating the second
step and can be safely deallocated). Since every array in GPU memory is uniquely associated
with an array on the host, which is managed by the Haskell runtime system, we can attach
finalisers [102] to the host array that will deallocate the GPU memory at the same time the
Haskell heap object is garbage collected.

4.5.3 Allocation & Deallocation

The Accelerate language defines only pure operations on arrays, so every kernel stores its result
into a fresh device array. This style of programming results in a very high memory allocation
and deallocation rate. For programs that execute many kernels, such as the fluid simulator,
this can have a significant contribution to overall performance (§6.8) because allocations cause
a device synchronisation.

Instead of immediately deallocating device memory when an array is garbage collected,
we instead remove its association to a specific host array but retain a reference to the device

68 Accelerated array code Chapter 4

memory for later reuse. This memory area is the nursery, which is simply a finite mapping
from array sizes to a chunk of memory of that size. When a new array is allocated, we first
check if a block of the appropriate size is available in the nursery. If so, that block is reused,
otherwise fresh memory is allocated.

Finally, we note that since garbage collection efficiency often requires postponing the
identification of dead objects, relying on finalisation for timely resource recovery is known
to be problematic. Accelerate also supports explicit deallocation, which simply forces the
finalisers attached to an array to run immediately.

4.5.4 Memory manager implementation

The memory management system is implemented in several stages. The first step is to decom-
pose operations on the surface Array data type, into operations on each array of primitive
type in the struct-of-array representation (§4.2.3). Implementation of this stage is mostly
straightforward. However, care should be taken with the handling of the use operation.
Since Accelerate is a pure language that does not allow mutation, the array data only needs
to be transferred to the device on the first use of that array. If the use operation is sepa-
rated into its constituent malloc and poke (host to device transfer) operations — as good
programmers are wont to do — this is easily forgotten, resulting in the array data being
needlessly copied every time use is called. As explained in Section 4.5.2, the mapping of host
to device arrays ensures that the memory allocation will only ever be performed once, so we
must ensure that the data for a use operation is only transferred to the device at the time of
first allocation.

The memory table records the association between host and device arrays. Implemented
as a weak hash table [102], the table can purge itself of unneeded key/value pairs, releasing
the device memory at the same time by moving it to the nursery. The table will also release
itself when no longer required, initialising the finalisers for all remaining key/value pairs as it
goes. Furthermore, the memory table is wrapped in an MVar, so that it can be shared between
several Accelerate operations evaluated in parallel.

type MT = MVar (HashTable HostArray DeviceArray)
data MemoryTable = MemoryTable MT (Weak MT) Nursery

data HostArray where
HostArray :: ∃ e. Typeable e

⇒ CUDA.Context −− a specific device execution context
→ StableName (ArrayData e) −− array data on the host CPU
→ HostArray

data DeviceArray where
DeviceArray :: ∃ e. Typeable e

⇒ Weak (DevicePtr e) −− data on the GPU
→ DeviceArray

Section 4.5 Data transfer & garbage collection 69

lookup :: (Typeable a, Typeable b)
⇒ Context
→ MemoryTable
→ ArrayData a
→ IO (Maybe (DevicePtr b))

lookup ctx (MemoryTable ref _ _) arr = do
sa ← makeStableArray ctx arr −− (1)
mw ← withMVar ref (`HashTable.lookup` sa)
case mw of

Nothing → return Nothing
Just (DeviceArray w) → do −− (2)
mv ← deRefWeak w
case mv of

Just v | Just p ← gcast v → return (Just p)
| otherwise → error "lookup:␣type␣mismatch"

Nothing → do −− (3)
sa' ← makeStableArray ctx arr
error ("lookup:␣dead␣weak␣pair:␣" ++ show sa')

Listing 4.4: Method to lookup the device array corresponding to a given host array.

The key and value parts of the hash table are packaged into untyped containers so that
all arrays are tracked using a single memory table. The Typeable constraint permits a
type-safe cast to later recover the existentially quantified array type. Furthermore, the host
arrays are tagged with a specific CUDA context, which is used to support mapping the host
array to multiple devices and execution contexts. Looking up an array in the memory table
demonstrates the procedure for working with weak pointers. The implementation of the
lookup operation is shown in Listing 4.4, which follows the method laid out by Peyton Jones
et al. [102]. The following features are of note:

1. The memory table maps a stable name of the argument host-side array to a weak pointer
to the corresponding device array of a given context.

2. If the lookup is successful, we can attempt to dereference the weak pointer to find the
actual value; an array in device memory. On success, a type-safe cast is used to recover
the existentially quantified type of the array data.

3. However, there is an awkward race condition, because at the moment deRefWeak is
called there might, conceivably, be no further references to the host array arr. If
that is so, and a garbage collection intervenes following (1), the weak pointer will be
tombstoned (made unreachable) before deRefWeak gets to it. In this unusual case we
throw an error, but by using arr in the failure case, this ensures arr is reachable and
thus ensures deRefWeak will always succeed. This sort of weirdness, typical of the world
of weak pointers, is why we can not reuse the stable name sa computed at (1) in the
error message.

In addition to the memory table which tracks associations between host and device arrays,
the nursery is a hash table from array sizes to a non-empty list of pointers to arrays of that

70 Accelerated array code Chapter 4

malloc :: ∀ a b. (Typeable a, Typeable b, Storable b)
⇒ Context
→ MemoryTable
→ ArrayData a
→ Int
→ IO (DevicePtr b)

malloc ctx mt`(MemoryTable _ _ nursery) ad n = do
let multiple x f = floor ((x + (f−1)) / f :: Double) −− (1)

chunk = 1024
n' = chunk * multiple (fromIntegral n) (fromIntegral chunk)
bytes = n' * sizeOf (undefined :: b)

−−
mp ← Nursery.malloc bytes (deviceContext ctx) nursery −− (2)
ptr ← case mp of

Just p → return (CUDA.castDevPtr p)
Nothing →

CUDA.mallocArray n' `catch` λ(e :: CUDAException) → −− (3)
case e of

ExitCode OutOfMemory → reclaim mt >> CUDA.mallocArray n'
_ → throwIO e

insert ctx mt ad ptr bytes −− (4)
return ptr

Listing 4.5: Allocate a new device array to be associated with the given host side array. This
will attempt to use an old array from the Nursery, but will otherwise allocate fresh data.

size. Keys are additionally tagged with the device execution context within which they are
allocated.

type NRS = MVar (HashTable (CUDA.Context, Int) (FullList () (DevicePtr ())))
data Nursery = Nursery NRS (Weak NRS)

Querying the nursery returns a pointer to an array of the given size if one is available,
removing it from the nursery. If no suitably sized chunks are available, fresh memory is
allocated instead. Overall, the method for allocating memory is shown in Listing 4.5.

1. Instead of allocating the array size to be exactly as many elements as needed, we round
up to the next highest multiple of a set chunk size. This improves the reuse rate for the
nursery. We note that the CUDA runtime also allocates in page-sized chunks.

2. Check the nursery if a block of the right size can be reused. This avoids calling out to
the CUDA API to allocate fresh data, which requires a device synchronisation and thus
may block until any currently executing kernels complete.

3. If nothing is available from the nursery, allocate a new array. If this fails, attempt
to recover any free memory by running any pending finalisers as well as clearing the
nursery, then attempt the allocation again.

4. Update the memory table with this new host/device array association.

Finally, the finaliser that is invoked when the host array is garbage collected by the Haskell
runtime is shown in Listing 4.6. Note that the finaliser must refer to its surrounding execution

Section 4.5 Data transfer & garbage collection 71

finalizer :: Weak CUDA.Context −− execution context this array is allocated in
→ Weak MT −− memory table
→ Weak NRS −− nursery
→ HostArray → DevicePtr b −− key/value pair
→ Int −− array size in bytes
→ IO ()

finalizer weak_ctx weak_tbl weak_nrs key ptr bytes = do
mr ← deRefWeak weak_tbl −− (1)
case mr of

Nothing → return ()
Just tbl → withMVar tbl (`HashTable.delete` key)

−−
mc ← deRefWeak weak_ctx −− (2)
case mc of

Nothing → return ()
Just ctx → do
mn ← deRefWeak weak_nrs −− (3)
case mn of

Nothing → bracket_ (CUDA.push ctx) CUDA.pop (CUDA.free ptr)
Just nrs → Nursery.stash bytes ctx nrs ptr

Listing 4.6: The finaliser that is attached to a host array, to be executed when that array is
garbage collected. This attempts to move the device memory into the Nursery for later reuse, and
failing that directly deallocates the memory.

context via weak pointers, otherwise these values will be kept alive until all arrays on the
host (the keys to our memory table) have become unreachable.

1. If the memory table is still alive, remove this association between host and device arrays.

2. If the CUDA execution context has been garbage collected, then the device memory has
implicitly been deallocated already and there is nothing further to do.

3. Otherwise, if the nursery is still active stash the array there for possible later reuse,
otherwise deallocate it immediately. Note that since the finaliser might run at any
time, we need to reactivate this specific context for the duration of the deallocation.

4.5.5 Conclusion

The Accelerate runtime automatically manages the CUDA memory space through the use of
finalisers to hook into the garbage collector of the runtime system of the host program. This
approach is able to avoid several types of redundant data transfer between the host CPU and
attached GPU, which is important for achieving high performance.

The amount of memory available on the device often limits the size of problems that a
GPU can be used to solve. The current system is designed to minimise host-device memory
transfers, which can increase the lifetime of arrays stored on the device. Future work could
improve handling of programs which exceed the available memory, for example in the case
where this is due to the use of many intermediate or input arrays, but where individual
sub-problems fit within the available memory. In this case, arrays that are not required for

72 Accelerated array code Chapter 4

the current calculation could be evacuated from the device by transferring data back to the
associated host-side array, and re-transferred back to the device only once required. Further
inspiration for reducing the intermediate memory footprint of computations could be found
in the areas of stream processing [131] or the piecewise execution of nested data-parallel
programs [66, 79, 106].

While it is possible to overlap memory transfers with both kernel executions and tasks such
as compilation and optimisation, the current implementation does not completely implement
this. To support asynchronous memory transfer requires the use of non-default streams and
event waiting, the same as required for concurrent kernel execution (§4.6). The missing piece
is that the array on the host needs to be page-locked or pinned so that it can be accessed
directly by the GPU using direct memory access (DMA). Regular memory allocations are
pageable by default, which means the host operating system is free to change the physical
location of the data, such as moving the data to disk in order to free up memory for other
applications. Since the location of pageable memory can change, and may not exist in physical
RAM at all, this memory can not be directly accessed by the GPU. Instead, when copying
data to the GPU from pageable memory, the CUDA runtime must first copy the data to a
staging area allocated using pinned memory, and then transfer the data to the device from
the staging area (via DMA). Only the second step of this process proceeds asynchronously.
Allocations on the host are currently handled by the core Accelerate package, which contains
no CUDA specific operations such as the use of pinned memory memory.12 Note that page-
locked memory is a scarce resource, and using it reduces the amount of physical memory
available to the operating system, so consuming too much page-locked memory can reduce
overall system performance [98].

4.6 Executing embedded array programs

The previous sections have discussed how to generate code for collective operations in an
Accelerate program (§4.2), compile the generated code asynchronously and in parallel with
other operations such as data transfer to the GPU (§4.4.1), as well as our approach to kernel
caching in order to reduce the overheads of dynamic compilation (§4.4.2). These operations
occur during the first traversal of the program AST (see Figure 3.1 for an overview). This
section discusses the second phase of evaluating an Accelerate computation: loading the com-
piled code onto the GPU and executing the generated kernel(s) for each collective operation,
in a second bottom-up traversal of the program AST.

12The memory allocated by Accelerate is pinned only with respect to the Haskell garbage collector, not
with respect to the host operating system kernel. Regardless, the CUDA runtime maintains its own notion of
pinned memory separate from the kernel’s notion of pinned memory as specified using mlock(), since DMA
requires not only the virtual address but the physical address to remain constant.

Section 4.6 Executing embedded array programs 73

4.6.1 Execution state

The CUDA backend provides the following function which encapsulates the entire process of
compiling and evaluating an embedded array program denoted in the Accelerate language:

CUDA.run :: Arrays a ⇒ Acc a → a

As the previous sections have demonstrated, running an Accelerate computation in the CUDA
backend entails the use of much internal state, in particular a StateT monad stacked over
IO. This is necessary to use the Haskell foreign function interface (FFI) to communicate with
the CUDA runtime, maintain the CUDA environment’s device context, and to keep track of
internal resources such as GPU memory and the compiled kernel code.

Nevertheless, that we are under the hood manipulating CUDA through the FFI and
that we need to maintain internal state should not distract from the property that run is a
pure function at the level of the user-level Accelerate API. In fact, Accelerate provides an
alternative backend implemented as a purely functional interpreter. The interpreter forms an
executable specification of the denotational semantics of any Accelerate backend, and can be
used to verify accelerated backends.

4.6.2 Annotating array programs

Terms in the Accelerate language are defined non-recursively (§3.1.7). That is, the GADT
used to represent nodes of the program AST are parameterised by the recursive knot (§3.1.8):

data PreOpenAcc acc aenv a where −− the type parameter acc is the “recursive knot”
Map :: (Shape sh, Elt a, Elt b)

⇒ PreFun acc aenv (a → b)
→ acc aenv (Array sh a)
→ PreOpenAcc acc aenv (Array sh b)

· · ·

This characteristic is used in order to improve the performance of executing array programs
in the CUDA backend. In addition to the function run mentioned earlier for executing array
programs, we also provide the following function, which prepares and executes an embedded
array program of one argument:

CUDA.run1 :: (Arrays a, Arrays b) ⇒ (Acc a → Acc b) → a → b

The idea is that, if we have an array program (first argument) that is executed many times,
we want to avoid having to repeat the first phase of execution every time the function is
applied to new input data (second argument). That is, rather than at each invocation of the
function, generating code for every operation and finding each time that the compiled code
already exists in the kernel cache, we would instead like to know precisely which kernel object
needs to be executed without even consulting the caches. The Accelerate CUDA backend
uses the knot-tying technique to achieve this.

74 Accelerated array code Chapter 4

Following the fusion transformation, the Accelerate array program is parameterised by
a series of Manifest and Delayed nodes, representing operations that will eventually be
executed on the device, and computations that have been fused (embedded) into other oper-
ations, respectively. See Section 5.2.3 for details of the representation. To execute a CUDA
computation, manifest nodes are annotated with the compiled kernel code implementing the
computation, while delayed computations recall only the shape of the computation that was
embedded within its consumer.

data ExecOpenAcc aenv a where
ExecAcc :: FL.FullList () (AccKernel a) −− (1) compiled kernel code

→ Gamma aenv −− (2) arrays referenced from scalar code
→ PreOpenAcc ExecOpenAcc aenv a
→ ExecOpenAcc aenv a

EmbedAcc :: (Shape sh, Elt e)
⇒ PreExp ExecOpenAcc aenv sh −− (3) shape of embedded array
→ ExecOpenAcc aenv (Array sh e)

1. A non-empty list of the kernels required to execute this node of the computation.

2. The free array variables required to execute the kernel. In particular, this maps environ-
ment indexes (de Bruijn indices) to some token identifying that array in the generated
code. Rather than using the de Bruijn index directly in the generated code, the ex-
tra indirection results in generating code that is less sensitive to the placement of let
bindings, ultimately leading to better kernel caching.

3. The size of the input array that was embedded into the consumer, which is often required
when executing the kernel the operation was embedded within.

In order to execute a single kernel the following data is required:

data AccKernel a where
AccKernel :: String → CUDA.Fun → CUDA.Module −− (1) compiled code

→ CUDA.Occupancy → Int → Int −− (2) thread occupancy information
→ (Int → Int) −− (3) launch configuration
→ AccKernel a

1. The name of the __global__ kernel that the function object (second parameter) imple-
ments. The compiled object code is linked into the CUDA context as part of the binary
module (third parameter).

2. Once the kernel is compiled, details such as the number of registers required for each
thread can be used to determine the optimal launch configuration of the kernel. In
particular, the configuration is chosen in order to maximise thread occupancy, which
is discussed further in Section 4.6.3. The analysis (fourth parameter) determines the

Section 4.6 Executing embedded array programs 75

optimal number of threads per block to use (fifth parameter) together with the number
of bytes of shared memory required when initiating the kernel launch (sixth parameter).

3. A function that computes the number of thread blocks to launch the kernel given the
size of the computation, which is generally only known at program runtime. How this
function is used exactly depends on the kernel being executed, but typically takes as
input the size of the input array.

This formulation does not require searching the kernel tables during the execution phase
in order to locate binary code: any kernels required to execute a computation are attached
directly to the computation they instantiate. This is an important optimisation, which we
provide through use of the run1 operator, which we can now complete:

CUDA.run1 :: (Arrays a, Arrays b) ⇒ (Acc a → Acc b) → a → b
CUDA.run1 f = λa → unsafePerformIO (execute a)
where

acc = convertAfun f
afun = unsafePerformIO $ evalCUDA (compileAfun acc)
execute a = evalCUDA (executeAfun1 afun a >>= collect)

Here, compileAfun :: DelayedAfun f → ExecAfun f instantiates and compiles skeleton
code implementing each of the collective array operations in the program (§4.2), returning
a new program AST where each node is annotated in the manner described above. The
function executeAfun1 :: ExecAfun (a → b) → a → CIO b is used to execute this an-
notated AST. Since executeAfun1 is used via a new closure, the first phase of execution that
compiles the annotated AST afun will only be executed once.

Note that there is a subtle tension here: the task of the compilation phase is to produce
an annotated AST carrying all of the information required to execute the computation, but
that in turn requires the compiled kernel modules. So, how can compilation proceed asyn-
chronously? We use a clever trick and take advantage of Haskell’s non-strict execution seman-
tics: once the external compilation has been initiated in a separate thread, unsafePerformIO
is used (in a safe manner) to delay waiting for the external process to complete compilation
and link the binary object until it is demanded by the running program.

build1 :: DelayedOpenAcc aenv a → CIO (AccKernel a)
build1 acc = do
· · ·
(name, key) ← compile code −− initiate external compilation
let (cta, blocks, smem) = launchConfig acc occ

(mdl, fun, occ) = unsafePerformIO $ do −− delay linking until actually required
m ← link key
f ← CUDA.getFun m name
o ← determineOccupancy acc device f
return (m, f, o)

−−
return $ AccKernel name fun mdl occ cta smem blocks

76 Accelerated array code Chapter 4

4.6.3 Launch configuration & thread occupancy

In the CUDA execution model, GPU kernels are executed by a multi-dimensional hierarchy
of threads. In particular, threads are grouped into thread blocks, which are distributed over
the available streaming multiprocessors (SMs). In contrast to a traditional CPU core, a GPU
core (SM) does not have features such as branch prediction or speculative execution, features
which increase single threaded performance. In exchange, a GPU core is capable of executing
hundreds of threads concurrently. In particular, a SM dispatches work in small groups of
threads called warps, and by executing warps concurrently and exchanging warps when one
is paused or stalled, the GPU is able to keep all of the ALUs busy. The ratio of active warps
(i.e. warps that could run given a kernel’s resource requirements such as number of registers
and bytes of shared memory per thread) to the maximum possible number of active warps
(i.e. number of in-flight threads that can be tracked by the hardware) is called occupancy.

Higher occupancy does not always equate to higher performance — for example, if a kernel
is limited by instruction throughput rather than memory bandwidth — but low occupancy
always interferes with the ability of the GPU to hide memory and instruction latency by
swapping stalled warps, resulting in suboptimal performance. Several factors influence the
configuration required for maximum possible occupancy, but once a kernel has been compiled
and its resource usage known, we can calculate an ideal launch configuration. The CUDA
backend does this for every kernel, to make optimal use of physical resources which vary from
GPU to GPU. Additionally, we limit the number of thread blocks per multiprocessor to that
which can be physically resident. This requires the generated kernels to be able to process
multiple elements per thread, but reduces the overhead of launching thread blocks. Figure 4.1
demonstrates the impact of varying thread block size on thread occupancy for the different
hardware generations.

These calculations are a reimplementation of the CUDA occupancy calculator spreadsheet
that ships as part of the CUDA toolkit. Accelerate uses this information to launch kernels at
either the smallest or largest thread block size that yields maximum occupancy, depending
on the operation in question.

4.6.4 Kernel execution

To evaluate the array computation on the CUDA backend, we perform a bottom-up traversal
of the annotated program (§4.6.2) executing the attached kernels. For each node of the AST,
we distinguish three cases:

1. If it is a Use node, return a reference to the device memory holding the array data.

2. If it is a non-skeleton node, such as a let binding or shape conversion, the evaluator
executes the operation directly by adjusting the environment or similar as required.

Section 4.6 Executing embedded array programs 77

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 128 256 384 512 640 768 896 1024 1152 1280 1408 1536

O
cc

up
an

cy
 (%

)

Threads/Block

Compute 1.3
Compute 2.1
Compute 3.5
Compute 5.0

Figure 4.1: Illustration of the impact of varying the thread block size on the overall multiprocessor
occupancy. The example kernel requires 22 registers per thread and 16 bytes of shared memory
per thread. Each device generation (compute capability) achieves peak occupancy at different
points in the sequence, so selecting a static thread block size for all kernels and devices is clearly
suboptimal. Older devices are unable to achieve 100% occupancy due to limitations in the register
file size and available shared memory. The first two generations of devices can not execute the
kernel with more than 704 and 1472 threads per block respectively.

3. If it is a skeleton node, memory is allocated to hold the result of evaluating the skeleton,
and finally invokes the one or more GPU kernels that implement the operation.

In summary, the execution pass interleaves host-side evaluation and the invocation of GPU
kernels, while keeping track of device memory, allocating intermediates, and releasing memory
once no longer required. See Section 4.5 for details on memory management. GPU kernels
execute asynchronously, so the evaluator is able to immediately begin to set up the next stage
of the computation while the current kernel executes. The CUDA runtime maintains the
sequence of kernels to be executed on the device, known as the execution stream.

4.6.5 Kernel execution, concurrently

Beginning with compute capability 2.0, some CUDA devices are able to execute multiple ker-
nels concurrently, rather than always executing kernels one after the other. This can improve
overall performance by increasing the number of active threads on the device, particularly
when executing many small kernels. Accelerate’s collective operations have a purely functional
semantics, so concurrent expression evaluation is always sound. The current implementation

78 Accelerated array code Chapter 4

executes subtrees of the expression concurrently on the single device. We leave for future
work additionally executing programs concurrently on separate GPUs, as is available in some
Tesla configurations.

In order to execute kernels concurrently, the kernels must be issued in different non-default
streams. A stream is a sequence of commands that execute in order; different streams, on
the other hand, may execute their commands out of order with respect to one another or
concurrently. To allow streams to synchronise, an event may be inserted into a stream.
Any stream may delay execution until a given event has been posted, which allows efficient
cross-stream synchronisation that is managed by the device.

The Accelerate CUDA backend introduces concurrency when evaluating the bound expres-
sion at a let binding, and synchronises when looking up a bound variable in the environment.
Following conversion and optimisation of the program by the Accelerate frontend, any op-
eration that is to be evaluated will appear as a let-bound expression in the program, and
so sequences of let bindings may be able to execute their subtrees concurrently. The array
expression evaluator has the type:

executeOpenAcc
:: ExecOpenAcc aenv arrs −− annotated array program (§4.6.2)
→ Aval aenv −− array environment with synchronisation points
→ Stream −− current execution stream
→ CIO arrs

The array environment is augmented to carry both the array object as well as an event
that execution streams can synchronise against, which signals that the array has been fully
evaluated:

data Async a = Async Event a

data Aval env where
Aempty :: Aval ()
Apush :: Aval env → Async t → Aval (env, t)

The only interesting cases for the evaluator are those of let bindings and environment
lookup. When looking up an array in the environment, we ensure that all future work sub-
mitted to the current stream will occur after the asynchronous event for the array in the
environment has been fulfilled. Synchronisation occurs on the device, so the following does
not block waiting for the result:

after :: Stream → Async a → CIO a
after stream (Async event arr) = Event.wait event (Just stream) [] >> return arr

Evaluating the binding of a let requires evaluating the expression in a new asynchronous
execution stream. The body expression is then evaluated with the bound array wrapped in
an Async, which contains the event indicating when the last kernel issued to the stream has
completed.

Section 4.6 Executing embedded array programs 79

streaming :: Context
→ Reservoir
→ (Stream → CIO a)
→ (Async a → CIO b)
→ CIO b

streaming ctx rsv`(Reservoir _ weak_rsv) bnd body = do
stream ← create ctx rsv −− (1)
bnd' ← bnd stream −− (2)
end ← Event.waypoint stream
body' ← body (Async end bnd') −− (3)
destroy (weakContext ctx) weak_rsv stream −− (4)
Event.destroy end
return body'

1. The function create allocates a new execution stream. It uses a technique similar to the
Nursery (§4.5.4) to reuse execution streams that are currently idle, taking an inactive
stream from the Reservoir if one is available, or allocating a new execution stream
otherwise.

2. The bound expression is executed asynchronously, assigned to the new Stream.

3. The body of the expression is evaluated. The extended array environment includes the
event end, which will be signalled once the result of the binding is available.

4. In contrast to the memory manager, events and streams never remain active beyond
the evaluation of the Accelerate program, so the stream and event event associated with
evaluating the binding are explicitly deallocated after evaluation of the body completes.

As an example, Listing 4.7 contains an example program that is able to execute the nine
map operations concurrently on devices of compute capability 2.0 and greater. Note that, to
keep the example simple, fusion is disabled to prevent the map operations from fusing into
the zip9. The corresponding execution trace from the NVIDIA Visual Profiler application
is shown in Figure 4.2, which demonstrates each of the map operations executing in separate
streams and overlapping with each other.

Interaction with Array Fusion

In the example shown in Listing 4.7, it was necessary to disable the array fusion optimisation
(§5.2) in order to prevent the kernels being combined into a single kernel, within which each of
the fused operations execute sequentially. While a simple example was chosen on purpose in
order to clearly demonstrate kernels executing concurrently, the same situation nevertheless
arises in real programs. That is, by combining sequences of operations into a single operation,
fusion has the effect of removing opportunities for concurrent kernel execution.

It is left to future work to provide some analysis of when it would be beneficial to avoid
fusing operations, on the basis that it would be more efficient to instead execute the two sub-
computations concurrently. Such an analysis would need to take into account the hardware

80 Accelerated array code Chapter 4

loop :: Exp Int → Exp Int
loop ticks = A.while (λi → i <* clockRate * ticks) (+1) 0
where

clockRate = 900000

concurrentTest :: Acc (Vector (Int,Int,Int,Int,Int,Int,Int,Int,Int))
concurrentTest
= A.zip9 (A.map loop (use $ fromList Z [1]))

(A.map loop (use $ fromList Z [1]))
· · ·

Listing 4.7: An example program that executes each of the map kernels concurrently, on devices
of compute capability 2.0 and greater. Note that in order to keep the example simple, the displayed
behaviour is only seen when fusion is disabled, to prevent the operations from being combined into
a singel kernel.

Figure 4.2: Trace from the NVIDIA Visual Profiler application for the program shown in List-
ing 4.7, where the nine map kernels execute concurrently on devices of compute capability 2.0 and
greater. Each map operation takes 226.7 ms to execute. As shown, an equivalent of 2.04 seconds
of GPU time is execute in a wall clock time of 266.4 ms, which includes program initialisation.

Section 4.7 Related work 81

that the program is to be executed on, as well as an estimate of how much of the GPU’s
resources each kernel requires. This is required in order to determine if the two kernels could
be scheduled concurrently.

4.6.6 Conclusion

Runtime system operations are important, as they partially compensate for the overhead of
being an embedded language; that is, of needing to traverse the program AST in order to
evaluate it. The Accelerate runtime system is designed to execute programs as efficiently as
possible, which in turn helps maximise the computational utilisation of the device, and ensure
all processors are kept busy.

The runtime system attempts to optimise both individual kernel executions, as well as
execution of the entire program. In the former case, each kernel launch is configured to max-
imise thread occupancy for the particular device the kernel is being executed on, and kernels
are scheduled such that independent operations can be executed concurrently, on devices
which support this. The single most important optimisation, however, is that each node of
the program AST is decorated with all of the data required to execute that operation. For
programs which are executed more than once, this means that the costly front-end analysis
and code generation steps of program execution can be skipped on the second and subse-
quent invocations of the program, and kernels can begin executing immediately. This process
happens automatically, and almost13 entirely transparently to the user.

With these optimisations, the Accelerate runtime system is efficient enough that we can
execute numerically intensive programs such as fluid flow simulations (§6.8) and real-time
image processing applications (§6.7) and achieve performance comparable to hand-written
CUDA programs.

4.7 Related work

The development of general-purpose applications that run on the GPU is highly work inten-
sive, and has been estimated to require at least 10× as much effort as developing an efficient
single-threaded application [129]. Several researchers have proposed to ameliorate the status
quo by either using a high-level library to compose GPU code or by compiling a subset of a
high-level language to low-level GPU code. This section explores some of these approaches.

4.7.1 Embedded languages

Obsidian [127, 128] and Nikola [81] are also Haskell EDSLs for GPGPU programming, and
are in aim and spirit the embeddings closest to Accelerate. Both Nikola and Obsidian produce

13The user must express their program in the form of a function of one array argument, and use the
corresponding run1 function to execute the program. This is not so onerous, as any operation that the user
intends to execute multiple times is likely to be easily written in the form of a function from arrays to arrays.

82 Accelerated array code Chapter 4

CUDA code as we do, however while we use algorithmic skeletons (§4.1), Nikola explicitly
schedules loops, limiting it to map-like operations, and Obsidian is a lower level language where
more details of the GPU hardware are exposed to the programmer. Both Nikola and Obsidian
lack any system of kernel caching, memory management, or any significant runtime system
or compilation optimisations. In both Obsidian and Nikola, algorithms spanning multiple
kernels need to be explicitly scheduled by the application programmer and incur additional
host-device data transfer overhead, which incurs a severe performance penalty.

Paraiso [96] is a Haskell EDSL for solving systems of partial differential equations (PDEs),
such as hydrodynamics equations, and generates both CUDA code for GPUs as well as
OpenMP [99] code for multicore CPUs. Accelerate supports stencil operations for ex-
pressing this class of operation, but lacks the domain specific language features and compiler
optimisations implemented by Paraiso for this type of problem.

Baracuda [72] is a Haskell EDSL producing CUDA GPU kernels, though it is intended to
be used offline, with the kernels called directly from a C++ application. It supports only map
and fold over vectors.

RapidMind [140], which targets the GPU using OpenCL, and its predecessor Sh [87, 88]
which used pixel shaders of the graphics API, are C++ meta programming libraries for data
parallel programming. RapidMind was merged into Intel’s Ct compiler to create the Array
Building Blocks (ArBB) library. However, the ArBB project was retired before support for
GPUs was integrated. GPU++ [62] is an embedded language in C++ using similar techniques
to RapidMind and Sh, but provides a more abstract interface than the other C++ based
methods listed here.

4.7.2 Parallel libraries

Accelerator [23?] is a C++ library-based approach with less syntactic sugar for the program-
mer, but does have support for bindings to functional languages. In contrast to our current
work, it already targets multiple architectures, namely GPUs, FPGAs, and multicore CPUs.
However, the code generated for GPUs uses the DirectX 9 API, which does not provide ac-
cess to several modern GPU features, negatively impacting performance and preventing some
operations such as scatted writes.

Thrust [59] is a library of algorithms written in CUDA, with an interface similar to the
C++ Standard Template Library. Sato and Iwasaki [117] describe a C++ library for GPGPU
programming based on algorithmic skeletons. Both of these libraries can be used to generate
both CUDA code for the GPU as well as OpenMP code targeting multicore CPUs.

Dandelion [113] is a library of data-parallel operations, specified as comprehensions on
arrays using the LINQ framework for .NET (programmers write in either C# or F#). Opera-
tions are compiled for the GPU as well as the CPU, and the runtime system distributes the
computation over all of the available processors in a heterogeneous cluster.

Section 4.8 Discussion 83

PyCUDA [71] provide low-level access to the CUDA driver API from within Python, and
facilitates runtime code generation for the GPU. A similar approach is taken by CLyther [3]
which targets OpenCL. Copperhead [25] uses PyCUDA and Thrust internally to provide a
higher level of abstraction to compile, link, cache, and execute CUDA code. Both Para-
keet [114] and Anaconda Accelerate [36] are Python libraries that attempt to just-in-time
compile a subset of Python code that uses the NumPy [2] array library to instead target the
GPU. These approaches can all fail to produce GPU code at program runtime, falling back
to interpreted execution.

Jacket [6] is a Matlab extension that allows matrix computations to be offloaded to the
GPU, by introducing new datatypes and operations for transferring matrices to GPU memory,
and overloading operations on those matrices to trigger execution of suitable GPU kernels.

4.7.3 Other approaches

Delite/LMS [112] is a compiler framework for writing parallel domain specific languages in
Scala, and is perhaps Accelerate’s main competitor. Delite/LMS includes several backend
code generation targets including C++ and CUDA. Its principle embodiment is OptiML [124],
a DSL for machine learning which shows good runtime performance. More recent work
attempts to demonstrate that individual DSLs created with the Delite/LMS framework can
still be used together efficiently [125]. Like Accelerate, Delite/LMS is a staged language,
however unlike Accelerate, Delite/LMS generates and compiles embedded code offline, at
Scala compile time, whereas we generate and compile target code at Haskell runtime. This
distinction affords us greater opportunity to specialise the generated code, at the expense
of needing to amortise these additional runtime overheads. At least in the case of OptiML,
the Delite/LMS compiler framework is extremely slow, even for very simple programs, and
hard-coded configuration and linking paths make it difficult to compile or use.

Nesl/GPU [17] compiles NESL [20] code to CUDA, a system which was independently
developed as CuNesl [142]. Performance suffers because the implementation relies on the
legacy NESL compiler, which produces a significant number of intermediate computations.

NOVA [35] is a high-level lisp-like functional language and compiler for parallel operations,
targeting both GPUs and CPUs. Compared to Accelerate, NOVA supports fewer parallel
operations, but claims to support nested parallelism, recursion, and sum data types. The
NOVA compiler has not been released, so these claims can not be tested.

4.8 Discussion

This chapter has detailed the implementation of the CUDA generating Accelerate backend
targeting parallel execution on NVIDIA GPUs. We discussed our approach to skeleton-based
code generation, as well as the caching mechanisms that are implemented in order to reduce

84 Accelerated array code Chapter 4

the overheads of the embedding, such as of runtime code generation and compilation. This
chapter also dealt with the issue of memory management and data transfer, which is a key
consideration to achieving high performance. Finally, we discussed the execution of the gen-
erated GPU kernels, including launch configuration and concurrent execution optimisations,
in order to maximise device utilisation and help reduce overall program run times.

Now that we can compile and run Accelerate programs on the GPU, the next chapter
covers how to optimise Accelerate programs. In particular, we introduce our type-safe ap-
proaches to sharing recovery and array fusion, which we identify as the two most pressing
performance limitations.

5

Optimising embedded array programs

Relax. As usual, I will bore you with the details.
—chris lee

The previous chapter discussed the architecture of the Accelerate language embedding
and execution on CUDA hardware. Through a set of benchmarks, our previous work [29]
identified the two most pressing performance limitations: operator fusion and data sharing.
This chapter describes the methods used to overcome these issues, focusing primarily on my
novel approach to operator fusion in the context of the stratified Accelerate language and
skeleton-based implementation of the CUDA backend. This chapter expands upon the ideas
that appeared in [89].

It should be noted that “optimisation” is a misnomer; only rarely does applying optimi-
sations to a program result in object code whose performance is optimal, by any measure.
Rather, the goal is to improve the performance of the object code generated by a backend,
although it is entirely possible that they may decrease it or make no difference at all. As
with many interesting problems in [computer] science, in most cases it is formally undecidable
whether a particular optimisation improves, or at least does not worsen, performance.

In general, we would like to be as aggressive as possible in improving code, but not at the
expense of making it incorrect.

5.1 Sharing recovery

Accelerate is a deeply embedded language, meaning that evaluating an Accelerate program
does not directly issue computations; instead, it builds an abstract syntax tree (AST) that
represent the embedded computation (§2.5). This AST is later executed by an Accelerate
backend to compute the result on a given backend target (§4.6).

A well known problem of defining deeply embedded languages in this way is the issue of
sharing. The deeply embedded language implementation of Accelerate reifies the abstract

86 Optimising embedded array programs Chapter 5

riskfree, volatility :: Float
riskfree = 0.02
volatility = 0.30

horner :: Num a ⇒ [a] → a → a
horner coeff x = x * foldr1 madd coeff
where

madd a b = a + x*b

cnd' :: Floating a ⇒ a → a
cnd' d =
let poly = horner coeff

coeff = [0.31938153, −0.356563782, 1.781477937, −1.821255978, 1.330274429]
rsqrt2pi = 0.39894228040143267793994605993438
k = 1.0 / (1.0 + 0.2316419 * abs d)

in
rsqrt2pi * exp (−0.5*d*d) * poly k

blackscholes :: Vector (Float, Float, Float) → Acc (Vector (Float, Float))
blackscholes = map callput . use
where
callput x =

let (price, strike, years) = unlift x
r = constant riskfree
v = constant volatility
v_sqrtT = v * sqrt years
d1 = (log (price / strike) + (r + 0.5 * v * v) * years) / v_sqrtT
d2 = d1 − v_sqrtT
cnd d = let c = cnd' d in d >* 0 ? (1.0 − c, c)
cndD1 = cnd d1
cndD2 = cnd d2
x_expRT = strike * exp (−r * years)

in
lift (price * cndD1 − x_expRT * cndD2 −− call price

, x_expRT * (1.0 − cndD2) − price * (1.0 − cndD1)) −− put price

Listing 5.1: Black-Scholes option pricing

syntax of the deeply embedded language in Haskell. However, a straightforward reification of
the surface language program results in each occurrence of a let-bound variable in the source
program creating a separate unfolding of the bound expression in the compiled code.

As an example, consider the pricing of European-style options using the Black-Scholes
formula, the Accelerate program for which is shown in Listing 5.1. Given a vector with triples
of underlying stock price, strike price, and time to maturity (in years), the Black-Scholes
formula computes the price of a call and put option. The function callput evaluates the
Black-Scholes formula for a single triple, and blackscholes maps it over a vector of triples,
such that all individual applications of the formula are executed in parallel.

The function callput introduces a significant amount of sharing: the helper functions
cnd' and hence also horner are used twice — for d1 and d2 — and its argument d is used
multiple times in the body. Worse, the conditional expression leads to a growing number
of predicated instructions which incurs a large penalty on the SIMD architecture of a GPU.
A lack of sharing recovery was a significant shortcoming of our initial implementation of
Accelerate [29].

Section 5.1 Sharing recovery 87

@

@

@

@

@

@

@

(+) 1

2

(*)

(-)

@

@

@

@

@

@

@

(+) 1

2

(*)

(-)

1

2

3 4

5

6

7 8

9

10 11

12

5

9

8

@

@

2

(-)

@

5

9 5

5

@

8@

8(*)

@

9

1

@

(+)

8

9

1

2

3 4

5

8

10 11

9

6

7

@

@

2

(-)

let

let let

@

y

x y

x

y

@

z@

z(*)

@

x

1

@

(+)

= z =

=

Figure 5.1: Recovering sharing in an example term

5.1.1 Our approach to sharing recovery

This problem was solved elegantly by Gill [48] who proposed the use of stable names [102]
to recover sharing of source terms in a deeply embedded language. Unfortunately, Gill’s
original approach (1) reifies the abstract syntax in graph form, and (2) assumes an untyped
syntax representation. We use a variant of Gill’s technique that instead preserves types and
produces a tree with minimal flattening, which is able to recover exactly those let bindings
which appear in the source program [89].

The higher-order abstract syntax (HOAS) representation of the surface language, while
convenient for the human reader, is awkward for program transformations as it complicates
looking under lambdas. We convert the source representation to a type-safe internal repre-
sentation based on nameless de Bruijn indices in the style of Altenkirch and Reus [8], using
GADTs [104] and type families [28, 118] to preserve the embedded program’s type informa-
tion. While developed independently [26, 89], this conversion is similar to the unembedding
of Atkey et al. [10]. Unembedding and sharing recovery are necessarily intertwined. Sharing
recovery must be performed on the source representation, otherwise sharing will have already
been lost, but we can not perform sharing recovery on higher-order abstract syntax as we
need to traverse below the lambda abstractions. Hence, both operations go hand in hand.

The contribution of the sharing recovery algorithm is work done primarily by my super-
visor Manuel Chakravarty, so I present here only a brief overview of the method; see [89] for
details. Consider the following source term:

let inc = (+1) 1
in let nine = let three = inc 2

in
(*) three three

in
(−) (inc nine) nine

The term’s abstract syntax DAG is shown as the left-most diagram in Figure 5.1, which uses @
nodes to represent application. Typed conversion from HOAS with sharing recovery proceeds
in three stages:

88 Optimising embedded array programs Chapter 5

Phase 1: Prune shared terms:

Phase one is a depth-first traversal of the AST which annotates each node with its unique
stable name, and builds an occurrence map for the number of times each node is seen in
the overall program. The stable names of two Haskell terms are equal only when the terms
are represented by the same heap structure in memory. Likewise, when the AST of two
terms of an embedded language program have the same stable name, we know that they
represent the same term. If we encounter a node already in the occurrence map, it represents
a previously visited node and is thus a shared subterm. We replace the entire subterm at that
node with a placeholder containing its stable name. The second diagram in Figure 5.1 shows
the outcome of this stage. Each node is labelled by a number that represents its stable name,
and the dotted edges indicate where we encountered a previously visited, shared node. The
placeholders are indicated by underlined stable names. In this way all but the first occurrence
of a shared subterm are pruned, and we do not descend into terms that have been previously
encountered. This avoids completely unfolding the embedded expression, so the complexity
of sharing observation is proportional to the number of nodes in the tree with sharing.1,2

As the stable name of an expression is an intensional property, it can only be determined
in Haskell’s IO monad, and strictly speaking, because of this it is not deterministic. The stable
name API does not guarantee completeness: for two stable names sn1 and sn2, if sn1 == sn2
then the two stable names were created from the same heap object. However, the reverse is
not necessarily true; if the two stable names are not equal the objects they come from may
still be equal. Put another way, equality on stable names may return a false negative, which
means that we fail to discover some sharing, but can never return a false positive since stable
names from different heap objects are not considered equal. Luckily, sharing does not affect
the denotational meaning of the program, and hence a lack of sharing does not compromise
denotational correctness.

Phase 2: Float shared terms:

The second phase is a bottom-up traversal of the AST that determines the scope for every
shared binding that will be introduced. It uses the occurrence map to determine, for every
shared subterm, the meet of all the shared subterm occurrences — the lowest AST node at
which the binding for the subterm can be placed. This is why the occurrence map generated
in the previous phase can not be simplified to a set of occurring names: we need the actual
occurrence count to determine where shared subterms should be let-bound.

The third diagram of Figure 5.1 shows the result of this process. Floated subterms are
referenced by circled stable names located above the node that they floated to. If the node

1Since computing stable names requires the use of Haskell’s IO monad, we can use a hash table to store
the occurrence counts and thereby keep the complexity of Phase 1 as O (n).

2This is also why we do not use redundancy elimination techniques such as global value numbering or
common subexpression elimination, as those methods are applied to the completely unfolded expression.

Section 5.2 Array fusion 89

collects more than one shared subterm, the subterm whose origin is deeper in the original
term goes on top; here, 9 on top of 5. Nested sharing leads to subterms floating up inside
other floated subterms; here, 8 stays inside the subterm rooted at 5.

Phase 3: Binder introduction:

Finally, each floated subterm gets let-bound right above the node it floated to, as shown in
the rightmost diagram of Figure 5.1. At the same time, the AST is converted into nameless
de Bruijn form by introducing de Bruijn indices at the same time as introducing the lets.

5.2 Array fusion

Fusion, or deforestation, is a term used to describe techniques for having a compiler auto-
matically eliminate intermediate data structures in a computation by combining successive
traversals over these data structures. For example, to compute the sum of squares of all
integers from one to a given number in Haskell [100], one could write:

sum_of_squares :: Int → Int
sum_of_squares n

= sum −− add all numbers in the list
$ map (λx → x * x) −− traverse list doubling each element
$ enumFromTo 1 n −− generate list of numbers [1..n]

While the meaning of the program is clear, it is inefficient, as this code produces two in-
termediate lists of numbers which each require O(n) memory to store and data transfers to
manipulate. Instead, one could write the program as a single tail-recursive loop as such:

sum_of_squares :: Int → Int
sum_of_squares n = go 1 0
where

go i acc | i > n = acc −− return final tally
| otherwise = go (i+1) (acc + i*i) −− add to accumulator and step to next element

The second program is much more efficient than the first because it does not involve the
production of any intermediate lists and executes in constant space. Unfortunately, the clarity
of the original program has been lost. What we really want is to write the first program, and
have the compiler automatically transform it into the second, or something morally equivalent.

This example also demonstrates a subtle behavioural tendency of optimising program
transformations: while the second (target) program does not produce any intermediate data
structures as desired, we can no longer interpret the program as a sequence of combinators,
such as map and sum. This observation is critical if the combinators represent collective
operations expressed as algorithmic skeletons, as they do in Accelerate: while the second
program compiles to an efficient scalar loop, its parallel interpretation has been lost.

90 Optimising embedded array programs Chapter 5

5.2.1 Considerations

Fusion in a massively data-parallel (embedded) language such as Accelerate requires several
uncommon considerations. We discuss related work further in Section 5.4.

Parallelism

While fusing parallel collective operations, we must be careful not to lose information essential
to parallel execution. For example, foldr/build [49] and stream [37] fusion are not applica-
ble, because they produce sequential tail-recursive loops rather than massively parallel GPU
kernels. Similarly, the split/join [67] approach used by data-parallel Haskell (DPH) is not
helpful. Although fused operations are split into sequential and parallel subcomputations,
the granularity of the parallel operations is rather coarse and the sequential component again
consists of tail-recursive loops, both of which are ill suited for a massively parallel target
such as GPUs. Accelerate compiles massively parallel array combinators to CUDA code via
template skeleton instantiation (§4.1), so any fusion system must preserve the combinator
representation of the intermediate code.

Sharing

Shortcut fusion transforms rely on inlining to move producer and consumer expressions next to
each other, which allows adjacent constructor/destructor pairs to be detected and eliminated.
When let-bound variables are used multiple times in the body of an expression, unrestrained
inlining can lead to duplication of work. Compilers such as GHC handle this situation by
inlining the definitions of let-bound variables that have a single use site, or by relying on
some heuristic about the size of the resulting code to decide what to inline [101]. In typical
Accelerate programs, each array is used at least twice: once to access the shape information
and once to access the array data, so we must handle at least this case specially.

Fusion at runtime

As the Accelerate language is embedded in Haskell, compilation of the Accelerate program
happens at Haskell runtime rather than when compiling the Haskell program (§4.4). For this
reason, optimisations applied to an Accelerate program contribute to its overall runtime, so
we must be mindful of the cost of analysis and code transformations. On the flip-side, we are
able to make use of information that is only available at runtime, such as constant values, and
code generation (§4.1) selects instructions based on the capabilities of the target hardware.

Filtering

General array fusion transformations must deal with filter-like operations, for which the size
of the result structure depends on the values of the input array, as well as its size. For

Section 5.2 Array fusion 91

example stream fusion includes the Skip constructor in order to support filtering operations
(among other uses). Although easily implementable as a combination of the core primitives
(Listing 2.2), filtering is difficult to implement as a single-step parallel operation. Since filter-
like operations are not part of the core language, we do not need to consider them further.

Fusion on typed de Bruijn indices

We fuse Accelerate programs by rewriting typed de Bruijn terms in a type preserving manner.
Maintaining type information adds complexity to the definitions and rules, but amounts to a
partial proof of correctness checked by the type checker (§3.1.7).

5.2.2 The Main Idea

All collective operations in Accelerate are array-to-array transformations. Reductions, such
as fold, which reduce an array to a single element, yield a singleton array rather than a scalar
expression. We partition array operations into two categories:

1. Operations where each element of the output array can be computed independently of
all others. We refer to these operations as producers.

2. Operations where each array element can not be computed independently, or requires
traversal over multiple array elements rather than access to a single element. We call
these operations consumers, in spite of the fact that, as with all collective operations in
Accelerate, they also produce an array as output.

Listing 5.2 summarises the collective array operations that we support. In a parallel
context, producers are much more pleasant to deal with because independent element-wise
operations have an obvious mapping to massively parallel processors such as GPUs. Con-
sumers are a different story, as we need to know exactly how the elements depend on each
other in order to implement them efficiently in parallel. For example, a reduction (with asso-
ciative operator) can be implemented efficiently in parallel as a recursive tree reduction, but a
parallel scan requires two distinct phases (§2.4). Unfortunately, this is the sort of information
that is obfuscated by most fusion techniques. To support the different properties of producers
and consumers, the fusion transform is split into two distinct phases:

1. Producer/producer: A bottom-up contraction of the AST that fuses sequences of pro-
ducers into a single producer. This is implemented as a source-to-source transformation
on the AST.

2. Producer/consumer: A top-down transformation that annotates the AST as to which
nodes should be computed to manifest data and which should be embedded into their
consumers. This process is ultimately completed during code generation, where we

92 Optimising embedded array programs Chapter 5

Producers

map :: (Exp a → Exp b) → Acc (Array sh a) map a function over an array
→ Acc (Array sh b)

zipWith :: (Exp a → Exp b → Exp c) → Acc (Array sh a) apply funciton to a…
→ Acc (Array sh b) → Acc (Array sh c) …pair of arrays

backpermute :: Exp sh' → (Exp sh' → Exp sh) → Acc (Array sh a) backwards permutation
→ Acc (Array sh' e)

replicate :: Slice slix extend array across…
⇒ Exp slix → Acc (Array (SliceShape slix) e) …new dimensions
→ Acc (Array (FullShape slix) e)

slice :: Slice slix remove existing dimensions
⇒ Acc (Array (FullShape slix) e) → Exp slix
→ Acc (Array (SliceShape slix) e)

reshape :: Exp sh' → Acc (Array sh e) → Acc (Array sh' e) reshape an array

generate :: Exp sh → (Exp sh → Exp a) → Acc (Array sh a) array from index mapping

Consumers

fold :: (Exp a → Exp a → Exp a) → Exp a tree reduction along…
→ Acc (Array (sh:.Int) a) → Acc (Array sh a) …innermost dimension

scan{l,r} :: (Exp a → Exp a → Exp a) → Exp a → Acc (Vector a) left-to-right or right-to-left
→ Acc (Vector a) …vector pre-scan

permute :: (Exp a → Exp a → Exp a) → Acc (Array sh' a) forward permutation
→ (Exp sh → Exp sh') → Acc (Array sh a)
→ Acc (Array sh' a)

stencil :: Stencil sh a stencil ⇒ (stencil → Exp b) map a function with local…
→ Boundary a → Acc (Array sh a) → Acc (Array sh b) …neighbourhood context

Listing 5.2: Summary of Accelerate’s core collective array operations, classified as either producer
of consumer operations. We omit the Shape and Elt class constraints for brevity. In addition,
there are other flavours of folds and scans as well as segmented versions of these.

specialise the consumer skeleton by directly embedding the code for producing each
element into the skeleton.

Figure 5.2 shows how the fusion technique affects the AST: blue boxes labelled p1 to p7

represent producers, where p5 is a producer like zipWith that takes two arrays as input. The
consumers are labelled c1 and c2. Each box represents an operation that will be computed to
memory, so the goal is to combine the boxes into the smallest number of clusters as possible.
In the first phase (centre) successive producer operations are fused together (p2, p3, p4 and
p5). In the second phase (bottom) fused producers are embedded into consumers (p2,3,4,5 into
c2). The resulting fused producer/consumer terms are not fused into successive operations.
Overall, each box in Figure 5.2 represents a term that will be computed and stored to memory.

Throughout the transformation p1 is left as is, as its result is used by both c1 and p2. It
would be straightforward to change the implementation such that the work of p1 is duplicated
into both p2 and c1. Despite reducing memory traffic, this is not always advantageous, so
the current implementation is conservative and never duplicates work. Since Accelerate is a
restricted, deeply embedded language, we can compute accurate cost estimates and make an
informed decision, but this is left for future work. Moreover, this is an instance of a funda-

Section 5.2 Array fusion 93
p1

p1

p2 p3

p4

p5 p6 p7

c1

c2

c2p5p1

c1

p6 p7

p3p2

p4

c2p5p1

c1

p6 p7

p3p2

p4

Figure 5.2: The stages of Accelerate’s fusion algorithm. (1) Before fusion. (2) After produc-
er/producer fusion. (3) After producer/consumer fusion.

mental limitation with shortcut fusion techniques such as foldr/build [49] and stream [37]
fusion. Since shortcut fusion is a local transformation that depends on inlining, it is appli-
cable only to fusing operations which have a single use site. To implement fusion where an
array is efficiently consumed by multiple operations without work duplication would require
fundamental changes to the algorithm. Consumer/producer fusion of c1 into p4, or c2 into p6,
would also require substantial changes to the fusion implementation, and is only applicable
for map-like producer terms, as these producers do not require arbitrary array indexing of the
source array.

In order to implement the transformation, we require a representation that will facilitate
fusing and embedding producer terms into consumers. We do not wish to manipulate source
terms directly, as this would require a number of rewrite rules quadratic in the number of
operations that are to be fused. This was the problem with Wadler’s original deforestation
algorithm [134, 136]. The representation must also be sufficiently expressive to represent all
operations we want to fuse, which was a limitation of foldr/build fusion [49].

94 Optimising embedded array programs Chapter 5

5.2.3 Representing Producers

The basic idea behind the representation of producer arrays in Accelerate is well known: sim-
ply represent an array by its size and a function mapping array indices to their corresponding
values. This method has been used successfully to optimise purely functional array programs
in Repa [68], and has also been used by others [32].

The major benefit of the use of delayed arrays in Repa is that it offers by-default automatic
fusion. Moreover, this form of fusion does not require sophisticated compiler transformations
or for the two fusible terms to be statically juxtaposed — fusion is an inherent property of the
data representation. Automatic fusion sounds too good to be true, and indeed it is. There
are at least two reasons why it is not always beneficial to represent all array terms uniformly
as functions. The first issue is sharing. Consider the following:

let b = map f a
in mmMult b b

Every access to an element b will apply the (arbitrarily expensive) function f to the corre-
sponding element of a. It follows that these computations will be done at least twice, once
for each argument of mmMult, quite contrary to the programmer’s intent. Indeed, if mmMult
consumes its elements in a non-linear manner, accessing elements more than once, the com-
putation of f will be performed every time. Thus it is important to be able to represent
some terms as manifest arrays so that a delayed-by-default representation can not lead to an
arbitrary loss of sharing. This is a well known problem with Repa [76].

The other consideration is efficiency. Since we are targeting a massively parallel architec-
ture designed for performance, it is better to use more specific operations whenever possible.
An opaque indexing function is too general, conveying no information about the pattern in
which the underlying array is accessed, and hence provides no opportunities for optimisation.

Listing 5.3 shows the ways in which the fusion transformation represents intermediate ar-
rays. The fusion proceeds by recasting producer array computations in terms of a set of scalar
functions used to construct an element at each index, and fusing successive producers by com-
bining these scalar functions. The representation3 is parameterised by the recursive closure
of array computations acc and the array environment aenv, and has three constructors:

1. Done injects a manifest array into the type.

2. Yield defines a new array in terms of its shape and a function that maps indices to
elements.

3. Step encodes a special case of Yield, that defines a new array by applying an index
and value transformation to an argument array.

3cunc·ta·tion | k‘NGk’tāSH‘n kəŋk’teI�ən | (n) the action or an instance of delaying; tardy action.

Section 5.2 Array fusion 95

data Cunctation acc aenv a where
Done :: Arrays arrs −− (1)

⇒ Idx aenv arrs −− manifest array(s)
→ Cunctation acc aenv arrs

Yield :: (Shape sh, Elt e) −− (2)
⇒ PreExp acc aenv sh −− output shape
→ PreFun acc aenv (sh → e) −− compute an element at each index
→ Cunctation acc aenv (Array sh e)

Step :: (Shape sh, Shape sh', Elt a, Elt b) −− (3)
⇒ PreExp acc aenv sh' −− output shape
→ PreFun acc aenv (sh' → sh) −− backwards permutation into input array
→ PreFun acc aenv (a → b) −− function to apply to input value
→ Idx aenv (Array sh a) −− manifest input array
→ Cunctation acc aenv (Array sh' b)

Listing 5.3: Representation of fusible producer arrays

data Embed acc aenv a where
Embed :: Extend acc aenv aenv' −− additional bindings to bring into scope, to evaluate the…

→ Cunctation acc aenv' a −− …representation of (fused) producer terms
→ Embed acc aenv a

Listing 5.4: Representation of fused producer arrays

Note that the argument arrays to Done and Step are not expressed as terms in acc, the
type of collective array operations. Instead, requiring a de Bruijn index (Idx) into the array
environment ensures that the argument array is manifest. Thus the definition of Cunctation
is non-recursive in the type of array computations. This allows the representation to be
embedded within producer terms (§5.2.5) with the guarantee that an embedded scalar com-
putation will not invoke further parallel computations (§3.1.4).

In order to bring additional array terms into scope, which may be required for Done and
Step, we combine this representation of producer arrays with the method of Section 3.2.5
for collecting supplementary environment bindings. Listing 5.4 shows the complete data
structure used for representing producer terms in Accelerate. Note the types of the array
environments. The Embed type is expressed in relation to the type aenv, which represents
all let-bindings currently in scope at this point of the AST. The data constructor contains
an existentially typed aenv'. This existential is witnessed by the first argument Extend,
that contains any additional array terms collected during the fusion process (§3.2.5). The
delayed array representation in the second argument is expressed in terms of this extended
environment, so has access to any terms from the AST (aenv) as well as those additional
bindings introduced by Extend (aenv').

Why do we separate the auxiliary bindings from the representation of fused producers?
The constructors of Cunctation could carry this information, and then we would not require
this additional data structure. For example, the Yield constructor would then be defined as:

96 Optimising embedded array programs Chapter 5

Yield' :: (Shape sh, Elt e) −− Alternative definition (bad)
⇒ Extend acc aenv aenv' −− NEW: supplementary environment bindings
→ PreExp acc aenv' sh −−CHANGED: inner terms now defined w.r.t. aenv'
→ PreFun acc aenv' (sh → e)
→ Cunctation acc aenv (Array sh e)

To create a real AST node from the Embed representation, we need both the environment
bindings as well as the array description. However, analysis of how to fuse terms requires
only the array description. If the additional bindings are bundled as part of the array repre-
sentation, as in Yield', the existentially quantified environment type is only available after
we pattern match on the constructor. This is problematic because to inspect terms and do
things like function composition (§3.2.4), the types of the environments of the two terms must
be the same. Therefore, after we pattern match on the constructor we must sink (§3.2.5) the
second term into aenv'. Even worse, for terms in the delayed state the only way to do this
sinking is to first convert them into a real AST node and then back into the delayed state. If
for some reason we can not fuse into this representation — for example we do not meet the
requirements for the more restrictive Step — then this additional work is wasted.

Why can we not analyse terms with respect to the exposed environment type aenv? At
some point we will need to merge the extended environments. What would be the type of
this operation? We have no way to express this, even if the existential types are exposed.

cat :: Extend env env1 → Extend env env2 → Extend env ???

Because of the limited scope in which the existential type is available in the Yield' style
representation, we ultimately perform this process of converting terms and sinking into a
suitable type many times. If the extended environments are placed on the constructors of
the delayed representations, the complexity of the fusion algorithm for an AST of n nodes
scales as O(rn), where r is the number of different rules we have for combining delayed terms.
While the semantics of the algorithm are the same, for performance this separation is critical.

Finally, we convert the delayed representations into manifest data using the compute
function shown in Listing 5.5. It inspects the argument terms of the representation to identify
special cases, such as map and backpermute, as this may allow a backend to emit better code.
The helper functions match and isIdentity check for congruence of expressions. As discussed
in Section 3.2.1, we match on Just REFL to inject information on the positive case to both
the type and value level. For example, isIdentity checks whether a function corresponds to
the term λx.x, and in the positive case witnesses that its type must be a → a.

5.2.4 Producer/Producer fusion

The first phase of the fusion transformation is to merge sequences of producer functions. Con-
sider the canonical example of map/map fusion, where we would like to convert the operation
map f (map g xs) into the equivalent but more efficient representation of map (f . g) xs,

Section 5.2 Array fusion 97

compute :: Arrays arrs ⇒ Embed acc aenv arrs → PreOpenAcc acc aenv arrs
compute (Embed env cc) = bind env (compute' cc)

compute' :: Arrays arrs ⇒ Cunctation acc aenv arrs → PreOpenAcc acc aenv arrs
compute' cc = case simplify cc of
Done v → Avar v −− a manifest array
Yield sh f → Generate sh f −− array from indexing function
Step sh p f v −− special cases...
| Just REFL ← match sh (arrayShape v)
, Just REFL ← isIdentity p
, Just REFL ← isIdentity f → Avar v −− an unmodified manifest array

| Just REFL ← match sh (arrayShape v)
, Just REFL ← isIdentity p → Map f (avarIn v) −− linear indexing OK

| Just REFL ← isIdentity f → Backpermute sh p (avarIn v) −− pure index transform

| otherwise → Transform sh p f (avarIn v) −− index & value transform

Listing 5.5: Computing the delayed representation to a manifest array

mapD :: Elt b
⇒ PreFun acc aenv (a → b)
→ Cunctation acc aenv (Array sh a)
→ Cunctation acc aenv (Array sh b)

mapD f (step → Just (Step sh ix g v)) = Step sh ix (f `compose` g) v
mapD f (yield → Yield sh g) = Yield sh (f `compose` g)

Listing 5.6: Smart constructor for fusing the map operation

which only makes a single traversal over the array. While it would be relatively straightfor-
ward to traverse the AST and replace the map/map sequence with the combined expression,
manipulating the source terms directly in this manner requires a number of rewrite rules
quadratic in the number of combinators we wish to fuse. This approach does not scale.

Instead, producer/producer fusion is achieved by converting terms into the array represen-
tation discussed in Section 5.2.3, and merging sequences of these terms into a single operation.
Smart constructors for each producer manage the integration with predecessor terms. For
example, Listing 5.6 shows the smart constructor used to generate the fused version of map.

The smart constructor mapD uses two helper functions, step and yield, to expose the only
two interesting cases of the delayed representation for this operation, and compose (§3.2.4)
the input function f into the appropriate place in the constructor. Index transformation
functions such as backpermute proceed in the same manner. The helper functions step and
yield operate by converting the input Cunctation into the constructor of the same name:

step :: Cunctation acc aenv (Array sh e) → Maybe (Cunctation acc aenv (Array sh e))
step cc = case cc of
Yield{} → Nothing
Step{} → Just cc
Done v | ArraysRarray ← accType cc → Just $ Step (arrayShape v) identity identity v

98 Optimising embedded array programs Chapter 5

yield :: Cunctation acc aenv (Array sh e) → Cunctation acc aenv (Array sh e)
yield cc = case cc of
Yield{} → cc
Step sh p f v → Yield sh (f `compose` indexArray v `compose` p)
Done v | ArraysRarray ← accType cc → Yield (arrayShape v) (indexArray v)

A producer such as map can always be expressed as a function from indices to elements
in the style of Yield, but this is not the case for the more restrictive Step, which returns a
Maybe Cunctation. The latter case is used because we want to keep operations as specific as
possible to retain contextual information, rather than always converting into the most general
form of an indexing function. For the Done case in both instances, GHC can not infer that
the result type is a single Array, even though this is specified in the type signature, so we
must use the accType function to reify the Arrays class representation.

The only producer case that must be handled specially is that of zipWith, as this is the
only producer which consumes multiple arrays (see Listing 5.2). In contrast to, for example,
foldr/build, we are able to fuse the operation in both of the input arguments. The zipWith
smart constructor is shown in Listing 5.7. We note the following characteristics:

1. Because it is advantageous to express operations in the most specific way possible,
zipWith considers the special case of when the two input arrays derive from the same
manifest source data with the same indexing pattern.

2. The default behaviour is to convert both input arrays into functions from indices to
elements, and combine these into a single indexing function.

3. The function combine completes the task of drawing an element from each of the in-
put arrays and combining them with the binary function f, being sure to let-bind the
intermediate results along the way.

4. The first guard requires a type signature, otherwise the type variable e introduced by
the weakening step will “escape”, and can not be unified correctly. This new parameter
e represents for (1) the array element type, and at (2) the array index type.

The first phase of fusion can now be completed via bottom-up tree contraction of the
AST. Smart constructors for each of the producer functions are used to convert terms into the
intermediate representation, and adjacent producer/producer terms are merged. Listing 5.8
demonstrates the procedure.

1. Non-computation forms such as control flow and let bindings may also employ smart
constructors. We discuss fusion of let bindings in Section 5.2.6.

2. Array introduction forms convert their argument into the internal representation by
adding the term as manifest data into the extended environment. This also illustrates

Section 5.2 Array fusion 99

zipWithD :: (Shape sh, Elt a, Elt b, Elt c)
⇒ PreFun acc aenv (a → b → c)
→ Cunctation acc aenv (Array sh a)
→ Cunctation acc aenv (Array sh b)
→ Cunctation acc aenv (Array sh c)

zipWithD f cc1 cc0
| Just (Step sh1 p1 f1 v1) ← step cc1
, Just (Step sh0 p0 f0 v0) ← step cc0
, Just REFL ← match v1 v0
, Just REFL ← match p1 p0
= Step (sh1 `Intersect` sh0) p0 (combine f f1 f0) v0 −− (1)

| Yield sh1 f1 ← yield cc1
, Yield sh0 f0 ← yield cc0
= Yield (sh1 `Intersect` sh0) (combine f f1 f0) −− (2)
where

combine :: ∀ acc aenv a b c e. (Elt a, Elt b, Elt c)
⇒ PreFun acc aenv (a → b → c)
→ PreFun acc aenv (e → a)
→ PreFun acc aenv (e → b)
→ PreFun acc aenv (e → c)

combine c ixa ixb −− (3)
| Lam (Lam (Body c')) ← weakenFE SuccIdx c −− (4)

:: PreOpenFun acc ((),e) aenv (a→b→c)
, Lam (Body ixa') ← ixa
, Lam (Body ixb') ← ixb
= Lam $ Body $ Let ixa' $ Let (weakenE SuccIdx ixb') c'

Listing 5.7: Smart constructor for fusing the zipWith operation

why we require both Done and Step constructors in the delayed representation (List-
ing 5.3). It would be convenient to represent manifest data as a Step node with identity
transformation functions, but the type of Step is restricted to a single Array, whereas
Done is generalised to the Arrays class.

3. Producer terms such as map and zipWith are converted into the internal representation
(Listing 5.3) using their smart constructors. In order to do this, all terms must be de-
fined with respect to the same environment type. The helper function fuse encodes the
bottom-up traversal by first converting the argument array a into the Embed represen-
tation. The extended environment type and delayed representation are then passed to
the continuation function into, which sinks (§3.2.5) the argument f into the extended
environment type of the delayed representation, before applying the smart constructor
mapD (Listing 5.6). This results into a new delayed representation that can be further
fused into later terms. At the zipWith case fuse2 acts analogously, but must ensure
that the two input array terms are lowered into the same extended environment before
applying the smart constructor zipWithD (Listing 5.7).

4. Consumer operations such as fold force the operation to be evaluated to a manifest
array at this point in the program, by converting the Embed representation back into
AST terms using compute' (Listing 5.5) and pushing the result onto the extended

100 Optimising embedded array programs Chapter 5

embedPreAcc
:: ∀ acc aenv arrs. Arrays arrs
⇒ PreOpenAcc acc aenv arrs
→ Embed acc aenv arrs

embedPreAcc pacc =
case pacc of

Alet bnd body → aletD bnd body −− (1)
Use arrs → done (Use arrs) −− (2)

−− Producers
Map f a → fuse (into mapD (cvtF f)) a −− (3)
ZipWith f a b → fuse2 (into zipWithD (cvtF f)) a b
· · ·

−− Consumers
Fold f z a → embed (into2 Fold (cvtF f) (cvtE z)) a −− (4)
· · ·

where
done :: Arrays a ⇒ PreOpenAcc acc aenv a → Embed acc aenv a
done (Avar v) = Embed BaseEnv (Done v)
done pacc = Embed (BaseEnv `PushEnv` pacc) (Done ZeroIdx)

into :: Sink f ⇒ (f env' a → b) → f env a → Extend acc env env' → b
into op a env = op (sink env a)

fuse :: Arrays as
⇒ (∀ aenv'. Extend acc aenv aenv'

→ Cunctation acc aenv' as
→ Cunctation acc aenv' bs)

→ acc aenv as
→ Embed acc aenv bs

fuse op (embedAcc → Embed env cc) = Embed env (op env cc)

embed :: (Arrays as, Arrays bs)
⇒ (∀ aenv'. Extend acc aenv aenv'

→ acc aenv' as
→ PreOpenAcc acc aenv' bs)

→ acc aenv as
→ Embed acc aenv bs

embed op (embedAcc → Embed env cc)
= Embed (env `PushEnv` op env (injectAcc (compute' cc))) (Done ZeroIdx)

injectAcc :: PreOpenAcc acc aenv a → acc aenv a
embedAcc :: Arrays arrs ⇒ acc aenv arrs → Embed acc aenv arrs

Listing 5.8: Producer fusion via bottom-up contraction of the AST

Section 5.2 Array fusion 101

data DelayedOpenAcc aenv a where
Manifest :: PreOpenAcc DelayedOpenAcc aenv a

→ DelayedOpenAcc aenv a

Delayed :: (Shape sh, Elt e) ⇒
{ extentD :: PreExp DelayedOpenAcc aenv sh
, indexD :: PreFun DelayedOpenAcc aenv (sh → e)
, linearIndexD :: PreFun DelayedOpenAcc aenv (Int → e)
} → DelayedOpenAcc aenv (Array sh e)

Listing 5.9: Representation of delayed arrays

environment. Consumers fusion will be treated in Section 5.2.5, although note that the
producer is placed adjacent to the term that consumes it.

The result of this process is an AST where all adjacent producer/producer operations
have been combined into a single producer. The next step of the fusion pipeline is to fuse
producers into consumers.

5.2.5 Producer/Consumer fusion

Now that we have a story for producer/producer fusion, we discuss how to deal with con-
sumers. Recall the classic array fusion example that is vector dot product:

dotp :: Acc (Vector Float) → Acc (Vector Float) → Acc (Scalar Float)
dotp xs ys = A.fold (+) 0 −− sum result of…

$ A.zipWith (*) xs ys −− …element-wise multiplying inputs

This consists of two collective operations: the first multiplies values from the two input arrays
element-wise, and the second sums this result. The fusion system should translate this into a
single collective operation, in much the same way as a human would write if working directly
in a low-level language such as C or CUDA.

For the dot product example, the delayed producer is equivalent to the scalar function
λix → (xs!ix) * (ys!ix). This function must be embedded directly into the implementa-
tion for fold so that the values are generated online, without an intermediate array. However,
these two steps happen at different phases of the compilation pipeline: producers are fused
using smart constructors, as described in the previous section, but producers are only finally
embedded into consumers during code generation (§4.1).

To work around this stage mismatch, the second phase of the fusion transformation anno-
tates the program AST (see Section 3.1.8) with the representation shown in Listing 5.9. This
encodes the information as to which nodes should be computed to manifest arrays, and which
should be embedded into their consumers. During code generation, the code for the embed-
ded producer terms, such as indexD, is generated and integrated directly into the skeleton
for the consumer (§4.2). The end result is that no intermediate array needs to be created.

102 Optimising embedded array programs Chapter 5

convertOpenAcc
:: Arrays arrs
⇒ OpenAcc aenv arrs
→ DelayedOpenAcc aenv arrs

convertOpenAcc = manifest . computeOpenAcc . embedOpenAcc −− (1)
where

manifest :: OpenAcc aenv a → DelayedOpenAcc aenv a
manifest (OpenAcc pacc) =
Manifest $ case pacc of −− (2)

Use arr → Use arr
Alet a b → alet (manifest a) (manifest b) −− (3)
Map f a → Map (cvtF f) (delayed a)
Fold f z a → Fold (cvtF f) (cvtE z) (delayed a) −− (4)
Stencil f b a → Stencil (cvtF f) b (manifest a) −− (5)
· · ·

delayed :: (Shape sh, Elt e)
⇒ OpenAcc aenv (Array sh e)
→ DelayedOpenAcc aenv (Array sh e)

delayed (embedOpenAcc fuseAcc → Embed BaseEnv cc) = −− (6)
case cc of

Done v → Delayed (arrayShape v) (indexArray v) (linearIndex v)
· · ·

cvtF :: OpenFun env aenv f → DelayedOpenFun env aenv f
cvtE :: OpenExp env aenv t → DelayedOpenExp env aenv t

Listing 5.10: Consumer fusion via top-down annotation of the AST

The second phase of fusion is implemented as a top-down translation of the Embed rep-
resentation from the first phase (§5.2.4) into an AST that uses DelayedOpenAcc to make
the representation of fused producer/consumer pairs explicit. This procedure, shown in List-
ing 5.10, has the following points of note:

1. The fusion pipeline proceeds in two phases. A bottom-up traversal that merges ad-
jacent producer/producer pairs, which is implemented by the function embedOpenAcc,
described in Section 5.2.4. The second phase is the top-down traversal which annotates
the AST as to which nodes should be computed to manifest data and which should be
embedded into their consumers. This phase is implemented by the function manifest.

2. For the most part, the function manifest simply wraps each node of the AST in the
Manifest constructor, indicating that this term should be computed to memory.

3. Similarly, let bindings compute both the binding and body to manifest arrays. The
smart constructor alet flattens needless let bindings of the form let var = x in var
to x. This form is common, as the delayed array constructors always refer to manifest
data via de Bruijn indices (see Listing 5.3), meaning that all manifest terms will be let
bound regardless of the number of use sites.

4. A consumer such as fold specifies that its array valued argument should be delayed, so
the representation of producer terms is used to annotate the AST node directly. Code

Section 5.2 Array fusion 103

generation will later embed this functional representation directly into the consumer
skeleton, thereby completing the producer/consumer fusion process (§4.2.1).

5. In contrast, stencil operations (§2.4.5) — where the computation of each element has
access to elements within a local neighbourhood — first fully computes the argument
to a manifest array in order to avoid duplicating the work of the delayed representation
at each array access. The transformation thus makes it clear for which operations the
argument arrays will be delayed, and for which operations the arguments are manifest.

6. The function delayed generates the delayed array representation of how to produce each
array element that can be directly embedded into consumers. The function takes care
to recover optimisation opportunities such as linear indexing of the underlying array
data. Note that it is safe to match on BaseEnv — indicating no additional terms are
being brought into scope — because the first phase always places producers adjacent to
the term that will consume it; see the definition of embed in Listing 5.8.

Overall, adjacent producer/producer pairs have been merged, and consumers can inte-
grate directly into the skeleton the code for on-the-fly producing each element so that no
intermediate array needs to be created.

5.2.6 Exploiting all opportunities for fusion

The approach to array fusion employed by Accelerate is similar to that used by Repa [68,
75, 76], although the idea of representing arrays as functions is well known [44, 52]. It was
discovered that one of the most immediately pressing problems with delayed arrays in Repa
was that it did not preserve sharing. In Repa, the conversion between delayed and manifest
arrays is done manually, where by default shared expressions will be recomputed rather than
stored. Depending on the algorithm, such recomputation can be beneficial, but excessive
recomputation quickly ruins performance.

However, since Accelerate has explicit sharing information encoded in the term tree as
let bindings, we can avoid the problem of unrestrained inlining that can be a problem when
using Repa. While we want to be careful about fusing shared array computations to avoid
duplicating work, scalar Accelerate computations that manipulate array shapes, as opposed
to the bulk array data, can lead to terms that employ sharing but can never duplicate work.
Such terms are common in Accelerate code and so it is important that they are treated
specially so that they do not inhibit fusion.

let-elimination

Consider the following example that first reverses a vector with backpermute, and then maps
a function f over the result. Being a function of two producer term (see Listing 5.2) we would
hope these are fused into a single operation:

104 Optimising embedded array programs Chapter 5

reverseMap f xs
= map f
$ backpermute (shape xs) (ilift1 $ λi → length xs − i − 1) xs

Unfortunately, sharing recovery, using the algorithm from Section 5.1, causes a problem.
The variable xs is used three times in the arguments to backpermute, so sharing recovery
introduces a let binding at the lowest common meet point for all uses of the array. This places
it between the map and backpermute operations:

reverseMap f xs
= map f
$ let v = xs

in backpermute (shape v) (λi → length v − i − 1) v

The binding, although trivial, prevents fusion of the two producer terms. Moreover, it does
so unnecessarily. The argument array is used three times: twice to access shape information,
but only once to access the array data — in the final argument to backpermute.

Fortunately there is a simple workaround. Since the delayed array constructors repre-
senting producer arrays, Step and Yield (Listing 5.3), carry the shape of the arrays they
represent as part of the constructor, we can disregard all uses of the array that only access
shape information. For this example, that leaves us with just a single reference to the array’s
payload. That single reference allows us remove the unnecessary let-binding and re-enable
fusion.

Let-elimination can also be used to introduce work duplication, which may be beneficial
if we can estimate that the cost of the recomputation is less than the cost of completely
evaluating the array to memory and subsequently retrieving the values. While Accelerate is
currently conservative and never introduces work duplication, since we have the entire term
tree available, we could compute an accurate cost model and make an informed decision. Such
analysis is left to future work.

let-floating

Similarly, the semantics of our program do not change if we float let bindings of manifest data
across producer chains. This helps to expose further opportunities for producer/producer
fusion. For example, we can allow the binding of xs to floating above the map so that the two
producers can be fused:

map g $ let xs = use (Array · · ·)
in zipWith f xs xs

While floating let bindings opens up the potential for further optimisations, we must be
careful to not change the scope of let bindings, as that would increase the lifetime of bound
variables, and hence increase live memory usage.

Section 5.2 Array fusion 105

Both these tasks, let-floating and let-elimination, are handled by a smart constructor
for let bindings during the first fusion phase that contracts the AST and merges adjacent
producer/producer pairs (§5.2.4). The smart constructor for let bindings must consider several
cases, as well as maintain type correctness and the complexity of the algorithm, by ensuring
each term is inspected exactly once. The code is shown in Listing 5.11.

1. If the binding is a manifest array, immediately inline the variable referring to the bound
expression into the body, instead of adding the binding to the environment and thereby
creating an indirection that must be later eliminated. This effectively floats let-bound
terms across producer-producer chains.

2. Note that on entry to the aletD smart constructor, the binding term is converted to
the internal representation (via the view pattern), but the body expression is left as is.
This is important, as the inlining process in (1) can only be applied to concrete AST
terms, not to the delayed Embed representation. Only if the binding is not a manifest
term do we convert the body to the delayed representation in order to analyse it. This
ensures the body is only traversed once, maintaining complexity of the algorithm. The
subsequent cases, where we wish to analyse both the binding and body expressions in
delayed form, is handled by the auxiliary function aletD'.

3. The first case checks whether it is possible to eliminate the let binding at all, using the
continuation elimAcc. The implementation of this function is shown in Listing 5.12.
Note that the analysis must be applied to the binding cc1 plus its local environment
env1, otherwise we can be left with dead terms that are not subsequently eliminated.

If the let binding will not be eliminated, it is added to the extended environment,
indicating that it is to be evaluated to a manifest term. Note that it is important
to add the term to a new environment. Otherwise, nested let bindings are effectively
flattened, resulting in terms required for the bound term being lifted out into the same
scope as the body. That is, if we don’t place the binding into a fresh environment, we
get terms such as:

let a0 = ⟨ terms for binding ⟩ in
let bnd = ⟨ bound term ⟩ in
⟨ body term ⟩

Rather than the following, where the scope of a0 is restricted to the evaluation of the
bound term only:

let bnd =
let a0 = ⟨ terms for binding ⟩
in ⟨ bound term ⟩

in ⟨ body term ⟩

106 Optimising embedded array programs Chapter 5

type ElimAcc acc = ∀ aenv s t. acc aenv s → acc (aenv,s) t → Bool

aletD :: (Arrays arrs, Arrays brrs)
⇒ ElimAcc acc
→ acc aenv arrs
→ acc (aenv,arrs) brrs
→ Embed acc aenv brrs

aletD elimAcc (embedAcc → Embed env1 cc1) acc0
| Done v1 ← cc1 −− (1)
, Embed env0 cc0 ← embedAcc $ rebuildAcc (subAtop (Avar v1) . sink1 env1) acc0
= Embed (env1 `append` env0) cc0

| otherwise −− (2)
= aletD' elimAcc (Embed env1 cc1) (embedAcc acc0)

aletD' :: ∀ acc aenv arrs brrs. (Arrays arrs, Arrays brrs)
⇒ ElimAcc acc
→ Embed acc aenv arrs
→ Embed acc (aenv, arrs) brrs
→ Embed acc aenv brrs

aletD' elimAcc (Embed env1 cc1) (Embed env0 cc0)
| acc1 ← compute (Embed env1 cc1) −− (3)
, False ← elimAcc (inject acc1) acc0
= Embed (BaseEnv `PushEnv` acc1 `append` env0) cc0

| acc0' ← sink1 env1 acc0 −− (4)
= case cc1 of

Step{} → eliminate env1 cc1 acc0'
Yield{} → eliminate env1 cc1 acc0'

where
acc0 :: acc (aenv, arrs) brrs
acc0 = computeAcc (Embed env0 cc0)

eliminate :: ∀ aenv aenv' sh e brrs. (Shape sh, Elt e, Arrays brrs) −− (5)
⇒ Extend acc aenv aenv'
→ Cunctation acc aenv' (Array sh e)
→ acc (aenv', Array sh e) brrs
→ Embed acc aenv brrs

eliminate env1 cc1 body
| Done v1 ← cc1 = elim (arrayShape v1) (indexArray v1)
| Step sh1 p1 f1 v1 ← cc1 = elim sh1 (f1 `compose` indexArray v1 `compose` p1)
| Yield sh1 f1 ← cc1 = elim sh1 f1
where

bnd :: PreOpenAcc acc aenv' (Array sh e)
bnd = compute' cc1

elim :: PreExp acc aenv' sh → PreFun acc aenv' (sh → e) → Embed acc aenv brrs
elim sh1 f1
| sh1' ← weakenEA rebuildAcc SuccIdx sh1
, f1' ← weakenFA rebuildAcc SuccIdx f1
, Embed env0' cc0' ← embedAcc −− (8)

$ rebuildAcc (subAtop bnd) −− (7)
$ replaceAcc sh1' f1' ZeroIdx body −− (6)

= Embed (env1 `append` env0') cc0'

replaceAcc :: ∀ aenv sh e a. (Shape sh, Elt e)
⇒ PreExp acc aenv sh → PreFun acc aenv (sh → e) → Idx aenv (Array sh e)
→ acc aenv a
→ acc aenv a

subAtop :: Arrays t ⇒ PreOpenAcc acc aenv s → Idx (aenv, s) t → PreOpenAcc acc aenv t
sink1 :: Sink f ⇒ Extend acc env env' → f (env, s) t → f (env', s) t

Listing 5.11: Smart constructor for let bindings

Section 5.3 Array fusion 107

Removing the nested structure of let bindings increases the scope of bound terms, and
hence has the side effect of increasing the maximum memory usage.

4. If the let binding can be eliminated, the delayed representation for the binding is passed
to the auxiliary function eliminate. This separation is once again important to avoid
excessive sinking and delaying of terms, as well as to expose the (existential) type of
the extended environment. Pattern matching on cc1 is necessary to convince the type
checker that the type arrs is actually restricted to a single Array.

5. To eliminate the let binding, all uses of the array variable referring to the bound ex-
pression must be replaced with an equivalent scalar expression that instead generates
the array shape or data element directly. The appropriate replacements are determined
by inspecting the delayed representation of the bound term cc1.

6. The first step of eliminating the let binding is to traverse the body expression and replace
uses of the bound array through the array environment with the provided scalar shape
and element generations functions instead. The array environment of the replacement
terms sh1' and f1' was first weakened to open a new array variable, representing the
bound array at index zero.

7. The bound term is then substituted directly into all occurrences of the top most index.
Since all such occurrences were replaced with scalar expression fragments in the previous
step, this effectively just shrinks the array environment in a type-preserving manner.

8. The result is converted into the delayed representation, effectively re-traversing the term.
Since eliminating the let binding can open up further opportunities for optimisation,
this will enable those optimisations.

In order to determine when let bindings should be eliminated, the smart constructor calls
the argument function elimAcc. The current implementation is shown in Listing 5.12.

1. Although duplicating work is sometimes beneficial in order to reduce memory traffic in
exchange for increased computation, the current version of Accelerate is conservative
and never duplicates work. The bound expression is only eliminated when there is a
single use of the array data component of the bound array. The function count traverses
the term and returns the number of uses of the data component at the bound variable,
while ignoring uses of the array shape.

2. As a special case, the function looks for the definition of unzip applied to manifest array
data, which is defined by the Accelerate prelude as a map projecting out the appropriate
element of the tuple.

It is left to future work to implement a cost model analysis or similar, that can determine
when it is beneficial to introduce work duplication, and to identify other special cases.

108 Optimising embedded array programs Chapter 5

elimOpenAcc :: ElimAcc OpenAcc
elimOpenAcc bnd body
| OpenAcc (Map f a) ← bnd −− (2)
, OpenAcc (Avar _) ← a
, Lam (Body (Prj _ _)) ← f
= True

| otherwise −− (1)
= count ZeroIdx body ≤ lIMIT
where

lIMIT = 1

count :: Idx aenv s → OpenAcc aenv t → Int
count idx (OpenAcc pacc) = usesOfPreAcc count idx pacc

Listing 5.12: Determining when a let binding should be eliminated

5.3 Simplification

Functional language compilers often perform optimisations. To avoid speculative optimisa-
tions that can blow up code size, we only use optimisations guaranteed to make the program
smaller: these include dead-variable elimination, constant folding, and a restricted β-reduction
rule that only inlines functions which are called once. This leads to a simplification system
guaranteed not to lead to code blowup or non-terminating compilation.

5.3.1 Shrinking

The shrinking reduction arises as a restriction of β-reduction to cases where the bound variable
is used zero (dead-code elimination) or one (linear inlining) times. By simplifying terms, the
shrinking reduction exposes opportunities for further optimisation such as more aggressive
inlining, constant folding and common sub-expression elimination.

The difficulty with implementing the shrinking reduction is that dead-code elimination
at one redex can expose further shrinking reductions at completely different portions of the
term, so attempts at writing a straightforward compositional algorithm fail. The current
implementation uses a naïve algorithm that re-traverses the whole reduct whenever a redex
is reduced, although more efficient imperative algorithms exist [9, 16, 69].

The implementation of the shrink function is shown in Listing 5.13. The only interesting
case is that of a β-redex: when the number of uses is less than or equal to one, the bound term
is inlined directly into the body. As Accelerate does not have separate forms for let bindings
and lambda abstractions, this serves to implement both inlining and dead code elimination.

5.3.2 Common subexpression elimination

Common subexpression elimination finds computations that are performed at least twice on
a given execution path and eliminates the second and later occurrences, replacing them with

Section 5.3 Simplification 109

usesOf :: Idx env s → Term env t → Int
usesOf idx (Var this)

| Just REFL ← match this idx = 1
| otherwise = 0

usesOf idx (Let bnd body) = usesOf idx bnd + usesOf (SuccIdx idx) body
usesOf · · ·

shrink :: Term env t → Term env t
shrink (Let bnd body)

| usesOf ZeroIdx bnd' ≤ 1 = shrink (inline body' bnd')
| otherwise = Let bnd' body'
where

bnd' = shrink bnd
body' = shrink body

shrink · · ·

Listing 5.13: The shrinking reduction

uses of saved values. The current implementation performs a simplified version of common
subexpression elimination, where we look for expressions of the form:

⟨ common subexpression elimination ⟩
let x = e1
in [x/e1]e2

and replace all occurrences of e1 in e2 with x. Thus, this implementation can only eliminate
subexpressions where the common term is already let-bound. This might seem like a severe
limitation, however the focus is to eliminate those bindings introduced during the array fusion
optimisation, where we always introduce let-bindings for intermediate values when composing
terms, rather than eliminating redundancy from the input user program, which is instead
addressed via sharing observation (§5.1).

While it may seem that common subexpression elimination is always worthwhile, as it
reduces the number of arithmetic operations performed, this is not necessarily advantageous.
The simplest case in which it may not be desirable is if it causes a register to be occupied for
a long time in order to hold the shared expression’s value, which hence reduces the number
of registers available for other uses. Even worse is if that value has to be spilled to memory
because there are insufficient registers available, or if the number of active threads is too
low to be able to hide global memory access latency (§4.6.3). Investigation of this tricky
target-dependent issue is left for future work.

5.3.3 Constant folding

Constant-expression evaluation, or constant folding, refers to the evaluation at compile time of
scalar expressions whose operands are known to be constant. Essentially, constant-expression
evaluation involves determining that all the operands in an expression are constant valued
and performing the evaluation of the expression at compile time, replacing the expression by
this result.

110 Optimising embedded array programs Chapter 5

The applicability of the transformation depends on the type of the expression under
consideration. For Boolean values, the optimisation is always applicable. For integers, it
is almost always applicable, with the exceptions being cases that would produce run-time
exceptions if they were executed, such as division by zero and underflow or overflow. For
floating-point values, the situation is even more complicated; the compiler’s floating point
arithmetic must match that of the processor being compiled for, otherwise floating-point
operations may produce different results. Furthermore, the IEEE-754 standard specifies many
types of exceptions and exceptional values — including infinities, NaNs and denormalised
values — all of which should be taken into account.

Constant Folding

The current implementation performs constant folding of scalar expressions for all primitive
functions and all element types. No explicit checks for underflow or overflow are made, nor
for invalid or exceptional values. For example, the following rewrite is always applied:

⟨ constant folding ⟩
PrimAdd (⟨elided type info⟩)
`PrimApp`
Tuple (NilTup `SnocTup` Const x `SnocTup` Const y)

7→
Const (x+y)

The attentive reader will note that it is straightforward to choose a positive non-zero floating-
point value eps such that eps + 1.0 > 1.0 is False. Issues arising from simplification of
floating-point expressions are currently ignored, but this is not so outrageous as it would be
for a traditional offline compiler: since Accelerate programs are just-in-time compiled, any
such issues still occur only at program runtime. The only distinction is from which phase of
program execution the problem manifests, not that it does.

Constant Propagation

The effectiveness of constant folding can be increased by combining it with other data-flow op-
timisations, particularly constant propagation. When determining whether the arguments to
a primitive function application are constants, we consider let-bound constants and constant-
valued tuple components in addition to literal constants.

Algebraic Simplification

Algebraic simplifications use algebraic properties of operators, or particular operator/operand
combinations to simplify expressions. The most obvious algebraic simplifications involve
combining a binary operator with an operand that is the algebraic identity of that operator,
or with an operand that always yields a constant, independent of the other value of the
operand. For example, for a term x the following are always true:

Section 5.4 Simplification 111

⟨ algebraic simplification ⟩
x + 0 = 0 + x = x − 0 = x
0 − x = −x
x * 1 = 1 * x = x / 1 = x
x * 0 = 0 * x = 0

Similarly, there are simplifications that apply to unary operators and combinations of unary
and binary operators. Some operations can also be viewed as strength reductions, that is,
replacing an operator by one that is faster to compute, such as:

⟨ strength reduction ⟩
x ↑ 2 = x * x
2 * x = x + x

Likewise, multiplications by small constants can frequently be computed faster by sequences
of shifts and adds and/or subtractions. These techniques are often more effective if applied
during code generation rather than optimisation, so strength reductions are not currently
applied.

Algebraic Reassociation

Reassociation refers to using specific algebraic properties — namely associativity, commuta-
tivity and distributivity — to divide an expression into parts that are constant and parts
that are variable. This is particularly relevant when only one operand of a binary operator
is identified as being constant valued. For example, the expression x + 1 + 2 would only be
simplified if the second addition occurred first. For the case of commutative binary opera-
tors where only one operand is constant valued, the term is rewritten so that the constant
expression is the first operand. The previous term would then be rewritten as:

⟨ algebraic reassociation ⟩
x + 1 + 2 7→ 1 + x + 2

7→ 1 + 2 + x
7→ 3 + x

Summary

Constant folding and algebraic simplifications are applied to scalar and array terms. The
list of algebraic simplifications presented here and currently implemented is not necessarily
exhaustive, and adding additional simplifications might be eased through the use of a rewrite
rule system expressed in terms of the source language, rather than by direct manipulation
of de Bruijn terms. Furthermore, it may be important to assess the validity of constant
folding based on the type of the expression, particularly for floating point terms. Both these
concerns are left for future work. An example of the current implementation of constant
folding is shown in Listing 5.14.

112 Optimising embedded array programs Chapter 5

f :: Exp Float → Exp Float
f x = let a = lift (constant 30, x)

b = 9 − fst a / 5
c = b * b * 4
d = c >* pi + 10 ? (c − 15, x)

in x * d * (60 / fst a)
7→
42.0 * x

Listing 5.14: Example of constant expression evaluation

5.4 Related work

The desire to program in a functional style while still achieving the performance level of an
imperative language has been around for as long as functional programming itself, receiving
plenty of attention in this context [37, 49, 60, 91, 112, 130, 135, 138]. While most prior work
focuses on removing intermediate lists, some methods apply to arrays [27, 32, 51, 68]. This
section briefly summarises some of the related work in this area.

5.4.1 Shortcut fusion

Most practically successful fusions systems are shortcut fusion methods that rely on local
program transformations, and are implemented as simple but specific rewrite rules combined
with general purpose program transformations. The fusion system described in this work and
implemented in Accelerate is in this vein.

foldr/build fusion [47, 49] implements library operations out of two basic functions:
build constructs a list while foldr consumes it, and a single rewrite rule suffices to remove
intermediate structures. However, not all operations can be expressed in terms of these
two operations, and the transformation does not handle functions with accumulators or that
consume multiple inputs.

Stream fusion [37] addresses the shortcomings of foldr/build fusion, while remaining
simple and useful in practice. Operations in the library are written in terms of the Stream
data type, which consists of some abstract state and a stepper function that advances the
stream to the next state. A single rule eliminates matching pairs of constructor and destructor.

Shortcut fusion systems typically only function when there is a single use site of the data
structure. Work in the intersection of data flow languages and array fusion has yielded systems
that do not have this restriction. Tupling transformations [51, 60] can fuse a restricted form
of branching data flow, where two results are computed by directly traversing the same input
structure. More recent work was able to fuse programs in a restricted data flow language into
a sequence of loops, where each loop can each produce multiple arrays or compute multiple
values as output [77, 111].

Section 5.4 Related work 113

5.4.2 Loop fusion in imperative languages

In contrast, loop fusion methods used in imperative languages merge multiple loop nests, typ-
ically using loop dependence graphs [137] to determine whether fusion is legal and beneficial.
When a producer and consumer loop are merged, array contraction [115] can then remove or
reduce the size of the intermediate arrays.

Most recent work in imperative languages focuses on the polyhedral model, an algebraic
representation of imperative loop nests and the transformations on them, including fusion
transformations. Polyhedral systems are able to express all possible distinct loop transfor-
mations where the array indices, conditionals, and loop bounds are affine functions of the
surrounding loop indices [90, 107]. Recent work extends the polyhedral model to support
arbitrary indexing [133], as well as conditional control flow that is predicated on arbitrary,
non-affine functions of the loop indices [15]. However, the indices used to write into the
destination array must still be computed with affine functions.

These systems require fusion-specific compiler support and more global reasoning than
shortcut fusion techniques.

5.4.3 Fusion in a parallel context

Repa [68] is a Haskell library for parallel array programming on shared-memory multicore
machines. Repa uses a split representation of arrays as either delayed or manifest, on which
the DelayedOpenAcc type is based (§5.2). Representing arrays as functions avoids creating
unnecessary intermediate structures, rather than relying on a subsequent fusion transfor-
mation to remove them. With Repa, the conversion between array representations is done
manually, where by default subexpressions are recomputed rather than stored. In Accelerate,
the conversion is automatic and conservative, so that shared scalar and array subexpressions
are never recomputed.

Obsidian [128] is an EDSL in Haskell for GPGPU programming, where more details of
the GPU hardware are exposed to the programmer. Recent versions of Obsidian [32, 127]
implement Repa-style delayed pull arrays as well as push arrays. Whereas a pull array
represents a general producer, a push array represents a general consumer. Push arrays
allow intermediate programs to be written in continuation passing style (CPS), and help
to compile and fuse append-like operations. Baracuda [72] is another Haskell EDSL that
produces CUDA kernels but is intended to be used offline. The paper mentions a fusion
system that appears to be based on pull arrays, but the mechanism is not discussed in detail.

Delite/LMS [112] is a parallelisation framework for DSLs in Scala that uses library-based
multi-pass staging to specify complex optimisations in a modular manner. Delite supports
loop fusion using rewrite rules on the graph-based intermediate language. Similar to Acceler-
ate, Delite/LMS express all operations in terms of a small set of combinators (loop generators)
and applies fusion rules to that representation. In contrast to our work, users are responsible

114 Optimising embedded array programs Chapter 5

for terminating the fusion process to avoid unrestrained inlining and code explosion, whereas
in Accelerate this is automatic. OptiML [124], the primary embodiment of a Delite/LMS
based DSL, demonstrates good performance in its target domain of machine learning appli-
cations.

Nesl/GPU [17] compiles NESL code to CUDA. Nesl/GPU performs map/map fusion, but
can not fuse any other operations. NOVA [35] is a high-level lisp-like functional language and
compiler for nested data-parallel array operations. It has a fusion system based on rewrite
rules that combines common patterns such as map/map and map/fold.

Sato and Iwasaki [117] describe a C++ skeleton-based library for GPGPU programming
that additionally includes a source-to-source fusion mechanism based on list homomorphisms.
SkeTo [84] is a C++ library that provides parallel skeletons for CPUs. SkeTo’s use of C++
templates provides a fusion system similar to delayed arrays, which would be equivalently
implemented using CUDA templates. In contrast, the popular Thrust [59] library of C++
templates requires users to fuse operations manually through the construction of iterators.

Paraiso [96] is a Haskell EDSL for solving systems of partial differential equations (PDEs),
such as hydrodynamics equations. It features an automated tuning framework that will search
for faster implementations of the program, guided by user annotations.

5.5 Discussion

This chapter has detailed our approach to optimising programs written in Accelerate, a lan-
guage of parallel array operations suitable for execution on bulk-parallel SIMD architectures
such as GPUs and multicore CPUs. Our previous work identified sharing and array fusion
as the key bottlenecks to achieving high performance. This chapter discussed our novel ap-
proaches that tackle these problems. While we motivate our approaches in the context of
Accelerate, both methods are more widely applicable. In particular, our sharing recovery
algorithm applies to any embedded language based on the typed lambda calculus, and our
array fusion optimisation applies to any dynamic compiler targeting SIMD hardware.

The set of optimisations that have been described in this chapter can be seen as a set of
term rewriting rules. We would like this set of transformations to be:

• Correct: The transformed code retains the same semantics as the original code.

• Improving efficiency: The transformed code should require less time and/or fewer re-
sources to execute than the original. We address this through a series of benchmarks
in chapter 6.

In addition, it would be of significant practical advantage if the transformations were:

• Confluent: When more than one transformation is applicable to a given term, applying
the transformations in any ordering should yield the same result. This is important

Section 5.5 Discussion 115

to ensure that opportunities to apply transformations are not lost, or worse code is
generated, due to the choice of applying one transformation before another.

• Terminating: We reach a point when no transformation is applicable so the simplifi-
cation process stops. One must be careful that one transformation [sequence] can not
generate terms that can be transformed back to the original; that no transformation
undoes the work of another.

5.5.1 Correctness

Fusion systems such as foldr/build [49] and the system presented here, work by eliminating
intermediate data structures. Since these transformations are performed automatically by
the compiler, we would like to be sure that the left and right hand sides of the rewrite are
equivalences. In particular, we are concerned as to whether:

• A safely terminating program can be transformed into a failing one.

• A safely terminating program can be transformed into another safely terminating pro-
gram that gives a different value as the result.

For foldr/build fusion applied to regular Haskell lists, it is possible to distinguish cases
where the two sides of the transformation are not equivalent. Breaking semantic equivalence
for foldr/build requires the use of the special operator seq, which evaluates its first argument
to head normal form.4 We avoid this issue because the Accelerate language itself is strict:
every term in the language always evaluates to a value. Thus an operator to force evaluation
is unnecessary, and we can not distinguish fused and unfused programs in this way.

The Accelerate language does not have an explicit term to represent exceptional values.
However, it is possible to compute undefined values, such as division by zero. Consider the
following program:

xs :: Acc (Vector Float)
xs = map (λx → 131.95 / x) −− [42, ∞, ∞, …]

$ generate (constant (Z:.10)) −− [3.14159, 0, 0, …]
(λix → let i = unindex1 ix in i ==* 0 ? (π, 0))

Evaluating this program, the second and subsequent entries in the array evaluate to infinity,
as the program attempts to divide by zero. However, if we were to use this term in the
following program that extracts only the first value:

unit (xs ! constant (Z:.0)) 7→ unit 42

4Recall that Haskell has non-strict evaluation semantics. This means, for example, that it is possible to
evaluate the length of the following list, even though the second list element raises an error, because the
individual list elements are never demanded: length [1, error "boom!", 3] 7→ 3. However, if we were to
first apply seq to each list element in order to demand its evaluation, then the error will be raised, and our
program will fail.

116 Optimising embedded array programs Chapter 5

The program is fused into a single operation that no longer performs the division by zero. If
we classify invalid arithmetic as a kind of program failure, then the fusion system presented
in this chapter has just transformed a failing program into a safely terminating program,
because the intermediate states that performed the invalid operations have been eliminated.
It is left to future work to provide a formal proof that the converse can not happen.

5.5.2 Confluence and termination

The array fusion transformation (§5.2) is designed to be a single-pass algorithm that specifies
only a single rewrite to be applied at each node. Thus, the transformation does not need to
select from a set of possible rewrites to apply or the order in which to apply them, based on
heuristics or otherwise, so the same code is always generated. Since the delayed representation
of producers is non-recursive (Listing 5.3), referencing input arrays via environment indices
rather than as general terms, a subsequent shrinking pass (§5.3.1) is not required to eliminate
or combine the uses of bound variables. Hence, it is not necessary to iterate the fusion and
shrinking steps, so that shrinking can expose all opportunities for fusion.

Informally, then, we are confident that the fusion transformation is both confluent and
terminating. Furthermore, since we fuse programs by rewriting typed de Bruijn terms in a
type preserving manner, we are confident that each individual rewrite is correct, since the
type information amounts to a partial proof of correctness checked by the type checker.

5.5.3 Error tests eliminated

Collective operations in Accelerate are rank polymorphic. For example, fold reduces along
the innermost dimension of an array, reducing the rank of that array by one. The reshape
operation allows us to change the shape of an array without altering its contents. This is
useful to, for example, reduce an array of arbitrary rank to a single value:

foldAll :: (Shape sh, Elt e)
⇒ (Exp e → Exp e → Exp e)
→ Exp e
→ Acc (Array sh e)
→ Acc (Scalar e)

foldAll f z a = fold f z $ reshape (index1 (size a)) a

In order to reshape arrays efficiently, we require that the size of the source and result arrays
are identical. This allows the runtime to simply change the interpretation of the array, without
touching the actual data, and is thus a constant-time operation. This precondition must be
checked at runtime, and an error generated if the sizes do not match.

However, the reshape operation is also a general producer (Listing 5.2), and can thus be
fused into other operations. If this happens, the runtime can no longer check the precondition
on the host — because the term has been removed from the source program — and since it

Section 5.5 Discussion 117

is not possible to throw exceptions from massively parallel GPU code, fusion has effectively
eliminated the runtime error check.

It is left for future work to add the ability to represent error terms in the embedded
language. For reshape — currently the only term which includes a runtime test — we
minimise the loss of the error test by only fusing the operation into delayed terms, while still
emitting the reshape term whenever it is applied to manifest data, in order to preserve the
error test for this case.

5.5.4 Work duplication

While the fusion transformation is cautious and only fuses producer terms that have a single
use site, it is still possible to introduce some amount of work duplication. For example, fusing
an operation such as replicate sh (map f xs) results in the function f being applied a
number of times equal to the size of the resulting shape sh, rather than the size of the source
array xs. If f is expensive or sh is large, even though there is a single use site for the source
array xs, it might still be beneficial to not fuse these terms.

The second source of work duplication can arise through the use of array indexing. As an
example, consider the following function, where each element of the array xs is repeated four
times sequentially in the result, i.e. [a,b,c] 7→ [a,a,a,a,b,b,b,b,c,c,c,c]:

quad = generate sh (λix → xs ! ilift1 (`div` 4) ix)
where

sh = index1 (size xs * 4)
xs = map f (use (Array · · ·))

Since xs has a single use site in generate, the function f will be fused directly into this
location. The fusion transformation has thus just committed to evaluating f four times more
than was specified in the original program.

For GPUs, which support thousands of active threads, recomputing values to reduce
memory bandwidth is usually beneficial, but for a CPU with relatively few cores, this might
not be the case. Allowing users to explicitly specify in the source language which terms
should always be computed to memory, or conversely fused unconditionally, is left to future
work. Adding an analysis that estimates when such work duplication is beneficial is also left
to future work.

5.5.5 Ordering and repeated evaluations

There are several possible orderings for the transformation passes that have been discussed
in this chapter, and it would be possible to invent examples to show that no one order can
be optimal for all programs.

As described above, the array fusion pass is designed so that it only needs to be applied
to the source program once, and not iterated with the shrinking step in order to expose

118 Optimising embedded array programs Chapter 5

all opportunities for fusion. However, for the case of let-elimination, if the bound term is
eliminated by inlining it directly into the body, then the new redex must be re-traversed. For
the fusion transformation, let-elimination is the only reason a term might be inspected more
than once.

On the other hand, simplification of scalar expressions alternates between the simplifica-
tion and shrinking steps. Thus, we must decide in which order to apply the two operations.
Because the shrinking step changes the structure of the AST by removing let bindings, which
might be useful for the simplification analysis,5 we perform scalar simplifications before shrink-
ing. Additionally, both the simplification and shrinking operations return a boolean indicating
whether or not the operation made any changes to the AST. The scalar optimisation pipeline
applies one round of simplification, then iterates shrinking and simplification until the expres-
sion no longer changes, or the limit of two applications of each operation is reached. Moreover,
although shrinking and simplification must be iterated, all of the operations performed only
work to reduce the size of the term tree (such as β-reduction and common subexpression
elimination), so no operation can undo the work of another to transform the term back into
the original.

5In particular, before the introduction of an explicit value recursion term into the source language, uses
encoded iteration by defining a single step of the loop body as a collective operation, and used Haskell to
repeatedly apply it, effectively unrolling the loop a fixed number of times. Fusion would then combine these
n collective operations into a single operation containing n instances of the loop body. However, it was found
that the CUDA compiler was not well suited to compiling the manually unrolled loop. The loop recovery
simplification (§6.4.2) was thus designed to convert the unrolled loop body back into an explicit iteration
form, and in part this relied on the structure of let terms, which could be obfuscated by shrinking.

6

Results

Logic merely enables one to be wrong with authority.
—the doctor

The previous chapters discussed the design, implementation and optimisation of the Ac-
celerate language and CUDA backend.1 This chapter analyses the performance of the imple-
mentation. Benchmarks were conducted on a single Tesla T10 processor (compute capability
1.3, 30 multiprocessors = 240 cores at 1.3GHz, 4GB RAM) backed by two quad core Xeon
E5405 CPUs (64-bit, 2GHz, 8GB RAM) running GNU/Linux (Ubuntu 12.04 LTS). Mea-
surements are the average of 100 runs. Programs are compiled with ghc-7.8.2,2 CUDA 6.0,
gcc-4.6.3 and llvm-3.4. Parallel CPU programs are run on all eight cores.

Haskell programs are compiled with the following options, which is the recommended set
to use when compiling Repa programs:

−Wall −threaded −rtsopts −fllvm −optlo−O3 −Odph −fno−liberate−case
−funfolding−use−threshold100 −funfolding−keeness−factor100

CUDA programs are compiled with the options:

−O3 −m64 −arch=sm_13

A summary of the benchmark results is shown in Table 6.1.

6.1 Runtime overheads

Runtime program optimisation, code generation, kernel loading, data transfer, and so on can
contribute significant overhead to short lived GPU computations. Accelerate mitigates these
overheads via caching and memoisation. For example, the first time a particular expression
is executed it is compiled to CUDA code, which is reused for subsequent invocations. This

1Version 0.15 release candidate: de156af5f6d839bc6e0597d33a7a151f0e492a66
2Including fix for stable name bug #9078: https://ghc.haskell.org/trac/ghc/ticket/9078

https://ghc.haskell.org/trac/ghc/ticket/9078

120 Results Chapter 6

Contender Accelerate Accelerate
Benchmark Input size (ms) (ms) no optim. (ms)
Dot product 20M 1.88 (CUBLAS) 2.34 (124%) 4.31 (230%)
Black-Scholes 20M 6.69 (CUDA) 6.19 (92.5%) 115.6 (1727%)
Mandelbrot 2M 4.99 (CUDA) 7.61 (153%) 430.8 (8632%)
N-body 32k 54.4 (CUDA) 102.9 (189%) (out of memory)
SMVM (protein) 2M 1.05 (CUSP) 0.58 (54.8%) 1.13 (107%)
Canny 16M 46.0 (OpenCV) 100 (217%) 105 (227%)
Fluid flow 2M 974.4 (Repa) 208.5 (21.4%) 220.9 (22.7%)
Radix sort 2M 404 (Nikola) 221.5 (54.8%) 283.3 (70.1%)
Floyd-Warshall 1k 7766 (Repa) 836 (10.8%) 840 (10.8%)
MD5 1M 1.29 (Hashcat) 3.80 (294%) (error)
K-Means 100k 24.7 (MonadPar) 1.01 (4.1%) 0.77 (3.1%)
Ray tracer 16M 2027 (Repa) 2174 (107%) (error)
LULESH 91k 1.11 (CUDA) 2.09 (189%) (error)

Table 6.1: Summary of the performance of the benchmark programs, before and after optimisa-
tions. Note that array-level sharing recovery is always enabled, otherwise most programs simply
do not run in a reasonable amount of time. The MD5, Ray tracer, and LULESH programs also
fail to run without scalar sharing recovery.

section analyses those overheads, so that they can be factored out later when we discuss the
effects of the program optimisations on kernel runtimes of the benchmark programs.

6.1.1 Program optimisation

The Floyd-Warshall algorithm for finding the shortest paths in a directed graph, discussed
in Section 6.10, was found to cause serious problems with the original implementation of
the optimisations discussed in this thesis. Thus, changes were made to ensure that the
complexity of the optimisations is not exponential in the number of terms in the program. In
particular, the reified program consists of a sequence of let bindings to producer operations,
so the handling of let bindings (§5.2.6) and the representation of producers that separates the
delayed array representation from the captured environment terms (§5.2.3) was found to be
crucial. Figure 6.1 shows the time to optimise the Floyd-Warshall program with and without
these changes of the optimisation pipeline.

6.1.2 Memory management & data transfer

Figure 6.2 shows the time to transfer data to and from the device. Observe that the data
transfer time can account for a significant portion of the overall execution time for some
benchmarks.

Section 6.2 Dot product 121

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 2 4 8 16 32 64 128 256

R
un

 T
im

e
(s

)

Nodes

Program optimisation

Final
... -binder opt.

... -environment opt.

Figure 6.1: Time to optimise the Floyd-Warshall program, comparing the final version of the
fusion algorithm to earlier implementations which exhibit exponential scaling in the number of
AST terms. Note the log-log scale.

dotp :: Acc (Vector Float) → Acc (Vector Float) → Acc (Scalar Float)
dotp xs ys = A.fold (+) 0 −− sum result of…

$ A.zipWith (*) xs ys −− …element-wise multiplying inputs

Listing 6.1: Vector dot-product

6.1.3 Code generation & compilation

To demonstrate the effectiveness of our persistent kernel caching techniques (§4.4.2), Table 6.2
lists the code generation and compilation times for each of the benchmark programs considered
in this chapter. Compilation times are measured by compiling the generated code directly with
the nvcc command line tool. Times are the average of 10 evaluations. In contrast, loading
the pre-compiled kernels from the on-disk cache typically takes less than one millisecond.

6.2 Dot product

Dot product, or scalar product, is an algebraic operation that takes two equal-length se-
quences of numbers and returns a single number by computing the sum of the products of the
corresponding entries in the two sequences. Dot product can be defined in Accelerate using
the code shown in Listing 6.1, and seen previously.

122 Results Chapter 6

 0.01

 0.1

 1

 10

 100

1k 5k 20k 80k 300k 1M 4M 16M 64M

Ti
m

e
(m

s)

Size (bytes)

Data Transfer

Host to Device
Device to Host

 0.01

 0.1

 1

 10

1k 5k 20k 80k 300k 1M 4M 16M 64M

Ba
nd

w
id

th
 (G

B/
s)

Size (bytes)

Host to Device
Device to Host

Figure 6.2: Data transfer time and bandwidth measurements

Section 6.2 Dot product 123

Benchmark No. kernels Generation (ms) Compilation (s)
Dot Product 2 1.03 1.97 (3.87)
Black-Scholes 1 0.59 1.95 (1.95)
Mandelbrot 1 0.65 1.94 (1.94)
N-Body 2 1.47 1.99 (3.88)
SMVM 4 4.84 2.01 (7.82)
Canny 11 5.91 4.91 (21.4)
Fluid flow 11 10.47 5.07 (21.6)
Radix sort 8 5.21 2.49 (15.6)
Floyd-Warshall 2 0.51 1.96 (3.85)
Hashcat 1 11.60 2.31 (2.31)
K-Means 5 7.33 2.18 (10.0)
Ray 1 40.11 3.73 (3.73)
LULESH 28 118.3 12.6 (71.4)

Table 6.2: Code generation and compilation times for the benchmark programs. Kernels are
compiled concurrently, one per core, as is done by the Accelerate runtime system. The equivalent
sequential compilation time is shown in parenthesis.

Figure 6.3 show the result of running this code, compared to several other sequential and
parallel implementations. The Data.Vector baseline is sequential code produced by stream
fusion [37], running on the host CPU. The Repa version runs in parallel on all eight cores of
the host CPU, using the fusion method of delayed arrays [68].

Without optimisations the Accelerate version executes in approximately twice the time
of the CUBLAS version. Since the individual aggregate operations consist of only a single
arithmetic operation each, the problem can not be a lack of sharing.

6.2.1 Too many kernels

The slow-down in the unoptimised version is due to Accelerate generating one GPU kernel
function for each aggregate operation in the source program. The use of two separate kernels
requires the intermediate array produced by zipWith to be constructed in GPU memory,
which is then immediately read back by fold. In contrast, the CUBLAS version combines
these operations into a single kernel. As this is a simple memory bound benchmark, we would
expect the lack of fusion to double the runtime, which is what we observe.

The fused version of dot product combines the aggregate computations by embedding
a function from array indices to array values of type (sh → a) into the reduction, repre-
sented here as the second argument to the constructor Delayed. This scalar function does
the work of element wise multiplying the two input vectors, and is performed on-the-fly as
part of the reduction kernel instead of requiring an intermediate array. See Section 5.2 for
more information. Applied to two manifest arrays, the following embedded program will be
executed:

124 Results Chapter 6

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16 18 20

R
un

 T
im

e
(m

s)

Elements (millions)

Dot product

Data.Vector
Repa

Accelerate
... +fusion
CUBLAS

Figure 6.3: Kernel runtimes for vector dot product, in Accelerate with and without optimisations,
compared to other parallel GPU and CPU implementations. Note the log-log scale.

let a0 = use (Array · · ·) in −− manifest input arrays
let a1 = use (Array · · ·) in
fold (λx0 x1 → x0 + x1) 0.0

(Delayed (intersect (shape a0) (shape a1)) −− extent of the input array
(λx0 → (a0!x0) * (a1!x0))) −− function to generate a value at each index

While the fused Accelerate version is 25× faster than the sequential version executed on
the CPU, it is still approximately 20% slower than the hand-written CUBLAS version. As
dot product is a computationally simple task, any additional overheads in the implementation
will be significant. To see why this version is still slightly slower, we continue by analysing
the generated code to inspect it for sources of overhead.

6.2.2 64-bit arithmetic

The host architecture that the Haskell program executes on is likely to be a 64-bit processor.
If this is the case, then manipulating machine word sized types such as Int in embedded code
must generate instructions to manipulate 64-bit integers in the GPU. On the other hand,
CUDA devices are at their core 32-bit processors, and are thus optimised for 32-bit arithmetic.
For example, our Tesla GPU with compute capability 1.3 has a throughput of eight 32-bit
floating-point add, multiply, or multiply-add operations per clock cycle per multiprocessor,
but only a single operation per cycle per multiprocessor of the 64-bit equivalents of these [98].

Section 6.2 Dot product 125

The delayed producer function that is embedded into the consumer fold kernel corre-
sponds to the operation zipWith (*), and has concrete type (Exp (Z:.Int) → Exp Float).
Since this is executed on a 64-bit host machine, the indexing operations must generate em-
bedded code for 64-bit integers. See Section 4.2 for more information on code generation,
which produces the following CUDA code:

const Int64 v1 = ({ assert(ix ≥ 0 && ix < min(shIn1_0, shIn0_0)); ix; });
y0 = arrIn1_0[v1] * arrIn0_0[v1];

This is translated by the CUDA compiler into the following PTX assembly code [97], which
is the lowest level representation accessible to the developer:

// 13 const Int64 v1 = ({ asser t (ix >= 0 && ix < min(shIn1_0 , shIn0_0)) ; ix ; }) ;
cvt.s64.s32 %rd5, %r5;
mov.s64 %rd6, %rd5;

// 15 y0 = arrIn1_0 [v1] * arrIn0_0 [v1] ;
mov.s64 %rd7, %rd6;
mul.lo.u64 %rd8, %rd7, 4;
ld.param.u64 %rd9, [__cudaparm_foldAll_arrIn1_0];
ld.param.u64 %rd10, [__cudaparm_foldAll_arrIn0_0];
add.u64 %rd11, %rd8, %rd9;
ld.global.f32 %f1, [%rd11+0];
add.u64 %rd12, %rd8, %rd10;
ld.global.f32 %f2, [%rd12+0];
mul.f32 %f3, %f1, %f2;

The first instruction converts the loop variable ix — which was not shown but is declared with
the C int type — to a 64-bit integer using the cvt.s64.s32 instruction. The assert function
does not contribute anything in this case as the kernel was not compiled with debugging
enabled. Instructions in PTX assembly are appended with the type of their operands, where
s64 and u64 represent signed and unsigned 64-bit integers respectively, so it is clear that the
instructions in this fragment are manipulating 64-bit values.

In this example, 64-bit arithmetic was introduced through the use of a one-dimensional
shape index, which has Haskell type (Z :. Int) and corresponds to a 64-bit wide integer
on our host machine. Working with 32-bit indices on the GPU instead may provide a small
performance boost. Further investigation is left for future work.

6.2.3 Non-neutral starting elements

In order to support efficient parallel execution, the fold function in Accelerate requires the
combination function to be an associative operator. However, we do not require the starting
value to be a neutral element of the combination function. For example, fold (+) 42 is valid
in Accelerate, even though 42 is not the neutral element of addition.

While convenient for the user, this feature complicates the implementation. In particular,
threads can not initialise their local sum with the neutral element during the first sequen-
tial reduction phase, and during the second cooperative reduction step must be sure to only

126 Results Chapter 6

include elements from threads that were properly initialised from the input array. See Sec-
tion 2.4.1 for more information on the implementation of parallel reductions in CUDA. Both
of these restrictions necessitate additional bounds checks, which increases overhead from an-
cillary instructions that are not loads, stores, or arithmetic for the core computation. As
the summation reduction has low arithmetic intensity, which is the limiting factor in the
performance of this kernel [54], additional bounds checks further reduce performance.

It is left for future work to have operations such as fold and scan observe when the
combination function and starting element form a monoid, and provide optimised kernels that
avoid these extra administrative instructions. This is the approach taken by, for example,
Thrust [59].

6.2.4 Kernel specialisation

To further reduce instruction overhead, it is possible to completely unroll the reduction by
specialising the kernel for a specific block size. In CUDA this can be achieved through the
use of C++ templates. Branches referring to the template parameter will be evaluated at
compile time, resulting in a very efficient inner loop.

template <unsigned int blockSize> __global__ void reduce(...) {
...
if (blockSize > 512) {
}
if (blockSize > 256) {
}
...

This technique has shown to produce significant gains in practice [54], although requires
compiling a separate kernel for each thread block size we wish to specialise for. Accelerate
can achieve this kind of kernel specialisation because the CUDA code is generated at program
runtime. However, since compilation also occurs at program runtime, this adds significant
additional runtime overhead. Since compiled kernels are cached and reused, if we know that
the reduction will be computed many times, the extra compilation overhead can be amortized
by the improved kernel performance, and thus may be worthwhile. See Section 4.4 for more
information on the mechanism of compilation and code memoisation. Implementing kernel
specialisations, and evaluating their effectiveness, is left to future work.

6.3 Black-Scholes option pricing

The Black-Scholes algorithm is a partial differential equation for modelling the evolution of a
European-style stock option price under certain assumptions. The corresponding Accelerate
program was shown in Listing 5.1. The Black-Scholes formula computes the expected call and
put price given the underlying stock price, strike price, and time to maturity of a stock. Many
individual applications of the formula can be executed in parallel using the map operation.

Section 6.4 Black-Scholes option pricing 127

 1

 10

 100

 2 4 6 8 10 12 14 16 18 20

R
un

 T
im

e
(m

s)

Options (millions)

Black-Scholes

Accelerate
... +sharing

CUDA

Figure 6.4: Kernel runtimes for Black-Scholes options pricing, in Accelerate with and without
optimisations, compared to a hand-written CUDA version. Note the log-log scale.

Figure 6.4 shows the result of running this code compared to the implementation that
ships with the CUDA SDK. Without optimisations, the Accelerate version is almost twenty
times slower than the equivalent implementation in CUDA. As blackscholes includes only
one collective array operation, the problem can not be a lack of fusion.

6.3.1 Too little sharing

The function callput from Listing 5.1 includes a significant amount of sharing: the helper
functions cnd' and hence horner are used twice — for d1 and d2 — and its argument d is used
multiple times in the body. Furthermore, the conditional expression d >* 0 ? (1 - c, c)
results in a branch that, without sharing, results in a growing number of predicated instruc-
tions that leads to a large penalty on the SIMD architecture of the GPU.

Without sharing the generated code executes 5156 instructions to calculate 128 options (2
thread blocks of 64 threads each) and results in significant warp divergence which serialises
portions of the execution. With sharing recovery only 628 instructions are executed (one
thread block of 128 thread) and is actually slightly faster than the reference CUDA version
because the latter contains a common subexpression that neither the programmer nor the
CUDA compiler spotted. The common subexpression performs a single multiplication. The
CUDA version executes 652 instructions (one thread block of 128 thread).

128 Results Chapter 6

Figure 6.5: Image of a Mandelbrot set with a continuously coloured environment. Each pixel
corresponds to a point c in the complex plane, and its colour depends the number of iterations n
before the relation diverges. Centre coordinate (−0.5 + 0i), horizontal width 3.2.

6.4 Mandelbrot fractal

The Mandelbrot set is generated by sampling values c in the complex plane and determining
whether under iteration of the complex quadratic polynomial:

zn+1 = z2n + c

that the magnitude of z (written |zn|) remains bounded however large n gets. Images of
the Mandelbrot set are created such that each pixel corresponds to a point c in the complex
plane, and its colour depends on the number of iterations n before the relation diverges,
where z0 = c. The set of points forming the boundary of this relation forms the distinctive
and easily recognisable fractal shape shown in Figure 6.5.

Table 6.3 shows the results of the Mandelbrot program. As expected, without fusion the
performance of this benchmark is poor because storing each step of the iteration saturates the
memory bus, to the point that reducing arithmetic intensity with sharing recovery provides
no improvement.

Section 6.4 Mandelbrot fractal 129

Time Bandwidth Step Cumulative
Benchmark (ms) (GB/s) Speedup Speedup
Accelerate 430.77 0.018
Accelerate (+sharing) 426.18 0.018 1.01× 1.01×
Accelerate (+fusion) 16.10 0.48 26.5× 26.8×
Accelerate (+loop recovery) 20.17 0.38 0.80× 21.4×
Accelerate (+iteration) 7.61 1.01 2.65× 56.6×
CUDA (limit) 13.97 0.55
CUDA (avg) 4.99 1.54 2.79× 2.79×
Repa (-N8) 142.87 0.054

Table 6.3: Mandelbrot fractal benchmarks in Accelerate with and without optimisations, com-
pared to a hand written CUDA version. The benchmark computes the Mandelbrot set shown in
Figure 6.5 at a resolution of 1600× 1200. The CUDA (limit) benchmark computes every pixel to
the maximum iteration count.

6.4.1 Fixed unrolling

In order to meet the restrictions of what can be efficiently executed on specialised hardware
such as GPUs, Accelerate did not directly support any form of iteration or recursion. To
implement the recurrence relation we instead define each step of computing zn+1 given zn

and c as a collective operation, and apply the operation a fixed number of times. The trick
then is to keep a pair (z, i) for every point on the complex plane, where i is the iteration
at which the point z diverged. The code implementing this is shown in Listing 6.2.

1. The function step advances the entire complex plane by one iteration of the recurrence
relation. This function is repeated depth number of times, and the sequence combined
by folding together with function application ($). This effectively unrolls the loop to
depth iterations.

2. The function iter computes the next value in the sequence at a point on the complex
plane. If the point has diverged, we return the iteration count at which divergence
occurred, otherwise the new value z' is returned and the iteration count i is increased.

3. The conditional test is performed by the (?) operator. Recall that GPUs are designed
to do the same thing to lots of different data at the same time, whereas we want to do
something different depending on whether or not a particular point has diverged. While
we can not avoid having some kind of conditional in the code, we ensure there is only a
bounded amount of divergence by having just one conditional per iteration, and a fixed
number of iterations.

Array fusion applied to the program in Listing 6.2 results in the depth copies of the
function step being combined into a single kernel. As seen in Table 6.3, while fusion improves
the performance of this program, it is still slower than the hand written version.

130 Results Chapter 6

mandelbrot
:: ∀ a. (Elt a, IsFloating a)
⇒ Int
→ Int
→ Int
→ Acc (Scalar (View a))
→ Acc (Array DIM2 Int32)

mandelbrot screenX screenY depth view
= P.snd . A.unzip
$ P.foldr ($) zs0 −− (1)
$ P.take depth (repeat step)
where
−− The view plane
(xmin,ymin,xmax,ymax) = unlift (the view)
sizex = xmax − xmin
sizey = ymax − ymin
viewx = constant (P.fromIntegral screenX)
viewy = constant (P.fromIntegral screenY)

step :: Acc (Array DIM2 (Complex a, Int32))
→ Acc (Array DIM2 (Complex a, Int32))

step = A.zipWith iter cs

iter :: Exp (Complex a) → Exp (Complex a, Int32) → Exp (Complex a, Int32) −− (2)
iter c zi = next (A.fst zi) (A.snd zi)
where
next :: Exp (Complex a) → Exp Int32 → Exp (Complex a, Int32)
next z i =

let z' = c + z*z
in (dot z' >* 4) ? (zi , lift (z', i+1)) −− (3)

dot :: Exp (Complex a) → Exp a
dot c = let r :+ i = unlift c

in r*r + i*i

−− initial conditions for a given pixel in the window, translated to the
−− corresponding point in the complex plane
cs = A.generate (constant $ Z :. screenY :. screenX) initial
zs0 = A.map (λc → lift (c, constant 0)) cs

initial :: Exp DIM2 → Exp (Complex a)
initial ix = lift ((xmin + (x * sizex) / viewx) :+ (ymin + (y * sizey) / viewy))
where

pr = unindex2 ix
x = A.fromIntegral (A.snd pr :: Exp Int)
y = A.fromIntegral (A.fst pr :: Exp Int)

Listing 6.2: Mandelbrot set generator, using fixed unrolling

Section 6.4 Mandelbrot fractal 131

This slowdown is because the fused code generates a completely unrolled loop, with depth
copies of the function body. Unrolling loops not only increases instruction counts, but can
often increase register lifetimes because of the scheduling of loads and stores. In particu-
lar, stores are pushed down and loads moved up in the instruction stream, which results in
temporary scalar lifetimes being longer.3 Since the Mandelbrot program is limited by compu-
tation, reducing the number of resident threads has a corresponding reduction on maximum
performance.

6.4.2 Loop recovery

Loop unrolling or loop unwinding is a loop transformation technique that attempts to optimise
a program’s execution speed by reducing or eliminating instructions that control the loop, such
as branching and the end-of-loop test. Loop unrolling does not always improve performance,
however, because it may lead to, for example, increased register usage.

Applying the fusion transformation to the Mandelbrot program shown in Listing 6.2 re-
sulted in a single kernel with depth copies of the function iter. In essence, the loop computing
the Mandelbrot recurrence relation has been completely unrolled. Unfortunately, the fused
program does not match the performance of the hand written version, because (a) The pro-
gram has a increased register usage; and (b) the conditional test is still performed at the end
of each copy of the loop body, so there is no reduction in the overall number of instructions
and branches executed.

We attempted to reduce these overheads by re-introducing explicit scalar loops into the
generated code. Recovering scalar loops then enables a backend to generate explicit for loops
in the target language, and the compiler then makes the decision of whether or not to unroll
the loop. The following pair of rewrite rules are used.

⟨ loop introduction ⟩
let x =

let y = e1
in e2

in e3
7→
iterate[2] (λy → e2) e1 if e2 ≡ e3

⟨ loop joining ⟩
let x = iterate[n] (λy → e2) e1
in e3
7→
iterate[n+1] (λy → e2) e1 if e2 ≡ e3

3Register usage depends on which architecture the code is being compiled for. For the compute 1.3 series
processor, each thread required 29 registers, whereas on a newer 3.0 processor the same code required 59 regis-
ters per thread. I conjecture that this is because older devices use a different underlying compiler architecture
(Open64 vs. LLVM).

132 Results Chapter 6

mandelbrot
:: ∀ a. (Elt a, IsFloating a)
⇒ Int
→ Int
→ Int
→ Acc (Scalar (View a))
→ Acc (Array DIM2 Int32)

mandelbrot screenX screenY depth view =
generate (constant (Z :. screenY :. screenX))

(λix → let c = initial ix
in A.snd $ A.while (λzi → A.snd zi <* lIMIT &&* dot (A.fst zi) <* 4)

(λzi → lift1 (next c) zi)
(lift (c, constant 0)))

where
lIMIT = P.fromIntegral depth

next :: Exp (Complex a) → (Exp (Complex a), Exp Int32) → (Exp (Complex a), Exp Int32)
next c (z, i) = (c + (z * z), i+1)

Listing 6.3: Mandelbrot set generator, using explict iteration

As seen in Table 6.3, loop recovery did not result in improved performance in this case,
because of the introduction of extra instructions to track the iteration count of the loop.4

Both the unrolled and loop recovery methods are slower than the hand written program,
because every thread always executes until the iteration limit.

6.4.3 Explicit iteration

Although not yet appearing in any published materials, we have added explicit value recursion
constructs to the source and target languages. Robert Clifton-Everest implemented the neces-
sary changes to the sharing recovery algorithm, while I implemented the backend changes for
code generation and execution. The new function while applies the given function, starting
with the initial value, as long as the test function continues to evaluate to True.

while :: Elt e
⇒ (Exp e → Exp Bool) −− conditional test
→ (Exp e → Exp e) −− function to iterate
→ Exp e −− initial value
→ Exp e

The Mandelbrot program using explicit iteration is shown in Listing 6.3, where the common
parts to the where clause in Listing 6.2 have been elided. Note that in contrast to the
implementation based on fixed unrolling, the function will stop executing as soon as the
relation diverges, rather than always continuing to the iteration limit even if the point has
already diverged.

4As noted in footnote 3, the CUDA compiler produces code with different register usage patterns depending
on which architecture is being targeted. For newer devices that exhibited higher register usage when compiling
completely unrolled code, loop recovery provided good increases in performance, by reducing register usage
and thereby increasing multiprocessor occupancy.

Section 6.4 Mandelbrot fractal 133

With respect to implementation on SIMD architectures such as CUDA, while both the
fixed unrolling and explicit iteration methods have a conditional test that introduces thread
divergence, it is important to note that the behaviour of the divergence is different for each
method. In the fixed unrolling case, both branches of the conditional must be executed to
keep track of whether the element has already diverged. This results in threads following
separate execution paths, where threads that follow the True branch execute while all other
threads sit idle, then execution switches to the False branch and the first set of threads sit
idle. In contrast, in the explicit iteration case, threads exit the loop as soon as their point on
the complex plane diverges, and then simply wait for all other threads in their SIMD group
to complete their calculation and catch up.

While the introduction of explicit value recursion required changes to the source language
program, as seen in Table 6.3, performance improves significantly. Additionally, if all threads
in the SIMD group diverge quickly, this can save a significant amount of redundant compu-
tation. Table 6.3 also shows the difference in execution time between computing the entire
fractal shown in Figure 6.5, where all points diverge at different depths in the sequence (avg),
compared to a region where all threads continue to the iteration limit (limit).

6.4.4 Unbalanced workload

In order to manage the unbalanced workload inherent in the Mandelbrot computation, the
hand-written CUDA version includes a custom, software-based thread-block scheduler, an
idea which has gained recent popularity under the name of persistent threads [53]. In this
vein, future work could investigate adding a software-based load balancing scheduler to the
generated kernels, perhaps based on ideas of work stealing [109, 132], instead of statically
partitioning the work space. An orthogonal line of work is that of generating kernel code that
avoids thread divergence, which is an active area of research [141].

6.4.5 Passing inputs as arrays

Note that in the definition of mandelbrot, the current view bounds are passed as a scalar
array. Why don’t we pass these values as plain Floats? When the program runs, Accelerate
converts the program into a series of CUDA kernels, each of which must be compiled and
loaded onto the GPU (§4.1). Since compilation can take a while, Accelerate remembers the
kernels it has seen before and reuses them (§4.4). Our goal with mandelbrot is to make a
kernel that will be reused, otherwise the overhead of compiling a new kernel each time the
view is changed will ruin performance.

By defining the view as a scalar array, we ensure that it is defined outside the call to
generate. If we don’t do this, a different value for the view parameter will be embedded
directly into each call to the generate function, which will defeat Accelerate’s caching of
CUDA kernels.

134 Results Chapter 6

 0.1

 1

 10

 100

 1000

1k 2k 4k 8k 16k 32k

R
un

 T
im

e
(m

s)

Bodies

N-Body

Accelerate
... +sharing

... +fusion
... +iteration

CUDA

Figure 6.6: Kernel runtimes for the n-body gravitational simulation, in Accelerate with and
without optimisations, compared to a hand-written CUDA implementation. Note the log-log
scale.

Any scalar values that we wish to be treated as function parameters must be lifted to array
variables. This is because the internal representation of array terms is closed with respect to
scalar variables, in order to statically exclude nested parallelism. Adding support for nested
data parallelism to Accelerate is an active area of research. With it, it may be possible to
avoid lifting free scalar variables to free array variables in order to correctly cache kernels.

6.5 N-body gravitational simulation

The n-body example simulates the Newtonian gravitational forces on a set of massive bodies
in 3D space, using the naïve O

(
n2

)
algorithm. In a data-parallel setting, the natural way to

express this algorithm is first to compute the forces between every pair of bodies, before adding
the forces applied to each body using a segmented sum. Without fusion this approach also
requires O

(
n2

)
space for the intermediate array of forces, which exhausts the memory of our

device (4GB!) when using more than about five thousand bodies. With fusion, the reduction
operation consumes each force value on-the-fly, so that the program only needs O (n) space to
store the final force values. The core of the n-body simulation is shown in Listing 6.4, where
accel calculates the acceleration between two particles, and (.+.) component-wise sums the
acceleration of a particle along each x, y and z axis.

Section 6.5 N-body gravitational simulation 135

calcAccels :: Exp Float → Acc (Vector Body) → Acc (Vector Accel)
calcAccels epsilon bodies
= let n = A.size bodies

cols = A.replicate (lift $ Z :. n :. All) bodies
rows = A.replicate (lift $ Z :. All :. n) bodies

in
A.fold (.+.) (vec 0) $ A.zipWith (accel epsilon) rows cols

Listing 6.4: N -body gravitational simulation, using parallel reduction

calcAccels :: Exp R → Acc (Vector PointMass) → Acc (Vector Accel)
calcAccels epsilon bodies
= let move body = A.sfoldl (λacc next → acc .+. accel epsilon body next)

(vec 0)
(constant Z)
bodies

in
A.map move bodies

Listing 6.5: N -body gravitational simulation, using sequential reduction

6.5.1 Sequential iteration

Even with fusion, the reference CUDA version is over 10× faster. Although the fused program
requires only O (n) space, it still requires all O

(
n2

)
memory accesses, and n2 threads to

cooperatively compute the interactions.
With the addition of sequential iteration, we can emit an alternative implementation.

Rather than computing all interactions between each pair of bodies and reducing this array
in parallel, we express the program as a parallel map of sequential reductions, as shown in
Listing 6.5. Although the program still performs all n2 memory accesses, since all threads
access the bodies array in sequence, these values can be cached efficiently by the GPU, and
the actual bandwidth requirements to main memory are reduced.

6.5.2 Use of shared memory

In CUDA, the memory hierarchy of the device is made explicit to the programmer, including
a small on-chip shared memory region threads can use to share data. The shared memory
region is essentially a software managed cache [98].

The program shown in Listing 6.4 uses the shared memory region to share computations
while computing the parallel reduction.5 The second implementation shown in Listing 6.5
does not use shared memory at all, but rather relies on hardware caching. Similar to our
latter implementation, the CUDA program is also implemented as a parallel map of sequen-
tial reductions, but explicitly uses the shared memory region to share the particle mass and
position data between threads, rather than rely on hardware caching. Since the shared mem-

5As part of the second phase of the fold skeleton, where threads in a block cooperatively reduce elements
to a single value. See §2.4.1 for details.

136 Results Chapter 6

type SparseVector e = Vector (Int, e) −− column index and value
type SparseMatrix e = (Segments Int, SparseVector e) −− length of each row

smvm :: (Elt a, IsNum a) ⇒ Acc (SparseMatrix a) → Acc (Vector a) → Acc (Vector a)
smvm smat vec
= let (segd, svec) = unlift smat

(inds, vals) = A.unzip svec
vecVals = gather inds vec
products = A.zipWith (*) vecVals vals

in
foldSeg (+) 0 products segd

Listing 6.6: Sparse-matrix vector multiplication

ory region is very low latency, the CUDA program remains faster. Automatic use of shared
memory is a separate consideration to the optimisations discussed in this work, and remains
an open research problem [78].

6.6 Sparse-matrix vector multiplication

This benchmark considers the multiplication of sparse matrices in compressed row format
(CSR) [31] with a dense vector. This matrix format consists of an array of the non-zero
elements paired with their column index, together with a segment descriptor recording the
number of non-zeros in each row. The corresponding Accelerate code is shown in Listing 6.6.
Table 6.4 compares Accelerate to the CUSP library [13, 14], a special purpose library for
sparse matrix operations (version 0.4), and the CUSPARSE library which is part of the
NVIDIA CUDA distribution. Using a 14 matrix corpus derived from a variety of application
domains [139], we compare against using compressed row format matrices. The measured
times include only the core sparse matrix multiply operation.

Compared to our previous work [29] the fusion transformation compresses the program
into a single segmented reduction. As predicted, the corresponding reduction in memory
bandwidth means that Accelerate is on par with the CUSP library for several of the test
matrices. In a balanced machine SMVM should be limited by memory throughput, so a
dense matrix in sparse format should provide an upper bound on performance because loops
are long running and accesses to the source vector are contiguous and have high re-use. We
see that Accelerate with array fusion achieves this expected performance limit. For some
benchmarks Accelerate is significantly faster than CUSP, while in others it lags behind. It is
unknown why the NVIDIA CUSPARSE library is significantly slower on all test matrices.

6.6.1 Segment startup

To maximise global memory throughput, the skeleton code ensures that the vector read of
each matrix row is coalesced and aligned to the warp boundary. Combined with the behaviour
that reduction operations in Accelerate do not require a neutral starting element, this means

Section 6.6 Sparse-matrix vector multiplication 137

spyplot Description Dimensions
Nonzeros
(nnz/row) A

cc
el

er
at

e

A
cc

el
er

at
e

no
fu

si
on

C
U

SP

C
U

SP
A

R
SE

Dense matrix in sparse
format 2K × 2K 4.0M (2K) 15.55 5.82 11.8 0.06

Protein data bank 1HYS 36K × 36K 2.19M (60) 7.59 3.89 4.16 0.03

FEM/Concentric spheres 83K × 83K 3.05M (37) 4.93 1.92 3.67 0.04

FEM/Cantilever 62K × 62K 2.03M (33) 4.46 2.37 3.37 0.94

Pressurised wind tunnel 128K × 128K 5.93M (27) 3.99 1.40 3.80 0.02

FEM/Charleston harbour 47K × 47K 2.37M (50) 6.70 3.60 7.03 0.02

Quark propagators
(QCD/LGT) 49K × 49K 1.92M (39) 5.07 3.03 5.45 0.02

FEM/Ship section detail 141K × 141K 3.98M (28) 4.03 1.82 3.61 0.08

Macroeconomics model 207K × 207K 1.27M (6) 0.97 0.61 2.91 0.04

2D Markov epidemiology
model 526K × 526K 2.10M (4) 0.64 0.29 5.62 0.74

FEM/Accelerator cavity
design 121K × 121K 1.36M (11) 1.72 1.20 2.12 0.04

Circuit simulation 171K × 171K 959k (6) 0.87 0.60 3.24 0.01

Web connectivity matrix 1M × 1M 3.11M (3) 0.50 0.20 2.01 0.01

Railways set cover
constraint matrix 4K × 1.1M 11.3M (2633) 5.08 3.64 5.16 0.07

Table 6.4: Overview of sparse matrices tested and results of the benchmark. Measurements are
in GFLOPS/s (higher is better).

138 Results Chapter 6

that there is significant overhead in initialising the local sum for each thread at the beginning
of the reduction. See Section 6.2 for further discussion.

For matrices such as Dense, the increase is memory bandwidth gained from aligning global
memory reads in this way offsets the additional startup cost of doing so, and as a result Ac-
celerate exhibits higher performance than its competitors. However, matrices such as the
FEM/Spheres, which contain only a fewer non-zero elements per row (≲ 2×warp size = 64)
exhibit a drop in performance, because this extra startup cost can not be amortised over the
row length. Matrices such as Epidemiology, with large vectors and few non-zero elements per
row, exhibit low flop:byte ratio and are poorly suited to the CSR format, with all implemen-
tations performing well below peak. This highlights the nature of sparse computations and
the reason the CUSP library supports several algorithms and matrix formats.

As was found with the dot product benchmark (§6.2), implementing specialised kernels
that can avoid this additional startup cost when the combining function and starting element
form a monoid is expected to improve performance, but is left to future work.

6.7 Canny edge detection

The edge detection example applies the Canny algorithm [24] to rectangular images of various
sizes. Figure 6.8 compares Accelerate to parallel implementations on the CPU and GPU. The
overall algorithm is shown in Listing 6.7 and consists of seven distinct phases, the first six of
which, shown in Listing 6.8, are naturally data parallel and are performed on the GPU. The
last phase uses the recursive wildfire algorithm to “connect” the pixels that make up the
output lines. In our implementation this phase is performed on the CPU, which requires the
image data to be transferred from the GPU back to the CPU for processing, and accounts
for the non-linear slowdown visible with smaller image sizes. In contrast, OpenCV6 is able to
perform the final step on the GPU. The benchmark “Accelerate (whole program)” includes
the time to transfer the image data back to the host for the final processing step. Also shown
are the run times for just the first six data parallel phases, which exhibit linear speedup and
do not include data transfer to the host.

Neglecting the final phase, note that the data parallel phase is still slightly slower than
in OpenCV. As discussed in Section 2.4.5, this is because the stencil kernels in Accelerate
currently make a test for every array access to see if the element is in bounds, or if it lies
outside the array and needs to be handled specially, even though the vast majority of points
in the array are far from the boundary.

6Release version 2.4.9

Section 6.7 Canny edge detection 139

Figure 6.7: An example of the Canny algorithm applied to the Lena standard test image (left)
which identifies edge pixels in the image (right).

 0.1

 1

 10

 100

 1000

64k 256k 1M 4M 16M

R
un

 T
im

e
(m

s)

Image Size (total pixels)

Canny Edge Detection

Accelerate (whole program)
Accelerate (just GPU kernels)

Repa
OpenCV (CPU)
OpenCV (GPU)

Figure 6.8: Runtimes for the Canny edge detection algorithm, comparing the Accelerate kernels
and whole program to sequential and parallel implementations. Note the log-log scale.

140 Results Chapter 6

canny :: Exp Float → Exp Float → Image → IO Image
canny low high =
let grey = toGreyscale

blurred = gaussianY . gaussianX . grey
magdir = gradientMagDir low . blurred
suppress = nonMaximumSuppression low high . magdir
stage1 x = let s = suppress x in (s, selectStrong s)
(image, strong) = run $ A.lift (stage1 (use img))

in
wildfire (A.toRepa image) (A.toRepa strong)

Listing 6.7: The Canny edge detection algorithm

6.7.1 Stencil merging

Two of the data parallel stages of the Canny algorithm are the calculation of the image
intensity gradients by convolving the image with the 3× 3 kernels shown below. This convo-
lution, known as the Sobel operator, is a discrete differentiation operator that computes an
approximation of the horizontal and vertical image gradients.

Sobelx =

−1 0 1

−2 0 2

−1 0 1

 Sobely =

 1 2 1

0 0 0

−1 −2 −1


There is a significant amount of sharing between these two kernels, in terms of the coeffi-

cients required to compute the derivative at each point. Thus, it is beneficial to merge these
two stencils into a single kernel, rather than computing them separately. This would reduce
the number of accesses to the source array from 6 + 6 = 12 to only 8. As with all shortcut
fusion methods, the system presented here does not combine multiple passes over the same
array into a single traversal that computes multiple results. We leave this, as well as other
significant stencil optimisations [57, 63, 73], to future work.

6.8 Fluid flow

The fluid flow example implements Jos Stam’s stable fluid algorithm [123], which is a fast
approximate algorithm intended for animation and games, rather than accurate engineering
simulation. An example sequence is shown in Figure 6.9.

The core of the algorithm is a finite time step simulation on a grid, implemented as a
matrix relaxation involving the discrete Laplace operator (∇2). This step, known as the
linear solver, is used to diffuse the density and velocity fields throughout the grid, as well as
apply a projection operator to the velocity field to ensure it conserves mass. The linear solver
is implemented in terms of a stencil convolution, repeatedly computing the following for each
grid element to allow the solution to converge:

Section 6.8 Fluid flow 141

convolve5x1 :: (Elt a, IsNum a) ⇒ [Exp a] → Stencil5x1 a → Exp a
convolve5x1 kernel (_, (a,b,c,d,e), _)
= P.sum $ P.zipWith (*) kernel [a,b,c,d,e]

gaussianX :: Acc (Image Float) → Acc (Image Float)
gaussianX = stencil (convolve5x1 gaussian) Clamp
where

gaussian = P.map (/16) [1, 4, 6, 4, 1]

gradientX :: Acc (Image Float) → Acc (Image Float)
gradientX = stencil grad Clamp
where

grad :: Stencil3x3 Float → Exp Float
grad ((u, _, x)

,(v, _, y)
,(w, _, z)) = x + (2*y) + z − u − (2*v) − w

gradientMagDir :: Exp Float → Acc (Image Float) → Acc (Array DIM2 (Float,Int))
gradientMagDir low = stencil magdir Clamp
where

magdir :: Stencil3x3 Float → Exp (Float,Int)
magdir ((v0, v1, v2)

,(v3, _, v4)
,(v5, v6, v7)) =

let
dx = v2 + (2*v4) + v7 − v0 − (2*v3) − v5 −− image gradients
dy = v0 + (2*v1) + v2 − v5 − (2*v6) − v7
mag = sqrt (dx * dx + dy * dy) −− gradient magnitude
theta = atan2 dy dx −− angle of the gradient vector
alpha = (theta − (pi/8)) * (4/pi) −− make segments easier to classify
norm = alpha + 8 * A.fromIntegral (boolToInt (alpha ≤ * 0))
undef = abs dx ≤ * low &&* abs dy ≤ * low
dir = boolToInt (A.not undef) * −− quantise gradient to 8 directions

((64 * (1 + A.floor norm `mod` 4)) `min` 255)
in
lift (mag, dir)

nonMaximumSuppression
:: Exp Float → Exp Float → Acc (Image (Float,Int)) → Acc (Image Float)

nonMaximumSuppression low high magdir =
generate (shape magdir) $ λix →

let (mag, dir) = unlift (magdir ! ix)
Z :. h :. w = unlift (shape magdir)
Z :. y :. x = unlift ix

−− Determine the points that lie normal to the image gradient
offsetx = dir >* orient' Vert ? (−1, dir <* orient' Vert ? (1, 0))
offsety = dir <* orient' Horiz ? (−1, 0)
(fwd, _) = unlift $ magdir ! lift (clamp (Z :. y+offsety :. x+offsetx))
(rev, _) = unlift $ magdir ! lift (clamp (Z :. y−offsety :. x−offsetx))
clamp (Z:.u:.v) = Z :. 0 `max` u `min` (h−1) :. 0 `max` v `min` (w−1)
strong = mag ≥ * high
none = dir ==* orient' Undef

| |* mag <* low | |* mag <* fwd | |* mag <* rev
in
A.fromIntegral (boolToInt (A.not none) * (1 + boolToInt strong)) * 0.5

selectStrong :: Acc (Image Float) → Acc (Vector Int)
selectStrong img =
let strong = A.map (λx → boolToInt (x ==* edge' Strong)) (flatten img)

(targetIdx, len) = A.scanl' (+) 0 strong
indices = A.enumFromN (index1 $ size img) 0
zeros = A.fill (index1 $ the len) 0

in
A.permute const zeros (λix → strong!ix ==* 0 ? (ignore, index1 $ targetIdx!ix)) indices

Listing 6.8: The data-parallel kernels of the Canny edge detection algorithm

142 Results Chapter 6

Figure 6.9: An example showing the progression of the fluid flow simulation for a set of initial
conditions after 10 (left), 50 (centre) and 75 (right) steps.

u
′′
i,j =

(
ui,j + a ·

(
u′i−1,j + u′i+1,j + u′i,j−1 + u′i,j+1

))
/c

Here, u is the grid in the previous time step, u′ the grid in the current time step and previous
relaxation iteration, and u′′ the current time step and iteration. The values a and c are
constants chosen by the simulation parameters. The core implementation of the algorithm is
shown in Listing 6.9.

Figure 6.10 compares Accelerate to a parallel implementation written in Repa and running
on the host CPU [76]. The program is extremely memory intensive, performing approximately
160 convolutions of the grid per time step. Given the nature of the computation, we find that
the raw bandwidth available on the CUDA device, which is much greater than that available
to the CPU, results in correspondingly shorter run times. Since the program consists of a
sequence of stencil operations, fusion does not apply to this program. Sharing recovery has
a surprisingly minimal impact because the implementation of stencils always shares some
parts of the computation: namely access to the grid elements uxy, precisely because these
operations are so expensive.

6.9 Radix sort

The radix sort benchmark implements a simple parallel radix sort algorithm as described by
Blelloch [19] to sort an array by an integral key, and is shown in Listing 6.10. The radixPass
function sorts the vector v based on the value of bit k; moving elements with a zero at that
bit to the beginning of the vector and those with a one bit to the end. This simple algorithm
requires b iterations to sort an array of elements whose keys are b-bits wide, and each pass
requires multiple traversals of the array.

As seen in Figure 6.11, the absolute performance of this simple algorithm, which sorts the
array by a single bit at a time, is quite low. Implementations of radix sort optimised for the

Section 6.9 Radix sort 143

type Timestep = Float
type Diffusion = Float
type Density = Float
type Velocity = (Float, Float)

type Field a = Array DIM2 a
type DensityField = Field Density
type VelocityField = Field Velocity

class Elt e ⇒ FieldElt e where
· · ·

instance FieldElt Density
instance FieldElt Velocity

diffuse :: FieldElt e ⇒ Int → Timestep → Diffusion → Acc (Field e) → Acc (Field e)
diffuse steps dt dn df0 =
a ==* 0

? | (df0 , foldl1 (.) (P.replicate steps diffuse1) df0)
where

a = A.constant dt * A.constant dn * (A.fromIntegral (A.size df0))
c = 1 + 4*a

diffuse1 df = A.stencil2 relax (A.Constant zero) df0 (A.Constant zero) df

relax :: FieldElt e ⇒ A.Stencil3x3 e → A.Stencil3x3 e → Exp e
relax (_,(_,x0,_),_) ((_,t,_), (l,_,r), (_,b,_)) = (x0 .+. a .*. (l.+.t.+.r.+.b)) ./. c

project :: Int → Acc VelocityField → Acc VelocityField
project steps vf = A.stencil2 poisson (A.Constant zero) vf (A.Constant zero) p
where

grad = A.stencil divF (A.Constant zero) vf
p1 = A.stencil2 pF (A.Constant zero) grad (A.Constant zero)
p = foldl1 (.) (P.replicate steps p1) grad

poisson :: A.Stencil3x3 Velocity → A.Stencil3x3 Float → Exp Velocity
poisson (_,(_,uv,_),_) ((_,t,_), (l,_,r), (_,b,_)) = uv .−. 0.5 .*. A.lift (r−l, b−t)

divF :: A.Stencil3x3 Velocity → Exp Float
divF ((_,t,_), (l,_,r), (_,b,_)) = −0.5 * (A.fst r − A.fst l + A.snd b − A.snd t)

pF :: A.Stencil3x3 Float → A.Stencil3x3 Float → Exp Float
pF (_,(_,x,_),_) ((_,t,_), (l,_,r), (_,b,_)) = 0.25 * (x + l + t + r + b)

Listing 6.9: Fluid flow simulation

144 Results Chapter 6

 1

 10

 100

 1000

 10000

8k 16k 32k 64k 128k 256k 512k 1M 2M

R
un

 T
im

e
(m

s)

Image Size (total pixels)

Fluid Flow

C sequential
Repa

Accelerate
... +sharing

Figure 6.10: Kernel runtimes for the fluid flow simulation, in Accelerate with and without
optimisations, compared to sequential and parallel CPU implementations. Note the log-log scale.

class Elt e ⇒ Radix e where
passes :: e → Int −− number of passes (bits) required to sort this key type
radix :: Exp Int → Exp e → Exp Int −− extract the nth bit of the key

sortBy :: ∀ a r. (Elt a, Radix r)
⇒ (Exp a → Exp r)
→ Acc (Vector a)
→ Acc (Vector a)

sortBy rdx arr = foldr1 (>->) (P.map radixPass [0..p−1]) arr −− loop over bits of the key, low…
where −− …bit first to maintain sort order

p = passes (undefined :: r)
deal f x = let (a,b) = unlift x in (f ==* 0) ? (a,b)

radixPass k v =
let k' = unit (constant k) −− to create reusable kernels

flags = A.map (radix (the k') . rdx) v −− extract the sort key
idown = prescanl (+) 0 . A.map (xor 1) $ flags −− move elements to the beginning…
iup = A.map (size v − 1 −) . prescanr (+) 0 $ flags −− …end of the vector
index = A.zipWith deal flags (A.zip idown iup)

in
permute const v (λix → index1 (index!ix)) v −− move elements to new position

Listing 6.10: Radix sort algorithm

Section 6.10 Shortest paths in a graph 145

 1

 10

 100

 1000

 0.2 0.4 0.8 1.6

R
un

 T
im

e
(m

s)

Elements (millions)

Radix Sort

Accelerate
... +sharing

... +fusion
Thrust

Figure 6.11: Kernel runtimes for the radix sort benchmark of signed 32-bit integers, comparing
the Accelerate version to other parallel implementations. Note the log-log scale.

CUDA architecture [59, 93, 116], are approximately 10× faster because they make efficient
use of the on-chip shared memory to sort keys by 8-bits at a time. Such implementations are,
essentially, different algorithms to Blelloch’s algorithm we have implemented here, but serve
to illustrate the absolute performance of the device. To address this we have implemented
a foreign function interface for Accelerate to take advantage of existing high-performance
libraries (§4.3). The foreign function interface is orthogonal to the work presented here
of optimising programs written in the Accelerate language. Useful future work would be
to combine a fast-yet-fixed foreign implementation with a more generic interface, using for
example the method of Henglein and Hinze [56].

6.10 Shortest paths in a graph

The Floyd-Warshall algorithm finds the lengths of the shortest paths between all pairs of
points in a weighted directed graph. The implementation in Accelerate is shown in List-
ing 6.11, and appeared in the book Parallel and Concurrent Programming in Haskell [83].
The implementation in Accelerate applies the algorithm over a dense adjacency matrix, build-
ing the solution bottom-up so that earlier results are used when computing later ones. Each
step of the algorithm is O

(
n2

)
in the number of vertices, so the whole algorithm is O

(
n3

)
.

See [83] for further information.

146 Results Chapter 6

type Weight = Int32
type Graph = Array DIM2 Weight −− distance between vertices as an adjacency matrix

shortestPaths :: Graph → Graph
shortestPaths g0 = run (shortestPathsAcc n (use g0))
where

Z :. _ :. n = arrayShape g0

shortestPathsAcc :: Int → Acc Graph → Acc Graph
shortestPathsAcc n g0 = foldl1 (.) steps g0
where

steps :: [Acc Graph → Acc Graph] −− apply step in the sequence 0..n− 1
steps = [step (unit (constant k)) | k ← [0 .. n−1]]

step :: Acc (Scalar Int) → Acc Graph → Acc Graph
step k g = generate (shape g) sp −− previous graph g contains the lengths of
where −− the shortest paths for vertices up to k − 1.

k' = the k

sp :: Exp DIM2 → Exp Weight
sp ix = let Z :. i :. j = unlift ix −− the shortest path from i to j…

in min (g ! (index2 i j)) −− is either the path i→ j, or…
(g ! (index2 i k') + g ! (index2 k' j)) −− the path i→ k then k → j

Listing 6.11: Floyd-Warshall shortest-paths algorithm [83]

The core of the algorithm is the function step, which computes the lengths of the shortest
paths between using two elements, using only vertices up to k, given the lengths of the shortest
paths using vertices up to k - 1. The length of the shortest path between two vertices i and
j is then the minimum of the previous shortest path from i to j, or the path that goes from i
to k and then from k to j. The final adjacency graph is constructed by applying step to each
value of k in the sequence 0 .. n-1. Figure 6.12 compares the performance of the algorithm
in Accelerate to several parallel CPU implementations. Note that without array level sharing,
the number of terms in the program scales exponentially to the number of nodes in the graph,
and so does not complete in a reasonable time even for small graphs.

6.11 MD5 password recovery

The MD5 message-digest algorithm [110] is a cryptographic hash function producing a 128-bit
hash value from a variable length message. MD5 has been used in a wide variety of cryp-
tographic and data integrity applications, although cryptographers have since found flaws in
the algorithm and now recommend the use of other hash functions for cryptographic appli-
cations.7

Figure 6.13 illustrates the main MD5 algorithm, whose implementation in Accelerate is
shown in Listing 6.12. This implementation only processes a single MD5 round (512-bits of
input as 16×32-bit words), and the input message is padded appropriately on the CPU before
being passed to the md5round function. The algorithm operates on a 128-bit state, divided

7http://www.kb.cert.org/vuls/id/836068

http://www.kb.cert.org/vuls/id/836068

Section 6.11 MD5 password recovery 147

 0.001

 0.01

 0.1

 1

 10

 100

100 200 300 400 600 800 1000

R
un

 T
im

e
(s

)

Nodes

Floyd-Warshall

MonadPar
Repa

Accelerate (+sharing)
... +fusion

Figure 6.12: Kernel runtimes for Floyd-Warshall shortest path algorithm, compared to other
parallel implementations. The test data is randomly generated graph of n nodes and (up to) 2n
edges. The Monad-Par program uses a sparse representation which is sensitive to the total number
of edges, whereas the Accelerate and Repa versions use a dense adjacency matrix representation
which is not. Note the log-log scale.

148 Results Chapter 6

F

A B C D

A B C D

M

K

i

i

<<<s

Figure 6.13: A single round of the MD5 hash algorithm. It consists of 64 iterations of this
operation, split into 4 rounds of 16 iterations each. F is a nonlinear function that is different for
each round, Mi denotes a 32-bit block of the input message, and Ki a 32-bit constant. ≪s is left
rotation by s bits, and ⊞ addition modulo 232. Image from http://en.wikipedia.org/wiki/MD5.

into 4×32-bit words, denoted A, B, C, and D, which are initialised to fixed constants. The
algorithm uses the 512-bit message block to modify the state in four rounds of 16 operations
each, where each round is based on a nonlinear function F , modulo addition, and left rotation.
The nonlinear mixing operation used by each round, where ⊕, ∧, ∨, and ¬ are the bitwise
XOR, AND, OR and NOT operations, are respectively:

F (B,C,D) = (B ∧ C) ∨ (¬B ∧D)

G(B,C,D) = (B ∧D) ∨ (C ∧ ¬D)

H(B,C,D) = B ⊕ C ⊕D

I(B,C,D) = C ⊕ (B ∨ ¬D)

The input to the md5round function consists of a (Z :. 16 :. n) input array containing
n 512-bit input chunks to hash, which are processed by n threads in parallel. Note that the
input array is stored in column major order, so that accesses to the input dict are coalesced.
See [98] for details on CUDA memory access rules. In contrast, a CPU prefers the data to be
laid out in row-major order, so that the input chunk is read on a single cache line. Exploring

http://en.wikipedia.org/wiki/MD5

Section 6.11 MD5 password recovery 149

type MD5 = (Word32, Word32, Word32, Word32) −− output 128-bit digest
type Dictionary = Array DIM2 Word32 −− input 16×32-bit words per block

md5Round :: Acc Dictionary → Exp DIM1 → Exp MD5
md5Round dict (unindex1 → word)
= lift
$ foldl step (a0,b0,c0,d0) [0..64]
where

step (a,b,c,d) i
| i < 16 = shfl ((b .&. c) . |. ((complement b) .&. d)) −− F
| i < 32 = shfl ((b .&. d) . |. (c .&. (complement d))) −− G
| i < 48 = shfl (b `xor` c `xor` d) −− H
| i < 64 = shfl (c `xor` (b . |. (complement d))) −− I
| otherwise = (a+a0,b+b0,c+c0,d+d0)
where

shfl f = (d, b + ((a + f + k i + get i) `rotateL` r i), b, c)

get :: Int → Exp Word32
get i
| i < 16 = getWord32le i
| i < 32 = getWord32le ((5*i + 1) `rem` 16)
| i < 48 = getWord32le ((3*i + 5) `rem` 16)
| otherwise = getWord32le ((7*i) `rem` 16)

getWord32le :: Int → Exp Word32
getWord32le (constant → i) = dict ! index2 word i

a0, b0, c0, d0 :: Exp Word32 −− initial values (constants)

k :: Int → Exp Word32 −− binary integer part of sines & cosines (in radians)
k i = constant (ks P.!! i) −− (constants)
where ks = [· · ·]

r :: Int → Exp Int −− per-round shift amounts
r i = constant (rs P.!! i) −− (constants)
where rs = [· · ·]

Listing 6.12: A single round of the MD5 hash algorithm

150 Results Chapter 6

Benchmark Rate (MHash/sec)
Accelerate 263.3
Hashcat (CPU) 57.1
Hashcat (GPU) 773.3

Table 6.5: MD5 password recovery benchmarks

the differences in memory architectures between CPUs and GPUs, which focus on task versus
data parallelism respectively, is left for future work.

In the MD5 benchmark, each thread computes the hash of a 512-bit input column and
compares it to a supplied hash. If the values match, the input corresponds to the plain
text of the unknown hash. Table 6.5 compares Accelerate to several other implementations.
Note that the Hashcat program is not open source and provides many additional options not
supported by the Accelerate implementation, so they are not strictly comparable. However,
Hashcat is regarded as the fastest password recovery tool available, so provides a useful
baseline.

6.12 K-Means clustering

In the K-means problem, the goal is to partition a set of observations into k clusters, in which
each observation belongs to the cluster with the nearest mean. Finding an optimal solution
to the problem is NP-hard, however there exist efficient heuristic algorithms that converge
quickly to a local optimum, and in practice give good results. The most well known heuristic
technique is Lloyd’s algorithm, which finds a solution by iteratively improving on an initial
guess. The algorithm takes as a parameter the number of clusters, makes an initial guess at
the centre of each cluster, and proceeds as follows:

1. Assign each point to the cluster to which it is closest. This yields the new set of clusters.

2. Compute the centroid of each cluster.

3. Repeat steps (1) and (2) until the cluster locations stabilise. Processing is also stopped
after some chosen maximum number of iterations, as sometimes the algorithm does not
converge.

The initial guess can be constructed by randomly assigning each point in the data set to
a cluster and then finding the centroids of those clusters. The core of the algorithm is
shown in Listing 6.13, which computes the new cluster locations. To complete the algorithm,
the function makeNewClusters is applied repeatedly until convergence, or some maximum
iteration limit is reached. While the algorithm works for any number of dimensions, the
implementation shown here is for two dimensional points only.

Section 6.12 K-Means clustering 151

type Point a = (a, a)
type Id = Word32
type Cluster a = (Id, (a, a))
type PointSum a = (Word32, (a, a))

distance :: (Elt a, IsNum a) ⇒ Exp (Point a) → Exp (Point a) → Exp a
distance u v = · · ·

findClosestCluster
:: ∀ a. (Elt a, IsFloating a, RealFloat a)
⇒ Acc (Vector (Cluster a))
→ Acc (Vector (Point a))
→ Acc (Vector Id)

findClosestCluster clusters points =
A.map (λp → A.fst $ A.sfoldl (nearest p) z (constant Z) clusters) points
where

z = constant (−1, inf)

nearest :: Exp (Point a) → Exp (Id, a) → Exp (Cluster a) → Exp (Id, a)
nearest p st c =
let d = A.snd st

d' = distance p (centroidOfCluster c)
in
d' <* d ? (lift (idOfCluster c, d') , st)

makeNewClusters
:: ∀ a. (Elt a, IsFloating a, RealFloat a)
⇒ Acc (Vector (Point a))
→ Acc (Vector (Cluster a))
→ Acc (Vector (Cluster a))

makeNewClusters points clusters
= pointSumToCluster
. makePointSum
. findClosestCluster clusters
$ points
where

npts = size points
nclusters = size clusters

pointSumToCluster :: Acc (Vector (PointSum a)) → Acc (Vector (Cluster a))
pointSumToCluster ps =
A.generate (A.shape ps)

(λix → lift (A.fromIntegral (unindex1 ix), average (ps ! ix)))

makePointSum :: Acc (Vector Id) → Acc (Vector (PointSum a))
makePointSum = A.fold1 addPointSum . compute . pointSum

pointSum :: Acc (Vector Id) → Acc (Array DIM2 (PointSum a))
pointSum nearest =
A.generate (lift (Z :. nclusters :. npts))

(λix → let Z:.i:.j = unlift ix :: Z :. Exp Int :. Exp Int
near = nearest ! index1 j
yes = lift (constant 1, points ! index1 j)
no = constant (0, (0,0))

in
near ==* A.fromIntegral i ? (yes, no))

average :: Exp (PointSum a) → Exp (Point a)
average ps = · · · −− average of the x- and y-coordinates

addPointSum :: Exp (PointSum a) → Exp (PointSum a) → Exp (PointSum a)
addPointSum x y = · · · −− component-wise addition

Listing 6.13: K-means clustering for 2D points

152 Results Chapter 6

 0.01

 0.1

 1

 10

 100

5k 15k 25k 40k 60k 80k100k

R
un

 T
im

e
/ I

te
ra

tio
n

(m
s)

Points

K-Means Clustering

Accelerate
... +sharing

... +fusion
 0.01

 0.1

 1

 10

 100

5k 15k 25k 40k 60k 80k100k

R
un

 T
im

e
/ I

te
ra

tio
n

(m
s)

Points

K-Means Clustering

Eval
MonadPar

Eval (divide & conquer)
MonadPar (divide & conquer)

Figure 6.14: Kernel runtimes for the k-means clustering algorithm in Accelerate compared to
several parallel CPU implementations. Note the log-log scale.

Figure 6.14 compares the performance of the implementation shown in Listing 6.13 to
several other parallel CPU implementations, which are adapted from [83].

Note the use of compute in the definition of makePointSum of Listing 6.13, which ex-
plicitly prevents the computation pointSum from fusing into the reduction that consumes
it. Although fusion is possible in this circumstance, resulting program is 10× slower than
the unfused program (kernel time). This slowdown is because the fused kernel requires 41
registers per thread and thus achieves only 30% occupancy, compared to the unfused kernels
which uses 17 registers and executes at 75% occupancy. Since the occupancy of the fused
kernel is so low, the GPU can not adequately hide data transfer latency by swapping active
threads, further reducing performance. Implementing backend-specific and hardware-aware
optimisation decisions is left for future work.

6.13 Ray tracer

Ray tracing is a technique for generating an image by tracing the path of light through
pixels in an image plane and simulating the effects of its encounters with virtual objects.
The technique is capable of producing a very high degree of realism compared to typical
scanline rendering methods, as ray tracing algorithms are able to simulate optical effects such
as reflection and refraction, scattering, and dispersion phenomena. This increased accuracy
has a larger computational cost, which is why ray tracing is not typically used for real time

Section 6.14 LULESH 153

Figure 6.15: Image of a ray traced scene rendered on the GPU with Accelerate, featuring multiple
reflections. The scene is animated and renders in real time on modest hardware.

rendering applications such as computer games. Figure 6.15 shows the result of rendering a
scene using the ray casting algorithm shown in Listing 6.14.

Figure 6.16 compares the performance of Accelerate to an equivalent program written
in Repa. The main source of the poor performance of the Accelerate program is that the
generated code uses 73 registers per thread, resulting in very low thread occupancy of only
19%. The Repa program is written in continuation passing style, and produces very efficient
code for the traceRay function. Since Accelerate has no support for general recursion, the
structure of the program is unrolled on the Haskell level, resulting in a large amount of
generated code as well as additional branching. Additionally, Accelerate does not have any
support for sum algebraic data types (tagged unions), so the code must test intersection
with each different type of object in the scene separately. Improving code generation and
adding support for general recursion and sum data types in a manner that remains efficient
on massively parallel SIMD architectures such as GPUs is left for future work.

6.14 LULESH

Computer simulations for a wide variety of scientific and engineering problems require mod-
elling of hydrodynamics, which describes the motion of materials relative to each other in the
presence of forces. Many important simulation problems involve complex multi-material sys-

154 Results Chapter 6

traceRay
:: Int −− Maximum reflection count
→ Acc Objects −− Objects in the scene
→ Acc Lights −− Direct lighting sources in the scene
→ Exp Color −− Ambient light in the scene
→ Exp Position −− Origin of the ray (pixel location)
→ Exp Direction −− Direction of the ray
→ Exp Color

traceRay limit objects lights ambient = go limit
where

(spheres, planes) = unlift objects

dummySphere = constant (Sphere (XYZ 0 0 0) 0 (RGB 0 0 0) 0)
dummyPlane = constant (Plane (XYZ 0 0 0) (XYZ 0 0 1) (RGB 0 0 0) 0)

go 0 _ _ −− Stop once there are too many reflections, in case
= black −− we’ve found two parallel mirrors

go bounces orig dir −− See which objects the ray intersects
= let

(hit_s, dist_s, s) = castRay distanceToSphere dummySphere spheres orig dir
(hit_p, dist_p, p) = castRay distanceToPlane dummyPlane planes orig dir

in
A.not (hit_s | |* hit_p) ?
(black −− ray didn’t intersect any objects

, let −− ray hit an object
−− determine the intersection point, and surface properties that
−− will contribute to the colour
next_s = hitSphere s dist_s orig dir
next_p = hitPlaneCheck p dist_p orig dir
(point, normal, color, shine)

= unlift (dist_s <* dist_p ? (next_s, next_p))

−− result angle of ray after reflection
newdir = dir − (2.0 * (normal `dot` dir)) .* normal

−− determine the direct lighting at this point
direct = applyLights objects lights point normal

−− see if the ray hits anything else
refl = go (bounces − 1) point newdir

−− total lighting is the direct lighting plus ambient
lighting = direct + ambient

−− total incoming light is direct lighting plus reflections
light_in = scaleColour shine refl

+ scaleColour (1.0 − shine) lighting

−− outgoing light is incoming light modified by surface color, clipped in case
−− the sum of all incoming lights is too bright to display
light_out = clampColor (light_in * color)

in
light_out

)

Listing 6.14: The core ray casting implementation

Section 6.14 LULESH 155

 1

 10

 100

 1000

 10000

64k 256k 1M 4M 16M

R
un

 T
im

e
(m

s)

Image size (total pixels)

Ray tracer

Repa
Accelerate (+sharing)

... +fusion

Figure 6.16: Kernel runtimes for the ray tracer program, in Accelerate compared to a parallel
implementation written in Repa. Note the log-log scale.

tems that undergo large deformations. The Livermore Unstructured Lagrange Explicit Shock
Hydrodynamics (LULESH) application [4, 64, 65] is a proxy application which solves the Se-
dov blast wave problem, and is designed to be representative of the numerical algorithms, data
motion, and programming style in scientific hydrodynamics applications. Figure 6.17 depicts
the part of larger hydrodynamic codes that are modelled by the LULESH proxy application.

The LULESH benchmark provides some insight as to how Accelerate compares to real
applications. The reference CUDA implementation consists of 3000 lines of code, and is
specialised to the Kepler architecture only (compute capability 3.x). A separate implementa-
tion is required for the Fermi architecture (compute capability 2.x) and is 4400 lines of code
(although additionally supports multiple GPUs). Karlin et al. [65] describe the GPU port
of LULESH, and note that several changes over the base (sequential CPU) implementation
required significant human effort, and may not be portable between GPU generations. In
contrast, the Accelerate implementation is only 800 lines of code, and is portable to multiple
architectures and backend targets from a single source.

As no implementation for our compute capability 1.3 GPU is available, this benchmark
was run using a Tesla K40c processor (compute capability 3.5, 15 multiprocessors = 2880 cores
at 750MHz, 11GB RAM) backed by two 12-core Xeon E5-2670 CPUs (64-bit, 2.3GHz, 32GB
RAM) running GNU/Linux (Ubuntu 14.04 LTS). Figure 6.18 compares the performance of
Accelerate to the reference implementation for Kepler GPUs. Future work could investigate

156 Results Chapter 6

Figure 6.17: The structure of the full-featured ALE3D hydrodynamics application, and its
relation to the LULESH proxy application. Although highly simplified, LULESH is designed to
be representative of the numerical algorithms, data motion, and programming style of the overall
application. Image from https://codesign.llnl.gov/lulesh.php.

 0.01

 0.1

 1

 10

100 1k 10k 100k

R
un

 T
im

e
/ I

te
ra

tio
n

(m
s)

Problem Size (total elements)

LULESH

Accelerate (+sharing)
... +fusion

CUDA

Figure 6.18: Kernel runtimes for the LULESH program, in Accelerate compared to the reference
GPU implementation. Note the log-log scale.

https://codesign.llnl.gov/lulesh.php

Section 6.15 Discussion 157

whether any of the optimisations the reference implementation enjoys are useful in other
applications, and could be targets for integration into Accelerate.

6.15 Discussion

The previous chapters have discussed how to implement and optimise an EDSL with skeleton
based code generation targeting bulk parallel SIMD hardware such as GPUs. This chapter
presented a series of benchmark applications, including a comparison to other hand-optimised
CPU and/or GPU implementations, that demonstrates the positive effect of these optimisa-
tions, showing that we can approach the performance of hand-written CUDA code while
retaining a much higher level of abstraction.

158 Results Chapter 6

7

Conclusion

A new scientific truth does not triumph by convincing its opponents and making
them see the light, but rather because its opponents eventually die, and a new

generation grows up that is familiar with it.
—max planck

The present dissertation argues that purely functional embedded languages represent a
good programming model for making effective use of massively parallel SIMD hardware.
Indeed, all current GPU programming models, including CUDA, implicitly emphasise a purely
functional style, where global side-effects must be tightly controlled by the user.

To this end, this thesis has developed a purely functional language, compiler, and run-
time system for executing flat data-parallel array computations targeting graphics processing
units. When implementing such an embedded language, the naïve compilation of such pro-
grams quickly leads to both code explosion and excessive intermediate data structures. The
resulting slowdown is not acceptable on target hardware that is usually chosen to achieve
high performance. This thesis demonstrates that our embedding in Haskell, combined with
the program optimisations and runtime system that I have implemented in this thesis, are
a successful approach to implementing an expressive array programming language target-
ing bulk-parallel SIMD hardware. Moreover, I demonstrate that the Accelerate language and
CUDA backend that I have developed simultaneously offers a higher level of abstraction while
often approaching the performance of traditional low-level methods for programming GPUs.

Chapter 3 introduces Accelerate, an embedded language of parameterised, collective array
operations. Accelerate is our approach to reducing the complexity of programming massively
parallel multicore processors such as GPUs. The choice of language operations is informed by
the scan-vector model, which has been shown to be suitable for a wide range of algorithms and
can be implemented efficiently on the GPU. We extend this model with parameterised, rank-
polymorphic operations over multidimensional arrays, making Accelerate more expressive
than previous high-level GPU programming language proposals.

160 Conclusion Chapter 7

Chapter 4 details how I implemented the Accelerate backend which targets programmable
graphics processing units. While the current implementation targets CUDA, the same ap-
proach works for other target languages such as OpenCL and LLVM. In the implementation
of Accelerate’s CUDA backend, I regard the collective operations of the Accelerate language
as algorithmic skeletons, where a parallel program is composed of one or more parameterised
skeletons, or templates, encapsulating specific parallel behaviour. The dynamically generated
code is specialised to the capabilities of the current hardware, and to minimise the overhead of
online compilation, kernels are compiled in parallel and asynchronously with other operations,
and previously compiled kernels are cached and reused. The runtime system automatically
manages data on the GPU, minimising allocations and data transfers and overlapping host-
to-device transfers with other operations. The execution engine optimises kernel launches
for the current hardware to maximise thread occupancy, and kernels are scheduled so that
independent operations are executed concurrently, for devices that support this capability.
All this and more is done to ensure that the Accelerate runtime system executes programs as
efficiently as possible.

Chapter 5 describes our solution to what we found as the two most pressing performance
limitations for executing embedded array computations: sharing recovery and array fusion.
In particular, Chapter 5 discusses my novel approach to type-safe array fusion for compil-
ers targeting bulk-parallel SIMD hardware. Fusion for a massively data-parallel embedded
language instrumented via algorithmic skeletons requires a few uncommon considerations
compared to existing shortcut fusion methods. This problem was tacked by classifying array
operations into two categories: producers are operations where individual elements are com-
puted independently, while consumers need to know exactly how the input elements depend
on each other in order to implement the operation efficiently in parallel. The problem with
existing fusion systems is that this information is obfuscated, and as a result the parallel in-
terpretation of the program is lost. Program fusion is realised in two stages. First, sequences
of producer operations are fused using type-preserving source-to-source term rewrites. In
the second stage, the fused producer representation is embedded directly into the consumer
skeleton during code generation. This phase distinction is necessary in order to support the
different properties of producers and consumers.

Following these two main chapters, Chapter 6 presents a series of benchmarks comparing
the performance of the Accelerate program to hand-optimised reference implementations.
The benchmarks illustrate the positive effect of the optimisations discussed in this thesis, and
the accompanying analyses discuss future work that can be undertaken in cases where the
performance of the Accelerate program is lower than that of the reference solution. Overall,
I have demonstrated that the Accelerate language is suitable for expressing a wide range of
programs, and that the runtime system and program optimisations described in this thesis
result in programs that are often competitive with low level, hand optimised solutions.

Section 7.2 Research contribution 161

7.1 Research contribution

This thesis presents two main research contributions. First, it demonstrates how to implement
a high-performance embedded language and runtime system. Second, it establishes a novel
method of array fusion for languages targeting bulk-parallel SIMD hardware. Together, these
contributions provide an embedded language of array operations, which achieves performance
comparable to traditional imperative language approaches, but at a much higher level of
abstraction.

7.1.1 A high-performance embedded language

While the current generation of graphics processing units are massively parallel processors
with peak arithmetic and memory throughput rates much higher than traditional CPUs,
attaining the advertised 100× speedups remains a work intensive exercise that requires a
substantial degree of expert knowledge. Several researchers have attempted to ameliorate the
status quo, by either using a library to compose GPU code or by compiling a subset of a high-
level language to low-level GPU code. However, no other proposal has offered a high-level
interface with the breadth and expressivity of operations provided by the Accelerate language,
together with an implementation whose performance is comparable to low-level programming
languages.

The implementation of Accelerate’s CUDA backend, covered in Chapter 4, is original
in that it successfully addresses these problems. While the current implementation targets
CUDA, my approach to code generation works for other languages targeting data or control
parallel hardware, and the underlying runtime system is applicable to any deeply embedded
language which is implemented via runtime code generation and online compilation.

7.1.2 A fusion system for parallel array languages

Although the topic of fusion has received significant prior attention, particularly in the context
of functional programming languages, none of the existing techniques are adequate for a type-
preserving embedded language compiler targeting massively parallel SIMD hardware such as
graphics processing units.

The implementation of fusion for embedded array languages implemented via algorithmic
skeletons, as developed in Chapter 5, is original. In particular, because the fusion trans-
formation retains the structure of the program as a sequence of collective operations, our
compilation techniques developed in Chapter 4 are able to generate efficient parallel imple-
mentations of fused operations via skeleton template instantiation. Our fused skeletons are
able to exploit all levels of the processor thread and memory hierarchy, which is of crucial
importance to achieving high performance.

162 Conclusion Chapter 7

7.2 Future work

Based on the results of this thesis, a wide range of interesting future work is possible. The
previous chapters and the analysis of the benchmark results in particular have already given
suggestions for future work; these are not repeated here, but some further topics are discussed.

7.2.1 Nested data parallelism

This thesis has demonstrated a high level array programming language and runtime envi-
ronment that is expressive and has performance competitive to much lower level imperative
program languages. However, the Accelerate language is restricted to programs which ex-
press only flat data parallelism, in which the computation of each data element must itself
be sequential. In practice, this severely limits the applications of data-parallel computing,
especially for sparse and irregular problems [108].

Blelloch’s pioneering work on NESL showed that it was possible to combine the more
flexible model of nested data parallelism, where the computation of each element may spawn
further parallel computations, with a flat data parallel execution model [22]. Recent work
has extended flattening to support richer data types and higher order functions [105].

Extending the Accelerate language to support the expression of nested parallelism, and
implementing the vectorisation transformation to convert this nested parallelism into a flat
data parallel program which can be executed on the compiler and runtime system presented
in this thesis, is worthwhile future work. This would allow Accelerate to support programs
that are very difficult to parallelise in a flat data parallel setting, such as the Barnes-Hut
algorithm for N -body simulation [11].

7.2.2 Type-preserving code generation

The Accelerate language is richly typed, maintaining full type information of the embedded
language in the term tree and during the transformations described in this thesis. Since Accel-
erate is an embedded language implemented via online compilation, compilation time of the
Accelerate program corresponds to Haskell program runtime. By encoding type information
into the Accelerate terms that are checked by the Haskell type checker at Haskell compile
time, we ensure that only well formed Accelerate programs will be compiled, reducing the
number of possible runtime errors.

Although we ensure the source program is well typed, the implementation of code genera-
tion presented in this thesis does not reflect the types of the target language into the Haskell
type system. Thus, any errors in translating the Accelerate program into CUDA source code
will not be detected at Haskell compilation time, and will instead raise a runtime error when
the generated code is compiled. Adding a fully type preserving compiler that translates the
well-typed Accelerate program into verifiable target code is important future work.

Section 7.2 Future work 163

7.2.3 Flexibility in the optimisation pipeline

Chapter 6 demonstrated the positive effects of the optimisations that have been presented in
this thesis. However, the optimisation pipeline is completely fixed, so changing or extending
the set of optimisations requires changing the compiler itself.

Useful future work would be the ability to control the existing optimisation process, for
example by specifying the eagerness with which producer operations should be fused. This
would allow the user to override the default behaviour of always fusing expressions that are
used exactly once in subsequent computations.

Orthogonal to this work would be the ability to extend the optimisation process through
the implementation of a system of extensible rewrite rules [103]. Although our host language
Haskell compiler supports rewrite rules, since Accelerate programs can be generated at pro-
gram runtime, we require rewrite rules at program runtime as well. In addition to allowing
the compiler to generate rules internally to propagate information obtained from automated
analyses, this would allow library authors to express domain specific knowledge that the com-
piler can not discover for itself. For example, the author of a library of linear algebra routines
might like to express the equivalence that x−1x 7→ 1. While a programmer may be unlikely
to write such expressions themselves, they can easily appear when aggressive inlining brings
together code that was written separately. Adding the ability to add rewrite rules to the
program could be a very powerful feature, but raises questions such as verifying whether the
programmer-specified rules are consistent with the underlying function definitions that they
purport to describe, or that the set of rules are confluent or even terminating.

164 Conclusion Chapter 7

Bibliography

[1] The DOT Language. URL http://www.graphviz.org/content/dot-language.

[2] NumPy, 2006. URL http://www.numpy.org.

[3] CLyther, 2010. URL http://srossross.github.io/Clyther/.

[4] Hydrodynamics Challenge Problem. Technical Report LLNL-TR-490254, 2011.

[5] S. J. Aarseth. Gravitational N-Body Simulations: Tools and Algorithms. Cambridge
Monographs on Mathematical Physics. Cambridge University Press, 1 edition, 2003.

[6] AccelerEyes. Jacket. 2012.

[7] Adobe Systems Incorporated. PostScript Language Reference. Addison-Wesley, 3 edi-
tion, Feb. 1999.

[8] T. Altenkirch and B. Reus. Monadic Presentation of Lambda Terms Using Generalised
Inductive Types. In J. Flum and M. Rodriguez-Artalejo, editors, CSL ’99: Computer
Science Logic, pages 453–468, 1999.

[9] A. W. Appel and T. Jim. Shrinking lambda expressions in linear time. Journal of
Functional Programming, 7(5), Sept. 1997.

[10] R. Atkey, S. Lindley, and J. Yallop. Unembedding domain-specific languages. In Haskell
’09: The 2nd ACM SIGPLAN Symposium on Haskell, pages 37–48, 2009.

[11] J. Barnes and P. Hut. A hierarchical O(N logN) force-calculation algorithm. Nature,
324(6096):446–449, Dec. 1986.

[12] W. Belkhir and A. Giorgetti. Lazy AC-Pattern Matching for Rewriting. In WRS ’11:
The 10th International Workshop on Reduction Strategies in Rewriting and Program-
ming, pages 37–51, 2011.

[13] N. Bell and M. Garland. Efficient Sparse Matrix-Vector Multiplication on CUDA.
Technical Report NVR-2008-004, NVIDIA Corporation, 2008.

http://www.graphviz.org/content/dot-language
http://www.numpy.org
http://srossross.github.io/Clyther/

166 BIBLIOGRAPHY

[14] N. Bell and M. Garland. Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In SC ’09: The 2009 International Conference on
High Performance Computing Networking, Storage and Analysis, pages 1–11, 2009.

[15] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul. The polyhedral
model is more widely applicable than you think. In CC ’10: The 2010 International
Conference on Compiler Construction, Mar. 2010.

[16] N. Benton, A. Kennedy, S. Lindley, and C. Russo. Shrinking reductions in SML.NET.
In IFL ’04: The 16th International Symposium on Implementation and Application of
Functional Languages, Sept. 2004.

[17] L. Bergstrom and J. Reppy. Nested data-parallelism on the GPU. In ICFP ’12: The
17th ACM SIGPLAN international conference on Functional programming, Sept. 2012.

[18] G. E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990.

[19] G. E. Blelloch. Prefix Sums and Their Applications. Technical Report CMU-CS-90-190,
School of Computer Science, Carnegie Mellon University, Nov. 1990.

[20] G. E. Blelloch. NESL: A Nested Data-Parallel Language. Technical Report CMU-CS-
95-170, School of Computer Science, Carnegie Mellon University, Sept. 1995.

[21] G. E. Blelloch and J. Greiner. A provable time and space efficient implementation of
NESL. In ICFP ’96: The 1st ACM SIGPLAN International Conference on Functional
Programming, pages 213–225, 1996.

[22] G. E. Blelloch and G. W. Sabot. Compiling collection-oriented languages onto massively
parallel computers. In FRONTIERS ’88: Proceedings of the 2nd Symposium on the
Frontiers of Massively Parallel Computation, pages 575–585, Oct. 1988.

[23] B. Bond, K. Hammil, L. Litchev, and S. Singh. FPGA Circuit Synthesis of Accel-
erator Data-Parallel Programs. In FCCM ’10: The 18th IEEE Annual International
Symposium on Field-Programmable Custom Computing Machines, pages 167–170, May
2010.

[24] J. F. Canny. A Computational Approach to Edge Detection. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, pages 679–698, 1986.

[25] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: Compiling an embedded
data parallel language. In PPoPP ’11: The 16th ACM Symposium on Principles and
Practice of Parallel Programming, Feb. 2011.

[26] M. M. T. Chakravarty. Converting a HOAS term GADT into a de Bruijn term GADT,
2009. URL http://www.cse.unsw.edu.au/~chak/haskell/term-conv/.

http://www.cse.unsw.edu.au/~chak/haskell/term-conv/

BIBLIOGRAPHY 167

[27] M. M. T. Chakravarty and G. Keller. Functional array fusion. In ICFP ’01: The 6th
ACM SIGPLAN international conference on Functional programming, pages 205–216,
2001.

[28] M. M. T. Chakravarty, G. Keller, and S. Peyton Jones. Associated type synonyms.
In POPL ’05: The 32nd ACM Symposium on Principles of Programming Languages,
pages 241–253, 2005.

[29] M. M. T. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover. Accelerat-
ing Haskell array codes with multicore GPUs. In DAMP ’11: The 6th Workshop on
Declarative Aspects of Multicore Programming, Jan. 2011.

[30] S. Chatterjee and J. Prins. COMP663: Parallel Computing Algorithms. Department of
Computer Science, University of North Carolina at Chapel Hill, 2009.

[31] S. Chatterjee, G. E. Blelloch, and M. Zagha. Scan primitives for vector computers. In SC
’90: The 1990 International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 666–675, 1990.

[32] K. Claessen, M. Sheeran, and B. J. Svensson. Expressive Array Constructs in an Em-
bedded GPU Kernel Programming Language. In DAMP ’12: The 7th Workshop on
Declarative Aspects of Multicore Programming, pages 21–31, 2012.

[33] R. Clifton-Everest, T. L. McDonell, M. M. T. Chakravarty, and G. Keller. Embedding
Foreign Code. In PADL ’14: The 16th International Symposium on Practical Aspects
of Declarative Languages, Jan. 2014.

[34] M. I. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.
The MIT Press, 1989.

[35] A. Collins, D. Grewe, V. Grover, S. Lee, and A. Susnea. NOVA: A Functional Language
for Data Parallelism. Technical Report NVR-2013-002, NVIDIA Corporation, July 2013.

[36] Continuum Analytics. Anaconda Accelerate, 2013. URL https://store.continuum.
io/cshop/accelerate/.

[37] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: from lists to streams to
nothing at all. In ICFP ’07: The 12th ACM SIGPLAN international conference on
Functional programming, pages 315–326, 2007.

[38] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

https://store.continuum.io/cshop/accelerate/
https://store.continuum.io/cshop/accelerate/

168 BIBLIOGRAPHY

[39] Y. Dotsenko, N. K. Govindaraju, P.-P. Sloan, C. Boyd, and J. Manferdelli. Fast scan
algorithms on graphics processors. In ICS ’08: The 22nd International Conference on
Supercomputing, pages 205–213, 2008.

[40] C. C. Dyer and P. S. S. Ip. Softening in N-body simulations of collisionless systems.
The Astrophysical Journal, 409(1):60–67, June 1993.

[41] S. Eker. Associative-commutative matching via bipartite graph matching. The Com-
puter Journal, 38(5):381–399, Jan. 1995.

[42] S. Eker. Single Elementary Associative-Commutative Matching. Journal of Automated
Reasoning, 28(1):35–51, 2002.

[43] S. Eker. Associative-Commutative Rewriting on Large Terms. In RTA ’03: The 14th
international conference on Rewriting Techniques and Applications, pages 14–29, June
2003.

[44] C. Elliott. Functional Images. In The Fun of Programming. Palgrave, 2003.

[45] C. Elliott. Programming graphics processors functionally. In Haskell ’04: The 2004
ACM SIGPLAN workshop on Haskell, Sept. 2004.

[46] J. Ellson, E. Gansner, A. E. Lefohn, S. North, and G. Woodhull. Graphviz — open
source graph drawing tools, 2001. URL http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.87.9389.

[47] A. Gill. Cheap Deforestation for Non-strict Functional Languages. PhD thesis, Depart-
ment of Computer Science, University of Glasgow, 1996.

[48] A. Gill. Type-Safe Observable Sharing in Haskell. In Haskell ’09: The 2nd ACM
SIGPLAN Symposium on Haskell, pages 117–128, Sept. 2009.

[49] A. Gill, J. Launchbury, and S. Peyton Jones. A short cut to deforestation. In FPCA ’93:
The 1993 conference on Functional programming languages and computer architecture,
pages 223–232, 1993.

[50] A. Gill, T. Bull, G. Kimmell, E. Perrins, E. Komp, and B. Werling. Introducing Kansas
Lava - Springer. In IFL ’11: The 23rd International Symposium on Implementation
and Application of Functional Languages, pages 18–35, 2011.

[51] C. Grelck, K. Hinckfuß, and S.-B. Scholz. With-Loop Fusion for Data Locality and
Parallelism. In IFL ’05: The 17th International Symposium on Implementation and
Application of Functional Languages, pages 178–195, 2006.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.87.9389
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.87.9389

BIBLIOGRAPHY 169

[52] L. J. Guibas and D. K. Wyatt. Compilation and Delayed Evaluation in APL. In POPL
’78: The 5th ACM symposium on Principles of Programming Languages, pages 1–8,
1978.

[53] K. Gupta, J. A. Stuart, and J. D. Owens. A study of Persistent Threads style GPU
programming for GPGPU workloads. In InPar ’12: Innovative Parallel Computing,
pages 1–14. IEEE, May 2014.

[54] M. Harris. Optimizing Parallel Reduction in CUDA. In CUDA SDK, 2007.

[55] M. Harris and M. Garland. Optimizing Parallel Prefix Operations for the Fermi Ar-
chitecture. In GPU Computing Gems: Jade Edition, pages 29–38. Morgan Kaufmann,
Oct. 2012.

[56] F. Henglein and R. Hinze. Sorting and Searching by Distribution: From Generic Dis-
crimination to Generic Tries. In Programming Languages and Systems, pages 315–332.
Springer, Dec. 2013.

[57] T. Henretty, R. Veras, F. Franchetti, L.-N. Pouchet, J. Ramanujam, and P. Sadayap-
pan. A stencil compiler for short-vector SIMD architectures. In ICS ’13: The 27th
International Conference Supercomputing, pages 13–24, June 2013.

[58] High Performance Fortran Forum. High Performance Fortran Language Specification
version 2.0. Rice University, Jan. 1997.

[59] J. Hoberock and N. Bell. Thrust: A Parallel Template Library.

[60] Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling calculation eliminates multiple
data traversals. In ICFP ’97: The 2nd ACM SIGPLAN International Conference on
Functional Programming, 1997.

[61] P. Hudak. Building domain-specific embedded languages. ACM Computing Surveys, 28
(4es):196, 1996.

[62] T. Jansen. GPU++: An Embedded GPU Development System for General-Purpose
Computations. PhD thesis, Technische Universität München, 2008.

[63] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Implicit and explicit
optimizations for stencil computations. In MSPC ’06: The 2006 workshop on Memory
System Performance and Correctness, pages 51–60, Oct. 2006.

[64] I. Karlin, A. Bhatele, B. L. Chamberlain, J. Cohen, Z. Devito, M. Gokhale, R. Haque,
R. Hornung, J. Keasler, D. Laney, E. Luke, S. Lloyd, J. McGraw, R. Neely, D. Richards,
M. Schulz, C. H. Still, F. Wang, and D. Wong. LULESH Programming Model and
Performance Ports Overview. Technical Report LLNL-TR-608824, Dec. 2012.

170 BIBLIOGRAPHY

[65] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. Devito, R. Haque,
D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, and C. Still. Exploring Traditional
and Emerging Parallel Programming Models using a Proxy Application. In IPDPS
’13: The 2013 IEEE International Symposium on Parallel and Distributed Processing,
Boston, USA, 2013.

[66] G. Keller. Transformation-based Implementation of Nested Data Parallelism for Dis-
tributed Memory Machines. PhD thesis, Technische Universität Berlin, Fachbereich
Informatik, 1999.

[67] G. Keller and M. M. T. Chakravarty. On the Distributed Implementation of Aggregate
Data Structures by Program Transformation. In J. e. Rolim, editor, IPPS/SPDP ’99:
The 13th International Parallel Processing Symposium and 10th Symposium on Parallel
and Distributed Processing, pages 108–122, 1999.

[68] G. Keller, M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, and B. Lippmeier.
Regular, shape-polymorphic, parallel arrays in Haskell. In ICFP ’10: The 15th ACM
SIGPLAN international conference on Functional programming, pages 261–272, Sept.
2010.

[69] A. Kennedy. Compiling with continuations, continued. In ICFP ’07: The 12th ACM
SIGPLAN international conference on Functional programming, Oct. 2007.

[70] H. Kirchner and M. Pierre-Etienne. Promoting rewriting to a programming language:
a compiler for non-deterministic rewrite programs in associative-commutative theories.
Journal of Functional Programming, 11(02):207–251, Mar. 2001.

[71] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih. PyCUDA and
PyOpenCL: A scripting-based approach to GPU run-time code generation. Parallel
Computing, 38(3), Mar. 2012.

[72] B. Larsen. Simple Optimizations for an Applicative Array Language for Graphics Pro-
cessors. In DAMP ’11: The 6th Workshop on Declarative Aspects of Multicore Pro-
gramming, Jan. 2011.

[73] M. Lesniak. PASTHA: Parallelizing stencil calculations in Haskell. In DAMP ’10: The
5th Workshop on Declarative Aspects of Multicore Programming, pages 5–14, 2010.

[74] G. M. Levin and L. Nyland. An Introduction to Proteus. Technical Report TR95-025,
Clarkson University and University of North Carolina, Aug. 1994.

[75] B. Lippmeier and G. Keller. Efficient parallel stencil convolution in Haskell. In Haskell
’11: The 4th ACM SIGPLAN Symposium on Haskell, Sept. 2011.

BIBLIOGRAPHY 171

[76] B. Lippmeier, M. M. T. Chakravarty, G. Keller, and S. Peyton Jones. Guiding parallel
array fusion with indexed types. In Haskell ’12: The 5th ACM SIGPLAN Symposium
on Haskell, Sept. 2012.

[77] B. Lippmeier, M. M. T. Chakravarty, G. Keller, and A. Robinson. Data Flow Fusion
with Series Expressions in Haskell. In Haskell ’13: The 6th ACM SIGPLAN Symposium
on Haskell, Sept. 2013.

[78] W. Ma and G. Agrawal. An integer programming framework for optimizing shared
memory use on GPUs. In HiPC ’10: The International Conference on High Performance
Computing, pages 1–10, Dec. 2010.

[79] F. M. Madsen and A. Filinski. Towards a streaming model for nested data parallelism.
In FHPC ’13: The 2nd ACM SIGPLAN Workshop on Functional High-Performance
Computing, pages 13–24, Sept. 2013.

[80] G. Mainland. Why it’s nice to be quoted. In Haskell ’07: The 2007 ACM SIGPLAN
workshop on Haskell, page 73, 2007.

[81] G. Mainland and G. Morrisett. Nikola: Embedding Compiled GPU Functions in Haskell.
In Haskell ’10: The 3rd ACM SIGPLAN Symposium on Haskell, 2010.

[82] G. Mainland, R. Leshchinskiy, and S. Peyton Jones. Exploiting vector instructions
with generalized stream fusion. In ICFP ’13: The 18th ACM SIGPLAN international
conference on Functional programming, pages 37–48, Nov. 2013.

[83] S. Marlow. Parallel and Concurrent Programming in Haskell. O’Reilly Media, first
edition, July 2013.

[84] K. Matsuzaki and K. Emoto. Implementing Fusion-Equipped Parallel Skeletons by Ex-
pression Templates. In IFL ’09: The 21st international Symposium on Implementation
and application of functional languages, pages 72–89. Springer Berlin Heidelberg, 2011.

[85] C. McBride. Epigram: Practical Programming with Dependent Types. In AFP ’04:
The 5th international conference on Advanced Functional Programming, pages 130–170,
2005.

[86] C. McBride. Type-Preserving Renaming and Substitution. Journal of Functional Pro-
gramming, 2006.

[87] M. D. McCool and S. Du Toit. Metaprogramming GPUs with Sh. A. K. Peters/CRC
Press, Aug. 2004.

[88] M. D. McCool, S. Du Toit, T. Popa, B. Chan, and K. Moule. Shader algebra. In
SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages 787–795, 2004.

172 BIBLIOGRAPHY

[89] T. L. McDonell, M. M. T. Chakravarty, G. Keller, and B. Lippmeier. Optimising Purely
Functional GPU Programs. In ICFP ’13: The 18th ACM SIGPLAN international
conference on Functional programming, Sept. 2013.

[90] S. Mehta, P.-H. Lin, and P.-C. Yew. Revisiting loop fusion in the polyhedral framework.
In PPoPP ’14: The 19th ACM Symposium on Principles and Practice of Parallel
Programming, Feb. 2014.

[91] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas, lenses,
envelopes and barbed wire. In The 5th conference on Functional programming languages
and computer architecture, pages 124–144, 1991.

[92] D. G. Merrill and A. S. Grimshaw. Parallel Scan for Stream Architectures. Technical
Report CS2009-14, Department of Computer Science, University of Virginia, Dec. 2009.

[93] D. G. Merrill and A. S. Grimshaw. High Performance and Scalable Radix Sorting.
Parallel Processing Letters, 21(2):245–272, June 2011.

[94] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard version
3.0. High Performance Computing Center Stuttgart (HLRS), Sept. 2012.

[95] G. E. Moore. Craming more components onto integrated circuits. Electronics, 38(8),
1965.

[96] T. Muranushi. Paraiso: an automated tuning framework for explicit solvers of partial
differential equations. Computational Science & Discovery, 5(1):015003, Jan. 2012.

[97] NVIDIA. Parallel Thread Execution ISA, 3.1 edition, Sept. 2012.

[98] NVIDIA. CUDA C Programming Guide. Technical Report PG-02829-001_v5.0,
NVIDIA Corporation, Oct. 2012.

[99] OpenMP Architecture Review Board. OpenMP Application Program Interface, v3.0,
May 2008.

[100] S. Peyton Jones, editor. Haskell 98 Languages and Libraries: The Revised Report.
Haskell 98 Languages and Libraries. Cambridge University Press, Apr. 2003.

[101] S. Peyton Jones and S. Marlow. Secrets of the Glasgow Haskell Compiler inliner. Journal
of Functional Programming, 12(4-5):393–434, July 2003.

[102] S. Peyton Jones, S. Marlow, and C. Elliott. Stretching the Storage Manager: Weak
Pointers and Stable Names in Haskell. In IFL ’99: The 11th International Symposium
on Implementation and Application of Functional Languages, pages 37–58, Sept. 1999.

BIBLIOGRAPHY 173

[103] S. Peyton Jones, A. Tolmach, and T. Hoare. Playing by the rules: rewriting as a
practical optimisation technique in GHC. In Haskell ’01, pages 203–233, 2001.

[104] S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple unification-based
type inference for GADTs. In ICFP ’06: The 11th ACM SIGPLAN international
conference on Functional programming, pages 50–61, 2006.

[105] S. Peyton Jones, R. Leshchinskiy, G. Keller, and M. M. T. Chakravarty. Harnessing
the Multicores: Nested Data Parallelism in Haskell. In R. Hariharan, M. Mukund,
and V. Vinay, editors, Foundations of Software Technology and Theoretical Computer
Science, Oct. 2008.

[106] W. Pfannenstiel. Piecewise Execution of Nested Parallel Programs - A Thread-Based
Approach. In Euro-Par ’99: Parallel Processing, pages 445–448, 1999.

[107] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, P. Sadayappan,
and N. Vasilache. Loop transformations: convexity, pruning and optimization. In POPL
’11: The 38th ACM symposium on Principles of Programming Languages, Jan. 2011.

[108] J. F. Prins, S. Chatterjee, and M. Simons. Irregular Computations in Fortran – Ex-
pression and Implementation Strategies. Scientific Programming, 7(3):313–326, 1999.

[109] K. H. Randall. Cilk: Efficient Multithreaded Computing. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, June 1998.

[110] R. Rivest. The MD5 Message-Digest Algorithm, Apr. 1992.

[111] A. Robinson, B. Lippmeier, and G. Keller. Fusing Filters with Integer Linear Pro-
gramming. In FHPC ’14: The 3rd ACM SIGPLAN Workshop on Functional High-
Performance Computing, Sept. 2014.

[112] T. Rompf, A. K. Sujeeth, N. Amin, K. J. Brown, V. Jovanovic, H. Lee, M. Jonnalagedda,
K. Olukotun, and M. Odersky. Optimizing data structures in high-level programs: new
directions for extensible compilers based on staging. In POPL ’13: The 40th ACM
symposium on Principles of programming languages, Jan. 2013.

[113] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fetterly. Dandelion: A compiler
and runtime for heterogenous sytems. In SOSP ’13: The 24th ACM Symposium on
Operating Systems Principles, pages 49–68, 2013.

[114] A. Rubinsteyn, E. Hielscher, N. Weinman, and D. Shasha. Parakeet: a just-in-time
parallel accelerator for python. In HotPar ’12: The 4th USENIX conference on Hot
Topics in Parallelism, June 2012.

174 BIBLIOGRAPHY

[115] V. Sarkar and G. R. Gao. Optimization of array accesses by collective loop transforma-
tions. In ICS ’91: The 5th International Conference on Supercomputing, pages 194–205,
1991.

[116] N. Satish, M. Harris, and M. Garland. Designing efficient sorting algorithms for many-
core GPUs. In IPDPS ’09: The 2009 IEEE International Symposium on Parallel and
Distributed Processing, pages 1–10, May 2009.

[117] S. Sato and H. Iwasaki. A Skeletal Parallel Framework with Fusion Optimizer for
GPGPU Programming. In APLAS ’09: the 7th Asian Symposium on Programming
Languages and Systems, pages 79–94, 2009.

[118] T. Schrijvers, S. Peyton Jones, M. M. T. Chakravarty, and M. Sulzmann. Type check-
ing with open type functions. In ICFP ’08: The 13th ACM SIGPLAN international
conference on Functional programming, pages 51–62, 2008.

[119] J. T. Schwartz. Ultracomputers. ACM Transactions on Programming Languages and
Systems, 2(4):484–521, Oct. 1980.

[120] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan primitives for GPU com-
puting. In GH ’07: The 22nd ACM SIGGRAPH/EUROGRAPHICS symposium on
Graphics Hardware, pages 97–106, 2007.

[121] S. Sengupta, M. Harris, and M. Garland. Efficient Parallel Scan Algorithms for GPUs.
Technical Report NVR-2008-003, NVIDIA Corporation, Dec. 2008.

[122] T. Sheard and S. Peyton Jones. Template meta-programming for Haskell. ACM SIG-
PLAN Notices, 37(12):60–75, Dec. 2002.

[123] J. Stam. Stable fluids. In SIGGRAPH ’99: The 26th annual conference on Computer
graphics and interactive techniques, July 1999.

[124] A. K. Sujeeth, H. Lee, K. J. Brown, T. Rompf, H. Chafi, M. Wu, A. R. Atreya, M. Oder-
sky, and K. Olukotun. OptiML: An implicitly parallel domain-specific language for
machine learning � . In ICML ’11: The 28th International Conference on Machine
Learning, June 2011.

[125] A. K. Sujeeth, T. Rompf, K. J. Brown, H. Lee, H. Chafi, V. Popic, M. Wu, A. Prokopec,
V. Jovanovic, M. Odersky, and K. Olukotun. Composition and Reuse with Compiled
Domain-Specific Languages. In ECOOP ’13: The 27th European Conference on Object-
Oriented Programming, pages 52–78, 2013.

[126] J. D. Svenningsson and E. Axelsson. Combining Deep and Shallow Embedding for
EDSL. In Trends in Functional Programming, pages 21–36. 2013.

BIBLIOGRAPHY 175

[127] B. J. Svensson. Embedded Languages for Data-Parallel Programming. PhD thesis,
Department of Computer Science and Engineering, Chalmers University of Technology,
Göteborg, Sweden, 2013.

[128] B. J. Svensson, M. Sheeran, and K. Claessen. Obsidian: A domain specific embedded
language for parallel programming of graphics processors. In IFL ’08: The 20th In-
ternational Symposium on Implementation and Application of Functional Languages,
2008.

[129] T. Sweeney. The End of the GPU Roadmap. In High Performance Graphics, Aug. 2009.

[130] A. Takano and E. Meijer. Shortcut deforestation in calculational form. In FPCA ’95:
The 7th international conference on Functional programming languages and computer
architecture, pages 306–313, Oct. 1995.

[131] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A Language for Streaming
Applications. In CC ’02: The 11th International Conference on Compiler Construction,
pages 179–196, Mar. 2002.

[132] A. Tzannes, G. C. Caragea, R. Barua, and U. Vishkin. Lazy binary-splitting: a run-
time adaptive work-stealing scheduler. In PPoPP ’10: The 15th ACM Symposium on
Principles and Practice of Parallel Programming, pages 179–190, Jan. 2010.

[133] A. Venkat, M. Shantharam, M. Hall, and M. M. Strout. Non-affine Extensions to Poly-
hedral Code Generation. In CGO ’14: The 12th IEEE/ACM International Symposium
on Code Generation and Optimization, Feb. 2014.

[134] P. Wadler. Applicative style programming, program transformation, and list operators.
In FPCA ’81: The 1981 conference on Functional programming languages and computer
architecture, Oct. 1981.

[135] P. Wadler. Listlessness is better than laziness: Lazy evaluation and garbage collection
at compile-time. In LFP ’84: The 1984 ACM Symposium on LISP and functional
programming, Aug. 1984.

[136] P. Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical Com-
puter Science, 73(2):231–248, June 1990.

[137] J. Warren. A hierarchical basis for reordering transformations. In POPL ’84: The 11th
ACM symposium on Principles of Programming Languages, pages 272–282, 1984.

[138] R. C. Waters. Automatic transformation of series expressions into loops. ACM Trans-
actions on Programming Languages and Systems, 13(1):52–98, Jan. 1991.

176 BIBLIOGRAPHY

[139] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization of
sparse matrix-vector multiplication on emerging multicore platforms. Parallel Comput-
ing, 35(3):178–194, 2009.

[140] L. Xu and J. W. L. Wan. Real-time intensity-based rigid 2D-3D medical image reg-
istration using RapidMind Multicore Development Platform. In EMBS ’08: The 30th
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, pages 5382–5385, Aug. 2008.

[141] E. Z. Zhang, Y. Jiang, Z. Guo, and X. Shen. Streamlining GPU applications on the
fly. In ICS ’10: The 24th International Conference on Supercomputing, pages 115–126,
2010.

[142] Y. Zhang and F. Mueller. CuNesl: Compiling Nested Data-Parallel Languages for SIMT
Architectures. In ICPP ’12: The 41st International Conference on Parallel Processing,
pages 340–349, Sept. 2012.

Index

algorithmic skeleton, 2, 24, 44–50
antiquotation, 45, 46
AoS (array-of-struct), 50
array

delayed, 47
manifest, 47

AST (abstract syntax tree), 21, 46, 85

cache
allocation, 69–71
data, 68–69
kernel, 62–65

code generation
array indexing, 57–58
fusion, consumer, 46–48
shapes, 55–56
sharing, 52–53
tuples, 50–51

complexity
step, 9, 10
time, 9
work, 9

congruence, 36
convolution, 16–18
CUDA, 2, 6–20, 24

__global__, 7, 45, 74
__syncthreads(), 7
event, 78
kernel, 7, 45
shared memory, 7, 11, 17, 135

stream, 78
streaming multiprocessor, 7
texture reference, 58
thread block, 7, 10, 11, 17, 75
thread occupancy, 74–76
warp, 7, 19, 76

data parallelism, 5
de Bruijn, 32–41, 95
device, the, see GPU
DSL, see language: domain-specific

EDSL, see language: embedded

fusion, 8, 12, 18, 24
consumer, 91, 101–103
delayed array, 94, 113
producer, 91, 96–101
shortcut, 112

GPGPU (general-purpose computing on GPUs),
1, 2, 6, 24

GPU (graphics processing unit), 1, 2, 6–20,
23, 24, 26, 27

HOAS (higher-order abstract syntax), 31, 32,
37, 87

injective, 13

language
domain-specific, 20
embedded, 20, 21, 26–28, 40

178 INDEX

host, 20, 21
internal, see language: embedded
meta, see language: object
object, 21, 25, 40
stratified, 28, 37
target, 25

non-parametric representation, 31, 50–52
nursery, see cache: allocation

partial, 13

quasiquotation, 45, 46, 51, 58

rank-polymorphic, 24, 26, 29, 55
rasterisation, 1, 6

sharing, 52, 85
recovery, 87–89

shrinking, 108
skeleton, see algorithmic skeleton
SoA (struct-of-array), 50
stable name, 87, 88
stencil, 16–18
surjective, 13

tuple, 31
type

equality, 34–36
representation, 31
surface, 31

weakening, 37, 40

179

180

Copyright © 2009–2015, Trevor L. McDonell

	Title page - Optimising Purely Functional GPU Programs
	Contents
	Figures
	Listings
	Tables
	Abstract
	Acknowledgements

	Chapter 1 - Introduction
	Chapter 2 - Basics
	Chapter 3 - Embedding array computations
	Chapter 4 - Accelerated array code
	Chapter 5 - Optimising embedded array programs
	Chapter 6 - Results
	Chapter 7 - Conclusion
	Bibliography
	Index

