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Many new memory technologies are available for building future energy-efficient memory hierarchies. It is
necessary to have a framework that can quickly find the optimal memory technology at each hierarchy level.
In this work, we first build a circuit-architecture joint design space exploration framework by combining
RC circuit analysis and Artificial Neural Network (ANN)-based performance modeling. Then, we use this
framework to evaluate some emerging nonvolatile memory hierarchies. We demonstrate that a Resistive
RAM (ReRAM)-based cache hierarchy on an 8-core Chip-Multiprocessor (CMP) system can achieve a 24%
Energy Delay Product (EDP) improvement and a 36% Energy Delay Area Product (EDAP) improvement
compared to a conventional hierarchy with SRAM on-chip caches and DRAM main memory.
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1. INTRODUCTION

The state-of-the-art memory hierarchy design with SRAM on-chip caches and DRAM
off-chip main memory is now being challenged from two aspects. First, both SRAM and
DRAM technologies are leaky. The SRAM leakage power and the DRAM refresh power
will start to dominate if memory capacities keep growing. Some data already show that
25–40% of total power is attributed to the memory system [Udipi et al. 2010] and that
some embedded processor caches can consume over 40% of the total chip power budget
[Meng et al. 2005]. Second, SRAM and DRAM are facing many difficulties in scaling
down. For example, it is hard to scale down DRAM below a 20nm process node due to the
difficulty in keeping an adequate amount of cell capacitance [International Technology
Roadmap for Semiconductors 2012]. The recent shift of some L3 on-chip caches from
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SRAM to eDRAM [Kalla et al. 2010] and the research momentum in replacing DRAM
main memory with various emerging nonvolatile memories [Lee et al. 2009; Zhou et al.
2009; Qureshi et al. 2009a, 2009b; Seong et al. 2010; Schechter et al. 2010; Dong et al.
2008; Sun et al. 2009; Smullen et al. 2011] reflect the responses to such challenges in
designing an energy-efficent and cost-effective memory hierarchy.

Recently, many alternative memory technologies, such as Phase-Change RAM
(PCRAM)1 [Lee et al. 2008; Sasago et al. 2009; De Sandre et al. 2010], Spin-Torque
Transfer RAM (STTRAM)2 [Kawahara et al. 2007; Tsuchida et al. 2010], and Resistive
RAM (ReRAM)3 [Chen et al. 2003; Kim et al. 2010; Sheu et al. 2011] have been demon-
strated. These emerging nonvolatile memory technologies have attractive properties of
high density, fast access, good scalability, and nonvolatility, and they have drawn the
attention of the computer industry and challenged the role of SRAM and DRAM in the
mainstream memory hierarchy for the first time in more than 30 years.

Since each of the emerging memory technologies has its pros and cons and the pe-
ripheral circuit design can affect the memory module properties greatly, future memory
hierarchies will have a much larger design space. Therefore, it is necessary to have an
estimation framework that can quickly find the optimal memory technology choice and
the corresponding circuit design style in terms of performance, energy, or area (cost).
But there are two challenges before doing that.

First, unlike SRAM, whose cells and macro designs are highly standardized, emerg-
ing memory technologies only have prototypes whose performance and energy proper-
ties can vary greatly. Such circuit variation can already be observed from the related
literature [Lee et al. 2008; Sasago et al. 2009; De Sandre et al. 2010; Kawahara et al.
2007; Tsuchida et al. 2010; Chen et al. 2003; Kim et al. 2010; Sheu et al. 2011], where
some of the memory prototypes show extremely fast access speed, whereas others
show extremely dense structure. In order to model this variety and the circuit-level
trade-offs, we build a circuit-level performance, energy, and area model.

Second, in order to build an optimization loop covering circuit- and architecture-
level design options, we require models that reflect how architectural metrics (e.g.,
IPC and power consumption) change as we tune the underlying memory hierarchy
design knobs (i.e., cache capacity, cache associativity, and cache read or write latency).
Conventionally, such a model is built through simulations; however, it is impractical
to run time-consuming simulations for each possible design input. To surmount this
difficulty, we apply statistical analysis and effectively use limited simulation runs to
approximate the entire architectural design space.

After modeling the circuit- and architecture-level trade-offs, we combine them into a
circuit-architecture joint design space exploration framework and use this framework
to optimize different memory hierarchy levels by adopting emerging memory technolo-
gies. In this work, we show that combined with SRAM L1 or L2 caches, the versatility
of emerging memory technologies can excel in the remaining memory hierarchy levels
from L2 or L3 caches to main memories, and that such a hybrid hierarchy has significant
benefits in energy and area reduction with insignificant performance degradation over-
head. As an example, our analysis shows that using ReRAM in L3 caches can achieve
overall improvements in Energy Delay Product (EDP) (by 28%) and Energy Delay Area
Product (EDAP) (by 39%) on an 8-core chip-multiprocessor (CMP) system. Finally, we
propose a simulated annealing approach that can quickly find a near-optimal solution
when designing an energy-efficient or cost-efficient memory hierarchy.

1Also called PCM or PRAM.
2Also called STT-MRAM or MRAM.
3Also called RRAM, CBRAM, or memristor.
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2. RELATED WORK

Our work involves both circuit- and architecture-level models; thus, we first describe
prior work on circuit-level memory design space exploration and predictive perfor-
mance models.

2.1. Circuit Model for Memory Modules

Many circuit-level models have been provided to enable SRAM or DRAM design ex-
plorations. For example, CACTI [Wilton and Jouppi 1996; Thoziyoor et al. 2008b] is
widely used to estimate the performance, energy, and area of SRAM and DRAM caches.
However, as CACTI was originally designed to model an SRAM-based cache, some of its
fundamental assumptions do not match actual emerging nonvolatile memory circuit
implementations. Besides CACTI, Amrutur and Horowitz [2000] introduced an analyt-
ical model for estimating SRAM array speed and power scaling. Another circuit-level
model [Azizi et al. 2010] uses a logic synthesis tool to build a circuit library and relies
on curve fitting to represent circuit design trade-offs.

2.2. Predictive Performance Model

Statistical models [Joseph et al. 2006a, 2006b; Lee and Brooks 2006; Azizi et al. 2010;
Ipek et al. 2008; Dubach et al. 2007] can be used to infer the impact of architectural
input configurations on overall performance metrics. Although it is time-consuming to
collect sufficient sample data from conventional simulations, this is a one-time effort,
and all of the later outputs can be generated with the statistical model. Different
fitting models have been used in the inference process that fits a predictive model
through regression. Joseph et al. [2006a] used linear regression, and Lee and Brooks
[2006] used cubic splines; however, Azizi et al. [2010] applied posynomial functions
to create architecture-level models. The artificial neural network (ANN) [Ipek et al.
2008; Joseph et al. 2006b; Dubach et al. 2007] is another popular approach to build a
predictive architecture model; it can efficiently explore exponential-size architectural
design spaces with many interacting parameters.

3. CIRCUIT MODEL: AN RC APPROACH

Both SRAM and DRAM memory modules have their own typical design styles. For
example, 6T or 8T SRAM cells are widely adopted in the on-chip cache designs, and 1T
DRAM cells are also typical. Moreover, on-chip SRAM designs are mainly supported
by standard libraries or even memory compiler tools, and commodity DRAM is highly
standardized as well. Due to their technology maturity, both SRAM and DRAM memory
modules now have less variety.

However, such design consistency cannot be found in the emerging memory module
design. Recently, many STTRAM, PCRAM, and ReRAM prototype chips have been
designed and demonstrated [Lee et al. 2008; Sasago et al. 2009; De Sandre et al. 2010;
Kawahara et al. 2007; Tsuchida et al. 2010; Chen et al. 2003; Kim et al. 2010; Sheu et al.
2011], but few of them show consistency in reporting the performance, energy, and area
data. This is actually common for any new technology. Due to the still evolving state
of these emerging technologies, there is no single design standard design option can
balance the trade-offs among chip performance, energy consumption, and chip area.
Therefore, researchers have made various decisions on design and manufacturing, and
thus it causes a large variation among designs.

Such variation brings challenges as well as opportunities for using emerging memory
technologies in future memory hierarchies. The opportunity is that we can still freely
bias the optimal design options toward different optimization targets on the different
memory hierarchy levels, especially when large prototype chip variations tell us that
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Fig. 1. The circuit-level model for memory module timing, power, and area estimations.

these technologies can cover a wide design spectrum from highly latency-optimized mi-
croprocessor caches to highly density-optimized secondary storage. But the challenge
is to build a performance, energy, and area model for these emerging memory technolo-
gies even before they become mature. Therefore, we first build a circuit-level model for
nonvolatile memory technologies.

3.1. Modeling Philosophy

We apply the modeling philosophy used in CACTI [Muralimanohar et al. 2008;
Thoziyoor et al. 2008a] to establish a library of emerging memory technologies span-
ning from ultrafast to ultradense memory designs. Similar to CACTI, we capture the
device-level RC property of memory cells and use traditional RC analysis to estimate
their performance and energy consumption. We follow standard design rules to pre-
dict the silicon area occupied by each circuit component. We obtain the process-related
data of transistors and metal layers from the ITRS report [International Technology
Roadmap for Semiconductors 2012] and the MASTAR tool [International Technology
Roadmap for Semiconductors 2011]. The data covers the process nodes from 22nm to
180nm and supports three transistor types: High Performance, Low Operating Power,
and Low Stand-by Power.

3.2. Circuit Components and Tuning Knobs

Figure 1 shows the basic components abstracted in this circuit-level model. Each mem-
ory module is modeled as a set of banks, every bank can contain multiple subarrays,
and a memory operation is fulfilled by simultaneous accesses to multiple subarrays in a
bank. Depending on the design requirement, a bank can be partitioned into subarrays
with different granularity. The rule of thumb is that smaller subarrays are faster and
larger subarrays are more area efficient.

A subarray is the elementary structure, in which there are a set of peripheral cir-
cuits including row decoders, column multiplexers, output drivers, and so on. There
are a large amount of design knobs that can be tuned in the subarray design, es-
pecially regarding the choice of peripheral circuits. For example, the output driver
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Fig. 2. Schematic view of MOS-accessed ReRAM ar-
rays (WL=wordline; BL=bitline; SL=sourceline).

Fig. 3. Schematic view of cross-point ReRAM arrays
without access devices (WL=wordline; BL=bitline).

design could follow logical effort [Sutherland et al. 1999] and use optimal levels and
sizes of inverters for high performance, or it can be simply designed as a single inverter
for area efficiency. For sense amplifiers, voltage sensing is straightforward but slower,
whereas current sensing incurs two-level sensing but is much faster and more suitable
for sensing the resistance difference of emerging memory cells. Other tuning knobs,
such as the multiplexer design, are also shown in Figure 1.

3.3. Memory Array Structure

There are two types of memory arrays modeled in this work: MOS accessed and
cross-point.

MOS-accessed cells correspond to the typical 1-transitor-1-resistor (1T1R) structure
used by many nonvolatile memory prototype chips [Kawahara et al. 2007; Tsuchida
et al. 2010], in which an NMOS access device is connected in series with the nonvolatile
storage element (i.e., MTJ in STT-RAM, GST in PCRAM, and metal oxide in ReRAM),
as shown in Figure 2. Such an NMOS device turns on/off the access path to the storage
element by varying the voltage applied to its gate. The MOS-accessed cell usually has
the best isolation between neighboring cells due to the high OFF resistance of the
MOSFET. In MOS-accessed cells, the size of an access transistor is bounded by the
current needed by the write operation. This NMOS device needs to be sufficiently large
so that it can drive enough write current.

Cross-point cells correspond to the 1-diode-1-resistor (1D1R) [Zhang et al. 2007; Lee
et al. 2008; Sasago et al. 2009; Lee et al. 2007] or the 0-transistor-1-resistor (0T1R)
[Kau et al. 2009; Chen et al. 2003; Kim et al. 2010] structures used by several high-
density nonvolatile memory chips. Figure 3 shows a cross-point array without diodes
(i.e., 0T1R structure). For a 1D1R structure, a diode is inserted between the word line
and the storage element. Such cells rely on the nonlinearity either by the introduction
of a unipolar/bipolar diodes (i.e., 1D1R) or the cell’s self-built-in characteristic (i.e.,
0T1R) to control the memory access path.

Compared to MOS-accessed cells, cross-point cells have much smaller cell sizes. The
area-efficiency benefit of the cross-point structure is evident in the comparison between
Figure 2 and Figure 3. The removal of MOS access devices leads to a memory cell size of
only 4F2, where F is the process feature size. Unfortunately, the cross-point structure
worsens the isolation among memory cells and thus brings challenges to peripheral
circuit designs. Several design issues such as half-select write, two-step sequential
write, and external sensing [Xu et al. 2011] are included in our model.

3.4. Model Accuracy

We validate our circuit model against STTRAM [Tsuchida et al. 2010], PCRAM [Lee
et al. 2008], and ReRAM [Sheu et al. 2011] prototypes. In general, the performance (i.e.,
read latency, write latency) estimation error is within 20%, and the area estimation
error is below 10%.
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Fig. 4. The basic organization of a two-layer feed-forward ANN.

3.5. Circuit-Level Model Summary

In summary, our circuit-level model takes memory design parameters such as technol-
ogy node, memory capacity, associativity, block size, and cell type as the inputs, and it
gives circuit-level outputs such as read/write latency, read/write dynamic energy per
access, leakage power, and silicon area. Our circuit-level model provides eight opti-
mization targets, which are read latency, write latency, read energy, write energy, read
EDP, write EDP, silicon area, and leakage power, and each of these optimized designs is
evaluated in the later circuit-architecture joint design space exploration. The optimiza-
tion is achieved by tuning the design knobs, including, but not limited to, subarray size,
global interconnect style, driver design, sense amplifier design, multiplexer design, and
memory cell structure.

4. ARCHITECTURE MODEL: AN ANN APPROACH

At the architectural level, we need performance models that predict the architectural
performance of the overall system, such as IPC, and access counts at all cache levels as
we change the underlying memory hierarchy. The input parameters at the architectural
level are the parameters such as cache capacity, cache associativity, read latency, and
write latency.

In a simulation-based approach, long run times are necessary to simulate each pos-
sible input setting, making it intractable to explore a large design space. However,
simulation accuracy is not the first priority in such a large scale design space ex-
ploration. Instead, a speedy but less accurate architecture-level model is a preferred
choice. In this work, since both our input space and output space are high dimensional,
we select an ANN to fit the sampled simulation results into a predictive performance
model.

4.1. Artificial Neural Network

Figure 4 shows a simplified diagram of a two-layer ANN with one sigmoid hidden layer
(that uses sigmoid functions as the calculation kernel) and one linear output layer
(that uses linear functions as the calculation kernel). The input and output design
parameters are also shown in Figure 4. The essential architectural outputs for energy-
performance-area evaluation are the read/write access counts and the read/write miss
counts of every level of caches, read/write access counts of the main memory, and
the number of instructions that each microprocessor core has processed. To feed the
architectural model, the inputs of the architectural design space are the capacity,
associativity, read/write latency of all cache modules, and the main memory, which can
be generated from the aforementioned circuit-level model. The statistical architectural
model makes an output estimate from given input sets, and it can be treated as a black
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Table I. Input Design Space Parameters

Parameter Range
Processor frequency 3.2GHz
Processor core 8-core, in-order
I-L1 (D-L1) capacity 8KB to 64KB
I-L1 (D-L1) associativity 4-way to 8-way
I-L1 (D-L1) read latency 2-cc to 40-cc
I-L1 (D-L1) write latency 2-cc to 700-cc
L2 capacity 64KB to 512KB
L2 associativity 8-way or 16-way
L2 read latency 5-cc to 80-cc
L2 write latency 5-cc to 800-cc
L3 capacity 512KB to 128MB
L3 associativity 8-way to 32-way
L3 read latency 20-cc to 100-cc
L3 write latency 20-cc to 900-cc
Memory read latency 30-cc to 300-cc
Memory write latency 30-cc to 1,000-cc

box that generates predicted outputs as a function of the inputs,

L1readCount = f1(L1capacity, L1assoc, L1readLatency, . . . , L3capacity, . . . , MemwriteLatency) (1)
. . . = . . .

L3writeMiss = fn−1(L1capacity, L1assoc, L1readLatency, . . . , L3capacity, . . . , MemwriteLatency) (2)

IPC = fn(L1capacity, L1assoc, L1readLatency, . . . , L3capacity, . . . , MemwriteLatency) (3)

In our model, the input dimension is 14 (vector I14), and the output dimension is 13
(vector O13). The number of neurons in the hidden layer (X) is S, which ranges from
30 to 60 depending on different fitting targets. In Figure 4, W and b are the weight
matrix and bias vector of the hidden layer; W′ and b′ are those of the output layer. The
feed-forward ANN is calculated as follows,

XS = σ (WS×14I14 + bS) (4)

O13 = ψ(W′
13×SXS + b′

13) (5)

where σ (·) and ψ(·) are sigmoid and linear functions.

4.2. Sample Collection

In this work, we collect samples to evaluate an 8-core CMP.4 Each core is configured
to be a scaled 32nm in-order SPARC-V9–like processor core with a 3.2GHz frequency.
A private L1 instruction cache (I-L1), an L1 data cache (D-L1), and a unified L2 cache
(L2) are associated with each core. Eight cores together share an on-die L3 cache. We
randomly generate architecture inputs from the range listed in Table I and feed each
input to a full-system simulator to get the output. Every input and output pair becomes
a sample later used in the ANN training.

We use NAS Parallel Benchmarks (NPB) [NASA Advanced Supercomputing (NAS)
Division [2012] and PARSEC [Bienia et al. 2008] as the experimental workloads. The
workload size of the NPB benchmark is CLASS-C (except DC has no CLASS-C setting,

4We also use the same methodology to collect the data for a 16-core CMP performance model, and the result
is shown in Section 6.4.
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Fig. 5. CDF plots of error on IPC prediction of NPB and PARSEC benchmark applications. The x-axis shows
the prediction error; the y-axis shows the percentage of data points that achieve the prediction error less
than each x value.

and CLASS-B is used instead), and the native inputs are used for the PARSEC bench-
mark to generate realistic program behavior. In total, 23 benchmark applications are
evaluated, and we build 23 separate ANN models for the 8-core CMP architecture-level
model.5 Later, all the experimental results are based on the average value of these 23
workloads. We randomly pick design configurations per benchmark and use the Sim-
ics full-system simulator [Magnusson et al. 2002] to collect sample data. Each Simics
simulation is fast forwarded to the predefined breakpoint at the code region of interest,
warmed up by 1 billion instructions and then simulated in the detailed timing mode
for 10 billion cycles.

4.3. Training and Validation

An ANN is able to fit multidimensional mapping problems given consistent data and
enough neurons in the hidden layer. The accuracy of the statistical architectural model
depends on the number of training samples provided from actual full-system simula-
tions. In this work, 3,000 cycle-accurate full-system simulation results are collected
for each workload. Among each set of 3,000 samples, 2,400 data samples are used for
training, 300 are used for testing, and the other 300 are used for validation during the
training procedure to prevent overtraining [Sarle 1995]. To reduce variability, multiple
rounds of cross-validation, during which data are rotated among the training,testing,
and validation sets, are performed using different partitions, and the validation results
are averaged over the rounds. Every ANN is configured to have 30 to 60 hidden neu-
rons and trained using the Levenberg-Marquardt algorithm [Marquardt 1963]. The
Levenberg-Marquardt algorithm trains the ANN by adjusting the weight matrices and
bias vectors based on the data iteratively until the ANN accurately predicts the outputs
from the input parameters.

Figure 5 illustrates the IPC prediction errors of the architecture-level performance
model after training. The x-axis shows the relative error between the predicted and the
actual values, and the y-axis presents the cumulative distribution function. In Figure 5
(middle), we can find that eight benchmarks in PARSEC have a probability of 80% to
achieve an IPC prediction error of only 0.1%, and the probability of achieving IPC
prediction errors of less than 0.2% is very close to 100%. Section 4.4 shows the detailed
data on the ANN model accuracy.

4.4. Model Accuracy

To measure the model accuracy, we use the metric error = |predicted − actual|/actual.
As we later directly use the ANN model to estimate the system performance, it is
very critical to understand the accuracy of the ANN model IPC estimation. Figures 6

5Another 23 ANN models are built for the 16-core CMP model.
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Fig. 6. An accurate IPC estimation example: vips
from PARSEC.

Fig. 7. A typical IPC estimation example: dedup
from PARSEC.

Fig. 8. Another typical IPC estimation example: FT
from NPB.

Fig. 9. The worst IPC estimation example: x264
from PARSEC.

through 9 show four examples of the IPC estimation result: a very accurate fit (0.15%
error), two typical fits (3.06% error for dedup and 3.52% error for FT), and the worst
fit (18.71% error) in this work. The average IPC estimation error is 4.29%.

Besides the performance metric, the estimation of memory system activity counts
(e.g., L1 read count, L1 write count, L2 read count, L2 write count, etc.) are also
important to us because we rely on them to get the memory system power estimation.
In order to demonstrate that the ANN is also accurate for these metrics, we plot
Figures 10 through 13 showing the difference between the simulated L2 read count
and the predicted L2 read count. The result shows that the ANN is very accurate for
these metrics as well.

5. JOINT DESIGN SPACE EXPLORATION FRAMEWORK

In this section, we describe how the circuit- and the architecture-level models are
combined into a joint design space exploration framework.

5.1. Framework Overview

Figure 14 shows an overview of this joint circuit-architecture exploration framework.
As mentioned, 3,000 randomly generated architecture-level inputs per benchmark
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Fig. 10. An L2 read count estimation example: vips
from PARSEC.

Fig. 11. An L2 read count estimation example:
dedup from PARSEC.

Fig. 12. An L2 read count estimation example: FT
from NPB.

Fig. 13. An L2 read count estimation example: x264
from PARSEC.

workload are used to produce 3,000 corresponding samples in the architectural design
space. The samples are then fed into the ANN trainer to establish the architecture-level
performance model for each benchmark workload. The trained ANN is used as the
architecture-level performance model. The circuit-level inputs are first passed through
the memory module performance, energy, and area model, and then fed into the ANN-
based architecture-level performance model to generate the predicted architecture-
level results, such as IPC and power consumption, together with the silicon area
estimates. When the predicted result does not meet the design requirement, feedback
information containing the distance between the design optimization target and the
current achieved result is sent to a simulated annealing [Kirkpatrick et al. 1983]
optimization engine, and a new design trial is generated for the optimization loop.
This optimization procedure steps forward iteratively until the design requirement
(e.g., best EDP or best EDAP) is achieved or a near-optimal solution is reached. We use
a simulated annealing engine to conduct this optimization step, and this is described
in Section 7 in detail.

5.2. Circuit-Architecture Combination

After obtaining the access activities of each cache level, the memory subsystem power
consumption can be calculated. Because the dynamic energy consumption of main
memory is proportional to the last-level cache miss rate, we include it as a part of the
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Fig. 14. Overview of the optimization framework. Architecture-level models are generated using sampling
and an ANN trainer. Circuit-level models are used to estimate the latency, energy, and area of each memory
module in the hierarchy. A simulated annealing engine is applied to find the near-optimal solution without
exhaustive search.

memory subsystem power consumption for a fair comparison. The power consumption
of logic components, including the processor cores, on-chip memory controller, and
intercore crossbar, are estimated by McPAT [Li et al. 2009]. We use a 32nm technology
in the McPAT simulation.

From McPAT, the logic components have 7.41W leakage power (Plogic,leakage) and
10.98W peak dynamic power. The runtime dynamic power consumption (Plogic,dynamic)
is scaled down from the peak dynamic power according to the actual IPC value.6 The
total power consumption of the processor chip is calculated as follows:

Ememory,dynamic =
3∑

i=1

[
NreadHiti Ehiti + NreadMissi Emissi + (

NwriteHiti + NwriteMissi

)
Ewritei

]
+ NreadMiss3 Eread4 + NwriteMiss3 Ewrite4 (6)

Pmemory,leakage = 2Ncore P1 + Ncore P2 + P3 (7)

Pprocessor,total = Ememory,dynamic/T + Plogic,dynamic + Pmemory,leakage + Plogic,leakage (8)

In Eq. (6), NreadHiti , NreadMissi , NwriteHiti , and NwriteMissi are the read count, read miss
count, write count, and write miss count of the level-i cache, which are generated
from the ANN-based architecture-level model. Ehiti , Emissi , and Ewritei are the dynamic
energy consumption of a hit, miss, and write operation in the level-i cache, and they
are obtained from the RC-based circuit-level model. Eread4 and Eread4 are the dynamic
energy consumption of main memory read and write operations, since we label the main
memory as the fourth level of the memory hierarchy. In Eq. (7), Ncore is the number
of cores, and Pi represents the leakage power consumption of each cache level. The
coefficient 2 is because of the identical data and instruction L1 caches (D-L1 and I-L1)
in this work. Eq. (8) gives the total power consumption where T is the simulation time
(T = 10B/3.2GHz = 3.125s according to our experimental setup).

6. DESIGN EXPLORATION: A RERAM CASE STUDY

In this section, we demonstrate how to perform a circuit-architecture joint memory
hierarchy design space exploration by adopting emerging ReRAM technology.

6We use an empirical scaling model, Pactual = (A+ (1 − A) · IPCactual/IPCpeak) · Ppeak.
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Fig. 15. A ReRAM cell example that uses Pt and Ti.

Table II. ReRAM Technology Assumptions

ReRAM
MOS-accessed Cross-point

Cell size 20F2 4F2

Write pulse duration 1 pulse 2 pulses
50ns per pulse 50ns per pulse

State-0 resistance 10 k�

State-1 resistance 500k̇�

Half-select resistance - 100 k�

Write endurance 1012

6.1. ReRAM Technology

ReRAM is an emerging nonvolatile memory technology that involves electro- and ther-
mochemical effects in the resistance change of a metal-oxide-metal system.7 A ReRAM
cell consists of a metal oxide layer sandwiched between two metal electrodes as shown
in Figure 15. The electronic behavior of metal/oxide interfaces depends on the oxygen
vacancy concentration of the metal oxide layer. Typically, the metal/oxide interface
shows Ohmic behavior in the case of very high doping and rectifying in the case of low
doping [Yang et al. 2008]. In Figure 15, the TiOx region is semi-insulating, indicat-
ing lower oxygen vacancy concentration, whereas the TiO2−x is conductive, indicating
higher concentration.

As an example, we use the ReRAM device parameters shown in Table II and explore
the circuit-level design space at first. Figures 16 and 17 demonstrate the design spec-
trum of emerging ReRAM technology. For comparison, the design spectrum of SRAM
and DRAM is also shown. Note that MOS-accessed ReRAM and cross-point ReRAM
are more than 10 times denser than SRAM, and cross-point ReRAM can be as dense
as DRAM. In terms of speed, ReRAM has comparable read speed to that of SRAM,
but significantly slower write speed. The write latency of MOS-accessed ReRAM is
dominated by the switching pulse duration, which is 50ns in our experiments, and the
latency of cross-point ReRAM is twice this due to two-step writes.

6.2. Wear-Leveling Assumption

Similar to NAND flash, ReRAM has limited write endurance (i.e., the number of times
that a ReRAM cell can be overwritten). Many techniques [Zhou et al. 2009; Qureshi
et al. 2009b; Schechter et al. 2010] have been developed to extend the lifetime of
PCRAM-based main memories, and they can be borrowed for ReRAM wear leveling.
Recently, i2WAP [Wang et al. 2013], a wear-leveling scheme for nonvolatile caches, was
proposed to mitigate both the cache interset and intraset write count variation.

7There are other models explaining the ReRAM working mechanism.
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Fig. 16. The design spectrum of 32nm ReRAM: read
latency versus density.

Fig. 17. The design spectrum of 32nm ReRAM:
write latency versus density.

Table III. MOS-Accessed and Cross-Point ReRAM Main Memory Parameters
(1Gb, 8-bit, 16-bank) Obtained from the Circuit-Level Model

MOS-accessed Cross-point

Die area 129mm2 48mm2

Read latency 6.2ns 10.0ns
Write latency 54.9ns 107.1ns
Burst read latency 4.3ns 4.3ns
Burst write latency 4.3ns 4.3ns

i2WAP can evenly distribute cache write accesses among cache sets using a one-
layer address remapping. The remapping information is stored in two global registers.
In addition, i2WAP handles the write unbalance inside a cache set (i.e., among dif-
ferent cache ways) by slightly changing the cache replacement policy without hurting
performance. According to i2WAP, we only need to add two global counters and two
global registers for the cache wear-leveling hardware. In this case study, we assume
that future nonvolatile caches will use i2WAP and can achieve a low-variance wear lev-
eling. As a result, we consider the current ReRAM write endurance (1010–1012 [Sheu
et al. 2011; Kim et al. 2011; Eshraghian et al. 2010]) high enough for L2 and L3 cache
applications. In all the later experiments, we include the wear-leveling performance
overhead by conservatively adding 2ns on top of the access latency obtained from our
circuit-level model.

6.3. Memory Hierarchy Design Exploration

We next use the circuit-architecture joint-space design space exploration framework to
analyze the energy versus performance trade-off of adopting ReRAM-based caches. In
this step, we separate the cache design space (L1, L2, and L3) and the memory design
space. We assume that the main memory is built by either cross-point ReRAMs that
are optimized for density or MOS-accessed ReRAMs that are optimized for latency.
Table III lists the timing and area parameters of both MOS-accessed and cross-point
ReRAM main memory solutions.

Since we use a trained ANN model for 8-core CMP microprocessors as described in
Section 4 and the random training inputs whose range are listed in Table I, we can use
the circuit-architecture joint-space design space exploration framework to permute all
the possible cache hierarchy configurations, and we list this permutation in Table IV.
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Table IV. Cache Hierarchy Design Space

Parameter Range

Processor frequency 3.2GHz
Processor core 8-core, in-order

I-L1 (D-L1) memory type SRAM or ReRAM
I-L1 (D-L1) capacity 8KB, 16KB, 32KB, or 64KB
I-L1 (D-L1) associativity 4-way or 8-way
I-L1 (D-L1) read latency Obtained from the circuit-level model
I-L1 (D-L1) write latency (based on memory type, capacity, and associativity)

L2 memory type SRAM or ReRAM
L2 capacity 64KB, 128KB, 256KB, or 512KB
L2 associativity 8-way or 16-way
L2 read latency Obtained from the circuit-level model
L2 write latency (based on memory type, capacity, and associativity)

L3 memory type SRAM or ReRAM
L3 capacity 4MB, 8MB, 16MB, 32MB, 64MB, or 128MB
L3 associativity 8-way, 16-way, or 32-way
L3 read latency Obtained from the circuit-level model
L3 write latency (based on memory type, capacity, and associativity)

Fig. 18. Pareto curves: energy and performance
trade-off of the memory hierarchy. Main memory dy-
namic power is included for a fair comparison.

Fig. 19. Pareto curves (MOS-accessed ReRAM as
main memory): energy and performance trade-off un-
der different constraints on ReRAM deployment.

Focusing on the design space exploration of ReRAM-based memory hierarchies,
Figure 18 shows the Pareto-optimal curves of the energy-performance trade-off in an
8-core CMP setting. The x-axis is the total power consumption of the processor chip,
and the y-axis is the IPC performance. It can be observed from Figure 18 that a great
amount of power consumption can be reduced by only incurring a small amount of
performance degradation. For instance, as shown in Figure 18, design option D4 (using
SRAM L1 and L2 caches but an ReRAM L3 cache) reaches 1.92 IPC by consuming
27.26W total power. Compared to design option D7 (using an SRAM-only cache
hierarchy) that reaches 2.18 IPC but consumes 74.92W power, the achieved power
reduction is 64% but the performance degradation is only 12%. This design option also
meets the constraint set by 1010 write endurance as discussed in Section 6.2. If the
ReRAM write endurance is assumed to be 1012, more aggressive options (e.g., using L2
ReRAM caches) can further reduce the power consumption. For example, design option
D3 (using ReRAM L2 and L3 caches) reaches 1.85 IPC by consuming only 25.34W
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Table V. On-Die Cache Hierarchy Design Parameters of Seven Design Options

D1 D2 D3 D4 D5 D6 D7
L1 capacity 64KB 8KB 8KB 8KB 32KB 8KB 32KB
L1 associativity 4 8 8 4 4 4 4
L1 memory type M-ReRAM SRAM SRAM SRAM SRAM SRAM SRAM
L1 optimized for L WP RL WP RL RP RL
L1 sensing scheme EX IN IN IN IN IN IN
L2 capacity 128KB 64KB 512KB 64KB 256KB 64KB 1024KB
L2 associativity 8 16 8 16 8 8 8
L2 memory type M-ReRAM M-ReRAM M-ReRAM SRAM SRAM SRAM SRAM
L2 optimized for L L L L WE WE RE
L2 sensing scheme IN IN IN IN IN IN IN
L3 capacity 8MB 16MB 8MB 8MB 128MB 8MB 8MB
L3 associativity 16 16 8 8 8 8 8
L3 memory type M-ReRAM M-ReRAM M-ReRAM M-ReRAM X-ReRAM SRAM SRAM
L3 optimized for L L L L RE L WP
L3 sensing scheme IN IN EX IN EX IN IN
IPC 0.26 1.70 1.85 1.92 1.96 2.09 2.18
Power consumption (W) 20.28 23.74 25.34 27.26 40.51 41.59 74.92
Silicon area (mm2) 47.48 49.07 48.20 54.19 83.33 58.09 86.83

∗Memory type abbreviations: M-ReRAM = MOS-accessed ReRAM; X-ReRAM = cross-point ReRAM. Opti-
mization abbreviations: RL = Read Latency; WL = Write Latency; RE = Read Energy; WE = Write Energy;
RP = Read EDP; WP = Write EDP; L = Leakage; A = Area. Sensing scheme abbreviations: IN = Internal;
EX = External.

total power. To show how different cache hierarchy designs have been explored, we
list the design parameters of seven example design options (D1 to D7) in Table V.

We find that the Pareto-optimal curves are composed of several segments, such as
D1-to-D2, D4-to-D5, etc. The joints between every two segments represent the place
where SRAM/ReRAM replacement occurs. Such replacements can be found in Fig-
ure 19. In general, IPC improvements are achieved by adding more SRAM resources,
and greater reductions in power consumption come from replacing SRAM with ReRAM.
Figure 19 shows that a ReRAM-only cache hierarchy is on the global Pareto-front, but
the corresponding IPC is less than 1.6, and that segment has a large slope. Thus, it
suggests that we should still deploy SRAM L1 caches for performance. However, start-
ing from L2, ReRAM cache deployment can save considerable amounts of power and
only sacrifice a small amount of performance. This is especially true for a hybrid on-
chip cache hierarchy with SRAM L1/L2 caches and an ReRAM L3 cache. Figure 19
shows that in this region the total power consumption can be lowered to 27.26W
but the IPC is only degraded from 2.18 to 1.92 (i.e., design option D4 in Figure 18).

Another benefit that we can get from introducing ReRAM caches is in silicon
area reduction. Figure 20 shows the Pareto-optimal curves of area-performance
trade-offs, which have similar shapes to the ones in the power-performance trade-off
as shown in Figure 20. The processor core area (including memory controller and
crossbar) is 45.6mm2 from an McPAT [Li et al. 2009] estimation. Achieving the highest
performance using pure-SRAM caches costs at least another 12mm2 of silicon area,
whereas replacing the SRAM L3 cache with ReRAM can save more than than 7mm2 in
chip area by degrading performance from an IPC of 2.18 to 1.90. We show the feasible
region of designs with less than 50mm2 total cache area in Figure 21. This result can
be extremely useful in some low-cost computing segments where the performance
requirement is just-in-time but the chip cost has the first priority. Figure 21 also
indicates that using ReRAM caches can reduce power consumption and silicon area at
the same time, further improving EDAP.
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Fig. 20. Pareto curves (MOS-accessed ReRAM as
main memory): cache area and performance trade-
off under different ReRAM deployments.

Fig. 21. The global Pareto-optimal curve (MOS-
accessed ReRAM as main memory) and feasible de-
sign options with total chip area less than 50mm2.

Fig. 22. Pareto curves after scaling up to 16-core:
energy and performance trade-off under different
constraints on ReRAM deployment.

Fig. 23. Pareto curves after scaling up to 16-core:
area and performance trade-off under different con-
straints on ReRAM deployment.

6.4. Architecture Model Change: Scaling to 16-Core

Although all of the previously demonstrated results are based on an 8-core CMP de-
sign, it is straightforward to use the same methodology on other analysis targets. For
example, if we want to scale the number of cores from 8 to 16, we just need to retrain
the ANN-based architecture model to fit the 16-core simulation results.

To prove this point, we collect another set of Simics full-system simulation results
on PARSEC and NPB benchmarks, retrain the ANN models, and replot the Pareto
curves. Figure 22 shows the new energy-performance trade-off, and Figure 23 shows
the new area-performance trade-off. These new simulation results also give us some
new observations:

—The SRAM-only options no longer provide the highest performance. This is because
doubling the number of cores implies a larger L3 cache capacity. However, as the
L3 cache capacity reaches a certain threshold, the interconnect latency starts to
dominate the SRAM-based cache access latency. As a result, switching to ReRAM
L3 cache becomes beneficial because it provides significant area savings and hence
improves the cache access latency.
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Table VI. PCRAM Technology Assumptions

Cell size 36F2

Reset pulse duration 100ns
Set pulse duration 300ns
State-0 resistance 5k�

State-1 resistance 500k�

Fig. 24. Pareto curves after switching to PCRAM:
energy and performance trade-offs under different
constraints on PCRAM deployment.

Fig. 25. Pareto curves after switching to PCRAM:
area and performance trade-offs under different
constraints on PCRAM deployment.

—The performance gap among the four Pareto curves is much smaller compared to
the previous 8-core results. This is because the performance of a many-core system
depends more on application-level parallelism instead of the horsepower from each
core. This observation supports the current trend of building many-core in-order
microprocessors to achieve a higher energy efficiency.

6.5. Circuit Model Change: Switching to Other Memory Technologies

As a general purpose tool, our circuit-architecture joint-space exploration framework
is not limited to only the case studies for ReRAM technology. Using the same circuit-
level model but with a new technology input, we can build another circuit library for
PCRAM-based cache modules. Table VI lists the PCM technology assumptions that we
use as a new input to the circuit model.

By replacing the previous ReRAM circuit library with a newly generated PCRAM
circuit library, we can quickly have an overview that reveals the performance-power-
area trade-offs of using PCRAM in different memory hierarchies. Figures 24 and 25
demonstrate how the framework can be easily adapted for the design space explo-
ration of an 8-core PCRAM-based cache hierarchy in terms of the energy-performance
trade-off and area-performance trade-off, respectively. Comparing to the previous
ReRAM-based results, we find that:

—The Pareto-optimal curve of PCRAM-based cache hierarchies is much shorter. This
is because our PCRAM technology input has a very poor RESET/SET setting (100ns
and 300ns, respectively), and this causes most of the design points to fall in non-
Pareto-optimal regions.

—The PCRAM-based cache hierarchies cause a much larger performance degradation,
and IPC drops from 2.2 to 1.4 (ReRAM-based only causes an IPC drop from 2.2 to
1.6). This is again because of relatively worse PCRAM technology parameters.
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7. DESIGN OPTIMIZATION

Running full design space exploration using an exhaustive search is time-consuming
and may not be necessary in most cases. Although it is possible for designers to
use educated guesses to refine the design space before an exhaustive search, the
remaining design space might still be too gigantic. Using Figure 21 as an example,
even if we add a 50mm2 area constraint and limit the L3 cache capacity, there are
still 1,662,601 feasible configurations in the shaded region of Figure 21 to explore.
Therefore, to use this joint circuit-architecture model as a practical memory hierarchy
design assistant, an efficient optimization method is required. In this work, we use
a simplified simulated annealing [Kirkpatrick et al. 1983] algorithm to find a locally
optimal solution. The simulated annealing heuristic is described in Algorithm 1.

ALGORITHM 1: Design Space Optimization Algorithm
state = s0, energy = E(state)
repeat

new state = neighbour(state), new energy = E(new state)
if new energy < energy then

state = new state, energy = new energy {Accept unconditionally}
else if T(energy, new energy) > random() then

state = new state, energy = new energy {Accept with probability}
end if

until energy stops improving in the last K rounds
return state

In this optimization methodology, we first randomly choose an initial design op-
tion, s0, and calculate its annealing energy function from the joint circuit-architecture
model. The annealing energy function can be EDP, EDAP, or any other energy-
performance-area combination. The optimization loop continuously tries neighboring
options8 of the current one. If the new design option is better than the previous one,
it is adopted unconditionally; if not, it is adopted with probability depending on an
acceptance function. The acceptance probability, Paccept, is defined as

Paccept(E, E′) =
{1 if E′ < E

E/E′ if E ≤ E′ < 1.3E,
0 otherwise

(9)

where E is the old energy and E′ is the new energy. We design this function so that
the probability of accepting a move toward nonoptimal directions decreases as the
difference between E and E′ increases, and the probability goes down to 0 when a move
is 1.3 times worse than the current solution. This feature prevents the optimization
path from becoming stuck at a local optimum one that is worse than the global one.
In theory, the probability that the simulated annealing algorithm terminates with a
global optimal solution approaches 100% as we keep iterating the annealing process.
However, in practice, we have to stop the optimization upon a given condition, and it
becomes possible that the simulated annealing algorithm stops at a solution that is
not globally optimal. We choose to end the iteration when the optimization path stops
improving in the last K rounds. We use K = 20 in our experiments and find that it is a
good trade-off between algorithm accuracy and speed.

8In this work, a neighboring option is generated by changing two parameters from the parameter set of L1
capacity, L1 associativity, L1 memory type, L2 capacity, L2 associativity, L2 memory type, L3 capacity, L3
associativity, and L3 memory type.
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Fig. 26. The path of EDP optimization. Fig. 27. The path of EDAP optimization.

Figure 26 shows how the simulated annealing algorithm eventually evolves an initial
random design option to the global optimal solution in terms of EDP. In addition,
Figure 27 shows the EDAP optimization path. By observing the optimization paths in
Figures 26 and 27, we can see that the path initially tends to converge to a local optimal
solution (e.g., point [X = 1200, Y = 1.7] in Figure 27), but the acceptance probability
feature in Algorithm 1 allows the paths to roll back to a suboptimal solution and
then keep evolving toward the global optima. Our K = 20 setting enables all of our
optimization experiments to find the globally optimal solution (because we also run
exhaustive searches and know the ground truth). We can further increase the K value
if necessary, but that will lead to a longer optimization time.

Compared to exhaustive search of the same design space that takes more than
8 hours on an 8-core Xeon X5570 microprocessor, the proposed optimization methodol-
ogy usually finds near-optimal values in less than 30 seconds. This optimization scheme
provides an almost instant design decision given specified performance, energy, or area
requirements. Furthermore, it becomes feasible to integrate this model into higher-
level tools that consider not only memory system design trade-offs but also design
trade-offs within microprocessor cores [Azizi et al. 2010].

8. DISCUSSION

Power consumption has been an issue for many years. Our exploration and optimiza-
tion results demonstrate that both the EDP and the EDAP optimal points are close to
the y-axis on the IPC-versus-power plot. In this design space region, ReRAM resources
are adopted in the memory hierarchy (e.g., using ReRAM L3 caches, or more aggres-
sively using ReRAM L2 and L3 caches). Even if performance constraints are applied,
using ReRAM starting with the L3 cache always brings energy efficiency. Moreover,
these energy-optimal points on the IPC-versus-area plot also show significant silicon
area savings achieved from ReRAM without incurring much performance degradation.
Compared to the best values for pure-SRAM designs, the introduction of ReRAM in L3
caches improves EDP and EDAP by 24% and 36% on a scaled 32nm 8-core SPARC-V9–
like processor chip, respectively. The memory technology shift from SRAM to ReRAM
achieves these improvements for the following reasons:

—The compact ReRAM module size greatly reduces the silicon area used for on-chip
memories (EDAP improvement), or allows more on-chip memory to improve the
performance (EDP and EDAP improvement);
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Table VII. Overview of the Proposed Universal Memory Hierarchy

Level L1 cache L2 cache
Memory type SRAM SRAM or MOS-accessed ReRAM
Endurance requirement 1013 [Section 6.2] 1011 [Section 6.2]

Level L3 cache Main memory
Memory type MOS-accessed or cross-point ReRAM MOS-accessed or cross-point ReRAM
Endurance requirement 1010 [Section 6.2] 108 [Qureshi et al. 2009b]

—The relatively smaller ReRAM size implies shorter wordlines and bitlines in the
ReRAM cell array, and thus reduces the dynamic energy consumption per memory
access (EDP and EDAP improvement); and

—The nonvolatility property of ReRAM eliminates the leakage energy consumption of
memory cells (EDP and EDAP improvement).

Therefore, we envision a heterogeneous memory hierarchy as summarized in
Table VII. In such a hierarchy, SRAM is used in L1 and L2 caches, MOS-accessed
ReRAM may be used in L3 or even in L2 caches if ReRAM technology keeps improv-
ing (e.g., improvement on write speed and write endurance), and low-cost cross-point
ReRAM may be used in L3 caches and main memory.

9. CONCLUSION

In the next era of computing, we need more energy-efficient and cost-effective comput-
ing. However, conventional SRAM and eDRAM technologies used in memory hierarchy
designs have problems in reducing power consumption and silicon area with scaling. On
the other hand, many emerging nonvolatile memory technologies such as STTRAM,
PCRAM, and ReRAM have been researched and corresponding prototypes demon-
strated. These new memory technologies bring desired features such as high density,
fast access, good scalability, and nonvolatility, and they are potentially useful in many
levels of future energy-efficient and cost-effective memory hierarchies. However, such
emerging memory technologies are still new, and there are too many uncertainties
in evaluating their actual impact on future memory hierarchy design. Therefore, it
is necessary to have a framework that can model the circuit-level trade-offs among
performance, energy, and area and can leverage such design variety into providing the
best architecture-level memory hierarchy.

In this work, we first build a circuit-level performance, energy, and area estimation
model for emerging memory technologies, then use this model to explore a wide range of
memory module implementations, and generate a memory module library with various
optimized designs. After that, we integrate this circuit-level model into an ANN-based
architecture-level model and create a general performance-energy-area optimization
framework for the memory hierarchy design in a joint circuit-architecture design space.
Our validation results show that the proposed framework is sufficiently accurate for the
purpose of design space exploration, and that by using this framework, we are able to
rapidly explore a very large space of memory hierarchy designs and find good solutions
in terms of energy-performance-area trade-offs. Moreover, we use this framework to
evaluate new memory technologies such as ReRAM. Our experimental results reveal
the memory design preferences for ReRAM in an 8-core CMP setting when the design
targets EDP or EDAP goals. Our results show using ReRAM starting from L3 caches
can achieve a 24% EDP improvement and a 36% EDAP improvement, which means
that the best trade-offs in designing ReRAM memory hierarchy can greatly boost the
energy efficiency or cost efficiency with only a slight impact on the IPC.

In general, this work is an initial effort to study the feasibility of building an
energy-efficient or cost-efficient memory hierarchies by adopting emerging memory

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 23, Publication date: December 2013.



A Circuit-Architecture Co-optimization Framework 23:21

technologies. We believe that this work is only the first step toward a new generation
of energy-efficient and cost-efficient heterogeneous computer memory hierarchies.
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