
Resource Sharing of Pipelined Custom Hardware Extension for

Energy-efficient Application-specific Instruction Set Processor Design

Hai Lin and Yunsi Fei

Dept. of Electrical & Computer Engineering

University of Connecticut. Storrs, CT 06269

E-mail: {hal06002,yfei}@engr.uconn.edu

Abstract— Application-Specific Instruction set Processor
(ASIP) has become an increasingly popular platform for em-
bedded systems because of its high performance and flexibility.
Energy efficiency is critical for portable and embedded devices,
and should be addressed separately from performance consider-
ation. The hardware extension in ASIPs can speed-up program
execution, but also incurs area overhead and static energy
consumption of the processors. Traditional data path merg-
ing techniques reduce circuit overhead by reusing hardware
resources for executing multiple custom instructions. However,
they introduce structural hazard for custom instructions on
extended processors, and hence reduce the performance im-
provement. In this paper, we introduce a pipelined configurable
hardware structure for the hardware extension in ASIPs, so
that structural hazards can be remedied. With multiple sub-
graphs of operations selected for custom hardware realization,
we devise a novel operation-to-hardware mapping algorithm
based on Integer Linear Programming (ILP) to automatically
construct a resource-efficient pipelined configurable hardware
extension. We demonstrate that different resource sharing
schemes would affect both the hardware overhead and datapath
delay of the custom instructions. We analyze the design trade-
offs between resource efficiency and performance improvement,
and present the design space exploration results.

I. INTRODUCTION

Application-Specific Instruction set Processors (ASIPs)

have become a promising design platform for modern em-

bedded systems, satisfying their demanding requirements

on performance, cost, power consumption, and turn-around

time. With customized instruction set architecture (ISA) and

custom hardware extensions tailored for a specific applica-

tion domain, the performance of an ASIP is improved greatly

over general-purpose processors for the specific applications.

While the traditional ASIP design focuses on performance

improvement [1], [2], improving resource efficiency of the

custom hardware extensions has been an effective method

to reduce the die area overhead and chip cost. With the

proliferation of battery powered electronic devices, energy

efficiency has become an imperative design metric for mod-

ern embedded processors. There have been a lot of researches

in ASIP design that tackle the energy efficiency issue, either

by optimizing individual processor components, e.g., cache,

register file and instruction fetch stage [3], [4], [5], or by

power-managing the whole processor [6], [7]. However, most

of them target dynamic energy consumption and do not

consider the effect of static energy specifically.

Leakage energy consumption has become an important

issue in modern electronic circuits. When the process tech-

nology shrinks below 65 nm, the leakage power increases

to be comparable to dynamic power [8]. Although some re-

cent technologies, like the“high-k dielectric technology” [9]

adopted in top-of-the-line processes, can effectively suppress

the leakage current, static energy remains an important com-

ponent of the total energy consumption. Custom hardware

extensions in ASIP design are able to reduce the execution

time and dynamic energy. However, the static energy con-

sumption caused by these extensions may greatly offset the

total energy reduction rate. Improving the resource efficiency,

i.e., lowering the hardware overhead, of the custom hardware

extensions will reduce the static energy consumption in

energy-efficient ASIP design.

When implementing resource-efficient custom logic for

ASIPs, traditional resource sharing techniques, such as data

path merging and reconfigurable data-path synthesis [10],

[11], [12], [13], [14], [15], are widely used to generate a

configurable hardware extension that can share the functional

units among multiple custom instructions. However, such

resource sharing will introduce potential structural hazard for

executing custom instructions, because at any time, only one

custom instruction can be executed on the shared functional

units. It will result in less performance improvement.

In this paper, we propose a pipelined configurable custom

hardware structure to remedy the structural hazards and

meanwhile achieve promising energy efficiency, reducing the

static energy overhead caused by custom hardware. With

the proposed configurable custom functional units (CFUs),

we formulate our hardware overhead minimization problem

into an ILP form, and develop a novel algorithm for optimal

resource sharing among multiple candidate custom instruc-

tions. We analyze the trade-off between resource efficiency

and performance improvement.

The rest of the paper is organized as follows. In Section II,

we discuss the motivation for a pipelined configurable CFU,

and briefly describe the proposed CFU structure. In Sec-

tion III, we formulate the resource sharing problem into an

ILP problem and present our algorithm. We then demonstrate

the experimental setup and results in Section IV. Trade-offs

between resource sharing and performance improvement in

ASIPs are also shown, and the design space is analyzed.

Following that, we conclude our work in Section V.

978-1-4244-5028-2/09/$25.00 ©2009 IEEE 158

II. EXPLORING RESOURCE SHARING OF HARDWARE

EXTENSIONS IN ASIP DESIGN

In this section, we discuss the unique features of resource

sharing of hardware extensions in ASIP design, and propose

our pipelined configurable CFU structure. We assume that the

widely used technique for instruction set extension, operation

fusion [1], is adopted. Selected groups of operations in the

dataflow graphs (DFGs) of a program’s basic blocks are

fused into single complex operations. Both the execution

time and dynamic energy consumption of the application can

be reduced.

A. Resource Sharing of Hardware Extensions for Multiple

Custom Instructions

Fig. 1 illustrates the traditional resource sharing process

among multiple custom instructions. Each custom instruc-

tion, selected by a custom instruction synthesis flow, per-

forms a sub-graph of operations. To reduce the area overhead,

the custom hardware is shared by the two instructions,

and includes a superset of the functional units for different

operation sub-graphs. For example, sub-graph 1 needs 2

adders and 1 multiplier, and sub-graph 2 needs 3 adders, and

the configurable custom functional unit contains 3 adders and

1 multiplier. Configurable interconnections, i.e., MUXes, are

inserted so that different sets of functional modules are used

for executing different custom instructions. For this kind of

custom hardware synthesis, traditional resource sharing tech-

niques such as multiple graphs and paths merging [11], [12],

[13] are applied. The work in [11] formulated such datapath

merging problem into a maximum compatible clique search-

ing problem, and evaluated the performance and complexity

of several typical heuristic solutions. In [12], the problem is

converted into a substring matching problem and a heuristic

is developed to find reasonable solutions. The authors also

analyzed the effect of resource sharing on critical path delay

of each data path. The trade-off between area overhead and

critical path delay is demonstrated by experimental results.

However, these techniques have a common assumption that

custom instructions are executed on the configurable custom

hardware at different time, i.e., the functional units are

used in a time-multiplexing fashion. Our resource sharing

technique differs from the previous work in that it considers

the specific features of executing custom instructions on

ASIPs. Fig. 2 illustrates the partial pipeline of an out-of-order

extended processor architecture. In an out-of-order processor,

instructions are issued and executed whenever the resources

for executing them are ready. Without resource sharing in

the extended hardware, a custom functional unit will be

generated for each custom instruction and exists in parallel to

the baseline functional units. For example, two independent

custom instructions, e.g., ci1 and ci2 as shown in Fig. 2,

can be issued from the instruction queue and executed si-

multaneously in different custom functional unit (CFU1 and

CFU2), with the control flow marked in blue arrowed lines

in the figure. The instruction level parallelism of the program

is well maintained. However, with resource sharing, the two

custom functional unit are merged into one to save area,

shown as the shaded module (CFU) in the dotted component

in Fig. 2. Any time only one custom instruction can be issued

to the merged CFU, as shown in the red arrowed line. For

example, when instruction ci1 is in execution, instruction ci2

has to wait for the availability of hardware resource, i.e., the

traditional resource sharing method causes structural hazard

for custom instructions and the performance improvement

will be reduced. When these custom instructions are multi-

cycle instructions, such performance degradation is more

drastic, even in single-issue processors.

Fig. 1. A resource sharing example of configurable custom functional unit

To remedy such structural hazard so as to improve the

performance for an ASIP, we introduce a novel pipelined

configurable hardware structure and develop our resource

sharing algorithm for the CFUs.

B. Structure of Configurable CFU

Fig. 3 (a) illustrates the architecture of an example con-

figurable CFU used in our flow. Functional modules are

arranged in rows and connected in a feed-forwarding man-

ner, i.e., signals transfer from the outputs of components

in upper-level rows to the inputs of components in the

subsequent rows. MUXes are inserted to allow configuration

of interconnections, and control signals for the MUXes are

generated by the custom instruction decoding logic. Thus,

different custom instructions can change the connection of

functional modules in the configurable CFU. For a selected

sub-graph, as shown in Fig. 3 (b), its operations are mapped

onto the functional components with color in the configurable

CFU, shown in Fig. 3 (a). If the critical path delay of the

datapath exceeds one clock cycle of the processor, registers

are inserted into the configurable data path, and hence custom

instructions can be fed into the shared hardware extension

in a pipelined sequence. With this pipelined structure, at

one execution cycle, multiple multi-cycle custom instructions

can possibly share the resource without conflict, because

different custom instructions can use functional units at

different pipeline stages. Considerable area reduction can still

be achieved through our novel resource sharing algorithm.

Fig. 4 shows the cycle-accurate execution under the three

different resource sharing scenarios in a single-issue out-

of-order processor. We assume ci1 takes four cycles for

159

Fig. 2. Structural hazard caused by resource sharing in an out-of-order extended processor

execution and ci2 takes two cycles. When no resource

sharing, different instructions can execute in the same cycle

without conflict. In the traditional resource sharing without

pipelining, the processor pipeline has to be stalled for the

second instruction due to structural hazard. With our resource

sharing with pipelining, the performance is as good as the

first case, and the hardware overhead is reduced.

Fig. 3. Mapping a sub-graph onto a configurable custom functional unit

The configurable CFU architecture proposed is similar

to the Configurable Compute Accelerator (CCA) presented

in [16]. However, different to their design, we introduce

pipelining within the shared hardware. Moreover, unlike

the previous work which pre-defines a CCA structure and

develops an algorithm to identify and map appropriate DFGs

onto it, our approach automatically generates the optimal

configurable custom hardware for the target application.

In the following sections, we assume that the sub-graphs

of operations for custom instructions have been selected by

certain synthesis tools, like the one in [17], and focus on

our resource sharing algorithm for the proposed hardware

architecture.

Fig. 4. Cycle-accurate execution of the custom instructions under three
resource sharing scenarios

III. SOLUTION TO THE RESOURCE SHARING PROBLEM

A new resource sharing problem is raised in our custom

hardware generation process for better performance. It is

based on two assumptions: a set of sub-graphs of operations

have been selected for custom instruction implementation;

and dataflow sub-graphs can be pipelined if they need mul-

tiple cycles to finish execution. The problem then becomes

how to schedule the operations into different execution cycles

in the pipelined data path and merge the operators into

configurable hardware. The functional modules in a pipeline

stage can be shared among different data paths for custom

instructions. The goal is to maximize the resource sharing so

as to reduce the area overhead and static energy consumption

of the configurable custom hardware.

Although the resource sharing idea has been widely used

in both high-level synthesis (HLS) and previous custom

hardware synthesis in ASIP design, our resource sharing

problem differs distinctly from both of them. HLS targets

160

resource sharing within one data path and it shares resource

between different cycles. In our problem, we do not allow

operations in the same data path but at different cycles

to share resource. Previous research for resource-efficient

custom hardware synthesis in ASIPs, like [11], [13], have not

considered the potential structural hazard of multiple data

path merging, and the shared resources are not pipelined.

Although this can provide large flexibility of sharing, the

performance improvement can be degraded. Fig. 5 depicts

the three different types of resource sharing in three rows,

i.e., in HLS, traditional resource sharing in custom hardware

synthesis, and our proposed resource sharing in pipelined

structure. For the figures on the left, each dotted arrow

connects two operations that share the same resource, each

solid bar indicates the places where registers are inserted.

The figures on the right are the abstract structure diagrams

of dataflow.

Fig. 5. Different types of resource sharing

A. Problem Definition

With further characterization, we next show that our prob-

lem is transformed into a problem of operation scheduling

and mapping onto the custom hardware, with the hardware

co-generated. Fig. 6 shows such a process, where two sub-

graphs of operations, g1 and g2, are presented in directed-

acyclic-graphs (DAGs) with data dependency between oper-

ations shown on the connecting edges. We assume that oper-

ations of the gray nodes have the same operation type, i.e.,

candidates sharing the same operator in the custom hardware.

Operations in these two graphs can be scheduled to different

virtual stages while maintaining their data dependency, for

example, in an as-soon-as-possible (ASAP) or as-late-as-

possible (ALAP) manner. When mapping the operations onto

the custom hardware, these virtual stages are hence mapped

to the CFU’s hardware pipeline stages. A hardware stage can

cover several consecutive virtual stages, depending on the

latency in each virtual stage. The edges crossing the lines

of hardware pipeline stages represent positions for pipeline

registers. For a scheduling scheme of multiple DAGs, we

estimate the data-path delay and group virtual stages to

pipeline stages. Only operations of different data paths that

are of the same type and at the same virtual stage are

allowed to share functional modules, e.g., the two nodes

in gray at virtual stage 4 in Fig. 6. Finally, the needed

functional components at each pipeline stages are sum up

for hardware overhead estimation, and the interconnection

components like the MUXes and pipeline registers are also

estimated. Different scheduling of DAGs will affect both the

number of pipeline stages for each data path and the overall

hardware overhead, i.e., resource efficiency. As illustrated

in Fig. 7, for the first scheduling plan for sub-graph 2,

custom instruction 2 takes 1 cycle to execute, while custom

instruction 1 takes 2 cycles, and one extra adder is needed for

pipeline stage 1 in addition to what have been provided for

sub-graph 1. For the second scheduling plan, both the two

custom instructions take 2 cycles instead, but no extra adder

is needed for sub-graph 2, because it can share the adder for

sub-graph 1 at virtual stage 4 (pipeline stage 2). These two

scheduling schemes demonstrate possible trade-off between

execution delay and custom hardware area overhead. Among

all the scheduling plans for the DAGs, we select the best one

that can reduce the hardware overhead most and meanwhile

satisfy the performance requirement.

Fig. 6. One possible operation scheduling and resource sharing plan

Fig. 7. Trade-off between custom hardware overhead and execution cycles

161

B. Integer Linear Programming Solution

To solve the resource efficiency problem, we develop a

novel algorithm for operation scheduling and multiple DAG

resource sharing based on Integer Linear Programming (ILP).

In contrast to the previous iterative algorithms [10], [12],

we take multiple DAGs in at the same time and find an

optimal CFU template to implement all of them based on

one-time ILP solving process. Both the area overhead and

delay should be estimated in the objective function to guide

the exploration for optimal solutions. We present the entire

ILP problem formulation as follows.

Primary Variable definition: For each operation in the

DAGs, we define a set of binary variable {si,l}, where i is

the index of the operation (unique for each operation in all

the DAGs), and l is the index of virtual stages. If operation

i is scheduled in virtual stage l, si,l is assigned 1, otherwise

0. Clearly, for an operation i, only one of these variables is

assigned 1.

Parameter definition: For each operation i, a set of

{typei,k} is defined, where k is the index of operation

types. typei,k = 1 indicates the operation belongs to type k.

Similarly, for each operation i, a set of {groupi, j} is defined,

where j is the index of DAGs. groupi, j = 1 indicates the

operation belongs to DAG j. The value of these parameters

are determined by the given DAGs.

Assistant Variable definition: To evaluate the delay and

execution cycle of each DAG, we add a set of assistant

variables. Cl represents the total delay for virtual stage l.

Cl equals to the largest delay of the functional units that

are in the same stage l. ACl is the accumulated delay from

the primary input to stage l, i.e., ACl is the summation of

Ct , t = 1, ..., l. If ACl exceeds n∗Tcycle and ACl−1 is within

n∗Tcycle, virtual stage l will be put to pipeline stage n + 1.

Tcycle is the clock cycle for the processor.

Constraints: There are several rules for the resource

sharing that should be reflected by the constraints in ILP.

First of all, when scheduling operations to different virtual

stages and implementing them by functional components, the

logic dependency within each DAG should be maintained.

In other words, if there is an edge connecting two operation

nodes in a DAG, the source node of the edge (parent node)

should be assigned to a virtual stage earlier than the virtual

stage where the destination node (child node) is assigned to.

With the variables definition described above, this constraint

is presented in Equation (1), where node i is the parent node

of node j:

∑
l

l ∗ si,l −∑
l

l ∗ s j,l < 0 (1)

∑
l

si,l = 1 (2)

Obviously, one operation can only be assigned to one

virtual stage, as represented in Equation (2).

Objective Function: For this problem, we want to find

the optimal operation scheduling for each DAG, so that:

1. when implementing these operations on hardware stages

in the CFU, as many operations as possible can share the

functional components in the CFU and hence the hardware

cost for the CFU is minimized; 2. the execution cycles of

each DAG (representing different custom instructions) will

not be increased greatly with resource sharing. This reflects

the trade-off between resource efficiency and performance

for each custom instruction. We put both the area and delay

estimation into an unified objective function.

For each virtual stage, the number of functional component

instances needed for each operation type should be equal to

the largest number of this type of operations assigned to

this stage among all the DAGs. This is a MAX() function.

The total hardware overhead is a summation of these MAX()
functions for each stage and each type, multiplied by the

unit area of each type. Since MAX() function is not a

linear function, we add additional variables and constraints

to convert this objective function into a linear form.

M j,k,l = ∑
i

groupi, j ∗ typei,k ∗ si,l (3)

Xk,l −M j,k,l ≥ 0 (f or any j) (4)

Where i, j,k, l are the operation index, DAG index, opera-

tion type index and virtual stage index respectively. M j,k,l in

Equation (3) represents the number of operations of type k

in DAG j that are assigned to virtual stage l. Xk,l denotes the

number of operator of type k at virtual stage l. The MAX()
function is hence converted to the set of constraints presented

in Equation (4).

To estimate the execution cycle delay information for each

DAG, a set of integer variable K j represents the cycles

needed for the jth DAG. Equation (5) presents the estimation

of K j. K j should be the ceiling of ACl , where virtual stage

l is the last stage for DAG j. ACl is described before in

“Assistant Variable definition”.

K j −ACl ∗ si,l ≥ 0

(f or any i that satis f ies groupi, j = 1) (5)

Note that ACl ∗si,l is not a linear representation and should

be linearized for ILP. We take the approach in [18], for C =
B∗A, where A is a binary variable and M is an upper bound

of B, it can be linearized as follows:

0 ≤C ≤ B

C ≤ M ∗A

C ≥ B−M(1−A)

(6)

The final objective function is presented linearly in Equa-

tion (7), where Ak is the unit hardware area of operator

type k. We use coefficient α to adjust the consideration of

resource sharing vs. delay. Both resource overhead and delay

are normalized. AREA is the summation of the total area cost

for each DAG if implemented separately. Tj is the number

162

of cycles needed for DAG j if implemented separately with

the operations in an ASAP scheduling. The resource sharing

problem is to find the best set of si,l values so as to minimize

the object function.

min : α(∑
k

∑
l

Ak ∗Xk,l)/AREA+(1−α)(∑
j

(K j/Tj)) (7)

For all the above equations, the ranges of i, j,k are

determined by the actual number of operations in all the

DAGs, operations types, and number of DAGs. The range of

l, i.e., the number of possible virtual stages in the CFU is

determined by the total number of operations in the DAGs,

considering the extreme case when each operation is assigned

to a separate virtual stage, as shown in Fig. 8.

Fig. 8. Possible number of virtual stages

With all these equations and constraints presented, the

resource sharing problem is now formulated into an ILP

problem. We revisit Fig. 6 which shows a possible scheduling

plan. The delay of each operation is marked by the node,

normalized to the processor’s clock cycle. The delay of each

virtual stage is estimated and annotated on the leftmost.

Based on this, we assign pipeline hardware stages to virtual

stages, and the pipeline stages are marked on the right.

We explore all the possible scheduling plans and find the

optimal solution with the objective function minimized. With

a scheduling plan, an arbitrary functional component sharing

scheme between operations of the same type, in the same

virtual stages and from different graphs can be determined,

and the corresponding interconnections, MUXes and control

signals are generated for the configurable CFU. Note that an

optimal functional component sharing scheme can further

reduce the number of MUXes, however here we omit the

difference considering the area overhead of MUXes is much

smaller than functional units. With the scheduling plan and

pipeline information, the actual number of registers for

pipelining the CFU is also determined. We add the area cost

of MUXes and pipeline registers into the final area estimation

as well.

The ILP problem scale increases as the total number of

operation nodes in DAGs increases. With the above ILP

modeling, the total number of variables is O(N2), where N

is the number of operations.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental setup and show

the resource sharing results using our proposed pipelined

CFU structure and ILP algorithm. First we implement an

ASIP custom instruction synthesis flow. We extract a set

of sub-graphs from each testbench for custom instruction

implementation. We take the SUIF and MachSUIF frame-

work [19], [20], and develop our own passes for front-end

compiling, program profiling, and DFG extraction. Based on

the profiling information, we implement a DFG exploration

and custom instruction selection algorithm similar to the one

proposed in [17]. The sub-graphs for custom instructions are

selected to best speed up the application with the constraints

on register file I/O ports. The timing and area information

of different types of functional units in the CFU is estimated

based on the logic synthesis using Design Compiler from

Synopsys Inc. [21] with the 0.13 um process library, and

we set the processor clock frequency to be 500MHz in

the experiment. After the candidate sub-graphs are selected,

they are taken in as the DAGs in our ILP model generation

program. Our program utilizes LPsolver APIs [22] to solve

the ILP model and generate the configurable CFU.

We randomly selected and tested a set of benchmark

applications from Mibench [23], which is a commercially

representative embedded benchmark suite, to evaluate the

effect of resource sharing using the proposed algorithm.

Table I presents the statistic information of the selected sub-

graphs from each testbench, where the input/output ports

constraint for the selected sub-graphs is set to 4/2 as a

typical example. Column 2 gives the number of sub-graphs

chosen for each testbench, and Column 3 the total number

of operations for these sub-graphs, which give an idea about

the input size to the ILP model.

TABLE I

SUB-GRAPH STATISTICS

Testbenches # of Sub-graphs Total # of operations

adpcm c 6 41

adpcm d 6 33

blowfish d 6 39

blowfish e 5 32

basicmath 5 36

bitcount 4 27

dijkstra 6 32

partricia 6 31

stringsearch 4 30

sha 4 35

qsort 4 24

CRC 6 33

jpeg 3 24

In the experiments, we focus on reducing the area over-

head first and hence set the coefficient α in the object

function of Equation (7) to be 1. Table II gives the statistics

for the configurable CFU generated by our ILP models for

different testbenches. Column 2 gives the total number of

pipeline stages. Column 3 - 7 show the number of functional

components of each type. Column 8 gives the total area

163

overhead including MUXes added in the configuration logic.

Column 9 shows the original circuit overhead if implement-

ing all the custom instructions’ data paths separately. Column

10 gives the area reduction rate. The average area reduction

rate achieved in our experiment for all the testbenches is

43.9%, with the maximum reduction rate reaching 60.8%.

This is similar to the reduction rate achieved in the previous

technique [12].

When solving such ILP problems, we use the LPsolver on

a Intel(R) Xeon(TM) CPU 2.80GHz, 6G Memory computer.

Table III presents the statistics of solving the ILP model for

each testbench. Column 2 and Column 3 show the number

of variables and constraints within each ILP model. Column

4 shows the time consumed to solve the ILP problems. As

we can see, the solving time varies a lot between different

testbenches with similar scale, which demonstrates that the

solving time is dependent on the specific DAGs, not only the

number of variables and constraints. We set the maximum

solving time to be 1800 seconds to reduce the time cost,

and for most of the testbenches within such a solving time,

the difference between the optimal results (estimated by the

LPsolver with relaxed constraints) and the results found so

far is within 5% range. The results can be improved further

through extending the solving time. To further reduce the

solving time of this problem, other heuristic approaches can

also be considered.

TABLE III

ILP MODEL STATISTICS

Testbenches # of variables # of constraints Time elapsed(s)

adpcm c 3656 15282 1800

adpcm d 2679 10484 1800

blowfish d 3399 12628 1800

blowfish e 2345 8033 1246

basicmath 3029 9857 1800

bitcount 2029 5885 143

dijkstra 2566 10134 1058

partricia 2455 9786 1106

stringsearch 2344 6623 1800

sha 2909 7904 1800

qsort 1732 5153 183

CRC 2679 10484 1800

jpeg 1731 4028 1800

As described in Section III, there is a possible trade-off

between scheduling for achieving more resource sharing and

for reducing the execution cycles for each custom instruction

in a pipelined architecture. Next we change the coefficient

α to explore the design space. We use the same DAGs from

Table I. The coefficient α is set to 1, 0.5, 0 to represent

three different cases, i.e., considering the area reduction only,

area and delay trade-off, and minimizing the cycle delay

for each custom instruction. We name the three cases as

“Area”, “Area-Timing” and “Timing” respectively. Fig. 9

and 10 show the design trade-off. In Fig. 9, the area of

the custom hardware generated is normalized to the total

area overhead when implementing the custom instructions

on separate hardware. In Fig. 10, we estimate the execution

cycles for each custom instruction executed on the generated

hardware, and compare them to the minimum cycle number

for each custom instruction when they are executed on sepa-

rate hardware and all the operations are scheduled in ASAP

manner. Comparing the data for the same testbenches in the

two figures, we see that for most testbenches the trade-off of

area reduction and cycle delay is explicit, i.e., the resource

sharing plan with the largest area reduction normally has the

longest average cycle delay. With more pipeline stages, the

functional resources can be shared more efficiently between

different DFGs. We also observe that when balancing the two

design objectives by setting α between 0 and 1, the cycle

number can be reduced greatly without increasing the area

overhead much, e.g., in qsort, di jkstra and ad pcm d. As an

example, we show the three different CFUs obtained for the

same testbench - ad pcm d with different design objectives

in Fig. 11. We omit the interconnections between functional

units for simplicity. Blocks of different shape represent

different type of functional units and the solid horizontal

lines divide the functional units into different pipeline stages.

We can see that the CFU generated in “Area” case contains

fewest functional units however more pipeline stages than the

CFUs generated in the other two cases. The CFU in “Timing”

case has the least pipeline stages however the most number

of functional units. The CFU generated in “Area-Timing”

case achieves balance between the two design objectives. It

has less area overhead than the CFU in “Timing” case, and

also less pipeline stages than the CFU in “Area” case.

Fig. 9. Area reduction by resource sharing for different testbenches

Fig. 10. Cycle number increase by resource sharing for different test-
benches

V. CONCLUSIONS

In this paper, we consider the static energy in ASIP

design, and address the static energy overhead caused by

custom hardware added in ASIPs. To reduce the custom

hardware extension for both static energy consumption and

die area reduction, this paper analyzes a new resource

sharing problem in the hardware extension generated for the

164

TABLE II

GENERATED CONFIGURABLE CFU

Testbenches Pipeline Adder/Sub. Shifter Logic Compare Multiplier/Divider Total area Orig. area Area reduction

stages (103gates) (103gates) (%)

adpcm c 5 11 2 1 2 1 71.0 163.1 56.4

adpcm d 4 12 0 3 2 0 49.2 85.2 42.2

blowfish d 4 16 0 1 2 0 78.6 124.6 36.9

blowfish e 3 11 0 1 2 0 37.8 85.4 55.7

basicmath 7 16 0 0 0 4 73.7 125.8 41.5

bitcount 5 14 1 1 0 0 73.9 117.3 37.0

dijkstra 3 10 0 1 2 0 37.3 75.4 50.5

partricia 3 12 1 1 0 0 60.4 85.6 29.4

stringsearch 4 14 0 1 0 0 50.3 74.3 32.3

sha 4 13 2 3 0 0 41.2 86.9 52.6

qsort 3 10 0 0 1 0 45.7 116.6 60.8

CRC 6 12 0 3 0 1 58.6 102.0 42.6

jpeg 4 13 1 1 0 0 48.3 70.2 32.0

average 43.9

Fig. 11. Different CFUs generated for testbench - ad pcm d

custom instructions in ASIPs. We show that the resource

sharing problem in ASIPs is different from previous HLS

and data path merging problem. We propose a pipelined

custom hardware structure and develop an ILP algorithm

to explore the design space for an optimal resource sharing

solution. The trade-off between execution cycle of custom

instructions and area of the custom hardware is discussed,

and demonstrated with experimental results.

REFERENCES

[1] D. Goodwin and D. Petkov, “Automatic generation of application spe-
cific processors,” in Int. Conf. Compilers, Architecture, and Synthesis

for Embedded Systems, Oct. 2003, pp. 137–147.

[2] F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, “Custom-instruction
synthesis for extensible processor platform,” IEEE Trans. Computer-

Aided Design of Integrated Circuits, vol. 23, no. 2, pp. 216–228, Feb.
2004.

[3] R. A. Ravindran, “Hardware/software techniques for memory power
optimizations in embedded processors,” Doctoral Dissertation, Com-

puter Science and Engineering, University of Michigan, 2007.

[4] R. Ravindran, M. Chu, and S. Mahlke, “Compiler-managed partitioned
data caches for low power,” in Proc. of LCTES Conf., 2007, pp. 237–
247.

[5] H. Lin and Y. Fei, “Harnessing horizontal and vertical parallelism
of programs to improve system overall efficiency,” in Proc. Design

Automation & Test Europe Conf., Mar. 2008, pp. 748–763.

[6] Y. Fei, S. Ravi, A. Raghunathan, and N. K. Jha, “A hybrid energy es-
timation technique for extensible processors,” IEEE Trans. Computer-

Aided Design of Integrated Circuits, vol. 23, no. 5, pp. 652–664, May.
2004.

[7] J.-E. Lee, K. Y. Choi, and N. D. Dutt, “Energy-efficient instruction
set synthesis for application-specific processors,” in Proc. Int. Symp.

Low Power Electronics & Design, 2003, pp. 330–333.

[8] N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. J.
Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law
meets static power,” IEEE Computer, vol. 36, no. 12, pp. 68–75, Dec.
2003.

[9] “Intel 45nm high-k metal gate silicon technology,”
[http://www.intel.com/technology/-
architecture-silicon/45nm-core2/-

index.htm].
[10] P. Brisk, A. Kaplan, and M. Sarrafzadeh, “Area-efficient instruction

sets synthesis for reconfigurable system-on-chip designs,” in Proc.

Design Automation Conf., 2004, pp. 395–400.
[11] C. C. de Souza, A. M. Lima, G. Araujo, and N. Moreano, “The

datapath merging problem in reconfigurable systems: complexity,
dual bounds, and heuristic evaluation,” ACM Journal of Experimental

Algorithms, 2005.
[12] M. Zuluaga and N. Topham, “Resource sharing in custom instruction

set extensions,” in Proc. IEEE Symp. on Application Specific Proces-

sors, June 2008, pp. 7–13.
[13] N. Moreano, E. Borin, C. de Souza, and G. Araujo, “Efficient data-

path merging for partially reconfigurable architectures,” IEEE Trans.

Computer-Aided Design of Integrated Circuits, vol. 24, no. 7, pp. 969–
980, Jul. 2005.

[14] A. van der Werf, M. J. H. Peek, E. H. L. Aarts, J. L. van Meerbergen,
P. E. R. Lippens, and W. F. J. Verhaegh, “Area optimization of
multi-functional processing units,” in Proc. Int. Conf. Computer-Aided

Design, 1992, pp. 292–299.
[15] Z. Huang and S. Malik, “Managing dynamic reconfiguration overhead

in systems-on-a-chip design using reconfigurable datapaths and opti-
mized interconnection networks,” in Proc. Design Automation & Test

Europe Conf., 2001, pp. 735–740.
[16] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner, “An

architecture framework for transparent instruction set customization
in embedded processors,” in Proc. Int. Symp. Computer Architecture,
2005, pp. 272–283.

[17] K. Atasu, L. Pozzi, and P. Ienne, “Automatic application-specific
instruction-set extensions under microarchitectural constraints,” in
Proc. Design Automation Conf., June 2003, pp. 256–261.

[18] Y. Wang, H. Lin, H. Yang, R. Luo, and H. Wang, “Simultaneous fine-
grain sleep transistor placement and sizing for leakage optimization,”
in Proc. IEEE Int. Symp. on Quality Electronic Design, March 2006,
pp. 723–728.

[19] “SUIF Compiler System,” [http://suif.stanford.edu
/suif/suif2/].

[20] “MACHINE SUIF,” [http://www.eecs.harvard.edu
/hube/software/software.html].

[21] “Synopsys Design Compiler, Synopsys Inc.”
[http://www.synopsys.com].

[22] “LPsolver, Linear Programming Solver,”
[http://lpsolve.sourceforge.net/5.5/].

[23] “MiBench,” [http://www.eecs.umich.edu/-
mibench/].

165

