
Verification Techniques for Cache Coherence Protocols
FONG PONG

Sun Microsystems Computer Corporation

MICHEL DUBOIS

University of Southern California

In this article we present a comprehensive survey of various approaches for the
verification of cache coherence protocols based on state enumeration, (symbolic)
model checking, and symbolic state models. Since these techniques search the state
space of the protocol exhaustively, the amount of memory required to manipulate
the state information and the verification time grow very fast with the number of
processors and the complexity of the protocol mechanisms. To be successful for
systems of arbitrary complexity, a verification technique must solve this so-called
state space explosion problem. The emphasis of our discussion is on the underlying
theory in each method of handling the state space explosion problem, and
formulating and checking the safety properties (e.g., data consistency) and the
liveness properties (absence of deadlock and livelock). We compare the efficiency
and discuss the limitations of each technique in terms of memory and computation
time. Also, we discuss issues of generality, applicability, automaticity, and amenity
for existing tools in each class of methods. No method is truly superior because each
method has its own strengths and weaknesses. Finally, refinements that can further
reduce the verification time and/or the memory requirement are also discussed.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—
shared memory; B.3.3 [Memory Structures]: Performance Analysis and Design
Aids—formal models; B.4.4 [Input/Output and Data Communications]:
Performance Analysis and Design Aids—formal models; verification

General Terms: Verification

Additional Key Words and Phrases: Cache coherence, finite state machine, protocol
verification, shared-memory multiprocessors, state representation and expansion

1. INTRODUCTION

A cache-coherent shared-memory multi-
processor system provides programmers
with a logical view that all processors
have access to a shared global memory.
This illusion is transparent to program-

mers in spite of the fact that main mem-
ory storage may be physically distrib-
uted and multiple data copies of the
same memory location may exist in pri-
vate caches. Although efficient caching
techniques can significantly reduce
memory access latency and interconnec-

Authors’ addresses: F. Pong, Sun Microsystems Computer Corporation, Technology Development
Group, 2550 Garcia Ave., MS UMPK 15-214, Mountain View, CA 94043; email: ^fong.pong@eng.
sun.com&; M. Dubois, Department of EE-Systems, University of Southern California, Los Angeles, CA
90089-2562; email: ^dubois@paris.usc.edu&.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 1997 ACM 0360-0300/97/0300–0082 $03.50

ACM Computing Surveys, Vol. 29, No. 1, March 1997

http://crossmark.crossref.org/dialog/?doi=10.1145%2F248621.248624&domain=pdf&date_stamp=1997-03-01

tion traffic, they introduce the cache
coherence problem. Multiprocessors
with private caches need hardware or
software support to enforce data consis-
tency, otherwise inconsistent data cop-
ies may be observed when a processor
modifies the data copy in its private
cache [Stenström 1990]. In many cases,
this support is provided by a cache co-
herence protocol that defines a set of
rules coordinating processors, cache
controllers, and memory controllers.

The verification of cache coherence
protocols is an important subject that
has been neglected for a long time.
Many protocols have been proposed and
implemented;1 however, their correct-
ness has never been formally validated.
The main reason for this state of affairs
is that most existing protocols are rela-
tively simple snooping protocols that
use broadcast of updates or invalida-
tions to keep data copies consistent.
Their correctness can be established by
careful inspection, thorough analysis
[Baer and Girault 1985; Rudolf and Se-
gall 1984], or simple techniques such as
testing and simulations [Galles and
Williams 1994; Lenoski et al. 1990]. The
lack of efficient verification tools is also
a reason. However, the need for high-
performance and scalable machines has
made cache protocols much more com-
plex today. As faster larger systems are
designed and built, the complexity of
cache protocols will continue to in-
crease. It is becoming impractical to
verify a cache protocol by hand or by
random simulations because a random
test sequence must be run indefinitely
to enter all reachable states. In some
studies [McMillan and Schwalbe 1991;
Pong et al. 1995], it has been shown
that simulations are not very reliable in
practice and, thus, there is a need for
more efficient and reliable tools. As a
result of these compelling facts, recent

research has focused on techniques that
can verify protocols completely.

This article provides a survey of tech-
niques to verify cache coherence proto-
cols by exploring all the possible se-
quences of interactions between
components in a given protocol model.
We are particularly interested in meth-
ods with mechanical verification proce-
dures, specifically, methods based on
state enumeration,2 (symbolic) model
checking [Browne et al. 1986; Clarke et
al. 1986; McMillan 1992], and symbolic
state model [Pong 1995]. In these tech-
niques the protocol is characterized by
its state and the verification is based on
searching all reachable states exhaus-
tively. From a given state, the explora-
tion of all possible interactions among
protocol components leads to a number
of new states. The expansion process
continues and converges when all reach-
able states have been produced. The
major differences among the techniques
surveyed in this article stem from the
ways of representing and pruning the
state space in order to overcome the
state space explosion problem [Holz-
mann 1990]. In general, the state explo-
ration complexity quickly blows up in
terms of computation time and memory
requirement with the increasing num-
ber and complexity of components in the
protocol. To deal with this complexity,
symmetries, regularities, and homogene-
ities in cache-based systems must be
exploited to reduce the size of the state
space.

To illustrate the various techniques,
we apply them to a simple protocol ex-
ample under the assumption of atomic
memory accesses. It should be noted
that although the protocol example is
simple, the approaches surveyed in this
article have been applied successfully to
much more complex protocols and have
been shown to work reasonably well in
practice. We show through the example
how the safety properties (e.g., data con-

1 Please see Archibald and Baer [1986], Censier
and Feautrier [1978], Dubois et al. [1991], Haridi
and Hagersten [1989], James et al. [1990],
Lenoski et al. [1990], and Sweazey and Smith
[1986].

2 Please see Bochmann and Sunshine [1980], Dan-
thine [1980], Holzmann [1990], and Ip and Dill
[1993a, b].

Verification Techniques • 83

ACM Computing Surveys, Vol. 29, No. 1, March 1997

sistency) and the liveness properties
(absence of deadlock and livelock) are
formulated and checked in each method.
We also discuss issues of generality, ap-
plicability, automaticity, and amenity
for existing tools implemented for each
class of methods. Generality and appli-
cability refer to the type of cache proto-
cols and properties that can be checked;
automaticity is the degree to which the
verification is carried out mechanically
and amenity indicates how easy it is to
use the tools. Refinements of these tech-
niques that can further reduce the veri-
fication time and/or the memory re-
quirement are also discussed.

The article is structured as follows. In
Section 2, we start with an overview of
shared-memory systems, of the cache
coherence problem, and of the main
sources of complexity in designing and
verifying cache protocols. Section 3
overviews the construction of tractable
protocol models based on the finite state
machine (FSM) at different levels of ab-
straction as well as the correctness is-
sues in cache coherence protocols. Sec-
tion 4 introduces the snooping protocol
example to illustrate the various ap-
proaches, which are described in Sec-
tions 5 to 7. In Section 8, we summarize
the strengths and the weaknesses of
each method and show a performance
comparison by applying the methods to
a directory-based protocol. Finally, we
overview some other related methods in
Section 9 and conclude in Section 10.

2. RESEARCH BACKGROUND—SHARED-
MEMORY MULTIPROCESSORS

In a shared-memory multiprocessor sys-
tem, all processors share a global mem-
ory address space. The physical shared
memory is generally organized accord-
ing to three models: the Uniform-Memo-
ry-Access model (UMA), the NonUni-
form-Memory-Access model (NUMA),
and the Cache-Only Memory Architec-
ture (COMA). When processors are asso-
ciated with private caches, the UMA
and NUMA models are also called CC-
UMA and CC-NUMA, respectively.

In the UMA model, the physical mem-
ory is uniformly shared by all proces-
sors (Figure 1(a)) and all processors
have equal access time to every memory
location. In a NUMA model, shown in
Figure 1(b), each processor is physically
associated with a fraction of the globally
shared memory address space; thus the
memory access time varies with the lo-
cation of the memory word. The memory
module that contains memory location a
is commonly referred to as the home
memory of a and the home memory is
located at the home node or the home
[Lenoski et al. 1990].

In the COMA model (Figure 1(c)), the
distributed memory modules are re-
ferred to as the attraction memories
[Haridi and Hagersten 1989] and act as
caches of very large capacity. Data can

Figure 1. Shared-memory models: (a) UMA and
CC-UMA; (b) NUMA and CC-NUMA; (c) COMA.

84 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

be replicated freely in the attraction
memories of different processor nodes,
as if they were caches. A commercial
COMA, the KSR-1, has also been called
ALLCACHE [Rothnie 1992] to empha-
size the fact that all memories behave
as caches.

The per-processor caches are needed
in all these models in order to reduce
the long memory access latency and the
network traffic. When the local proces-
sor generates a memory reference, it
always checks its local cache first. If the
data are found in the cache, the access
is satisfied locally; otherwise, a cache
miss occurs.

Due to the caching of data, multiple
copies of the same memory location may
exist in the system. When a processor
modifies its local copy, data inconsis-
tency may occur [Stenström 1990; Yen
et al. 1985]. This is known as the cache
coherence problem. Multiprocessors
with private caches need hardware or
software support to enforce data consis-
tency. In many cases, support is pro-
vided by a cache coherence protocol that
defines a set of rules coordinating pro-
cessors, cache controllers, and memory
controllers. In the CC-UMA model, co-
herence is maintained through a snoopy
protocol on a bus. In the CC-NUMA
model, coherence is maintained by di-
rectories centralized at the home node
[Censier and Feautrier 1978; Lenoski et
al. 1990] or distributed in a list linking
all caches [James et al. 1990; Nowatzyk
et al. 1994]. Coherence can sometimes
be maintained in software; however, in
this article, we only consider hardware-
based protocols.

2.1 Cache Coherence Protocols

In all existing cache coherence proto-
cols, several read-only copies of the
same memory location can exist in the
system at the same time. When multi-
ple copies exist in different caches, they
must be identical. We say that these
copies are Shared. Usually, copies in
the Shared states must be Clean, mean-
ing that they are also identical to the

memory copy. When a processor writes
to the memory location, the protocol
must guarantee the consistency of the
copies. The two policies for maintaining
data consistency are write-invalidate
and write-update. In a write-invalidate
protocol, a processor must invalidate all
other copies before it can update its own
copy. In this case, we say that the pro-
cessor has an Exclusive and Dirty copy,
and sometimes this processor is referred
to as the Owner of the block. The owner
must supply the copy of the block to any
processor experiencing a miss. In a
write-update protocol data consistency
is maintained by updating all remote
data copies instead of invalidating
them.

Cache protocols must enforce that all
processors observe all stores to the same
memory location in the same order
[Scheurich and Dubois 1987]. Memory
accesses to the same memory location
must be performed in program order. As
a result, when all processors cease to
write and all stores in propagation are
performed, all data copies of the same
memory location must be identical. This
is the so-called general coherency prop-
erty [Scheurich 1989], which is an es-
sential requirement for correctly enforc-
ing memory consistency models in a
cache-based shared-memory multipro-
cessor system.

2.2 Memory Consistency Models

The memory consistency model refers to
the logical model of memory access or-
derings offered by the memory system
to the programmer or to the compiler.
In a uniprocessor system, data are ac-
cessed by one processor, and hence, the
memory system presents a very simple
behavioral model to programmers—a
load access to a memory location always
returns the value written by the latest
store to the same memory location. It is
natural for programmers to extend the
simple uniprocessor memory model for
multiprocessor systems by imaging the
executions of applications on a primitive
architecture as shown in Figure 2.

Verification Techniques • 85

ACM Computing Surveys, Vol. 29, No. 1, March 1997

In the multiprocessor model of Figure
2, there is a single centralized memory
module and only one copy of data for
every memory location. Accesses from
processors are serially scheduled to the
memory and are performed one at a
time according to their order in the pro-
gram. Although the model is direct and
straightforward, it is very restrictive
and has negative effects on system per-
formance. For instance, concurrent
reads are unnecessarily serialized.

A major challenge for system archi-
tects is to design more flexible memory
systems supporting multiple data paths
to the same memory location. Typical
architectures providing this concur-
rency are the cache-coherent shared-
memory models in Figure 1. In such
systems, processors may update differ-
ent cached copies of the same memory
location. Since a store is no longer an
atomic event and the propagation of
stores to different memory locations can
overlap in time, the notion of “latest
store” has lost its meaning.

From the perspective of programmers,
the execution of a concurrent program
on a cache-coherent multiprocessor sys-
tem must be indistinguishable from the
results obtained from the idealized
primitive architecture. Thus the most
prominent memory model is called Se-
quential Consistency [Lamport 1979].
The sequential consistency model re-
quires that the result of any execution
is the same as if the operations of all
processors were executed in some se-
quential order, and the operations of

each processor were executed in the or-
der specified in the program.

Many researchers have developed
conditions for implementing sequential
consistency correctly in cache-coherent
shared-memory systems. The most
widely adopted set of (sufficient) condi-
tions are:

(1) A write-access to a cache block is
globally performed when all other
cache copies are either invalidated
or updated.

(2) A read access is globally performed
when the store defining the value
returned by the load is globally per-
formed.

(3) Each processor globally performs its
memory accesses in program order.

Although these conditions are suffi-
cient but not necessary, they yield the
most viable hardware solutions. Other
conditions may require the system to
support efficient broadcast devices
[Afek et al. 1989; Brown 1990] or special
hardware aids [Adve and Hill 1990b],
and the performance gain may not be
worthwhile relative to their increased
hardware complexity.

Many memory consistency models
such as Weak Ordering [Dubois and
Scheurich 1990; Dubois et al. 1986], Re-
lease Consistency [Gharachorloo et al.
1990], and others [Sindhu et al. 1992]
have recently been proposed to relax the
hardware constraint of executing one
memory access at a time in order to
implement sequential consistency. They

Figure 2. Natural transition between memory models for uniprocessor and multiprocessors.

86 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

assume that all synchronizations among
parallel threads are done through ex-
plicit, hardware-recognizable synchroni-
zation primitives. The software must be
written so that all shared data that are
not synchronization primitives are ac-
cessed in critical or semicritical sections
enforced by explicit synchronization.
The implication for weakly ordered
memory systems is that a processor glo-
bally performs all its preceding loads
and stores before it issues a synchroni-
zation operation, and that a processor
issues no memory load or store follow-
ing a synchronization point until the
synchronization operation is success-
fully completed. Thus, in protocols un-
der relaxed memory models, cache co-
herence can be delayed until the points
of synchronizations [Dubois et al. 1991;
Lenoski et al. 1990] and aggressive la-
tency tolerance techniques [Dahlgren et
al. 1994; Gharachorloo et al. 1991] can
be exploited.

2.3 Latency Tolerance Techniques

Latency tolerance techniques refer to
the mechanisms that can reduce the
penalty of cache coherence events. Im-
portant techniques include nonbinding
prefetch, pipelined memory accesses, de-
layed consistency, and write posting.

Nonbinding prefetch [Gupta et al.
1991] is a technique valid for all mem-
ory consistency models and which pre-
loads data into local caches before pro-
cessors actually access the data.
Pipelined memory accesses [Gharachor-
loo et al. 1991], delayed consistency
[Dubois et al. 1991], and write posting
[Scheurich and Dubois 1991] are mech-
anisms reserved for systems with re-
laxed memory models. Because data
consistency is only required at synchro-
nization points in relaxed memory mod-
els, the processor is not blocked when a
store misses in the cache. Stores are
most often buffered and load hits can
bypass pending stores [Lenoski et al.
1990]. At a synchronization point, all
pending stores must be completed.

In the context of relaxed memory

models, data consistency is not enforced
on-the-fly. The effects of stores can be
delayed until the next synchronization
point. Moreover, processors can ignore
received invalidations or updates until
the next synchronization point. Such de-
lays cut down on the coherence traffic.
A protocol supporting delayed consis-
tency was proposed by Dubois et al.
[1991].

Write posting [Scheurich and Dubois
1991] is based on the fact that the pro-
cessor does not need to be stalled if it
always reads data stored by itself—
when a write miss occurs, the modified
word is made available to the local pro-
cessor while the write miss is waiting
for the completion of invalidations. As
long as the processor reads the values
created locally, it does not need to stall.

Although latency tolerance tech-
niques are useful in improving proces-
sor efficiency and system scalability,
they exacerbate the complexity of cache
protocols. It becomes harder to predict
the protocol behavior due to the fact
that more concurrency is exploited and
the verification of cache coherence pro-
tocols becomes a truly challenging prob-
lem.

2.4 Summary

Cache coherence is a critical require-
ment for correct memory behavior of a
shared-memory system using private
caches. However, the verification of
cache coherence does not mean verifica-
tion of correct memory orderings. The
major impact of memory models on
cache protocol design is to specify when
cache coherence should be enforced,
that is, when the effect of stores should
propagate and when they should be
taken into account at the receiving end.
In the restricted sequential consistency
model, cache coherence is maintained at
each memory reference. On the other
hand, more architectural optimization
techniques can be exploited in relaxed
models such as weak ordering and re-

Verification Techniques • 87

ACM Computing Surveys, Vol. 29, No. 1, March 1997

lease consistency where cache coherence
only needs to be enforced at synchroni-
zation points.

In the sequel of the article, we focus
on the verification of cache protocols, or
the cache coherence problem. We also
limit our focus to protocols designed for
CC-UMA or CC-NUMA systems, but not
for COMA systems. In addition to the
requirement of data consistency, a
COMA system needs to ensure that a
valid data copy of every memory loca-
tion always exists somewhere in the
system [Haridi and Hagersten 1989]. It
should be noted, however, that the veri-
fication methods surveyed in this article
can be adapted to verify COMA sys-
tems.

The state of the art in verification
tools is that we can only verify proper-
ties related to coherence. Thus the veri-
fication of the memory consistency
model is beyond the scope of this article.
We assume that every processor node
(including processor, cache, controllers,
and latency tolerance hardware) issue
read requests and write requests to the
same block in an arbitrary order and we
verify that coherence is maintained. We
do not model the latency tolerance hard-
ware in each processor, but stores are
not necessarily atomic. One restriction
is that only one request to the block per
processor can be outstanding at a time
(multiple requests to different blocks
may be outstanding, however.) Coher-
ence can also be verified when the
model incorporates the latency toler-
ance hardware and, in the conclusion of
this survey, we indicate how to do that.

3. VERIFICATION OF CACHE PROTOCOLS
BASED ON THE FSM MODEL

The goal of a formal protocol verifica-
tion procedure is to validate an abstract
protocol model by proving that it ad-
heres to a given specification. The spec-
ification is a list of correctness proper-
ties required from the protocol.

3.1 Model Abstraction and Specification
Using FSMs

Although there is a variety of ways to
specify a protocol model, we are inter-
ested in methodologies that employ fi-
nite state machines (FSMs) to form pro-
tocol models. Because cache protocols
are essentially composed of component
processes such as memory and cache
controllers that exchange messages and
respond to “events” generated by proces-
sors, a finite state machine model with
such “events” as its inputs is a natural
model. Specifically, we focus on verify-
ing cache protocols where the behavior
of an individual protocol component C is
modeled as a finite state machine FSMc
and the protocol machine is composed of
all FSMcs. Inputs to these machines are
processor-generated events and mes-
sages for maintaining data consistency.

In general, the protocol models are
abstracted representations. They are of-
ten kept simple to make the complexity
of verification manageable, while pre-
serving properties of interest. It is clear
that the quality of a verification is only
as good as the quality of the model.
Therefore, a good compromise between
quality and simplicity is necessary to
make a verification model practically
useful.

Cache protocols can be modeled at
three different levels of abstraction (Ta-
ble I). The highest level of abstraction
aims at verifying the behavior of proto-
cols (the composite behavior of all
caches with respect to a given cache
line). At this level, protocol transactions
[Pong and Dubois 1993a] are assumed
atomic and the interconnection network
is not modeled. This behavioral model
can be refined by modeling nonatomic
memory accesses, at the message pass-
ing or system level. At the lowest ab-
straction level, called the architectural
level, implementation details of the pro-
tocol are included in the model.

Most contemporary methodologies fo-
cus on verifying cache protocols at the
intermediate system level for several
reasons. First, the assumption of atomic

88 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

memory accesses at the behavior level is
far from realistic. Except for some
snooping protocols implemented on a
circuit-switched bus, atomicity of stores
is generally not guaranteed. Second,
verifying at the behavioral level is akin
to verifying the protocol specification,
which is not the same as verifying the
implementation. The same protocol
specification may be implemented dif-
ferently by different manufacturers.
Finally, it is practically infeasible to
verify an entire, finely modeled imple-
mentation because of its unmanageable
complexity.

On the other hand, validation of the
protocol at the system level has moder-
ate complexity and is adequate in most
cases. The concurrency of memory
events is nicely modeled by FSMs com-
municating through messages. Message
passing between FSMs helps the under-
standing of interactions among protocol
components. Moreover, a FSM modeled
at the system level facilitates a hierar-
chical verification methodology. In a hi-
erarchical scheme, the protocol is first
verified at the message-passing level
and is then broken down into smaller
critical pieces for successive validations
in lower abstraction levels. For exam-
ple, at the system level, the model only
deals with the outputs generated by a
cache controller in response to input

messages it receives. The implementa-
tion of the cache controller is hidden in
a black box whose behavior is character-
ized by FSMc. Later, the correspon-
dence between inputs and outputs of
FSMc can be used as a basis for validat-
ing its hardware implementation.

3.2 Type of Protocol Errors

While verifying cache protocols against
their specification, there are two basic
safety properties (“bad things will never
occur”) and one liveness property (“good
things will occur in the future”) to ver-
ify. They are defined as follows.

—Data consistency. In a cache coherent
system, data consistency among mul-
tiple data copies is typically enforced
by allowing one and only one store in
progress at any time for each block
[Scheurich and Dubois 1987]. Concur-
rent accesses to the same block can be
executed on different data copies but
must appear to have executed atomi-
cally in some sequential order. The
cache protocol must always return the
latest value on each load.

—Incomplete protocol specification.
When possible state transitions have
been omitted in the protocol specifica-
tion, it may happen that some proto-
col component receives a message

Table I. Model Abstraction at Different Levels

Verification Techniques • 89

ACM Computing Surveys, Vol. 29, No. 1, March 1997

that is not specified in its current
state. Such unexpected message recep-
tion is an error condition. Since the
message is not specified, the subse-
quent behavior of the protocol is not
defined and is unpredictable.

—Absence of deadlock and livelock. A
deadlock occurs when the protocol en-
ters a state without possible exits,
such that all FSMs remain indefi-
nitely in their current state. Deadlock
must be avoided because the system
is blocked forever. On the other hand,
a livelock is a situation where proto-
col components keep exchanging mes-
sages but the system is not making
any useful progress. In the context of
cache coherence protocols, it is cus-
tomary to consider deadlock as a spe-
cial case of livelock and to adopt the
following definition for livelocks [Mc-
Millan and Schwalbe 1991; Pong
1995].

Definition 1. (Livelock and Dead-
lock) In the context of coherence proto-
cols, a livelock (including deadlock) is a
condition in which a given block is
locked by one processor so that some
processor is permanently prevented
from accessing the block.

Given the preceding definition, a live-
lock (including deadlock) occurs when
some processor is locked out from reach-
ing the shared or the exclusive (dirty)
state [McMillan and Schwalbe 1991]. It
is important to notice that the preced-
ing definition is derived from the ser-
vice (functionality) supported by the
cache protocols. It does not deal with
livelocks and deadlocks due to particu-
lar implementation choices. For in-
stance, deadlocks or livelocks are
caused by finite message buffers or by
unfair processing of memory requests.
Such situations are not detected.
Rather, we only consider protocol-in-
trinsic livelocks and deadlocks. A typi-
cal example is a processor waiting for a
message that is never sent by another
processor in the protocol specification
[Pong 1995].

4. A SIMPLE PROTOCOL EXAMPLE

We illustrate the various techniques
with the verification of a simple multi-
processor system with two coherent
caches supported by a write-invalidate
protocol (Figure 3). One single memory
location is considered and it is assimi-
lated to a single cache block. A cache
block can be in three stable states: In-
valid (I), Shared (S; clean copy poten-
tially shared with other caches), and
Dirty (D; modified and only cached copy).

The behavior of each cache is speci-
fied by FSMs C1 and C2 as shown in
Figure 3. For the rest of this article, we
closely investigate techniques to verify
properties of the protocol over the ag-
gregate behavior of C1 and C2. This ag-
gregate behavior is characterized by the
protocol machine. Although this proto-
col is simplistic, it is adequate for the
purpose of illustration.

It is worthwhile mentioning that mod-
eling a cache block with a single word is
sufficient to verify the property of cache
coherence for most existing protocols,
because the granularity of coherence is
a cache block. However, for protocols
with word-based granularity of coher-
ence [Dubois et al. 1991], a cache block
with multiple words must be modeled
[Pong and Dubois 1996]. In this case,
the methodology must be adapted, but it
remains fundamentally the same.

5. STATE ENUMERATION METHODS

5.1 Reachability or Perturbation Analysis

One important class of verification tech-
niques is called reachability or pertur-
bation analysis, which explores the sys-
tem or global state space completely.
Correctness properties of the protocol
are verified on the set of reachable
global states. The procedure starts with
a model that uses finite state machines
to describe the behavior of components
in the protocol. A global state is defined
as the composition of the states of all
components. In our example, a global
state, denoted as (s1, s2), where s1, s2 [

90 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

{I, S, O}, is simply a composition of the
states of the two caches.

A perturbation method is based on an
exhaustive search algorithm (shown in
Figure 4) to explore the system state
space [Holzmann 1990]. In this algo-
rithm, a working list (W) of newly pro-
duced states and a history list (H) of
visited states are maintained. The ex-
pansion process starts with a given ini-
tial state, from which all possible tran-
sitions are exercised, leading to a
number of new states. A new state is
inserted into the working list if it is
generated for the first time. This pro-
cess is repeated for every new state
until no new state is generated, as
shown in the flattened reachability
(state) graph of Figure 5. At the end, all
reachable global states are contained in
H.

The state expansion algorithm in Fig-
ure 4 implements an interleaving model;
namely, every state transition is the

result of the execution of a single mem-
ory event. Events such as processors
issuing independent requests that may
occur simultaneously are serialized and
taken in different state expansion steps.
Therefore all reachable states are gen-
erated one by one. Although the core
idea of this technique is simple enough

Figure 3. Coherent system with two caches: (a) cache coherent system; (b) FSM C1 for Cache 1; (c)
FSM C2 for Cache 2.

Figure 4. Algorithm for exhaustive search.

Verification Techniques • 91

ACM Computing Surveys, Vol. 29, No. 1, March 1997

to be fully automated, its applicability
is limited to small scale models because
of the state space explosion problem, as
was shown in several studies [Pong et
al. 1994; Pong 1995]. An excellent quan-
titative analysis of this technique is also
given in Holzmann [1990].

5.2 Specification of the Protocol Model

An important feature of state enumera-
tion methods is that they assume full
control or manipulation of state vari-
ables. In the protocol model, state vari-
ables are declared, accessed, and modi-
fied as global variables in a procedural
or imperative programming language
such as C. When a state transition oc-
curs, we can change the value of any
state variable. This allows us to build
abstract models more easily, without
considering the details of a real imple-
mentation. For example, in the Illinois
protocol [Archibald and Baer 1986], a
read miss in a cache may return the
cache block either in state Valid-Exclu-
sive or Shared, depending on the pres-
ence of the block in other caches. These
transitions can be easily modeled in a

state enumeration method as shown in
the pseudoprogram of Figure 6.

The model is made of n caches whose
states and values of cached copies are
kept in variables (c1, c2, . . . , cn) and
v1, v2, . . . , vn), respectively. In the
next-state transition rule shown in the
example, when processor p1 has a read
miss in c1, it makes the miss visible to
other caches via the function Export-
CacheEvent. In the function, all remote
caches change their local cache states
according to the finite state machine
that specifies the cache behavior. When
remote caches complete their opera-
tions, p1 changes its cache state and
loads the data either from a remote
cache or from the memory. The function
ExportCacheEvent represents some
physical device such as a set of data and
address lines and a polling bus wire
that determines the sharing status of
the data. In the model, all these bus
wires are abstracted.

Because of the abstraction of protocol
components by globally accessible state
variables, the method is extremely flex-
ible and thus very useful in the early

Figure 5. Reachability graph of protocol example.

92 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

protocol design phase. The model can
focus on the functionality of the protocol
rather than on lower-level implementa-
tion details. By contrast, Nanda and
Bhuyan [1992] specified and verified
the Write-Once protocol [Archibald and
Baer 1986] for a bus-based system of
two caches by a state enumeration
method. In their model, the behavior of
the bus, cache controllers, and the mem-
ory controller are specified by finite
state machines. These finite state ma-
chines are considered as processes in

Hoare’s Communicating Sequential Pro-
cesses [Hoare 1978] language (CSP).
The state space of the model is then
explored by composing the bus, the
caches, and the memory machines. Be-
cause of the composition of finite state
machines, the model is somewhat com-
plicated and must include many hand-
shaking messages (ports in CSP) in or-
der to interface the cache controllers
and the memory to the bus. Inclusion of
the bus in the model is purely for the
purpose of synchronizing communica-

Figure 6. Pseudocode for state transition rule in a state enumeration model.

Verification Techniques • 93

ACM Computing Surveys, Vol. 29, No. 1, March 1997

tions among the two caches and the
memory. The bus-handshaking mes-
sages are not related to the protocol
behavior or to the actual system; they
are just there to serialize bus accesses
in the model.

To serialize bus accesses in a state
enumeration method, all we need is one
state variable to model the bus; bus_
holder in {null, p1, p2, . . . , pn, memo-
ry}, given a system of n processors.
When a processor wants to access the
bus, all that is needed is a simple check
to the variable bus_holder to detect
whether the bus is free. Thus all hand-
shaking messages between the bus con-
trollers and cache controllers are ab-
stracted. To abstract further, individual
low-level operations (e.g., checking the
bus status and sending a message if it is
free) can be lumped and executed to-
gether if they are not critical to the
protocol behavior. Due to this flexibility,
protocol models can be rapidly modified
as the protocol design evolves. In the
early development phase of complex
protocols, this is a considerable advan-
tage of state enumeration methods.

The Murw system implemented by
Dill et al. [1992] is a well-known tool
based on state enumeration. The Murw
specification language is purely proce-
dural or imperative and has the same
structure as the code shown in Figure 6.
In Murw, the collection of all state vari-
ables forms the global state. The proto-
col model is built on top of a set of
next-state transition rules. Each transi-
tion rule is a guarded command, con-
sisting of an enable condition and an
action section in which values of next
state variables are defined. Given a cur-
rent state, the enable condition of a
transition rule is checked. If it is true, a
next state is generated by changing the
values of state variables as specified in
the rule. For error detection, Murw
checks for simple deadlock states which
are states with no exit to states other
than themselves. Murw also checks vio-
lations of given inline assertions (e.g.,
the assertion “assert (OnlyCopy(i)) . . .”
in the function ExportCacheEvent of

Figure 6) on the values of current state
variables in rules and invariants for all
reached states.

5.3 Detection of Protocol Errors

To verify the safety property of data
consistency, a common approach is to
show that all reachable global states are
permissible [Nanda and Bhuyan 1992].
Usually, the definition of a cache state
carries some semantic interpretation of
the cached copy. For the protocol consid-
ered in this article as well as for many
others [Archibald and Baer 1986; Swea-
zey and Smith 1986], a cache in the
Shared state means that the cache has a
clean copy consistent with the memory
copy and that other caches may have a
copy too. Similarly, a cache in the Dirty
state indicates that it has the latest and
sole cached copy. Therefore, global
states (D,S), (S,D), and (D,D) are not
permissible because they conflict with
the definitions of the Shared and Dirty
states. States that are not permissible
are classified as erroneous states.

Unfortunately, this checking based on
cache states is theoretically insufficient
in general. The agreement between
cache states and data copies must be
guaranteed throughout the expansion
process, which means that data values
must be modeled along with state tran-
sitions. Consider the example of Figure
7 of a stale write-back error found in
Pong et al. [1995]. Suppose that cache A
has a dirty copy of the block, replaces it,
and writes it back to the home node. In

Figure 7. Stale write-back error and detection
mechanism.

94 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

order to guarantee that the memory re-
ceives the block safely, cache A keeps a
valid copy of the block until it receives
an acknowledgment from memory.
Meanwhile, cache B sends a request for
an exclusive copy to home. Subse-
quently, cache A processes the data-
forward-request from home, confuses it
for an acknowledgment for the prior
write-back request and sends the block
to B. B then modifies its copy and re-
places it, due to some other miss. As
shown in the figure, a race condition
exists between the two write-back re-
quests. If the write-back from B wins
the race, the stale write-back from A
overwrites the values updated by B.
Note that, in this example, all state
transitions are permissible. A possible
approach to keep track of values is to
have processors randomly write one of
two predetermined values such as 0 and
1; subsequently, a check verifies that
processors do not read different values
[Ip and Dill 1993a]. However, the stale
write-back error might still go undetec-
ted unless the protocol model maintains
a global variable to remember which
write-back carries the latest value.

A systematic solution to such prob-
lems is suggested in Pong and Dubois
[1993a]. Every cache is associated with
a variable cdata which takes value from
the set {Nodata, Fresh, Obsolete}; simi-
larly, the status of the memory copy is
indicated by a variable mdata which
can be Fresh or Obsolete. When a data
transfer is initiated from cache Ci to
cache Cj, the value of cdatai is copied to
cdataj. When a processor performs a
write, it defines a new fresh datum, and
all other copies become obsolete. Viola-
tion of data consistency occurs when a
processor can read an obsolete datum.
For the scenario of Figure 7, when cache
B performs its write it defines a Fresh
value and the write-back message from
cache A carries an Obsolete value. If the
write-back by A overwrites the values
updated by B, the memory value is Ob-
solete. Thus the state write-back error is
easily detected.

The detection of unexpected message

receptions is straightforward. Because
protocols are described by FSMs, unex-
pected message receptions are merely
unspecified inputs to the FSMs. In the
rest of this article, we do not pay much
attention to this type of error.

According to Definition 1, the absence
of deadlock and livelock is normally
proved by checking certain conditions:
(1) there does not exist a state in which
the protocol is trapped without exit to
other states, and (2) every cache can
reach the Shared and the Dirty states
infinitely many times after a read miss
and a write access, respectively. In
practice, (2) is very difficult to check in
a state enumeration method because
there is no formal way to reason about
the behavior of a protocol for an infinite
number of transitions. To detect live-
locks, the state graph must be kept and
the transition relations (connectivity in-
formation [Holzmann 1990]) among
global states must be maintained dur-
ing the state expansion. At the end one
can check whether the state graph is
strongly connected, that is, whether a
path exists between every pair of states
[Archibald 1987; Pong et al. 1994]. Also,
given a state in which a processor is in
the Invalid state, there must exist a
reachable state in which the processor
is in the Shared state or the Dirty state
after a read miss or a write access,
respectively. When the state graph is
large, the traversal of the graph is a
costly operation in terms of computation
time and memory consumption.

5.4 Improvements to Perturbation
Methods

To overcome the inefficiency and large
memory requirement of state enumera-
tion methods, several variations have
been proposed. In this section, we give
an insight into these techniques. Al-
though some of these techniques have
not been applied to cache coherence pro-
tocols, they are general enough to be
considered in this survey.

Before we continue the discussion, we
distinguish between the search state

Verification Techniques • 95

ACM Computing Surveys, Vol. 29, No. 1, March 1997

space and the system state space. The
search state space is the set of states
generated during the process of state
expansion, whereas the system state
space is the set of reachable states accu-
mulated and recorded in memory. Usu-
ally, the size of the search space is
several orders of magnitude larger than
the size of the system space because a
global state is often produced more than
once during the state expansion, as
shown in Figure 5. Clearly, the verifica-
tion time is dominated by the size of the
search space and the memory require-
ment by the size of the system state
space. To shorten the verification time,
we need to reduce the number of search
states and/or speed up the state com-
parison operations. On the other hand,
memory can be saved by (1) exploiting
equivalence relations among states so
that a set of equivalent states is repre-
sented by a canonical state (Section
5.4.3), or (2) verifying the protocol “on-
the-fly” as explained next.

5.4.1 On-the-Fly Stack Search, State
Space Caching, and Sleep Set. On-the-
fly stack search guarantees full explora-
tion of the system state space while
limiting the memory consumption by
keeping track of states on the current
expansion path only [Holzmann 1990;
Jard and Jeron 1991]. A depth-first ex-
pansion only keeps states on the cur-
rent expansion path whose length is
bounded by the depth of the state space
graph (Figure 8). The initial state is
pushed onto the working list managed
as a stack. At each step, one successor
state s of the top state q on the stack is
generated. If s is first-time generated, it
is pushed on the stack and a recursive
call to the algorithm is made, where s
becomes the top state on the stack. If s
has been generated before, either an-
other expansion path originated from q
is taken or q is removed from the stack
and the algorithm backtracks to the
predecessor of q.

Although on-the-fly stack search uti-
lizes memory sparingly, the tradeoff is a
potentially longer verification time due

to the regeneration of forgotten states as
shown in Figure 9. In the example, the
expansion starts with the state (I,I) and
takes the path depicted as the left-most
subtree of (I,I). Along the path, states
such as (S,I), (D,I), and (S,S) are gener-
ated. When the path is exhausted, the
expansion process backtracks and
states such as (S,S) on the path are
forgotten. As a result, forgotten states
may be regenerated many times when
different expansion paths are taken.

To avoid the regeneration of forgotten
states, a technique called state space
caching has been proposed [Godefroid et
al. 1992; Holzmann 1985; Jard and
Jeron 1991]. In this technique, some
part of memory is managed as a cache
memory to keep as many visited states
as possible. A state removed from the
current expansion path is saved in the
caching memory space. When a new
state is generated, it is checked with
states in the caching space. If the state
is found, expansion on the current path
is stopped and the algorithm back-
tracks. Thus the method effectively uses
all available memory and at the same
time cuts the verification time taken by
the stack search strategy.

Although state space caching can ef-
fectively reduce the number of regener-

Figure 8. Algorithm for on-the-fly stack search.

96 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

ations of forgotten states, inefficiency
still exists because of redundant state
comparisons due to unnecessary explo-
rations of all permutable sequences of
concurrent events that lead to the same
state. As shown in Figure 9, from the
starting state (I,I), the same state (S,S)
is reached many times after applying
transitions R1 and R2 in different or-
ders. Transitions leading to the same
state independent of the order in which
they are applied are independent transi-
tions [Godefroid et al. 1992]. In a
shared-memory system, dependency can
arise between accesses to shared-mem-
ory locations. For instance, two accesses
to the shared-memory location are de-
pendent if at least one of them is a write
operation, whereas two concurrent read
accesses are independent because they
can be executed in any order without
affecting the resulting state.

Based on the partial ordering of inde-
pendent transitions, the “sleep set” was
introduced in Godefroid [1990] and Go-
defroid et al. [1992] to explore the full
state space without exploring all en-
abled transitions in each state. In this
approach, every state is associated with
a sleep set consisting of transitions that
are firable but that will not be executed.
For example, in Figure 9, when state
(I,I) is under expansion, either the read
access R1 or the read access R2 can be
fired. Because the transition of R1 (R2)

does not depend on the state of the
cache C2(C1) and the transition does
not affect the resulting state of C2(C1),
R1 and R2 are independent transitions.
Therefore, when the state (I,S) is gener-
ated by firing R2 on (I,I), R1 is kept in
the sleep set of (I,S) to prevent the gen-
eration of state (S,S).

This technique has great potential for
improving the efficiency of depth-first
perturbation analysis because cache-
based multiprocessor systems are full of
independent concurrent events. For ex-
ample, consider the protocol model
given in Pong et al. [1994] for directory-
based protocols [Censier and Feautrier
1978] (Figure 10). In this model, every
processor is associated with one mes-
sage-sending and one message-receiving
channel, which simulate the intercon-
nection. When processor Pi consumes
message mi emerging from its receiving
channel, it may generate and send re-
sponse messages to its sending channel
without knowing or affecting states of
other processors. In a broad sense, a
processor’s activity is totally isolated
from the activities of other processors.
Therefore transitions corresponding to
propagation of messages in different
channels and consumption of messages
from different channels are indepen-
dent. “Sleep sets” improve the verifica-
tion time substantially by exploring
only one interleaving of independent

Figure 9. Regeneration of forgotten states in stack search and sleep sets.

Verification Techniques • 97

ACM Computing Surveys, Vol. 29, No. 1, March 1997

transitions. But computing the “sleep
set” adds extra complexity to the con-
struction of the verification model. The
verification tools also need to assist the
protocol designer in identifying the in-
dependent concurrent events.

Finally, it is not clear how the livelock
condition defined in Section 3.2 can be
verified in a stack search algorithm be-
cause this on-the-fly technique only
keeps track of states on the current
expansion path.

5.4.2 Supertrace Hashing. Another
possibility for improving the efficiency
of state enumeration methods is to en-
code the state information to save mem-
ory, and to use hash tables to speed up
the search and comparison operations.
An extreme method along this line is
Holzmann’s [1990] supertrace hashing.
The idea is based on a hash table T of
binary values all initially set to 0. When
a state s is generated, its hash value
h(s) is computed to access the corre-
sponding bit in T[h(s)]. If T[h(s)] is
reset, the state is first-time generated
and T[h(s)] is set to 1. If T[h(s)] is set,
the state has been visited before.

The memory needed by this technique
is limited to a stack to keep states for
future expansion and a hash table of
bits to detect visited states. Moreover,
state matching operations are reduced

to a calculation of hash values and a bit
comparison. Unfortunately, this tech-
nique is not totally accurate because
several states map to the same hash
value and an ideal hash function map-
ping each global state to a unique hash
value h(s) is not practical. To reduce the
probability of hash table collisions, Hol-
zmann has advocated the use of two
hash functions h1 and h2 such that a
state s is present if both T[h1(s)] and
T[h2(s)] are set. However, in this multi-
hash scheme, T will fill up quickly and
a very large hash table is required to
ensure a reliable result (it is argued in
Holzmann [1991] that the result re-
mains reliable only if the table is less
than 1% full.)

Recently, Wolper and Leroy [1993] re-
visited this problem and proposed an
alternative called hashcompact to limit
the probability of hash table collisions
for even a single state to a negligible
value. Holzmann’s approach relies on a
very large hash table T to provide a low
probability of hash table collisions. Wol-
per and Leroy refined the method as
follows. Assume that T has 2k entries.
(In practice k is large; e.g., k 5 64.)
When a state s is generated, its address
in T is computed and represented by k
bits. Then a much smaller standard
hash table T9 with a collision resolution
scheme is used to store these k bits. The

Figure 10. Protocol model for systems with directory-based cache coherence protocol.

98 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

advantage of this method is that the
probability of hash table collision can be
negligibly small because a hash address
is computed with respect to a very large
table T, which is not physically allo-
cated. The amount of memory required
is of the order of entries actually stored
in T9.

The hashcompact scheme is expected
to be more efficient than the multihash
scheme. Suppose that m bits are re-
quired to represent a state, where m
(typically several hundreds of bits) is
normally much larger than k (at most
64 bits). The hashcompact scheme com-
putes and stores the k bits in T9. On the
other hand, lk bits must be computed in
the l-level multihash scheme. Moreover,
at the same level of reliability, the
hashcompact scheme has better storage
efficiency. A detailed analysis of this
hashcompact scheme is given in Wolper
and Leroy [1993].

Although the hashcompact scheme is
effective, the number of states that can
be explored is fairly small. Given a
memory size of 100 Mbytes and a toler-
able collision probability of 1023, the
number of states that can be explored is
of the order of 107, which is fairly small
for cache protocols even with a small
model [Pong et al. 1994; Pong 1995].
More memory is still needed if the con-
nectivity of the state graph must be
maintained to verify the liveness prop-
erty.

5.4.3 State Pruning Based on System
Symmetry. Other techniques adopted in
the symmetric Murw [Ip and Dill
1993a,b] attack the state space explo-
sion problem directly by constructing a
tractable model that exploits system
symmetries. In Figure 5, states (S,I) and
(I,S) are identical to each other by sym-
metry, as are (D,I) and (I,D). In general,
processors in a multiprocessor system
are symmetric if the context of any two
processors can be swapped without af-
fecting the correctness of the system
(Figure 10). To exploit this symmetry,
the symmetric Murw uses a function j(s)
mapping a state s into a unique state,

which canonically represents the orbit
[Clarke et al. 1993] of s, namely, the set
of states that are symmetric permuta-
tions of s.

Ip and Dill have applied this method
to verify the Stanford DASH protocol
[Lenoski et al. 1990] and have shown
that state enumerations with exploita-
tion of system symmetries indeed re-
duce the size of the state space. Given a
protocol model with n processors as in
Figure 10, the maximum reduction is n!.
Unfortunately, it was shown that even
for fairly small models of 3 or 4 proces-
sors the reduced state space size is still
above 107 states [Pong et al. 1994; Pong
1995] which indicates that the reduc-
tion by symmetry may not be sufficient
to avoid the state space explosion prob-
lem.

5.4.4 Summary. State enumeration
methods have been successfully applied
to the verification of communication
protocols for a long time [Bochmann and
Sunshine 1980; Danthine 1980]. It is
natural to adopt these methods to verify
cache protocols. However, frequently
communication protocols deal with only
two agents. In contrast, in cache proto-
cols multiple controllers participate in
one transaction. Therefore many optimi-
zation techniques improving state enu-
meration methods for networking proto-
cols cannot be applied [Yuang 1988].
For the verification of cache protocols,
perhaps the most interesting optimiza-
tion technique is to exploit the property
of symmetry. However, it has been
shown that the resulting reduction of
the state space may not be sufficient to
avoid the explosion problem.

A real advantage of state enumera-
tion methods and tools such as Murw is
the simplicity with which protocol mod-
els are built and changed. As we men-
tioned in Section 3.1, most practically
useful verifications are done at the sys-
tem level. In the state enumeration
method, specifying a protocol model is
as simple as coding a program in an
imperative language (Section 5.2).
Therefore many useful data structures

Verification Techniques • 99

ACM Computing Surveys, Vol. 29, No. 1, March 1997

such as arrays and records, parameter-
ized loop control, and procedures found
in high-level programming languages
can be easily supported in a model spec-
ification language such as Murw. These
constructs simplify the task of coding
protocol models. Moreover, the protocol
model is valid for any model size.

Powerful tools integrating the advan-
tages of various optimization techniques
are possible. For instance, stack search
supported by caching memory imple-
mented as the hash table in the super-
trace or the hashcompact techniques
could result in a very efficient, yet reli-
able method. Since the supertrace or
the hashcompact techniques compress
enormous state information into smaller
hashing addresses stored in the hash
table, a caching space with fixed size
could contain more states as compared
to storing the state information explicitly.
Efficiency would be further improved if
system symmetries were also exploited.

6. MODEL CHECKING

Model checking is a verification ap-
proach in which properties of the proto-
col are expressed as formulas in tempo-
ral logic and the verification is carried
out formally. A temporal logic3 is an
extension of predicate logic with addi-
tional tense operators for expressing
properties evolving with time. The spec-
ification is given in the form of a set
Spec of logic formulas and the imple-
mentation is given as a semantic model
Imp. The satisfaction relationship be-
tween the specification Spec and its im-
plementation Imp is established by
proving that Imp is a model for Spec. In
general, the procedure starts with the
construction of the state graph of the
protocol model; then properties speci-
fied as temporal logic formulas are eval-
uated on the graph.

In particular, the branching time

temporal4 logic called Computation Tree
Logic (CTL) can express mandatory
properties of the protocols [Browne et
al. 1986; Clarke et al. 1986]. An advan-
tage of CTL is its broad expressiveness.
It can handle arbitrary temporal formu-
las that represent safety and liveness
properties. In general, it is more diffi-
cult to check liveness properties than
safety properties because liveness prop-
erties are only meaningful for infinite
behavior, whereas safety properties are
checked by merely considering the finite
behavior of a system. Representing the
infinite behavior of a system is more
difficult than the finite behavior. For
example, to detect livelocks, a method
based on state expansion must keep
track of the history of state transitions
and of all possible branches that may be
taken during the state expansion. On the
other hand, safety properties such as the
consistency of multiple copies of the same
memory block are easily checked by com-
paring the values of all data copies in the
current state. By contrast, in model
checking methods infinite system behav-
ior is easily and efficiently expressed by
fixpoint characterizations of CTL formu-
las [McMillan 1992].

In the following sections, we briefly
review CTL and discuss the limitations
of the model checking method. Next we
survey the symbolic model checking ap-
proach proposed to overcome problems
with model checking.

6.1 Model Checking and Computation
Tree Logic

The model checking method is based on
an infinite computation trace of the sys-
tem model. As shown in Figure 11, the
trace is composed of sequences of states
derived from the global state machine of
the system. A path is an infinite se-
quence of states (s0, s1, . . .) such that a
transition exists from si to si11, for all i.
Properties evolving with computation

3 Please see Browne et al. [1986], Clarke et al.
[1986], and Pnueli [1977, 1981].

4 A branching time temporal logic is a temporal
logic that allows any state to have a finite number
of immediate successor states.

100 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

on all or on selected execution paths,
are specified in the Computation Tree
Logic (CTL) [Browne 1986].

The CTL includes the usual logic con-
nectives of negation (¬) and conjunction
(∧), with additional tense operators and
path quantifiers. Given a set of atomic
propositions AP, which are properties
specified on the values of state vari-
ables, we have CTL formulas:

(1) Every p [AP is a CTL formula.
(2) If f1 and f2 are CTL formulas, so are

¬f1, f1 ∧ f2, AXf1, EXf1, A[f1Uf2],
and E[f1Uf2].

Tense operators X and U are the next
time operator and the until operator,
respectively; A and E are for all and
there exists path quantifiers, respec-
tively. Thus AXf1 (or EXf1) means that
f1 is true for all (or some, resp.) next
immediate successor states of the
present state. A[f1Uf2] (or E[f1Uf2])
means that for every computation path
(or for some computation path, resp.)
there exists an initial prefix of the path
such that f2 is true in the last state of
the prefix and f1 is true in all other
states along the prefix. The following
additional operators are defined in
Browne et al. [1986].

—f1 ∨ f2 [¬(¬f1 ∧ ¬f2), f1 3 f2 [¬f1
∨ f2 and f1 7 f2 [(f1 3 f2) ∧ (f2 3
f1).

—AF(f) [A[True Uf] means that for
every path, there exists a state in
which f is true.

—EF(f) [E[True Uf] means that for
some path, there exists a state in
which f is true.

—AG(f) [¬EF(¬ f) means that for
every path, f is true in every state on
the path.

—EG(f) [¬AF(¬ f) means that for
some path, f is true in every state on
the path.

Given a formula f and a state s, the
model checking method determines
whether f is true in state s. The fact
that a CTL formula f is true in state s is
denoted by s ?5 f. As previously de-
scribed, the basic model of the method
is a global finite state machine _ 5 (S,
TR), where S is a nonempty finite set of
global states, and TR # S 3 S is the set
of transitions between global states.
Formally, the truth or falsehood of a
formula is computed as follows.

—s0 ?5 p iff p [AP is an atomic
proposition and is true at s0.

—s0 ?5 ¬f iff s0 ?Þ f.
—s0 ?5 f ∧ g iff s0 ?5 f ∧ s0 ?5 g.
—s0 ?5 AXf iff for all states s1 such that

(s0, s1) [TR, s1 ?5 f.
—s0 ?5 EXf iff for some state s1 such

that (s0, s1) [TR, s1 ?5 f.
—s0 ?5 A[f U g] iff for all paths (s0, s1,

. . .), i [i $ 0 ∧ si ?5 g ∧ j [0 # j ,
i 3 sj ?5 f]].

—s0 ?5 E[f U g] iff for some path (s0,
s1, . . .), i [i $ 0 ∧ si ?5 g ∧ j [0 #
j , i 3 sj ?5 f]].

The method uses a model checker to
evaluate the truth of a formula. To de-
termine whether a formula f is satisfied
in a given state, the model checker com-
putes the fixpoint, that is, the set of
states in which f is true. This is

Figure 11. Global state machine and its computation trace.

Verification Techniques • 101

ACM Computing Surveys, Vol. 29, No. 1, March 1997

achieved by a graph-traversal, iterative
labeling process. Figure 12 shows the
state graph of our simple protocol exam-
ple.

By EFf [E[True U f], EFf is satis-
fied at state t if and only if t ?5 f or
there exists a path that leads from state
t to state s and s ?5 f. Therefore, EFf
can be characterized by a fixpoint
EFf [f ∨ EX(EFf) that labels all states
having an access to state s in which f is
true as an atomic proposition; that is,
s ?5 f. This labeling process starts by
first labeling all states t that are direct
predecessors of s, which means t ?5
EXf. Then it labels all states w that are
direct predecessors of t, that is, states w
such that w ?5 EX(EXf), and so on.

In our protocol example, the liveness
property

EF~ p1 .state 5 Shared ∧ p2 .state

5 Invalid!

is true at state (S,I) as an atomic propo-
sition. To prove it, the checker starts
from an empty set, and labels state (S,I).
Next states (I,I) and (S,S) are labeled
because (S,I) is an immediate successor
state of (I,I) and (S,S). States (D,I), (I,D),
and (I,S) are labeled in the second itera-
tion. At this point, the fixpoint is
reached because no additional state can
be labeled by iterating further.

Similarly, the set of states satisfying
the safety property of data consistency
AGf, where f 5 (p1.state 5 Dirty 3
p2.state 5 Invalid) is computed by label-
ing all states initially. Then the fixpoint
computation iteratively removes the la-
bel of some state x if there exists any
successor state y of x such that f is not
true in y. A detailed explanation of a
fixpoint computation can be found in
McMillan [1992].

As shown, the model checking method
provides a very efficient way to reason

Figure 12. Fixpoint characterization of EFf.

102 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

about properties that evolve with time.
Any property that can be specified as a
formula can be verified. However, be-
cause the model is the global state
graph which is obtained by an exhaus-
tive exploration of the system state
space, the state space explosion problem
must be addressed as in state enumera-
tion approaches [Graf et al. 1989], by
representing the states and the state
transitions symbolically.

6.2 Symbolic Model Checking

Symbolic model checking is a technique
to perform model checking without ex-
plicitly representing the state graph
[McMillan 1992]. Certain essential dif-
ferences separate the model checking
method from the symbolic model check-
ing method. First, the global state
graph in the symbolic method is implic-
itly represented by Ordered Binary De-
cision Diagrams (OBDDs) [Bryant
1986], which can be very compact so
that the excessive memory requirement
due to the state space explosion problem
is avoided. Second, the symbolic method
composes finite state modules [Nanda
and Bhuyan 1992] to build the transi-
tion relations among global states.
Reachable global states are not pro-
duced one by one as in state enumera-
tion methods.

In the following sections, we first look
into the structure of the OBDDs repre-
senting the global states and the transi-
tion relations. Then we show how the
truth value of a formula is evaluated on
the structure of the symbolic state
graph, and how to build transition rela-
tions for a finite state system.

6.2.1 OBDD Representation of the
State Space and Transition Relations.
In the symbolic model checking method,
a vector V of Boolean variables repre-
sents the states of components in the
system. A system state is an assign-
ment of either 0 or 1 to each variable in
V. Consequently, the set of all system
states is obtained by all possible inter-
pretations to variables in V. A Boolean

function fs(V) can then represent the
global state space if fs(V) is true for all
reachable states and fs(V) is false for all
unreachable states. More generally, a
Boolean function g(V) is a characteristic
function that represents the set of
global states such that g(V) is true.
Based on the same idea, all state transi-
tions in the state diagram are also rep-
resented by a Boolean function TR(V, V9)
such that TR(V, V9) is true for all V and
V9 such that there is a state transition
from V to V9. In the following, we use a
primed variable for every next-state
variable. Thus V and V9 represent the
current- and the next-state, respec-
tively.

In our protocol example, the set of all
reachable global states is {(I,I), (I,S),
(S,I), (S,S), (I,D), (D,I)} and the state
graph is shown in Figure 12. First, we
need to encode the cache states. Be-
cause a cache can be in three states, two
bits are required to encode a state. Arbi-
trarily, we encode state I as 00, state S
as 01, and state D as 10. Thus every
global state is represented by a vector
V(v0, v1, v2, v3) of 4 binary bits, and the
set of global states is {(I,I)0000, (I,S)0001,
(S,I)0100, (S,S)0101, (I,D)0010, (D,I)1000}. We
can easily represent this set by a Bool-
ean function fs(V) so that fs(V) returns
true values for states in the system
state space. In this example,

fs~v0 , v1 , v2 , v3!

5 v̄0v̄1v̄2v̄3 1 v̄0v̄1v̄2v3

1 v̄0v1v̄2v̄3 1 v̄0v1v̄2v3

1 v̄0v̄1v2v̄3 1 v0v̄1v̄2v̄3.

For the purpose of efficient manipula-
tion, OBDDs [Bryant 1986] represent
Boolean functions internally. Figure 13
shows the OBDD representing the state
space of our example. Given an ordering
of variables (v0, v1, v2, v3), the OBDD
representing fs is shown in Figure 13(a).
Each nonterminal node containing a de-
cision variable is circled and each termi-
nal node containing a function value 0

Verification Techniques • 103

ACM Computing Surveys, Vol. 29, No. 1, March 1997

or 1 is represented by a square. For
instance, when v0 5 v1 5 v2 5 v3 5 1,
fs(V) 5 1. Therefore the path in the tree
for (v0 5 v1 5 v2 5 v3 5 1) leads to a
terminal node with function value 1.

Two reduction rules are repeatedly
applied to the OBDD tree in order to
reduce its size. First, a vertex whose
two branches point to the same vertex
are deleted. For example, fs(V) returns
1 for (v0 5 v1 5 v2 5 v3 5 0) and (v0 5
v1 5 v2 5 0, v3 5 1). Thus the value of
fs(V) is independent of v3 for these two
paths and node v3 can be deleted. Sec-
ond, two isomorphic subgraphs are

merged. The resulting graph is called
the reduced OBDD. Checking whether a
state is reachable is as simple as tra-
versing the reduced OBDD tree.

6.2.2 Evaluation of Formulas. Given
a finite state system, the symbolic
model checking method starts with the
construction of the OBDD for the transi-
tion relations TR(V, V9). To evaluate
the truth or falsehood of a formula f in a
state s, the symbolic model checker per-
forms operations similar to the model
checking method in Section 6.1. It com-
putes the set of states (as characterized

Figure 13. OBDD for set of reachable state: (a) fs and its OBDD; (b) reduced OBDD.

104 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

by a Boolean function and represented
by an OBDD) where f is true by a fix-
point computation. It then checks
whether the given state s belongs to the
generated set of states. For example, let
us assume that we want to find out
whether state s has a successor state in
which formula f is true, that is, whether
s ?5 EXf. Informally, the method starts
by finding the set of states in which f is
true. This set is represented by the
characteristic function f(V9). Then we
determine the set of states g(V) that
have a successor state in f(V9). Finally,
the method checks whether s [g(V).
Formally, we have [McMillan 1992]:

s ?5 EXf

iff s [~ V9~ f~V9! ∧ TR~V, V9!!.

When the conjunction (AND) opera-
tion is executed on f(V9) and TR(V, V9),
the resulting OBDD TR9(V, V9) charac-
terizes the transitions from states in
g(V) to states in f(V9). Subsequently,
the method executes the existential
quantification on the next-state vari-
ables in V9.5 Since the existential quan-
tifier on v9 [V9 means an arbitrary
choice of decision paths (i.e., indepen-
dent of the value of v9), it is an OR
operation on the left and right subtrees
of v9. After the quantification operation,
all variables v9 in V9 have disappeared
from TR9(V, V9). The resulting OBDD
for g(V) represents the set of states that
can reach states in f(V9) in one step.
Whether the state s is in g(V) can be
checked by traversing the OBDD tree of
g(V).

Similarly, to compute the set of all
reachable states, we can start with a
characteristic function Init(V) for the
set of initial states. The set of immedi-
ately reachable states r(V9) from any
initial state can be computed as:

V Init~V! ∧ TR~V, V9!.

The conjunction and existential quanti-
fication operations are performed as
previously explained. The resulting
OBDD represents the set of next-state
r(V9) reachable from states in Init(V) in
one step. To compute the set of states
reachable from Init(V) in two steps, we
use r(V9 4 V) to substitute Init(V) in
the preceding equation, where V9 4 V
means that the next state variables are
replaced by the current state variables.
The computation is repeated iteratively
until the fixpoint is reached, and the
resulting OBDD does not vary.

6.2.3 Complexity of Model Specifica-
tion and Construction of Transition Re-
lations. As shown in the previous sec-
tion, the transition relations TR are
essential for the model checking
method. The OBDD for TR must be
built efficiently. Establishing the transi-
tion relations among global states one
by one as in state enumeration methods
is not acceptable. Typically the protocol
model is built on asynchronously com-
municating finite state modules, a
model similar to the one taken by
Nanda and Bhuyan [1992] and previ-
ously explained in Section 5.2. In the
CSP language adopted by Nanda and
Bhuyan [Hoare 1978], a model is speci-
fied in terms of communicating pro-
cesses and a process that executes an
input (output) primitive is blocked until
the process with which it tries to com-
municate executes a corresponding out-
put (input) primitive. By contrast, the
symbolic model checking method was
developed in the context of digital cir-
cuits and the semantic of its specifica-
tions is similar to the Verilog hardware
description language [Tomas and
Moorby 1995]. Modules do not block im-
plicitly as CSP processes do whenever a
communication cannot be established.
Every module executes its logic cycle by
cycle. (A cycle can be thought of as a
state transition step.) In each cycle, the
value of every state variable must be
precisely set, which results in very com-
plex models.

For our simple protocol example, the

5 Existential quantification and conjunction oper-
ations can be executed simultaneously during the
computation. It depends on the implementation.

Verification Techniques • 105

ACM Computing Surveys, Vol. 29, No. 1, March 1997

protocol model consists of processor,
cache, and bus modules (the bus is
needed as in Nanda and Bhyuan’s mod-
el). Figure 14 shows a structural de-
scription of the protocol model in which
the data paths are not included for sim-
plicity. We first need to define the be-
havior of each module. The behavior of
each processor module is given by the
pseudocode of Figure 15. The module
has one output port Req which indicates
the type of memory access and one in-
put port Ack which signals the comple-
tion of a prior access. The module also
maintains two internal variables ProcSt
and PendingAcc which remember the
status of the processor and the type of
any pending access, respectively. ProcSt
is initially set to ready and PendingAcc
to nop. In the next cycle, ProcSt moves
onto the issuing state, and then to the
waiting state after issuing the memory
access (a load or a store). When Ack is
activated, the next state of ProcSt is
ready. For all other cases, ProcSt re-
mains in its current state. Syntactically,
the next state value of ProcSt is:

ProcSt9

5 [(ProcSt 5 read y) ∧ ~issuing!]

∨ @~ProcSt 5 issuing! ∧ ~waiting!#

∨ @~Ack! ∧ ~ProcSt 5 waiting! ∧ ~ready!#

∨ ~¬~@~ProcSt 5 read y!#

∨ @~ProcSt 5 issuing!#

∨ @~Ack! ∧ ~ProcSt 5 waiting!#)

∧ ~ProcSt!).

To understand the preceding equa-
tion, consider a simpler expression:
next(x) 5 if(c) x else ¬ x, where x and c
are Boolean variables. We know that x9 5
(c ∧ x) ∨ (¬ c ∧ ¬ x) because when c 5 1,
x9 5 x and c 5 0, x9 5 x. As a result, we
can represent the transition relation be-
tween x and x9 by an OBDD over c, x, and
x9. In the same way, the transition rela-
tions for state variables ProcSt, Pendin-
gAcc, and Req in the processor module of
Figure 15 are characterized by three OB-
DDs over the state variables. Since the
processor executes its logic and updates
the values of its state variables in each
cycle, a conjunction operation on the
three OBDDs yields the OBDD TRP,
which characterizes the state transitions
for all variables defined in the processor
module. Following the same idea, we can
build TRC and TRB for the cache and the
bus modules, respectively.

We now describe the main module for
the protocol model. A brief segment of
code for the main module is shown in
Figure 15. Instances of processor, cache,

Figure 14. Structural description of bus-connected system with two caches.

106 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

and bus modules are first created. Wire
variables connect modules as shown in
Figure 14. Each wire variable connected
to the port of a submodule is substituted
in the code of the submodule when the
submodule is instantiated so that the
OBDD is built with the correct state
variables. The transition relations
among state variables are built for each
individual instantiated module, leading
to TRP1, TRP2, TRC1, TRC2, and TRB
for the two processors, the two caches,
and the bus module in Figure 14. De-
pending on whether the execution mode
is synchronous or asynchronous, the

global state transition relations are
formed by either taking a conjunction
operation or a disjunction operation on
the five individual relations; that is,

TRsync

5 TRP1 ∧ TRP2 ∧ TRC1 ∧ TRC2 ∧ TRB or

TRasync

5 TRP1 ∨ TRP2 ∨ TRC1 ∨ TRC2 ∨ TRB .

In the synchronous mode, all modules
advance in a lock-step manner,

Figure 15. Processor, cache modules, and module instantiations in main module.

Verification Techniques • 107

ACM Computing Surveys, Vol. 29, No. 1, March 1997

whereas, in the asynchronous mode,
only one module executes at a time as in
state enumeration methods. Which
mode is better in terms of verification
time and memory consumption is un-
clear [McMillan 1992].

Our example shows that the specifica-
tion of a cache protocol model in the
symbolic model checking method is
fairly complex, even though we have
excluded the data paths. In our opinion,
this method is not meant for protocol
verification, but for the verification of
digital circuits. Essentially, the system
under verification must be modeled by a
set of Boolean formulas. This is a natu-
ral representation for a digital circuit
[Tomas and Moorby 1995] because each
wire is a Boolean variable. However, it
is cumbersome for cache protocol mod-
els, in which each state must first be
binary encoded.

A serious drawback of the specifica-
tion is that many irrelevant details
must be included in the protocol model.
As mentioned in Section 3.1, most use-
ful formal verifications are done at the
message-passing level during the early
protocol design phase. In that stage, the
implementations of cache controllers,
the arbitration schemes to access the
cache, and the handshaking protocol to
interface the cache modules to the inter-
connect are neither useful nor defined.
These aspects of the design can be eas-
ily abstracted in the state enumeration
methods as was shown in Section 5.2,
but not in the symbolic model checking
method. In most cases, these extra sig-
nals to establish communication among
modules are not even part of the actual
implementation of the protocol. Never-
theless, they are required in the verifi-
cation in order to connect the submod-
ules logically.6 Thus building a model
centric to the behavior of the cache pro-
tocol is very difficult.

Another serious drawback of the
model checking method is that state

variables cannot be manipulated glo-
bally. In Section 5.3, we showed the
error caused by a stale write-back [Pong
et al. 1995]. To detect the error, the
verification method must keep track of
the value written by the latest store. A
state enumeration method does this ef-
ficiently by remembering the most re-
cent data copy as a Fresh copy while all
other copies turn Obsolete at the point
in time when the store is performed. To
adopt the same model in the symbolic
model checking method, every cache
must export the value of its cached copy
to all other caches. A cache module
must also be able to modify the state
variables of other caches. Unfortu-
nately, this is very difficult to do in the
symbolic model checking method.

6.2.4 Complexity of the OBDD Rep-
resentation. Although the symbolic
model checking method does not enu-
merate all reachable states explicitly,
the size of the OBDDs representing the
set of reachable states and the transi-
tion relations may increase rapidly in
proportion to the scale and the complex-
ity of the system. OBDD representa-
tions are efficient only in a heuristic
sense and the worst case may still be
catastrophic. For large problems, it is
often the case that the OBDD repre-
senting the transition relations is too
large to compute. Early studies have
shown that the size of an OBDD is very
sensitive to the ordering of decision
variables. Several researchers have
looked for the best choice of variable
ordering to optimize the size of an
OBDD.7 However, recently, Liaw and
Lin [1992] have shown that almost all
Boolean functions (of n variables) re-
quire at least 2n/2n nodes even for the
optimal ordering of variables. Wegener
[1994] subsequently proved that almost
all Boolean functions have a sensitivity
of almost 1. In other words, the minimal
OBDD size for the optimal variable or-

6 This problem also exists in Nanda and Bhuyan’s
[1992] approach of composing modules (Section
5.2).

7 Please see Bryant [1992], Ender et al. [1991],
Friedman and Supowit [1990], Fujita et al. [1988],
and Malik et al. [1988].

108 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

dering differs from the minimal OBDD
size for the worst variable ordering by a
factor of almost 1 1 «(n), where «(n)
converges exponentially fast to 0. These
worst-case theoretic results may explain
the disappointing performance of the
method in some cases [Hu and Dill
1993a,b].

Several approaches to avoid the ex-
plosion of OBDD sizes have been pro-
posed. Hu and Dill [1993b] reduce the
OBDD size by eliminating functionally
dependent variables, that is, variables
that are always functions of other inde-
pendent variables. Chiodo et al. [Chiodo
et al. 1992; Shiple et al. 1992] have
introduced compositional model check-
ing. Their idea, applicable to synchro-
nous systems, is to reduce the compo-
nent machines with respect to the
property to verify. It is hoped that the
OBDD formed by the product of reduced
component machines will be smaller.
Other approaches [Burch et al. 1991;
Hu et al. 1992] avoid building a giant
OBDD for all next-state relations and
use disjunctive partitioned OBDDs.
This idea is illustrated by the transition
relation for asynchronously interleaved
transitions in Section 6.2.3; that is,
TRasync 5 TRP1 ∨ TRP2 ∨ TRC1 ∨ TRC2 ∨
TRB. Thus the total number of nodes is
the sum of the numbers of nodes of all
component OBDDs rather than their
product. Further improvement can be
achieved by composing even smaller
OBDDs, each corresponding to individ-
ual state assignment [Hu et al. 1992].
The tradeoff is a longer verification time
because one computation on a full next-
state relation translates into a large
number of computations, one for each
component relation.

6.3 Symmetric Model Checking

As mentioned in Section 5.4.3, a com-
plex system often exhibits a great deal
of regularity and symmetry. Clarke et
al. [1993] and Emerson and Sistla
[1993] extended the model checking
technique by exploiting symmetry. By
applying (symmetric) permutation oper-

ators G on a state s, we can obtain the
orbit set of states u(s) of s, which can be
canonically represented by one state
(denoted by j(s) in Ip and Dill [1993b])
picked from u(s). Transition relations
TR(s1, s2) are then converted into
TRG(u(s1), u(s2)). Since states that are
permutations of each other are lumped
into a single canonical state, the state
space and the OBDD size after transfor-
mation can be significantly reduced.

6.4 Summary

In this section, we have surveyed vari-
ous aspects and variants of the model
checking technique. The strength of this
technique stems from the expressive-
ness of temporal logic, which can handle
arbitrary temporal formulas, represent-
ing both safety and liveness properties.
Unfortunately, since the method takes
the state graph as a model, it is also
plagued by the state space explosion
problem.

In order to avoid the state space ex-
plosion problem, a symbolic model for
the state graph is desirable. In the sym-
bolic model checking method, a vector V
of Boolean variables represents the
states of all components in the system.
A system state is an assignment of 0 or
1 to each variable in V, and the set of all
system states derives from all possible
interpretations to the variables in V.
The state space is specified by a Bool-
ean function f(V), and represented by
an Ordered Binary Decision Diagram or
OBDD. Similarly, the next-state transi-
tion relation is represented by an
OBDD, TR(V, V9), in which V and V9
represent the current- and next-state
variables.

Symbolic model checking has an addi-
tional advantage: the set of states satis-
fying a formula in temporal logic is
found considerably faster than in a
state enumeration method, because the
state search operation is performed on a
set rather than on individual states. For
example, when Init(V) represents the
set of initial states, the operation (V
Init(V) ∧ TR(V, V9)) yields the Boolean

Verification Techniques • 109

ACM Computing Surveys, Vol. 29, No. 1, March 1997

formula for every state V9 reachable
from any initial state in one step.

The serious drawback of symbolic
model checking is the high complexity of
building a protocol model. Often unnec-
essary details must be included in the
protocol model in order to synchronize
the behavior of connected modules.
Overall, the specification method is
more suitable for digital circuits than
for protocols. In spite of the potential
performance of the method, the pro-
gramming complexity to build a model
is high.

Although an OBDD can be simplified
by exploiting regularities in the binary
decision tree, the OBDD for next-state
relations is often too large to compute,
which is known as the OBDD-size explo-
sion problem. Several approaches to re-
duce the OBDD size have been proposed
and implemented. Applications of the
symbolic model checking method have
been limited in the literature to the
verification of the snooping protocols of
the Gigamax [McMillan and Schwalbe
1991] and of the Futurebus1 [Clarke et
al. 1993b]. Snooping protocols are rela-
tively simple, and, currently, there is no
evidence that the method is efficient
enough to verify more complex protocols
such as directory-based protocols.

7. STATE ENUMERATION BASED ON
SYMBOLIC STATE MODEL

An approach to avoid the state space
explosion problem is to exploit equiva-
lent relations among global states so
that a set of equivalent states is repre-
sented by one canonical state. In a sim-
ple perturbation method, two states are
considered equivalent only if they are
identical or if they are symmetrically
identical in methods with symmetry ex-
tension. However, even a symmetric
tool may not be very effective to avoid
the state space explosion problem [Pong
et al. 1994; Pong 1995].

In this section, we describe a tech-
nique that searches the state space ex-
haustively as in traditional state enu-
meration methods, but the system is

represented by a symbolic state model
(SSM). The abstraction in this model is
much more powerful than the symmet-
ric relations obtained from symmetry
alone and an abstract state represents a
large set of states so that the reduction
of the state space size is more substan-
tial. In the following, definitions have
been simplified for illustration purpose.
Detailed justifications and explanations
can be found in Pong and Dubois [1995]
and Pong [1995].

7.1 Abstraction and State Representation

The SSM method differs from other
state enumeration approaches in the
ways of representing a global state. The
state abstraction is motivated by the
following observations.

Observation 1. Cache protocol agents
are homogeneous. In all existing proto-
cols and in the protocol example of Fig-
ure 3, the behavior of every cache is
characterized by the same finite state
machine (as shown clearly in Figure 3,
the two FSMs for C1 and C2 are exactly
the same except that different proces-
sors have different labels); and

Observation 2. In all existing proto-
cols data coherence is enforced by either
broadcasting writes to all copies so that
they remain coherent, or by invalidating
the copies in all other caches so that
modifications are done in one and only
one cache at a time.

To illustrate the first observation,
consider a snooping protocol for shared-
bus systems. When an invalidation is
sent on the bus, all caches in the Shared
state invalidate their copies. Thus all
the cache FSMs in the Shared state
make exactly the same move from the
Shared state to the Invalid state. Be-
cause of this homogeneity, all FSMs in
the same state can be logically grouped
into a set lumped together as a single
integrated FSM. Moreover, by the sec-
ond observation, the exact number of
data copies in a clean shared state is
irrelevant to protocol correctness. What

110 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

is critical is whether there exists 0, 1, or
multiple copies in a particular state
(such as more than one cache in the
Dirty state). Therefore we can map
global states to more abstract states
that do not keep track of the exact num-
ber of caches in a particular state. The
following notations are used to repre-
sent these abstract states.

Definition 2. (Repetition Construc-
tors)

(1) Null (0) indicates zero instance.
(2) Singleton (1) indicates one and only

one instance. (This constructor can
be omitted.)

(3) Plus (1) indicates one or multiple
instances.

(4) Star (*) indicates zero, one, or mul-
tiple instances.

With these repetition constructors
one can build concise representations of
complex states. For example, we can
represent the set of global states such
that “one or multiple caches are in the
Invalid state, and zero, one, or multiple
caches are in the Shared state” as (I1,
S*). For protocols such that the cache
states must be compatible with the val-
ues of data copies, this state representa-
tion carries, to some extent, the infor-
mation necessary to verify data
consistency. For instance, global states
such as (D*, . . .) and (D,S*) signal that
erroneous states are reachable. An ad-
vantage of this representation is that
protocols can be verified independently
of the size of the verification model.
Thus the verification is more reliable
than with other approaches that can
only deal with small protocol models.

In a system with an unspecified num-
ber of caches, the method groups cache
machines in the same state into state
classes and specifies their number in
each class by one of the repetition con-
structors.

Definition 3. (Composite State). A
composite state represents the state of
the protocol machine for a system with
an arbitrary number of cache entities. It

is constructed over state classes of the
form (q1

r1, q2
r2, . . . , qn

rn), where n is the
number of states of a cache machine,
and qi is a defined cache state, ri[[0, 1,
1, *].

Repetition constructors are ordered
according to the possible states they
specify (Figure 16). The resulting order
is 1 , 1 , *; the null instance can be
ordered with respect to *; that is, 0 , *.
This order leads to the definition of
state containment.

Definition 4. (Containment). A com-
posite state S2 contains composite state
S1, or S1 # S2, if

qr1 [S1 qr2 [S2 such that

qr1 # qr2, that is, r1 # r2 ,

where q is the cache state and r1, r2 [
[0, 1, 1, *].

The consequence of containment is
that, if S1 # S2, then the family of
states represented by S2 is a superset of
the family of states represented by S1.
Therefore S1 can be discarded during
the verification process provided we
keep S2 because every state obtained by
expanding S1 can be obtained by ex-
panding S2; that is, if S1 # S2, then
t(S1) # t(S2) where operator t is a
memory event applied to the current
state.

THEOREM 1. (Monotonicity) If S1 # S2,
then for every S# 1 reachable from S1
there exists S# 2 reachable from S2 such
that S# 1 # S# 2.

As the expansion process progresses,
new composite states are created. A new

Figure 16. Ordering relations among repetition
constructors.

Verification Techniques • 111

ACM Computing Surveys, Vol. 29, No. 1, March 1997

state is discarded if it is contained in a
visited state and all visited states con-
tained in a newly expanded state are
discarded (see Figure 17). At the end of
the expansion process the state space is
partitioned into several families of
states (which may be overlapping) rep-
resented by essential states (Figure 18).

Definition 5. (Essential State). Com-
posite state S is essential if and only if
there does not exist a reachable compos-
ite state S# such that S # S# .

7.2 Generation of the State Graph and
Error Detection

In the SSM, the generation of the state
graph is the same as for the state enu-
meration methods. Enabled transition
rules are first applied to the current
state to derive new state information.
This step is then followed by an aggre-
gation step that groups caches in the
same state into classes. Finally, state
containment is checked. Figure 19

shows the expansion steps taken to gen-
erate the set of essential states for the
protocol example in the case of an un-
bounded system.

The expansion starts in the initial
state with no cached copy. At the end of
the expansion, only three essential
states (S*,I1), (S1,I*), and (D,I*) are pro-
duced. It is critical to see that the state
graph produced by the SSM is indepen-
dent of the size of the verification
model, as opposed to a traditional state

Figure 18. Representation of state space by es-
sential states.

Figure 17. Algorithm for generating essential states.

112 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

enumeration method (Figure 5), in
which the number of global states pro-
duced is proportional to the number of
components in the verification model.
This is a very appealing feature because
the question of how many processors
should be included in the model in order
to achieve a 100% error coverage is
eliminated. The SSM yields reliable re-
sults because all possible sequences of
events for models of arbitrary sizes are
covered. Since the number of essential
states is generally small, the traversal
of the state graph is likely to be less
expensive than in traditional methods.
The memory needed to keep the state
information is also likely to be smaller.

Since the SSM method also enumer-
ates the state space, the mechanisms
for detecting protocol errors are the
same as for traditional state enumera-
tion methods.

7.3 Summary

The SSM method employs a specialized
abstraction that groups caches in the

same state into a class and the number
of caches in the class is symbolically
represented by a repetition constructor.
This symbolic representation is justified
by the symmetry and homogeneity of
cache-based systems. In addition, the
key idea behind this abstraction is to
exploit a unique property of cache co-
herence protocols: the fact that protocol
correctness is not dependent on the ex-
act number of cached copies. Rather,
symbolic states only keep track of
whether the caches have 0, 1, or multi-
ple copies. Because an essential state
represents a very large set of states that
would otherwise be enumerated explic-
itly, the reduction of the state space is
substantial. Moreover, the verification
result is independent of the model size,
and consequently is reliable.

The major drawback of the symbolic
state method is that a more abstract
protocol model is required. For instance,
the exact topology of the interconnec-
tion cannot be modeled. Instead, ab-
stract message channels with FIFO or

Figure 19. Generation of essential states in protocol example.

Verification Techniques • 113

ACM Computing Surveys, Vol. 29, No. 1, March 1997

nonFIFO scheduling are used to estab-
lish a point-to-point communication
path between two components (Figure
10). This may not be a serious problem
because we are mostly concerned about
the order of message propagations,
which can be essentially modeled by the
appropriate type of message channels.
Another problem of this approach is
that it may not be efficient for verifying
linked-list protocols such as the Scal-
able Coherent Interface (SCI) [James et
al. 1990] or the protocol of S3.mp [No-
watzyk et al. 1994; Pong et al. 1995].
The problem is the lack of a good ab-
straction to model the extreme case of
an infinitely long linked list, given a
system with an arbitrary number of pro-
cessors. Nevertheless, this problem is
shared with all other methods.

8. EVALUATION AND COMPARISON

In this section, we compare the three
general classes of verification methods
based on state enumeration, symbolic
model checking, and symbolic state
model. The tools implemented for each
class are Murw [Dill et al. 1992], SMV
[McMillan 1992] and Ever [Hu et al.
1992], and SSM [Pong 1995], respec-
tively. The properties compared are
their performance, their generality and
applicability, as well as their automatic-
ity and amenity. The performance com-
parison is made in terms of the compu-
tation time and of the amount of
memory required to verify a benchmark
directory-based protocol.

8.1 Performance

The benchmark protocol is a sequen-
tially consistent, directory-based proto-
col implemented in RPM, a hardware
multiprocessor testbed developed at the
University of Southern California [Bar-
roso et al. 1995]. The architectural
model is given in Figure 10. Only one
memory block of one word is modeled
and the interconnection is modeled by
two FIFO message channels. The proto-
col supports basic read and write ac-

cesses and two types of hardware-based
prefetching operations (for shared or ex-
clusive copies). The processor is blocked
on a read or write miss but not on
prefetch misses. Replacements are mod-
eled as processor accesses that can take
place at any time. The values of data
copies are not explicitly represented. In-
stead, a cached block may be in one of
three states: Nodata (the cache has no
valid copy), Fresh (the cache has an up
to date copy), and Obsolete (the cache
has an out of date copy); the memory
copy is either Fresh or Obsolete. During
the course of verification, the expansion
process keeps track of the status of all
block copies in conformance with the
protocol semantics as we explained in
Section 5.3.

The model for state enumeration is
shown in Figure 20. Each processor
structure maintains the state of the pro-
cessor, the type of pending memory ac-
cesses, the messages enqueued in the
two message channels, the local cache
state, and the current data value of the
cached copy. The memory structure
records the value and the state of the
memory copy. For the SSM method, the
processor context (the base machine of
Figure 10) is the basic repetitive compo-
nent of the abstraction.

Table II compares the performance of
the SSM method and the Murw system8

(both nonsymmetric Murw-ns, and sym-
metric Murw-s) to the verification of the
benchmark protocol at the message-
passing level. The three tools were run
on a SPARCstation 10 Model 30 with
128 Mbytes of memory and statistics
were collected on memory usage and
verification time.

For small-scale systems with less
than four processors, the time complex-
ity and the memory requirement of
Murw-s and Murw-ns are tolerable. The
sizes of both the global state space and
of the search state space of Murw-s are
significantly less than those of Murw-ns.

8 The Murw system we used is a preliminary ver-
sion 1.52s provided by Ip and Dill. This version
has not been publicly released.

114 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

However, when more processors are
added, this advantage dwindles and
both the verification time and the mem-
ory usage increase drastically. For the
case of four processors, the expansion
process in Murw-s does not converge at
this time. There are still approximately
860,000 states to explore. Compara-
tively, the SSM method is more effi-
cient. The method takes only 15,840
seconds to generate the essential states.
To build the connectivity information
between essential states and check the
simple deadlock and livelock conditions,
we simply rerun the process with the
set of essential states as the set of start-
ing states, which takes about the same
amount of time as does generating the
set of essential states. Memory require-
ment is about 18 Mbytes (state repre-
sentations are not encoded).

The set of essential states reported at
the end of the SSM run contains all
possible distinguishable states (from
the point of view of verifying coherence)
in which the system could ever be. The
most complex essential states consisted

of 97 base machines in different states.
Therefore, in a state enumeration
method, a system model with at least 97
processors is required to obtain a 100%
error coverage for this protocol. The
SSM method, which provides reliable
results by verifying the protocol for any
system size, is therefore needed to ob-
tain total error coverage. Because the
number of global states reported is rela-
tively very small (16,933 states in this
case), checking the connectivity of the
global state transition diagram for live-
lock detection is feasible with SSM. For
more performance comparison results,
interested readers could refer to Pong
[1995].

Unfortunately, we do not have infor-
mation regarding the SMV and the Ever
systems, and we are unable to evaluate
the symbolic model checking methods.
However, it was reported in Hu et al.
[1992] that the OBDDs (in the form of a
fully evaluated next-state relation or
disjunctive partitioned relations) re-
quired for verifying a directory-based
protocol cannot be built with 60 Mbytes

Figure 20. State information maintained by each component in the model.

Verification Techniques • 115

ACM Computing Surveys, Vol. 29, No. 1, March 1997

of memory. We think there is a reason-
able explanation for this. Directory-
based protocols are far more complex
than snooping protocols. There are more
cache states and message types in a
directory-based protocol than in a
snooping protocol. In Clarke et al.
[1993b] the results of applying the SMV
to the verification of the Futurebus1
protocols are given. For the most com-
plex configuration of 3 buses and 8 pro-
cessors, the model requires up to 250
Boolean state variables. However, for
the protocol emulated on RPM, the rep-
resentation of a global state in the most
abstracted model with 4 processors
takes up to 300 bits. When the same
protocol is coded in the SMV, we should
expect that many more bits will be
needed since signals connecting mod-
ules must be added. For example, con-
sider the model in Figure 10. Suppose
that the memory receives a request for
an exclusive copy when processors p0
and p1 have a copy of the block. The
memory inserts an invalidation mes-
sage to the last available slot of the

receiving channels of p0 and p1. In a
state enumeration method, this is done
by modifying the state variables of the
receiving channels of p0 and p1 (Figure
20). But, in the SMV, the memory mod-
ule needs to export the invalidation
messages to the outgoing wires con-
nected to the input ports of the receiv-
ing channel modules. The receiving
channel module must then acknowledge
to the memory module that the message
has been received.

In addition, in the symbolic model
checking method, the possible values of
writable data are normally limited to 0
and 1 so that one Boolean variable is
sufficient to keep track of them. To be
able to tag copies as Fresh or Obsolete
as is easily done in an enumeration
method, we can anticipate a model of
unmanageable complexity.

Of course, the sizes of the OBDDs can
be reduced by building and composing
smaller OBDDs, one for each individual
statement of state assignment. How-
ever, the tradeoff is longer verification
time [Hu et al. 1992]. When the model

Table II. Performance Comparison Between Murw and SSM

116 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

size grows, it is not clear whether the
time complexity is tractable and the
OBDDs are reasonably small.

8.2 Generality and Applicability

Murw, SMV, and Ever are general
methods for verifying finite-state sys-
tems, whereas the abstraction in the
SSM method is applicable to systems
made of identical processes only. How-
ever, general methodologies for wide ap-
plication domains are often tailored to
specific problems in order to improve
the efficiency of the tool. Therefore the
fact that SSM employs a specialized ab-
straction for the verification of cache
protocols is really not a serious problem.
Although its applicability is limited to
protocols with identical processes, SSM
provides a better solution than current
methods for the limited domain of cache
protocols, which are a crucial compo-
nent of shared-memory machines.

Murw and Ever have been used to
verify a restricted model of the Stanford
DASH directory-based protocol [Ip and
Dill 1993a,b; Lenoski et al. 1990]. SMV
has been applied to two snooping proto-
cols (the protocols of the Encore Giga-
max [McMillan and Schwalbe 1991] and
of the Futurebus1 [Clarke et al.
1993b]). SSM has been applied to snoop-
ing protocols [Pong and Dubois 1995], to
two directory-based protocols [Pong et
al. 1994; Pong 1995], to the S3.mp
linked-list protocol [Pong et al. 1995],
and to the delayed consistency protocol
[Dubois et al. 1991; Pong and Dubois
1996] under a weak memory consistency
model [Adve and Hill 1990a, 1993;
Dubois et al. 1986]. From these exam-
ples it appears that every method can
be applied successfully to all types of
cache protocols. The question remains
whether they can be applied to verify
protocols at a reasonable cost.

As shown in previous sections, tradi-
tional state enumeration approaches do
not succeed for large models, even with
the symmetry extensions. The reason is
clear: a symmetric method can reduce
the size of the state space by a factor of

n! at most, given a protocol model with
n processors [Ip and Dill 1993a]. The
state space is often very large even for
very small values of n. Consequently,
the reduction afforded by symmetry is
limited. It was argued in Dill et al.
[1992] that the state space explosion
problem only occurs for scaled-up mod-
els and that all errors can in fact be
found with small models. A recent study
of the S3.mp protocol demonstrates that
this may not be true [Pong et al. 1995].
If the protocol is faithfully modeled, the
state space explosion problem also ex-
ists for small models. It was also shown
that errors may go undetected for small
models. Intuitively, the size of a model
must be scaled up proportionally with
the increased complexity of the protocol
in order to reach a high level of confi-
dence in the verification. When relaxed
consistency models [Adve and Hill
1990a; Gharachorloo et al. 1991, 1990]
and latency tolerance techniques [Dahl-
gren et al. 1994; Dubois et al. 1991]
come into play, we can expect that the
overwhelming complexity of protocols
will hamper this type of technique. Nev-
ertheless, a state enumeration approach
applied to a small model is capable of
detecting a large number of errors and
is very effective as a debugging tool.

So far, symbolic model checking tech-
niques have only been applied to snoop-
ing protocols. It is still not clear
whether they can overcome the problem
of the enormous size of the OBDD typi-
cally observed [Hu and Dill 1993a,b].
Although many improvements such as
exploiting disjunctive partitioned next-
state relations [Burch et al. 1991] or
employing implicitly conjoined invari-
ants [Hu and Dill 1993a] can work well,
whether the model size can be scaled up
without causing an OBDD-size explo-
sion is still unclear. On the other hand,
these approaches can verify any prop-
erty specified in CTL, which is very
expressive and flexible. They also pro-
vide a formal way to reason about the
infinite behavior of the system, and
hence, properties such as absence of
livelocks can be easily checked.

Verification Techniques • 117

ACM Computing Surveys, Vol. 29, No. 1, March 1997

The reduction of the state space in
SSM is so drastic that we can contem-
plate the efficient verification of more
complex protocols. Unfortunately, the
abstraction in SSM essentially removes
the processor identifiers. As a result, for
linked-list protocols such as the SCI
(Scalable Coherent Interface) [James et
al. 1990] or the protocol of S3.mp [No-
watzyk 1994], SSM may not be efficient
[Pong et al. 1995].

8.3 Automaticity and Amenity

Murw has the clear advantage with re-
spect to these two properties. Its speci-
fication language provides common pro-
gramming constructs such as scalar-
valued variables, arrays, and records.
State transitions are naturally de-
scribed by assignment statements. The
language also supports flow control
statements such as for loops, if-else, and
switch. Protocol models in Murw are
easily programmed and the tool is fully
automated to the point that the full
state space is generated automatically,
given a specification program. Murw
also provides a very nice feature, called
trace generation: when an error is de-
tected, the tool outputs a trace, which
leads the user to the erroneous state
and helps fix the error.

SMV executes the verification task
automatically as well. Unfortunately, as
we have detailed in Section 6.2.3, the
system under verification must be mod-
eled in terms of Boolean formulas. Com-
plex data structures and convenient
flow controls are not supported. Also
protocol models may include many state
variables that are not related to the
behavior of the protocol, but are needed
to synchronize communicating modules.
As a result, the specification of the pro-
tocol can be lengthy and difficult to
build. Trivial changes, such as increas-
ing the number of processors, can result
in major modifications of the descrip-
tion. In addition to efficiency and accu-
racy, the ability to build and modify
protocol models rapidly is highly desir-
able in any formal verification method.

The high complexity of describing a
model does not favor the symbolic model
checking method in the context of cache
protocol verification.

The SSM system [Pong 1995] is a
fully automated tool that has a descrip-
tion language similar to Murw’s. The
system accepts a description of the state
variables needed to form a global state
as shown in Figure 20. Users must spec-
ify the next-state transition rules and
the initial state. With the protocol de-
scription, procedures (in the C program-
ming language) to manipulate the state
information and to check the contain-
ment relation between two states are
generated automatically. An executable
image of the verifier is then produced
with a C compiler such as gcc. The SSM
system also provides a trace generation
facility to trace back protocol error. Un-
fortunately, due to the abstract state
representation in SSM, the traces are
lengthy and hard to read.

9. RELATED METHODS

Alternatives to methods that enumerate
states have also been applied to the
verification of cache protocols. Whereas
these alternatives are of limited appli-
cability as practical, general-purpose
verification methods, we mention them
here for completeness.

9.1 Error Prevention

Kubiatowicz [1993] described a scheme
in which the number of possible state
transitions are bounded and certain
types of coherence messages cannot ex-
ist in the system at the same time in
order to achieve a correct cache proto-
col. For instance, protocol errors often
occur in the write-back transition of
dirty cache copies [Archibald 1987; Pong
et al. 1995]. To write-back these blocks
safely, a complex acknowledgment
scheme can eliminate many errors by
preventing requests to a block in a
write-back transition. We classify this
approach as an error prevention
scheme.

118 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

A drawback of this scheme is that
verification interferes with protocol de-
signs, which are forced to be simple in
order to facilitate manual verification.
As a result, it limits possible protocol
optimizations.

9.2 Theorem Proving

Another alternative to methods based
on state models is theorem-proving
[Gjessing et al. 1991; Loewenstein and
Dill 1990], which essentially reduces a
formal verification to the derivation of a
mathematical proof. Typically, the spec-
ification is written in the form of a set
Spec of logic formulas and the imple-
mentation is given as a second set Imp
of logic formulas which are considered
as axioms or valid theorems in the logic
so that a proof can be derived. The
correspondence relation between Spec
and Imp is a theorem, which is proved
by a theorem-prover. The main strength
of this approach is that it naturally
leads to a hierarchical verification
method.

Loewenstein and Dill [1990] used
Higher-Order Logic (HOL) to verify a
directory-based protocol. However, their
verification is based on the assumption
of atomic memory accesses. Specifically,
they show that data consistency can be
achieved by allowing one and only one
write to propagate at any time. The
memory directory entry behaves as a
serialization device for all coherence
events to the same memory block. More
work is needed to show that this method
can be extended to model protocols at
the message-passing level and can per-
form reasonably well.

Gjessing et al. [1991] have attempted
to specify the SCI protocol [James et al.
1990] formally in a topdown manner.
An abstract memory system without
caches is first defined as the intended
behavior for the system implementing
SCI. Gradually the model is refined
with additional intermediate cache
states and fine-grain atomic actions. Fi-
nally, full concurrency is exploited at
the message-passing level. However, the

proof of correctness of SCI is not carried
out in the paper.

9.3 Abstract Interpretation

As opposed to state enumeration meth-
ods, abstract interpretation [Cousot and
Cousot 1992] is a technique that re-
duces a complex system to a more ab-
stract one. Properties are then verified
on the abstracted system with reason-
able complexity. Consider a concrete
state transition system S of variable
sets X and an abstracted system SA of
variable set XA. In general, SA is called
a r-abstraction of S if:

(1) For each transition T(X, X9) of S,
there exists a corresponding transi-
tion TA(XA, XA9) in SA.

(2) Initial state Init(XA) of SA corre-
sponds to the initial state Init(X)
of S.

In fact, the concept of abstraction re-
lation is similar to the simulation (or
refinement) relation between two state
transition systems [Loewenstein and
Dill 1990]. A critical step, which unfor-
tunately cannot be fully automated, is
to find the abstraction relation. Ab-
stract interpretation has been applied
to the verification of the lazy caching
algorithm [Afek et al. 1989] at the be-
havioral level [Cousot and Cousot 1992].
This theoretical result is very nice and
important, because it shows that the
conditions of Section 2.2 are not abso-
lutely necessary for supporting the se-
quential consistency model. However,
lazy caching is not really a cache coher-
ence protocol and is of limited practical
importance because every store triggers
a broadcast operation. We feel that this
method may be promising for verifying
memory models. However, it is not clear
how the abstraction relation can be
found in general for complex systems
and more research must be done before
the approach can be truly useful for the
verification problem of cache protocols.

Verification Techniques • 119

ACM Computing Surveys, Vol. 29, No. 1, March 1997

9.4 Reasoning about Models with a Large
Number of Identical Processes

The applicability of current state enu-
meration methods is limited to small-
scale models. For simple protocols, this
is not a serious problem; however, as
the complexity of protocols keeps in-
creasing, the reliability of verification
methods must be carefully re-evaluated.
Since the verification of cache protocols
falls into a special class of verification
problems in which the system is com-
posed of identical processes, research on
reasoning about the correctness of sys-
tems with identical component pro-
cesses is relevant to this survey.

Browne et al. [1989] verified systems
with many identical finite state pro-
cesses by finding a correspondence be-
tween two (global state) structures M
and M9 representing systems of man-
ageable and overwhelming complexities,
respectively. A given relation E deter-
mines whether there is a correspon-
dence relation between two structures.
If two structures correspond, formulas
in temporal logic are evaluated on the
simpler base state machine. Not sur-
prisingly, this scheme is similar to the
abstract interpretation, and in practice,
may be difficult to apply to complex
protocols. First, considerable human in-
genuity is needed to discover the corre-
spondence relation between the two
structures. Second, constructing the
global state transition diagram of the
base machine may be a difficult proce-
dure itself, because the base machine
capturing the essential properties of the
system may still be very complex.

Kurshan and McMillan [1989] sug-
gested another method using partial-
order relations among processes to form
an invariant process. A process is in-
variant if the composition of the invari-
ant process with a new process is less
than or equal to the invariant. This
method has great potential, but the con-
struction of the invariant process in
Kurshan and McMillan [1989] is not
automated and requires considerable in-
genuity for complex protocols. A similar

approach was independently pursued by
Wolper and Lovinfosse [1989]. However,
all the examples presented in Kurshan
and McMillan [1989] and Wolper and
Lovinfosse [1989] are relatively simple
and the verifications mostly prove that
the system meets the “behavioral” re-
quirement of the specification. It is not
clear whether these methods will be ap-
plicable to complex cache protocols be-
yond the behavior level.

10. CONCLUDING REMARKS AND
FUTURE RESEARCH

In this article, we have presented a
comprehensive survey of ongoing re-
search efforts for the verification of
cache coherence protocols. Three meth-
ods based on state enumeration, (sym-
bolic) model checking, and symbolic
state model have been thoroughly dis-
cussed. In each case we have focused on
their underlying approach for dealing
with the state space explosion and their
algorithmic procedures for verification.

In summary, state enumeration is
conceptually the simplest method but
its application is limited by the state
space explosion problem. Nevertheless,
several studies have demonstrated that
most design errors can be found quickly
in small-scale models, which suggests
that this method is a useful debugging
tool in the early design phase.

Model checking can check any prop-
erty formulated in temporal logic, but
the state space explosion problem also
limits its applicability. The symbolic
model checking method does not rely on
an explicit data structure to represent
the states; rather OBDDs internally
represent the next-state relations and
the state space. Unfortunately, the OB-
DDs for next-state relations are often
too large to compute, which is known as
the OBDD size explosion problem. Sev-
eral approaches have been proposed to
overcome this problem. Some look for
optimal variable orderings; others use
disjunctive partitioned next-state rela-
tions instead of the giant OBDD ob-
tained for the entire set of transition

120 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

relations. More work is needed to prove
that this method can scale up with the
complexity and size of the models. Im-
provements must also be made in the
ease of programming protocol models.

The method based on symbolic state
models has been successful in some
studies. Based on a specific property of
cache protocols that all cache compo-
nents are homogeneous, the method
uses a specialized abstraction that maps
global states to more abstract states.
Thus the method can reduce the state
space substantially, representing a
large set of states with a single abstract
state. It has the added advantage that
protocols are verified independently of
the system size and consequently, the
verification result is reliable. However,
building an abstracted model of a proto-
col is not always straightforward.

The approaches surveyed in this arti-
cle verify the property of consistency,
for which the state of a single block
must be tracked. Moreover, the illus-
trated protocol model does not include
the latency tolerance hardware found in
weakly ordered systems. Verification of
cache protocols is somewhat more com-
plex in the presence of latency tolerance
hardware. Consider the execution of
Figure 21 in a weakly ordered system.
In this particular execution, the write
by p0 and the read by p1 are ordered by
paired Test&Set and Unset synchroni-
zation accesses. Since the read of p1
cannot be completed before the write of
p0 due to the explicit synchronization
separating them, p0 does not necessarily
block at the write operation while wait-
ing for the invalidation of p1’s copy. The
only requirement for a correct execution
is that the value written by p0 must be
visible to p1 before p1 reads it.

To enforce this requirement the hard-
ware usually relies on the lock accesses.
The value could propagate from p0 to p1
when p0 releases the lock. Thus cache
coherence is not enforced on-the-fly and
is delayed. To verify cache protocols in
such systems, the state expansion pro-
cess which searches for all reachable
system states must take into account

synchronization accesses as well as reg-
ular data accesses. In the execution se-
quence of Figure 21, p1 is allowed to
issue its read only after p0 and p1 have
performed their Unset and Test&Set op-
erations, respectively. This is only a
problem of modeling protocols. The
methods surveyed in this article can be
adapted as we showed in Pong [1995]
and Pong and Dubois [1996].

Several problems still need to be
solved. One is the lack of a good meth-
odology to deal with linked-list direc-
tory-based protocols such as SCI. The
major difficulty is to abstract the
linked-list efficiently, while correctly pre-
serving the properties to check. A possi-
ble solution is to separate the problem
of verifying the correct maintenance of
the sharing lists from the problem of
verifying coherence. Alternatively, we
may employ some inductive process to
infer the correctness of a large model
from the verification results of smaller
models.

A more difficult problem is the verifi-
cation of the correct ordering of all
memory accesses [Lamport 1979; Scheu-
rich and Dubois 1987] according to the
memory consistency model. Several
frameworks have been introduced to
specify memory consistency models for-
mally [Collier 1992; Gibbons et al. 1991;
Sindhu et al. 1992]. Formal specifica-
tions of memory consistency models are
very important, for several reasons.
First, some properties of systems can be
proven. For example, systems can be

Figure 21. Explicit synchronization in weakly
oriented memory model.

Verification Techniques • 121

ACM Computing Surveys, Vol. 29, No. 1, March 1997

proven to have distinguishable or indis-
tinguishable behavior [Collier 1992;
Graf 1994]. Second, formal specifica-
tions provide a clear logical model of
access orderings offered by the memory
system to the programmer or to the
compiler. It is easier for the program-
mers and for the compiler to generate
correct code. For example, it has been
proposed that the programmer write or
that the compiler generate properly la-
beled programs so that the execution
results are indistinguishable from those
executed on the sequential consistency
model [Gharachorloo et al. 1990]. Third,
formalism is a first step towards formal
verification of memory access orders.

Memory access ordering is often seen
as an orthogonal issue to the problem of
cache coherence since it is an issue
whether or not there are caches. In fact,
the current research on memory consis-
tency models barely considers the be-
havior of caches or cache protocols.
Cache coherence protocols of practical
interest are still designed based on the
rules presented in Section 2.2. In short,
with respect to a single memory loca-
tion, one and only one write operation is
allowed to propagate at a time. These
rules are essentially sufficient condi-
tions for supporting the general coher-
ence property [Scheurich 1989] which is
a requirement for useful memory mod-
els such as the sequential consistency
[Lamport 1979], weak ordering [Scheu-
rich 1989], and release consistency
[Gharachorloo et al. 1991] in a cache-
coherent shared-memory system. Even
for protocols developed in weaker mem-
ory models [Dubois et al. 1991; Lenoski
et al. 1990], the only relaxation of the
preceding rules is to guarantee that a
store operation finishes before the next
(release) synchronization executed by
the local processor, that is, enforcing
general coherence at synchronization
points.

From the standpoint of the techniques
surveyed in this article, the memory
consistency model is only meaningful in
the presence of caches. The memory
model tells us when the stores must

propagate and the cache consistency
protocol must propagate them in time
for a subsequent read by a remote pro-
cessor. The methods based on state ex-
pansion covered in this survey are effec-
tive at proving that the cache
consistency hardware correctly fulfills
this function. Unfortunately, no frame-
work has been proposed so far to deal
with the memory consistency model in
the context of formal verification based
on state expansion. Finding such a
framework would certainly be a break-
through in the field of formal architec-
ture verification.

REFERENCES

ADVE, S. V. AND HILL, M. D. 1990a. Weak order-
ing—a new definition. In Proceedings of the
17th International Symposium on Computer
Architecture (May), 2–14.

ADVE, S. V. AND HILL, M. D. 1990b. Imple-
menting sequential consistency in cache-
based systems. In Proceedings of the 1990
International Conference on Parallel Process-
ing, I47–I50.

ADVE, S. V. AND HILL, M. D. 1993. A unified
formalization of four shared-memory models.
IEEE Trans. Parallel Distrib. Syst. (Aug.),
613–624. (also Tech. Rep. #1051, University
of Wisconsin).

AFEK, Y., BROWN, G., AND MERRITT, M. 1989. A
lazy cache algorithm. In Proceedings of the
Symposium on Parallel Algorithm and Archi-
tecture (June), 209–223.

ARCHIBALD, J. 1987. The cache coherence prob-
lem in shared-memory multiprocessors. Ph.D.
Dissertation, University of Washington, Feb.

ARCHIBALD, J. AND BAER, J.-L. 1986. Cache co-
herence protocols: Evaluation using a multi-
processor simulation model. ACM Trans.
Comput. Syst. 4, 4 (Nov.), 273–298.

BAER, J.-L. AND GIRAULT, C. 1985. A Petri net
model for a solution to the cache coherence
problem. In Proceedings of the First Confer-
ence on Supercomputing Systems, 680–689.

BARROSO, L., JEONG, J., ÖNER, K., RAMAMURTHY,
K., AND DUBOIS, M. 1995. RPM: A rapid
prototyping engine for multiprocessors. IEEE
Computer (Feb.).

BOCHMANN, G. V. AND SUNSHINE, C. A. 1980.
Formal methods in communication protocol
design. IEEE Trans. Commun. COM-28, 4
(April), 624–631.

BROWN, G. M. 1990. Asynchronous multi-
caches. Distrib. Comput. 4, 31–36.

BROWNE, M. C., CLARKE, E. M., DILL, D., AND

122 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

MISHRA, B. 1986. Automatic verification of
sequential circuits using temporal logic. IEEE
Trans. Comput. (Dec.), 1035–1044.

BROWNE, M. C., CLARKE, E. M., AND GRUMBERG,
O. 1989. Reasoning about networks with
many identical finite state processes. Inf.
Comput. 81, 13–31.

BRYANT, R. E. 1986. Graph-based algorithms
for Boolean function manipulation. IEEE
Trans. Comput. C-35, 8 (Aug.), 677–691.

BRYANT, R. E. 1992. Symbolic Boolean manipu-
lation with ordered binary-decision diagrams.
ACM Comput. Surv. 24, 3, 293–318.

BURCH, J. R., CLARKE, E. M., AND LONG, D.
E. 1991. Symbolic model checking with
partitioned transition relations. In Proceed-
ings of the International Conference on VLSI.

CENSIER, L. M. AND FEAUTRIER, P. 1978. A new
solution to coherence problems in multicache
systems. IEEE Trans. Comput. C-27, 12
(Dec.), 1112–1118.

CHIODO, M., SHIPLE, T. R., SANGIOVANNI-VINCEN-
TELLI, A. L., AND BRAYTON, R. K. 1992.
Automatic compositional minimization in
CTL model checking. In Proceedings of the
International Symposium on Computer-Aided
Design, 172–178.

CLARKE, E. M., EMERSON, E. A., AND SISTLA, A. P.
1986. Automatic verification of finite-state
concurrent systems using temporal logic spec-
ifications. ACM Trans. Program. Lang. Syst.
8, 2 (April), 244–263.

CLARKE, E. M., FILKORN, T., AND JHA, S.
1993a. Exploiting symmetry in temporal
logic model checking. In Proceedings of the
Fifth International Conference on Computer-
Aided Verification (June), 450–462.

CLARKE, E. M., GRUMBERG, O., HIRAISHI, H., JHA,
S., LONG, D. E., MCMILLAN, K. L., AND NESS, L.
A. 1993b. Verification of the Futerbus1
cache coherence protocol. In Proceedings of
the 11th International Symposium on Com-
puter Hardware Description Languages and
Their Applications (April).

COLLIER, W. W. 1992. Reasoning About Parallel
Architectures. Prentice-Hall, Englewood
Cliffs, NJ.

COUDERT, O., BERTHET, C., AND MADRE, J. C.
1989. Verification of synchronous sequential
machines based on symbolic execution. In
LNCS: Automatic Verification Methods for Fi-
nite State Systems, J. Sifakis, Ed., Vol. 407,
Springer-Verlag, New York (June), 365–373.

COUDERT, O., MADRE, J. C., AND BERTHET,
C. 1990. Verifying temporal properties of
sequential machines without building their
state diagrams. Proceedings of the Second
Workshop on Computer-Aided Verification,
Springer-Verlag, New York.

COUSOT, P. AND COUSOT, R. 1992. Abstract in-

terpretation frameworks. J. Logic Comput. 2,
4 (Aug.), 511–547.

DAHLGREN, F., DUBOIS, M., AND STENSTRÖM, P.
1994. Combined performance gains of simple
cache protocol extensions. In Proceedings of
the 21st International Symposium on Com-
puter Architecture, 187–197.

DANTHINE, A. S. 1980. Protocol representation
with finite-state models. IEEE Trans. Com-
mun. COM-28, 4 (April), 632–642.

DILL, D. L., DREXLER, A. J., HU, A. J., AND YANG, C.
H. 1992. Protocol verification as a hard-
ware design aid. International Conference on
Computer Design: VLSI in Computers and
Processors (Oct.), 522–525.

DUBOIS, M. AND SCHEURICH, C. 1990. Memory
access dependencies in shared-memory multi-
processors. IEEE Trans. Softw. Eng. 16, 6
(June), 660–673.

DUBOIS, M., SCHEURICH, C., AND BRIGGS, F. A.
1986. Memory access buffering in multipro-
cessors. In Proceedings of the 13th Interna-
tional Symposium on Computer Architecture
(June), 434–442.

DUBOIS, M., WANG, J. C., BARROSO, L., LEE, K., AND

CHEN, Y. S. 1991. Delayed consistency and
its effects on the miss rate of parallel pro-
grams. Supercomputing (Nov.), 197–206.

EMERSON, E. A. AND SISTLA, A. P. 1993. Symme-
try and model checking. In Proceedings of the
Fifth International Workshop on Computer-
Aided Verification (June), 463–478.

ENDER, R., FILKORN, T., AND TAUBNER, D.
1991. Generating BDDs for symbolic model
checking in CCS. In Proceedings of the Third
International Workshop on Computer Aided
Verification (July), 203–213.

FRIEDMAN, S. J. AND SUPOWIT, K. J. 1990.
Finding the optimal variable ordering for bi-
nary decision diagrams. IEEE Trans. Comput.
39, 5 (May), 710–713.

FUJITA, M., FUJISAWA, H. AND KAWATO, N.
1988. Evaluation and improvements of Bool-
ean comparison method based on binary deci-
sion diagram. In Proceedings of the ICCAD,
2–5.

GALLES, M. AND WILLIAMS, E. 1994. Per-
formance optimizations and verification meth-
odology of the SGI challenge multiprocessor.
In Hawaii International Conference on System
Sciences, Vol. 1 (Jan.), 134–143.

GJESSING, S., KROGDAHL, S., AND MUNTHE-KAAS,
E. 1991. A top down approach to the for-
mal specification of SCI cache coherence. In
Proceedings of the Third International Work-
shop on Computer Aided Verification (July),
83–91.

GODEFROID, P. 1990. Using partial orders to im-
prove automatic verification methods. In Pro-
ceedings of the Second International Work-

Verification Techniques • 123

ACM Computing Surveys, Vol. 29, No. 1, March 1997

shop on Computer-Aided Verification (June),
176–185.

GODEFROID, P., HOLZMANN, G. J. AND PIROTTIN,
D. 1992. State space caching revisited. In
Proceedings of the Fifth International Work-
shop on Computer-Aided Verification (June/
July), 178–191.

GHARACHORLOO, K., GUPTA, A., AND HENNESSY, J.
L. 1991. Performance evaluation of mem-
ory consistency models for shared-memory
multiprocessors. In Proceedings of the Fourth
ASPLOS (April), 245–257.

GHARACHORLOO, K., LENOSKI, D., LAUDON, J., GIB-
BONS, P., GUPTA, A., AND HENNESSY, J.
1990. Memory consistency and event order-
ing in shared-memory multiprocessors. In
Proceedings of the 17th International Sympo-
sium on Computer Architecture (May), 15–26.

GIBBONS, P. B., MERRITT, M., AND GHARACHORLOO,
K. 1991. Proving sequential consistency of
high performance shared memories. In Pro-
ceedings of the Third ACM Symposium on
Parallel Algorithm and Architectures, 292–
303.

GRAF, S. 1994. Verification of a distributed
cache memory by using abstractions. In Pro-
ceedings of the Sixth International Conference
on Computer-Aided Verification, 207–219.

GRAF, S. AND LOISEAUX, C. 1993. A tool for sym-
bolic program verification and abstraction. In
Proceedings of the Fifth International Confer-
ence on Computer-Aided Verification.

GRAF, S., RICHIER, J.-L., RODRIGUEZ, C., AND VOI-
RON, J. 1989. What are the limits of model
checking methods for the verification of real
life protocols? In Automatic Verification Meth-
ods for Finite State Systems (June), 275–285.

GUPTA, A., HENNESSY, J., GHARACHORLOO, K.,
MOWRY, T., AND WEBER, W. D. 1991. Com-
parative evaluation of latency reducing and
tolerating techniques. In Proceedings of the
18th International Symposium on Computer
Architecture (May).

HARIDI, S. AND HAGERSTEN, E. 1989. The cache
coherence protocol of the data diffusion ma-
chine. In Proceedings PARLE 89, Vol. 1,
Springer-Verlag, 1–18.

HOLZMANN, G. J. 1985. Tracing protocols.
AT&T Tech. J. 64, 12, 2413–2434.

HOLZMANN, G. J. 1990. Algorithms for auto-
mated protocol verification. AT&T Tech. J.
(Jan./Feb.).

HOLZMANN, G. J. 1991. Design and Validation
of Computer Protocols. Prentice-Hall Interna-
tional Editions.

HOARE, C. A. R. 1978. Communicating sequen-
tial processes. Commun. ACM 21, 8 (Aug.),
666–677.

HU, A. J. AND DILL, D. L. 1993a. Efficient veri-
fication with BDDs using implicitly conjoined
invariants. In Proceedings of the Fifth Inter-

national Workshop on Computer Aided Verifi-
cation, 3–14.

HU, A. J. AND DILL, D. L. 1993b. Reducing BDD
size by exploiting functional dependencies. In
30th ACM/IEEE Design Automation Confer-
ence.

HU, A. J., DILL, D. L., DREXLER, A. J., AND YANG, C.
H. 1992. Higher-level specification and
verification with BDDs. In Proceedings of the
Fourth International Workshop on Computer
Aided Verification (July), 82–95.

IP, C. N. AND DILL, D. L. 1993a. Efficient verifi-
cation of symmetric concurrent systems. In
International Conference on Computer Design:
VLSI in Computers and Processors (Oct.).

IP, C. N. AND DILL, D. L. 1993b. Better verifica-
tion through symmetry. In Proceedings of the
Eleventh International Symposium on Com-
puter Hardware Description Languages and
Their Applications (April), 87–100.

JARD, C. AND JERON, T. 1991. Bounded-memory
algorithms for verification on-the-fly. In Pro-
ceedings of the Third International Workshop
on Computer Aided Verification (July), 192–
202.

JAMES, D. V. ET AL. 1990. Distributed-directory
scheme: Scalable coherence interface. IEEE
Computer 23, 6 (June), 74–77.

KUBIATOWICZ, J. D. 1993. Closing the window of
vulnerability in multiphase memory transac-
tions: The Alewife transaction store. M.S.
Thesis, Dept. of Electrical Engineering and
Computer Science, MIT, Feb.

KURSHAN, R. P. AND MCMILLAN, K. 1989. A
structural induction theorem for processes.
ACM Symposium on Principles of Distributed
Computing, 239–247.

LAMPORT, L. 1979. How to make a multiproces-
sor computer that correctly executes multi-
process programs. IEEE Trans. Comput. C-28,
9 (Sept.), 690–691.

LENOSKI, D., LAUDON, J., GHARACHORLOO, K.,
GUPTA, A., AND HENNESSY, J. 1990. The di-
rectory-based cache coherence protocol for the
DASH multiprocessor. In Proceedings of the
17th International Symposium on Computer
Architecture (June), 148–159.

LIAW, H.-T. AND LIN, C.-S. 1992. On the OBDD-
representation of general Boolean functions.
IEEE Trans. Comput. 41, 6 (June), 661–664.

LOEWENSTEIN, P. AND DILL, D. L. 1990. Veri-
fication of a multiprocessor cache protocol us-
ing simulation relations and higher-order
logic. In Proceedings of the Second Interna-
tional Workshop on Computer Aided Verifica-
tion (June), 302–311.

MADRE, J.-C. AND BILLON, J.-P. 1988. Proving
circuit correctness using formal comparison
between expected and extracted behavior. In
Proceedings of the 25th ACM/IEEE Design
Automation Conference, 205–210.

124 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

MALIK, S., WANG, A. R., BRAYTON, R. K., AND

SANGIOVANNI-VINCENTELLI, A. 1988. Logic
verification using binary decision diagrams in
a logic synthesis environment. In Proceedings
of the ICCAD, 6–9.

MCMILLAN, K. L. 1992. Symbolic model check-
ing: An approach to the state explosion prob-
lem. Ph.D. Dissertation, Carnegie Mellon
University, May.

MCMILLAN, K. L. AND SCHWALBE, J. 1991.
Formal verification of the Gigamax cache con-
sistency protocol. In Proceedings of the ISSM
International Conference on Parallel and Dis-
tributed Computing (Oct.).

NANDA, A. K. AND BHUYAN, L. N. 1992. A formal
specification and verification technique for
cache coherence protocols. In Proceedings of
the 1992 International Conference on Parallel
Processing, I22–I26.

NOWATZYK, A., AYBAY, G., BROWNE, M., KELLY, E.,
PARKIN, M., RADKE, B., AND VISHIN, S. 1994.
The S3.mp scalable shared memory multipro-
cessor. HICCS.

PNUELI, A. 1977. The temporal logic of pro-
grams. In Proceedings of the 18th Symposium
on Foundations of Computer Science, 46–57.

PNUELI, A. 1981. The temporal logic of concur-
rent programs. Theor. Comput. Sci., 45–60.

PONG, F. AND DUBOIS, M. 1993a. The verifica-
tion of cache coherence protocols. In Proceed-
ings of the Fifth Annual Symposium on Paral-
lel Algorithm and Architecture (June), 11–20.

PONG, F. AND DUBOIS, M. 1993b. Correctness of
a directory-based cache coherence protocol:
Early experience. In Proceedings of the Fifth
Annual Symposium on Parallel and Distrib-
uted Processing (Dec.), 37–44.

PONG, F., STENSTRÖM, P., AND DUBOIS, M.
1994. An integrated methodology for the
verification of directory-based cache protocols.
In Proceedings of the 1994 International Con-
ference on Parallel Processing, I158–I165.

PONG, F. AND DUBOIS, M. 1995. A new approach
for the verification of cache coherence proto-
cols. IEEE Trans. Parallel Distrib. Syst. 6, 8
(Aug.), 773–787.

PONG, F., NOWATZYK, A., AYBAY, G., AND DUBOIS,
M. 1995. Verifying distributed directory-
based cache coherence protocols: S3.mp, a
case study. In Proceedings of the First Inter-
national EURO-PAR Conference (Aug.), 287–
300.

PONG, F. 1995. Symbolic state model; A new
approach for the verification of cache coher-
ence protocols. Ph.D. Dissertation, Dept. of
Electrical Engineering-Systems, University of
Southern California, Aug.

PONG, F. AND DUBOIS, M. 1996. Formal verifica-
tion of delayed consistency protocols. In Pro-
ceedings of the Tenth International Parallel
Processing Symposium (April), 124–131.

ROTHNIE, J. 1992. Overview of the KSR1 com-
puter system. Kendall Square Res. Rep. TR
9202001, March.

RUDOLF, L. AND SEGALL, Z. 1984. Dynamic de-
centralized cache schemes for MIMD parallel
processors. In Proceedings of the Eleventh In-
ternational Symposium on Computer Architec-
ture (June), 340–347.

SCHEURICH, C. 1989. Access ordering and coher-
ence in shared memory multiprocessors.
Ph.D. Thesis, University of Southern Califor-
nia.

SCHEURICH, C. AND DUBOIS, M. 1987. Correct
memory operation of cache-based multiproces-
sors. In Proceedings of the 14th International
Symposium on Computer Architecture (June),
234–243.

SCHEURICH, C. AND DUBOIS, M. 1991. Lockup-
free caches in high-performance multiproces-
sors. J. Parallel Distrib. Comput. 11, 25–36.

SHASHA, D. AND SNIR, M. 1988. Efficient and
correct execution of parallel programs that
shared memory. ACM Trans. Program. Lang.
Syst. 10, 2 (April), 282–312.

SHIPLE, T. R., CHIODO, M., SANGIOVANNI-VINCEN-
TELLI, A. L., AND BRAYTON, R. K. 1992.
Automatic reduction in CTL compositional
model checking. In Proceedings of the Interna-
tional Workshop on Computer-Aided Verifica-
tion (June), 234–247.

SINDHU, P. S., FRAILONG, J-M., AND CEKLEOV,
M. 1992. Formal specification of memory
models. In Scalable Shared Memory Multipro-
cessors, M. Dubois and S. Thakkar, Eds. Klu-
wer, Norwell, MA.

STENSTRÖM, P. 1990. A survey of cache coher-
ence schemes for multiprocessors. IEEE Com-
puter 23, 6 (June), 12–24.

SWEAZEY, P. AND SMITH, A. J. 1986. A class of
compatible cache consistency protocols and
their support by the IEEE Futurebus. In Pro-
ceedings of the 13th International Symposium
on Computer Architecture, 414–423.

TOMAS, D. E. AND MOORBY, P. 1995. The Verilog
Hardware Description Language. Kluwer Aca-
demic.

WEGENER, I. 1994. The size of reduced OBDDs
and optimal read-once branching programs
for almost all Boolean functions. IEEE Trans.
Comput. 43, 11 (Nov.), 1262–1269.

WILSON, A. W., JR. 1987. Hierarchical cache/
bus architecture for shared memory multipro-
cessors. In Proceedings of the 14th Interna-
tional Symposium on Computer Architecture,
244–252.

WOLPER, P. AND LEROY, D. 1993. Reliable hash-
ing without collision detection. In Proceedings
of the Fifth Workshop on Computer Aided
Verification (June).

Verification Techniques • 125

ACM Computing Surveys, Vol. 29, No. 1, March 1997

WOLPER, P. AND LOVINFOSSE, V. 1989. Verifying
properties of large sets of processes with net-
work invariants. In International Workshop
on Automatic Verification Methods for Finite
State Systems (June), 68–80.

YEN, W. C., YEN, W. L., AND FU, K.-S. 1985.

Data coherence problem in a multicache sys-
tem. IEEE Trans. Comput. C-34, 1 (Jan.).

YUANG, M. C. 1988. Survey of protocol verifica-
tion techniques based on finite state machine
models. In Proceedings of the Computer Net-
working Symposium (April), 164–172.

Received December 1994; revised May 1996; accepted December 1996

126 • F. Pong and M. Dubois

ACM Computing Surveys, Vol. 29, No. 1, March 1997

