Understanding the Effects and Implications of Compute
Node Related Failures in Hadoop

Florin Dinu T. S. Eugene Ng
Computer Science Department;Rice University

ABSTRACT

Hadoop has become a critical component in today’s cloud environ-
ment. Ensuring good performance for Hadoop is paramount for the
wide-range of applications built on top of it. In this paper we an-
alyze Hadoop’s behavior under failures involving compute nodes.
We find that even a single failure can result in inflated, variable
and unpredictable job running times, all undesirable properties in
a distributed system. We systematically track the causes under-
lying this distressing behavior. First, we find that Hadoop makes
unrealistic assumptions about task progress rates. These assump-
tions can be easily invalidated by the cloud environment and, more
surprisingly, by Hadoop’s own design decisions. The result are sig-
nificant inefficiencies in Hadoop’s speculative execution algorithm.
Second, failures are re-discovered individually by each task at the
cost of great degradation in job running time. The reason is that
Hadoop focuses on extreme scalability and thus trades off possible
improvements resulting from sharing failure information between
tasks. Third, Hadoop does not consider the causes of connection
failures between its tasks. We show that the resulting overloading
of connection failure semantics unnecessarily causes an otherwise
localized failure to propagate to healthy tasks. We also discuss the
implications of our findings and draw attention to new ways of im-
proving Hadoop-like frameworks.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of Systems

General Terms

Measurement, Performance, Reliability

Keywords

Failures, Hadoop, Speculative Execution

1. INTRODUCTION

Hadoop has become a cloud workhorse [7]. Major Internet com-
panies rely on Hadoop for their everyday needs involving extremely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HPDC’12, June 18-22, 2012, Delft, The Netherlands.

Copyright 2012 ACM 978-1-4503-0805-2/12/06 ...$10.00.

large data sets [43, 44, 9]: management tasks involving log process-
ing [16, 8], business intelligence applications or the deployment
of new products and platforms [18, 44]. Cloud service providers
have added Hadoop to their list of offerings [10, 3]. Scientists use
Hadoop for a wide range of purposes. To name only a few exam-
ples, Hadoop facilitated the implementation of scalable solutions
and algorithms for data-intensive text processing [2], assembly of
large genomes [4], graph mining [12], machine learning and data
mining [1] and large scale social network analysis [13]. Hadoop has
also received much attention from the research community. Several
studies propose performance improvements [28, 34] or extensions
to Hadoop: running Hadoop on a wider range of job types [19, 21],
in more challenging environments [50], as a back-end in other large
scale systems [44, 38] or as part of a hybrid architecture [14]. As a
result of its widespread use and of the critical nature of the applica-
tions running on top of it, ensuring good performance for Hadoop
jobs is essential.

In this paper, we focus on Hadoop’s behavior under compute
node failures. The same cloud environments that host Hadoop ap-
plications are typically prone to compute node failures failures.
Studies show [22, 45, 5] tens of compute node related failures per
day and multiple failures per average compute job. Moreover, var-
ious environmental conditions such as network components failing
or bandwidth quotas being exceeded can be indistinguishable at ap-
plication level from compute node failures. Rightfully so, compute
node failures are becoming a driving force behind the design of
large-scale cloud applications [24]. Despite the pervasiveness of
failures in the cloud, little research work has been done on ana-
lyzing Hadoop’s performance under failures and understanding the
efficiency of its design decisions in the context of failures.

Given Hadoop’s popularity and the fact that failures are the norm
rather than the exception in the cloud environment this research di-
rection has immediate practical relevance. Our paper is the first to
provide a thorough analysis of Hadoop under failures. The problem
of dealing with failures is complex and our goal is to provide deep
and insightful technical analysis. We view our paper as a necessary
first step for solving what has become a chronically over-looked
aspect: designing and building more robust failure detection and
recovery algorithms for Hadoop. To this end, a collaborative effort
from the community is needed: failure characteristics, job charac-
teristics and cloud resource occupancy in real deployments need to
be analyzed. Thus, in addition to the practical relevance this re-
search direction is rich in avenues for impactful future work.

Specifically, in this paper we analyze Hadoop’s behavior under
fail-stop failures of entire compute nodes and under fail-stop fail-
ures of the Hadoop components running on compute nodes (Task-
Tracker and DataNode). DataNode failures are important because
they affect the availability of job input and output data and also de-

lay read and write data operations which are central to Hadoop’s
performance. TaskTracker failures are equally important because
they affect running tasks as well as the availability of intermediate
data (i.e. map outputs). Unlike failures affecting logically central-
ized Hadoop components (JobTracker and NameNode) which can
be addressed by distributed coordination mechanisms [39], com-
pute node failures require Hadoop to take explicit measures for de-
tection and recovery and are more likely to cause subtle interactions
with the environment or between Hadoop’s components.

Our measurements point to a real need for improvement. Sur-
prisingly, we discover that a single failure can lead to large, vari-
able and unpredictable job running times. For example, the running
time of a job that takes 220s without failures can vary from 220s
to as much as 1000s under TaskTracker failures and to 700s un-
der DataNode failures. This is especially important for short jobs
which are frequently encountered in the cloud and have been shown
to be a major use case for Hadoop [50, 23, 20]. Such large perfor-
mance variations are detrimental. They cause unpredictable user
costs and prolonged waiting for results, decrease overall cloud uti-
lization and complicate scheduling. In our experiments on a pre-
dictable cloud environment, the primary causes for the performance
variations are internal to Hadoop’s design, namely the inefficien-
cies in Hadoop’s failure detection and recovery algorithms.

We expose three important inefficiencies in Hadoop’s design
which manifest themselves under compute node failures. First,
Hadoop makes unrealistic assumptions about task progress rates.
Hadoop seems to think that, with the exception of a few under-
performing outliers, tasks progress at comparable rates. For
Hadoop this warrants the use of a statistical speculative aggregation
algorithm centered around average progress rates. Unfortunately,
Hadoop’s assumption can be easily invalidated in practice. Both
the cloud environment as well as other Hadoop design decisions
can result in very fast progressing tasks. For example, a number of
recent proposals for improved cloud network design [35, 46] advo-
cate accelerating specific network paths. Alternatively, imbalanced
computations can lead to reducer tasks which are very fast because
they process little data. Also, in a Hadoop job with multiple reducer
waves, reducer tasks not belonging to the first wave can progress at
very high rates because they do not have to wait for their input. We
show that when Hadoop’s assumption is invalidated, a negative ef-
fect which we call delayed speculative execution can appear. This
consists in one speculative execution decision severely delaying or
even precluding subsequent speculative executions at great overall
costs for the job running time.

Second, Hadoop trades off possible improvements resulting from
communication between tasks for extreme scalability. Therefore,
each compute task performs failure detection and recovery on its
own. The unfortunate effect of this lack of sharing failure informa-
tion is that multiple tasks could be left wasting time re-discovering
a failure that has already been identified by another task. Moreover,
a speculated task may have to re-discover the same failure that hin-
dered the progress of the original task in the first place. We find that
both Hadoop’s speculative execution algorithm as well as the LATE
algorithm [50] can be significantly impacted by failures. Impor-
tantly, these findings suggest that even state-of-the-art approaches
to cause-aware speculative execution [15] may be insufficient. This
is because a good speculative execution decisions can be invali-
dated at runtime when the speculated task is affected by a failure.
To ensure that speculated tasks help improve job running time, fail-
ure information needs to be effectively shared between tasks at job
runtime.

Third, Hadoop uses connection failures between its tasks as a
heuristic for detecting node failures. In part, this is warranted by

the limited visibility a cloud application can obtain about the cloud
environment. Unfortunately, several factors can cause connection
failures without implying node failures. Temporary overload con-
ditions such as network congestion or excessive end-host load can
cause connection failures. All these conditions are common in data
centers [17, 22]. As a result, from only the news of a connection
failure Hadoop cannot reliably distinguish an underlying cause. We
show that this limitation unnecessarily introduces additional fail-
ures into the system. Specifically, otherwise localized failures in-
volving a compute node can propagate to tasks running on healthy
nodes. We call this the induced reducer death problem.

Our findings are not obvious. The points we highlight about real-
life system building decisions and real-life subtle interactions are
crucial. In practice, these decisions and interactions often invali-
date benefits obtainable through smart solutions built on top. See
for example the unexpected but serious ways in which failures af-
fect the LATE and Hadoop speculative execution algorithms.

The paper is organized as follows. In §2 we review relevant
Hadoop material. In §3 we present how Hadoop deals with failures
today. In §4 we give detailed experimental evidence of Hadoop’s
design inefficiencies. We discuss implications, lessons learned and
new ways of improving Hadoop-like frameworks in §5. Finally, we
review related work in §6 and conclude in §7.

2. BACKGROUND AND NOTATION
2.1 Notation

For brevity we use the term speculation to refer to speculative
execution. We say that a task was speculated when a new instance
of the task was speculatively executed. We distinguish between the
initial instance of a task and subsequent speculative instances of
the same task. We use WTO, RTO and CTO to signify write, read
and connect timeouts.

2.2 Hadoop Background

Hadoop [6, 49] separates a job computation into two types of
tasks: mappers and reducers. First, mappers read the job input data
from Hadoop’s distributed file system (HDFS) and produce as their
output key-value pairs. These map outputs are stored locally on
compute nodes, they are not written to HDFS. The map outputs
comprise the input for the reducer tasks. Each reducer processes
a separate key range. For this, reducers copy the part of the map
outputs which contains values within that key range. This copy
phase is called shuffling. Oftentimes, reducers needs to copy part
of the output of every single map. Finally, a reducer writes the job
output data to HDFS.

Each task has a progress score which attempts to capture how
close the task is to completion. The score is O at the task’s start and
1 at completion. For a reducer, a score of 0.33 signifies the end of
the copy (shuffle) phase. At 0.33 all map outputs have been read.
A score of 0.66 signifies the end of the sort phase. Between 0.66
and 1 a reduce function is applied and the output data is written to
HDFS. The progress rate of a task is the ratio of the progress score
over the current task running time. For example, it can take a task
15s to reach a score of 0.45, for a progress rate of 0.03/s.

HDFS is composed of a centralized NameNode and of dis-
tributed DataNodes running on compute nodes. DataNodes han-
dle the read and write operations to the HDFS. The NameNode
manages the file system metadata and decides which DataNodes
data should be read from or written to. HDFS write operations are
pipelined. In a pipelined write an HDFS block is replicated at the
same time on a number of nodes dictated by a configured replica-
tion factor. For example, if data is stored on node A and needs to be

replicated on B and C, then, in a pipelined write, data flows from
node A to B and from B to C. A WTO/RTO occurs when a HDFS
write/read operation is interrupted by a DataNode failure. WTOs
occur for reducers while RTOs occur for mappers. CTOs can oc-
cur for both mappers and reducers, when they cannot connect to a
DataNode.

A TaskTracker is a distributed Hadoop component running on
compute nodes which is responsible for starting and managing
tasks locally. TaskTrackers are configured with a number of map-
per and reducer slots, the same number for every TaskTracker. If a
TaskTracker has two reduce slots then a maximum of two reducers
can concurrently run on it. If a job requires more reducers (or map-
pers) than the number of reducer (mapper) slots in the system then
the reducers (mapper) are said to run in multiple waves. A Task-
Tracker communicates regularly with a Job Tracker, a centralized
Hadoop component that manages jobs and decides when and where
to start new tasks.

2.3 Speculative Execution Background

The JobTracker runs a speculative execution algorithm which
attempts to improve job running time by duplicating under-
performing tasks. The algorithm in Hadoop 0.21.0 (the version we
use in this paper) is a variant of the LATE algorithm [50]. Both
algorithms rely on progress rates. Both select a set of candidate
tasks for speculation and then execute the candidate task that is es-
timated to finish farthest in the future. The difference lies in the
method used to select the candidates. Hadoop takes a statistical ap-
proach. A candidate for speculation is a task whose progress rate is
slower by at least one standard deviation than the average progress
rate of all started tasks of the same kind (i.e. map or reduce) that
belong to one job. Let Z(T;) be the progress rate of a task 7; and
Tset the set of all running or completed tasks of the same kind. A
task Te.., can be speculatively executed if:

avg(Z(Ti)1,etser) — SLAZ(Ti)1,e15e0) > Z(Teur) (1)

Intuitively Hadoop speculates an under-performing task only when
large variations in progress rates occur. In contrast, LATE attempts
to speculate tasks as early as possible. For LATE, the candidates are
the tasks with the progress rate below a SlowTaskThreshold, which
is a percentile of the progress rates for a specific task type. Both
algorithms speculate a task only after it has ran for at least 60s. To
minimize the impact on available resources both algorithms cap the
number of active speculative task instances at 1.

3. FAILURES IN HADOOP

In this section we describe the mechanisms that Hadoop uses to
guard against failures. Alongside the speculative execution algo-
rithm described in (§2.3) these mechanisms cause the serious inef-
ficiencies that we uncover in this paper.

We identified these mechanisms by performing source code anal-
ysis on Hadoop version 0.21.0. The experiments in the rest of the
paper are also based on 0.21.0. At the beginning of November
2011 version 0.21.0 was still the highest Hadoop version avail-
able. Recently, Hadoop has moved from the 0.2x versions to the
1.0.x versions. While we have not tested these latest version we
have performed a code-level comparison between versions 0.21.0
and 1.0.0. We find that the mechanisms described in this section
have remained the same, thus showing that the mechanisms are not
short-lived but rather are deeply rooted in Hadoop’s design phi-
losophy. The one change we have found concerns the speculative
execution algorithm. In 1.0.0, Hadoop has reverted to an older al-
gorithm found in versions 0.20.x. Unfortunately, that particular al-
gorithm has already been shown to have serious inefficiencies [50],

a conclusion which lead to the development of the improved algo-
rithm that we analyze in this paper.

3.1 How Hadoop Deals with TaskTracker
Failures

Hadoop infers TaskTracker failures by comparing task state vari-
ables against tunable threshold values. Table 1 lists the vari-
ables used by Hadoop. These variables are constantly updated by
Hadoop during the course of a job. For clarity, we omit the names
of the thresholds and instead use their default numerical values.

As we examine in detail the decisions related to TaskTracker
failures, it shall become apparent that tolerating network conges-
tion and compute node overload is a key driver of many aspects
of Hadoop’s design. It also seems that Hadoop attributes non-
responsiveness primarily to congestion or overload rather than to
failure, and has no effective way of differentiating the two cases.
To highlight some findings:

e Hadoop is willing to wait for non-responsive nodes for a long
time (on the order of 10 minutes). This conservative design
allows Hadoop to tolerate non-responsiveness caused by net-
work congestion or compute node overload.

e A completed map task whose output data is inaccessible is
re-executed very conservatively. This makes sense if the in-
accessibility of the data is rooted in congestion or overload.
This design decision is in stark contrast to the much more
aggressive speculative re-execution of straggler tasks that are
still running [50].

e The health of a reducer is a function of the progress of the
shuffle phase (i.e. the number of successfully copied map
outputs). However, Hadoop ignores the underlying cause of
unsuccessful shuffles.

3.1.1 Declaring a TaskTracker Dead

TaskTrackers send heartbeats to the JobTracker every 3s. The
JobTracker detects TaskTracker failures by checking every 200s if
any TaskTrackers have not sent heartbeats for at least 600s. If a
TaskTracker is declared dead, the tasks running on it at failure time
are restarted on other nodes. Map tasks that completed on the dead
TaskTracker are also restarted if the job is still in progress and con-
tains any reducers.

3.1.2 Declaring Map Outputs Lost

The loss of a TaskTracker makes all map outputs it stores
inaccessible to reducers. Hadoop recomputes a map output early
(i.e. does not wait for the TaskTracker to be declared dead) if the
JobTracker receives enough notifications that reducers are unable
to obtain the map output. The output of map M is recomputed if:

N;(M)>05%R; and N;(M)> 3.

Let L be the list of map outputs that a reducer R wants to copy
from TaskTracker H. A notification is sent immediately if a read
error occurs while R is copying the output of some map M1 in L.
FjR(M) is incremented only for M1 in this case. If on the other
hand R cannot connect to H, F*(M) is increased by 1 for ev-
ery map M in L. If, after several unsuccessful connection attempts
EfY(M) mod 10 = 0 for some M, then the TaskTracker responsi-
ble for R sends a notification to the JobTracker that R cannot copy
M’s output. A back-off mechanism is used to dictate how soon
after a connection error a node can be contacted again for map out-
puts. After every failure, for every map M for which F]»R(M) is
incremented, a penalty is computed for the node running M:

Var. Description Var. | Description Var. | Description
P]-R Time from reducer R’s start until | R; | Nr. of reducers currently running TjR Time since reducer R last made
it last made progress progress
M; Nr. of maps (input splits) for a job Df’ Nr. of map outputs copied by re- SJR Nr. of maps reducer R failed to
ducer R shuffle from
FJR(M) | Nr. of times reducer R failed to Af Total nr. of shuffles attempted by | @; | Maximum running time among
copy map M’s output reducer R completed maps
N;(M) | Nr. of notifications that map M’s K JR Nr. of failed shuffle attempts by
output is unavailable. reducer R

Table 1: Variables for failure handling in Hadoop. The format is X JR(M). A subscript denotes the variable is per job. A superscript
denotes the variable is per reducer. The parenthesis denotes that the variable applies to a map.

penalty = 10 * (1.3)FJR(M).

A new timer is set to penalty seconds in the future. Whenever a
timer fires another connection is attempted.

3.1.3 Declaring a Reducer Faulty

A TaskTracker considers a reducer running on it to be faulty if
the reducer failed too many times to copy map outputs. Three con-
ditions need to be simultaneously true for a reducer to be consid-
ered faulty. First,

Kf' > 05 Af.

In other words at least 50% of all shuffles attempted by reducer R
need to fail. Second, either
R R _ R
Third, either the reducer has not progressed enough or it has been
stalled for much of its expected lifetime.
D <05« M; or T >05%maz(Pf,Q;).

Note that for Hadoop only the existence of a connection failure

is important but not the cause of the failure.

3.2 How Hadoop Deals with DataNode
Failures

Hadoop detects DataNode failures using connection errors and
timeouts. If a timeout expires or an existing connection is broken,
the read or write operation is restarted with new source or destina-
tion nodes obtained from the NameNode.

The timeouts used by HDFS requests to recover from DataNode
failures are conservatively chosen, likely in order to accommodate
transient congestion episodes which are known to be common to
data centers [17]. Both an initial task and a speculative task can
suffer from these timeouts. RTOs and CTOs are on the order of
60s while the WTOs are on the order of 480s. Differences of 5s-
15s in absolute timeout values exist and depend on the position of
a DataNode in the HDFS write pipeline. For this paper’s argument
these minute differences are inconsequential.

4. EXPERIMENTS EXPOSING THE INEF-
FICIENCIES OF FAILURE DETECTION
AND RECOVERY IN HADOOP

4.1 Methodology

For our experiments we used 15 machines from 4 racks in the
OpenCirrus testbed [11]. One node is reserved for the JobTracker

and NameNode, the rest of the nodes run DataNode and Task-
Tracker processes. Each node has 2 quad-core Intel Xeon E5420
2.50 Ghz CPUs. The network is 10 to 1 oversubscribed. We run
Hadoop 0.21.0 with the default configuration. Importantly, the
compute nodes as well as the network were not shared with other
users. The resources were solely used by our Hadoop jobs. Even
more, the compute nodes were not virtualized. As a result the per-
formance of our testbed was predictable. This allows us to clearly
identify the performance variations caused by Hadoop’s design.

We independently study DataNode and TaskTracker failures be-
cause in many Hadoop deployments DataNodes and TaskTrackers
are collocated and therefore, under compute node failures it would
be hard to single-out the underlying cause. We first analyze Task-
Tracker failures. After the TaskTracker failure experiments one
of the compute nodes became permanently disabled because of a
hardware issue and this left us with one less compute node for the
DataNode failure analysis. Fortunately, the two sets of results are
independent, therefore this failure does not affect out findings.

The job we use for this paper sorts 10GB of random data using 2
map slots per node and 2 reduce slots per node. In the experiments
we vary the number of reducers and the number of reducer waves.
200 runs are performed for each experiment. Without failures the
job takes on average 220s to complete. We chose this relatively
short job because current studies show the significant popularity
of short jobs in cloud workloads [50, 23, 20]. Our goal is not to
exhaustively and quantitatively analyze Hadoop performance over
many job and failure types. Instead, our aim is to expose the ineffi-
ciencies, the subtle interactions and the underlying design decisions
in Hadoop. Nevertheless, we argue that the thorough understand-
ing obtained from our paper is also insightful for longer jobs and
for jobs running on larger deployments. Hadoop’s failure detection
and recovery algorithms (§3) remain the same regardless of scale
because they use non-adaptive timeouts and the proportion of TCP
connection failures. Even for multiple failures (which are more
probable in larger deployments or longer jobs), the same algorithms
apply. Also, oftentimes the multiple failures are independent and
they have a cumulative effect. This effect can be estimated as the
sum of the effect of single failures.

We consider TaskTracker and DataNode processes failures as
well as the failure of the entire compute node running these pro-
cesses. The difference between the two failure types lies in the
existence of TCP reset (RST) packets that are sent by the host OS
when a process is killed. RST packets may serve as an early failure
signal. We induce the single DataNode (or TaskTracker) fail-stop
failures by randomly killing one of the DataNodes (or TaskTrack-
ers) at a random time after the job is started and before the 220s
mark. At the end of each run we restart Hadoop. We simulate a
fail-stop failure of the compute node running a DataNode (or Task-
Tracker) by filtering all RST packets sent after the failure if the

1100

T T T T T T T T T T
1000 Group G2 _
900 f Group Gl &]
800 Ty

700 [Group G4

600 i

400 ,@GroquS

300 1

) T
roup G6

100 | Group G7

Running time of job(s)

0 20 40 60 80 100 120 140 160 180 200 220
Time when failure was injected relative to initialization of job (s)

Figure 1: Clusters of job running times under TaskTracker fail-
ure. Without any failures the average job running time is 220s

source port of the RST packet corresponds to the ports used by the
failed DataNode (or TaskTracker). In our experiments we look at
how failures impact the job running time and the job startup time.
We consider the job startup time to be the time between the job
submission and the job start assuming no waiting for task slots and
no job queueing delays. We consider the job running time to be the
time between the job start and job end.

Here is a quick roadmap of the experiments that follow. Details
and arguments for our experiment choices can be found alongside
the experiments. In the first experiment we analyze in great de-
tail TaskTracker process failures and find significant performance
variations. The subsequent three experiments confirm and expand
on our findings for an increased number of reducers, for running
a second concurrent job and for simulating TaskTracker node fail-
ures. For DataNode failure we start by explaining delayed specu-
lative execution - an important inefficiency - using one sample run.
We then analyze this inefficiency over three experiments each with
a different number of reducers and reducer waves. We then change
the speculative execution algorithm. We use LATE [50] and show
the downside of Hadoop’s philosophy to not share failure informa-
tion. Our last experiment shows that DataNode failure can even
significantly affect the job preparation stage.

4.2 TaskTracker Failure Analysis

Our first experiment details Hadoop’s behavior under Task-
Tracker process failures. For this first experiment we chose pro-
cess failures because the presence of RST packets enabled us to
perform a more thorough analysis. In the absence of RST packets,
CTOs would slow down Hadoop’s reaction considerably and would
mask the effect of important subtle interactions.

4.2.1 Detailed Analysis

Figure 1 plots job running time against TaskTracker failure injec-
tion time. 14 reducers in 1 wave are used in this experiment. Out
of 200 runs, 193 are plotted and 7 failed. Note the large variation in
job running time. This is due to a large variation in the efficiency of
Hadoop’s failure detection and recovery mechanisms. To explain,
we cluster the results into 8 groups based on the underlying causes.
The first 7 groups are depicted in the figure. The 7 failed runs form
group G8. The highlights that the reader may want to keep in mind
are:

e When the failure affects few reducers, failure detection and
recovery is exacerbated.

a) ALl A32 A6,3 A10,4 A 1145
B, 1,1 B32 B6,3 B,10,4 B,11J5

by ALL A32 AS53 A63 A4 A,1
B21 B32 B63 B94 B1ifs
A32 A53 A63 A9J
| | | | | 1 | | | | | Time
I I 1 1 1 1 i 1] 1 1
0 1 2 3 4 5 6 7 8 9 10

Figure 2: Illustration of early notifications. The tuple format
is (map name, time the penalty expires, FjR (M)). For example,
(A,3,2) means at time 3 a new connection should be attempted
to get map output A, and there have been 2 failed attempts so
far. The tuple values are taken immediately after the corre-
sponding timestamp. This example considers that notifications
are sent when F]»R(M) = 5. Note that this occurs at different
moments, shown by rectangles.

e Detection and recovery time in Hadoop is unpredictable —
an undesirable property in a distributed system. The time it
takes reducers to send notifications is variable and so is the
time necessary to detect TaskTracker failures.

e The mechanisms used to detect lost map outputs and faulty
reducers interact badly. As a result otherwise localized fail-
ure propagate in the system. Many reducers die unneces-
sarily as a result of attempting connections to a failed Task-
Tracker. This leads to unnecessary re-executions of reducers,
thus exacerbating recovery.

Group G1. In G1, at least one map output on the failed Task-
Tracker was copied by all reducers before the failure. After the fail-
ure, the reducer on the failed TaskTracker is speculated on another
node and it will be unable to obtain the map outputs located on the
failed TaskTracker. According to the penalty computation (§3.1.2)
the speculative reducer needs 10 failed connections attempts to the
failed TaskTracker (416s in total) before a notification about the lost
map outputs can be sent. For this one reducer to send 3 notifications
and trigger the re-computation of a map, more than 1200s (i.e. 3
notifications each necessitating 416s) would typically be necessary.
The other reducers, even though still running, do not help send no-
tifications because they already copied the lost map outputs. Thus,
the TaskTracker timeout (§3.1.1) expires first. Only then are the
maps on the failed TaskTracker restarted. This explains the large
job running times in G1 and their constancy. G1 shows that the
efficiency of failure detection and recovery in Hadoop is impacted
when few reducers are affected and map outputs are lost.

Group G2. This group differs from G1 only in that the job run-
ning time is further increased by roughly 200s. This is caused
by the mechanism Hadoop uses to check for failed TaskTrackers
(§3.1.1). To explain, let D be the interval between checks, Ty the
time of the failure, Ty the time the failure is detected, 7. the time
the last check would be performed if no failures occurred. Also
let n x D be the time after which a TaskTracker is declared dead
for not sending any heartbeats. For G1, Ty < Tt and therefore
Tq = Te. + n* D. However, for G2, Ty > T, and as a result
Ta = Tc. + D + n D. In Hadoop, by default, D = 200s and
n = 3. The difference between Ty for the two groups is exactly
the 200s that distinguish G2 from G1. In conclusion, the timing of
the TaskTracker failure with respect to the JobTracker checks can
further increase job running time.

Group G3. In G3, the reducer on the failed TaskTracker is
also speculated but sends notifications considerably earlier than the
usual 416s. We call these early notifications. 3 early notifications
are sent and this causes the map outputs to be recomputed before

the TaskTracker timeout expires (3.1.2). To explain early notifica-
tions consider the simplified example in Figure 2 where the penalty
(3.1.2) is linear (penalty = FJR(M)) and the threshold for send-
ing notifications is 5. A more detailed example is available in [25].
Reducer R needs to copy the output of two maps A and B located
on the same node. Case a) shows regular notifications and occurs
when connections to the node cannot be established.

Case b) shows early notifications and can be caused by a read
error during the copy of A’s output. Due to the read error, only
FjR (A) is initially incremented. This de-synchronization between
Ff'(A) and F}?(B) causes the connections to the node to be at-
tempted more frequently. As a result, failure counts increase faster
and notifications are sent earlier.

Because the real function for calculating penalties in Hadoop is
exponential (§3.1.2), a faster increase in the failure counts trans-
lates into large savings in time. As a result of early notifications,
runs in G3 finish by as much as 300s faster than the runs in group
Gl.

Group G4. For G4, the failure occurs after the first map wave
but before any of the map outputs from the first map wave is copied
by all reducers. With multiple reducers still requiring the lost out-
puts, the JobTracker receives enough notifications to start the map
output re-computation §(3.1.2) before the TaskTracker timeout ex-
pires. The trait of the runs in G4 is that not enough early notifica-
tions are sent to trigger the re-computation of map outputs early.

Group GS5. As opposed to G4, in G5 enough early notifications
are sent to trigger map output re-computation earlier.

Group G6. The failure occurs during the first map wave, so
no map outputs are lost. The maps on the failed TaskTracker are
speculated and this overlaps with subsequent maps waves. As a
result, there is no noticeable impact on the job running time.

Group G7. This group contains runs where the TaskTracker was
failed after all its tasks finished running correctly. As a result, the
job running time is not affected.

Group G8. This group contains the failed jobs. The failed jobs
are caused by Hadoop’s default behavior to abort a job if one of the
job’s tasks fails 4 times. A reduce task can fail 4 times because of
the induced death problem described next.

4.2.2 Induced Reducer Death

In several groups we encounter the problem of induced reducer
death. Otherwise localized failures propagate to healthy tasks in
the system. This is the case for the reducers which although run
on healthy nodes, their death is caused by the repeated failure to
connect to the failed TaskTracker. Such a reducer dies (possibly
after sending notifications) because a large percent of its shuffles
failed, it is stalled for too long and it copied all map output but
the failed ones §(3.1.3). We also see reducers die within seconds
of their start (without having sent notifications) because the con-
ditions in §(3.1.3) become temporarily true when the failed node
is chosen among the first nodes to connect to. In this case most
of the shuffles fail and there is little progress made. Induced re-
ducer death wastes time by causing task re-execution and wastes
resources since shuffles need to be repeated.

4.2.3 Effect of Alternative Configurations

Subsection (§3.1) suggests failure detection is sensitive to the
number of reducers. We increase the number of reducers to 56
and the number of reduce slots to 6 per node. Figure 3 shows the
results. Considerably fewer runs rely on the expiration of the Task-
Tracker timeout compared to the 14 reducer case because more re-
ducers means more chances to send enough notifications to trigger
map output re-computation before the TaskTracker timeout expires.

However, Hadoop still behaves unpredictably. The variation in job
running time is more pronounced for 56 reducers because each re-
ducer can behave differently: it can suffer from induced death or
send notifications early. With a larger number of reducers these
different behaviors yield many different outcomes.

Next, we run two concurrent instances of the 14 reducer job and
analyze the effect the second scheduled job has on the running time
of the first. Figure 4 shows the results for the first scheduled job
compared to the case when it runs alone. Without failures, the first
scheduled job finishes after a baseline time of roughly 400s. The
increase from 220s to 400s is caused by the contention with the sec-
ond job. The large variation in running times is still present. The
second job does not directly help detect the failure faster because
the counters in (§3.1) are defined per job. However, the presence of
the second job indirectly influences the first job. Contention causes
longer running time and in Hadoop this leads to increased specu-
lation of reducers. A larger percentage of jobs finish around the
baseline time because sometimes the reducer on the failed Task-
Tracker is speculated before the failure and copies the map outputs
that will become lost. This increased speculation also leads to more
notifications so fewer jobs rely on the TaskTracker timeout expira-
tion. Note also the running times around 850s. These jobs rely on
the TaskTracker timeout expiration but suffer from the contention
with the second job.

The next experiment mimics the failure of an entire node running
a TaskTracker. Results are shown in Figure 5 for the 56 reducer job.
The lack of RST packets means every connection attempt is subject
to a 180s timeout. There is not enough time for reducers to send
notifications so all jobs impacted by failure rely on the TaskTracker
timeout expiration in order to continue. Moreover, reducers finish
only after all their pending connections finish. If a pending connec-
tion is stuck waiting for the 180s timeout to expire, this stalls the
whole reducer. This delay can also cause speculation and therefore
increased network contention. These factors are responsible for the
variation in running time starting with 850s.

4.3 DataNode Failure Analysis - Delayed
Speculative Execution

The DataNode experiments simulate the failure of entire com-
pute nodes running DataNodes. Thus, RST packets do not appear.
We do not present the effect of DataNode process failures since
their impact is low. While a DataNode failure is expected to cause
some job running time variation and performance degradation, the
speculative execution algorithm should eliminate significant nega-
tive effects. Our results show the opposite. As a quick example
consider Figure 8. In this experiment, the speculative execution
algorithm is largely ineffective after the map phase finishes (80s).
The complete results for different number of reducers and reducer
waves are plotted in Figures 8, 9, 10 and 11.

4.3.1 Understanding Delayed Speculative Execution

To understand the DataNode failure results, we first take a deeper
look at the interactions between DataNode failures and the specula-
tive execution algorithm. We show that these interactions can cause
a detrimental effect which we deem delayed speculative execution.
This consists in one speculation substantially delaying future spec-
ulations, or in the extreme case precluding any future speculations.
The reason lies with the statistical nature of Hadoop’s speculative
execution algorithm (§2.3).

To explain delayed speculative execution, consider the sample
run in Figure 6 which plots the progress rates of two reducers along-
side the value of the left side of equation (1) from (§2.3). We call
this left side the /imit. For this run, 13 reducers are started in total,

188 14 reducers 138 with concurrent l:gg 188 with RST pkis
2 80 56 reducers 2 80 gle J @ go | NO RST pkis
E70 E 70 E70
2 60 2 60 2 60
€ 50 € 50 € 50
S 40 S 40 S 40
5 30 5 30 5 30
R 20 F e ® 20 ® 20
10 10 ; 10
0 . 0 < 0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Running time of job (sec)

Figure 3: Increased nr of reducers

500
450

limit ——

Running time of job (sec)

Figure 4: Single vs two concurrent jobs

500

limit ——

Running time of job (sec)

Figure 5: Effect of RST packets

1000
900

Reducer-R9 ===
. Reducer-R11 g Reducer-R10

Reducer-R12

400
350
300
250
200
150
100
50 [
Wb

400

300

200 N

Progress Rate
Progress Rate

100

Reducer-R2 -

800 |
700 |
600 |
500 |
400 [
300 k*
200 [
100 |

Running time (s)

R
0L e

0 100 200 300 400 500

Job Running Time(s)

600 700 800

Figure 6: Delayed speculative exec.

all in 1 wave. In Hadoop, the progress rate for one task is the max-
imum rate over the progress rates of the initial task instance and
the speculative instance. When an instance of the task completes,
the final progress rate for the task is that of the completed instance.
Initially, the reducers need to wait for the map phase to end. Their
progress rates are close to the average rate and the standard devi-
ation is small. Hence, the limit is relatively high and close to the
average rate. A DataNode failure occurs at time 176s and affects re-
ducers R9 and R11. The failure interrupted the write phase of these
reducers and therefore R9 and R11 are stuck in a WTO. At time
200s, R9 is speculated. The progress rate for the speculative R9 is
very high because it does not need to wait for map outputs to be
computed. The outputs are readily available for copying. The sort
phase is also fast and this helps further increase the progress rate
of speculative R9. In Figure 6 this high rate is visible as a sudden
large spike. As a result of the first spike, the average rate increases
but the standard deviation increases more. Consequently, the limit
decreases. Around 200s, the progress rate for R9 decreases because
the speculative R9 needs time to finish the write phase. Because of
this progress rate decrease the limit increases but not to the point
where it would allow R11 to be speculated. R11 is speculated only
around 450s when its progress rate becomes lower than the limit
due to the prolong stall in the WTO. In the extreme case, if the
limit is lowered too much (can even become negative) then no fur-
ther speculation may be possible. To continue, all reducers stuck in
an WTO would need to wait for the WTO to expire, because they
cannot be speculated. In the general case, spikes need not be iso-
lated as in our example. Several reducers can have progress rate
spikes at the same time.

The influence that a speculation has on the limit and conse-
quently on the start of subsequent speculations depends on the
shape of the spike it creates. We plot these shapes in Figure 7.
The ascending part of the spike decreases the limit. The sever-
ity of this ascending part depends on the amount of data the re-
ducer needs to shuffle and on the speed of the network transfers.
If little data is necessary or network transfers are very fast, then
the reducer quickly finishes the shuffle and sort phases with a very

250

Job Running Time(s)

Figure 7: Types of progress rate spikes

0
0 20 40 60 80 100 120 140 160 180 200 220

Failure injection time (s)

275 300 325 350

Figure 8: 52 reducers - 1 wave

high progress rate. The decreasing part of the spike influences how
much the limit increases. In our runs we see three distinct decreas-
ing shapes each of which influences the limit differently. A short
decrease signals that the write phase proceeded normally (reducer
R10). A longer decrease signals that the speculative task also en-
countered a CTO because of the DataNode failure (reducer R12). A
sharp decrease signals that the initial reducer finished shortly after
the speculative reducer finished the shuffle and sort phases (reducer
R2).

4.3.2 Effects of Delayed Speculative Execution on
the Reduce Phase

Next, we explain in detail the results for DataNode failures in-
jected during the reduce phase but after the map phase ends at
roughly 80s.

For the 52-reducer, 1-wave case in Figure 8 the Hadoop specu-
lative execution algorithm is ineffective after the map phase ends
(~80s). Notice the two parallel clusters of increasing job running
time greater than 600s. The high job running times are caused by
delayed speculative execution. Due to delayed speculative execu-
tion there is usually at least one reducer that cannot be speculated
and therefore has to wait for the WTO to expire before continu-
ing. The reason why two clusters exist lies in a Hadoop code-level
design choice where a reducer does not remember a failed DataN-
ode if it caused a WTO. Thus, the same failed DataNode can cause
the reducer to get stuck in a CTO after the WTO. On the other
hand, after a CTO, the reducer remembers the failed DataNode and
no further CTOs are caused by that failure. If the WTO occurs at
the last block that the reducer needs to write, no CTOs can follow.
Therefore, one cluster is formed by reducers suffering only from
a WTO while the other cluster is comprised of reducers suffering
from both a WTO and a CTO. The steady increase in job running
time for each of the clusters is a function of how close to the end of
the job the failure was injected.

For the 13-reducer, 1-wave case in Figure 9 the speculative exe-
cution algorithm is more effective after the map phase end (~80s).
Large job running times caused by delayed speculative execution

1000 T T T T T T T T T T 1000

900 | , 900
800 | . , 800
@ 700 | y & 700
g 600 g 600
> 500 | > 500 [&
c R = LS I
S 400f: S 400 Tyt
S S
€ 300 - T 300
200 | 200
100 , 100

100
90 r
80 -
70 -
60 -
50 -
40
30 -
20 -
10 |

% of runs

13reducers 1wave
52reducers 1wave
52reducers 4waves

0 20 40 60 80 100 120 140 160 180 200 220
Failure injection time (s)

Figure 9: 13 reducers - 1 wave

are still common but faster running times also exist. Compared to
the 52-reducer case, each of the 13 reducers is responsible for writ-
ing 4 times more blocks and this considerably increases the chance
that a CTO affects the write phase of a speculative reducer. As a
result of these CTOs the limit is increased more and speculation be-
comes possible again thus resulting in some faster running times.
Moreover, with only 13 reducers, less speculations are necessary
overall since fewer reducers are impacted by the failure. Some-
times only 1 or 2 speculations are necessary overall and if both are
started at the same time (in the first spike) there is no other specu-
lation to be delayed.

For the 52-reducer, 4-wave case presented in Figure 10 the spec-
ulative execution algorithm performs well. The reason is that the
reducers in the last 3 waves all have very high progress rates ini-
tially since the map outputs are already available and the sort phase
is fast. As a result, the limit becomes high and less influenced by
subsequent spikes. Consequently, further speculation is not im-
paired.

4.3.3 Effects of Speculative Execution on the Map
Phase

We next explain the results for the experiments in Figures 8, 9,
10, and 11 when the failure is injected before 80s. During the first
80s, failures overlap with the map phase and reducers are not yet
in the write phase. We did not see cases of delayed speculative ex-
ecution for the map phase because mappers, unlike reducers, did
not have to wait for their input data to be available and the map
progress rates were similar. In theory, delayed speculative execu-
tion is also possible for the map phase when there is a large varia-
tion in progress rates among maps. This can happen in a topology
with variable bandwidth. In these cases fast maps could skew the
statistics.

Nevertheless, for the map phase we also identified speculative
execution inefficiencies under DataNode failures. We encounter
needless speculative execution caused by not including in the deci-
sion process information about why a task is slow . For example, a
map task can stall on a 60s CTO but the speculative execution al-
gorithm speculates a task only after the task has run for at least 60s.
The speculation can be needless here because it oftentimes occurs
exactly when the CTO expires and the initial map task can continue
and quickly finish.

When the failure occurs during the map phase, the job running
times are smaller than when reducers are affected. However, job
running time variation still exists and is caused by several factors
most of which are common to all 3 experiments from Figures 8§, 9,
10, and 11. For example, sometimes the NameNode encounters a
CTO at the end of a job, when it writes to HDFES a file with details
about the run. This delays the delivery of the job results to the user
even though all tasks, and therefore the computation are finished.

0 20 40 60 80 100 120 140 160 180 200 220
Failure injection time (s)

Figure 10: 52 reducers - 4 waves

0 i
0 100 200 300 400 500 600 700 800 900 1000
Job running time(s)

Figure 11: CDF for Figures 8, 9, 10

Also, if one of the maps from the last map waves suffers from a
CTO this impacts job running time more since the CTO cannot
be overlapped with other map waves. The reducers are delayed
until the map stuck in the CTO finishes. Specific to the 52-reducer,
4-wave case is the fact that timeouts are possibly encountered by
reducers in every of the 4 waves. As a result, job running times are
slightly larger for this scenario.

4.4 DataNode Failure Analysis - Not Sharing
Failure Information

In this section, we show the effect of Hadoop’s philosophy to
trade-off sharing of potentially useful information for extreme scal-
ability. The effect is a significant increase in job-running time
caused by failures being re-discovered by each task separately.

4.4.1 Using LATE as an Alternative Algorithm

We chose LATE as the speculative execution algorithm in this
experiment because its goal is to react to under-performing tasks as
early as possible. We first look at the 52-reducer, 1-wave case. As
suggested in [50] we set the LATE SlowTaskThreshold to the 25th
percentile. The results are plotted in Figures 12 and 13.

Overall, LATE performs better than Hadoop’s speculative execu-
tion algorithm but running times larger than 600s are still present.
Because of its more aggressive nature, LATE oftentimes speculates
a task before the failure and therefore tasks having both the initial
and the speculative instance running before the failure are present.
The large job running times in this experiment are the runs in which
both the initial task instance and its speculative instance are stuck
in a WTO because they are affected by the same DataNode failure.
Hadoop does not allow sharing of failure information and there-
fore the failure is re-discovered individually by each task. The task
can continue and finish only after the WTOs expires for one of its
instances.

For the 52-reducer 4-wave and the 13-reducer 1-wave cases
LATE did not produce large job running times. In these cases, in
our experiments the problem described above is still possible but
it is less probable since fewer reducers are active at the same time.
Note that it is enough for just one task to be affected in the manner
described and the whole job’s performance is significantly affected.

4.4.2 Delayed Job Start-up

We now analyze the effect of DataNode failures on the job start-
up time. On each run, we fail one random DataNode at a random
time starting 5s before the job submission time and ending 5s after.
Job submission time is at 5s. The results are pictured in Figure 14
and 15. Without DataNode failures, the job start-up time is roughly
Is, thus the JobTracker finishes all write operations soon after 6s.
This explains why failures occurring after 6s in Figure 14 do not

100 1000

90 r
80 -
70 -
60 -
50 -
40

% of runs
Running time (s)
je)

o
o

<]
o
S

N
o
[S]

Job start-up time (s)
S
o

4t fee N .
30 r 300 [*If s et e
. R R0 SRR AT SO L+ . ..
20 ¢ 200 »E [ARARNCEE fak ™ 100 - = ’:’,o,, g i T
10 i 52reducers 1wave Hadoop 100
0 / B2reducers 1wave LATE OF o + 4o mue e PR PR —.
= 0 L L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000 0 20 40 60 80 100 120 140 160 180 200 220 o 1 2 3 4 5 6 7 8 9 10

Job running time(s)

Figure 12: LATE vs Hadoop CDF

0 100 200 300 400 500
Job start-up time (s)

Figure 15: CDF of job startup times

impact job start-up time. However, if the DataNode failure occurs
during the first 6s most jobs are impacted.

The reason is that even before a job is started, the JobTracker
needs to make multiple HDFS write requests to replicate job-
specific files. By default, 6 such files are written: job.jar (java
classes for the job), job.split and job.splitmetainfo (description of
map inputs), job.xml (job parameter values), jobToken (security
permissions) and job.info. Any timeout delaying the writing of
these files delays the start of the whole job. However, Hadoop
does not share failure information between these 6 write opera-
tions. Moreover, the job.jar file is replicated by default using a
large replication factor of 10 [49]. This makes this operation even
more susceptible to DataNode failures. Unfortunately, this large
replication factor is not adaptive and can cause inefficiencies when
failures occur in small clusters. In our runs, with 13 total DataN-
odes and 10 DataNodes required by the large replication factor for
job.jar, the chance that the write operation was impacted by the ran-
domly induced failure was high. This explains why only few runs
in Figure 14 were unaffected by a failure injected before 6s.

4.4.3 The Effect on the Map Phase

Having understood that Hadoop does not share failure informa-
tion between tasks we can also apply this to the experiments in
Figures 8, 9, 10, and 11, for the case when the failure is injected
before 80s. Several mappers are influenced by the failure. This is
because each map task performs 3 or 5 HDFS block read opera-
tions for processing one single input split. The first access is for
the job.split file which identifies the input split for the job. The
second access reads the input data while the third access reads the
start of the subsequent block because a map input split can span
HDFS block boundaries. Two more accesses can appear in case
the map input split is not at the beginning of the HDFS file. Gener-
ally,the more HDFS accesses a task performs the greater the chance
a failure will impact the task. Since, Hadoop does not share fail-

Failure injection time (s)

Figure 13: LATE 52 reducers 1-wave

Failure injection time (s). At 5s the job is submitted.

Figure 14: Job start-up times

ure information between mappers and therefore many mappers can
encounter a CTO because of the same failure.

S. DISCUSSIONS AND IMPLICATIONS

Delayed speculative execution is a general problem. Delayed
speculative execution is a general concern for statistics-based spec-
ulative execution algorithms such as Hadoop’s. There are many
ways to trigger delayed speculative execution and failures are just
one of them. The large HDFS timeouts are not a fundamental cause
of delayed speculative execution, although they can add to the over-
head. Two common conditions are needed to trigger the negative
effects of delayed speculative execution: the existence of slow tasks
that would benefit from speculation and conditions for tasks to sud-
denly speed up and create progress rate spikes. Slow tasks have
many common causes including failures, timeouts, slow machines
or slow network transfers. Progress rate spikes can be caused by
varying input data availability (no more waiting is necessary for
map outputs after the map phase ends) or by small reducer input
data size (small input size means fast progress). Varying network
speeds can also cause progress rate spikes. This especially concerns
recent proposals for circuit-augmented network topologies [46, 29]
that inherently present large variations in bandwidth over different
paths.

With performance variation becoming a fact of life in the cloud
it would be useful to develop speculative execution algorithms that
forgo statistics altogether and instead are centered on a thorough
understanding of the computation performed as well as of the cur-
rent performance of the infrastructure. For example, static analysis
of jobs [32, 34] could be used to generate a performance model
that can be subsequently leveraged for scheduling and speculative
execution decisions.

Not sharing failure information. We have shown the negative
effects of not sharing failure information at job runtime. Regard-
less of how good a speculative execution decision may be before
a failure, all benefits can quickly be invalidated when a speculated
task is affected by a failure because it needs to read or write data
to the failed node. Therefore, good speculative execution decisions
are not sufficient. Care must be taken at runtime to ensure the suc-
cess of the speculative execution decision. Sharing failure infor-
mation at runtime is one potential approach to ensure this success.
The benefits of sharing failure information are not limited to spec-
ulated tasks. Different tasks can significantly benefit from sharing
failure information because they would not have to individually re-
discover a failure.

We believe that sharing need not be limited to failure informa-
tion. Performance, scalability or straggler information could also
potentially be shared not only inside one application but among
similar cloud applications [27]. With more information obtained
from sharing, a large scale computing framework such as Hadoop

would be more likely to make better provisioning and runtime deci-
sions. Nevertheless, Hadoop’s reason for not sharing information is
warranted. Given the unprecedented scale of today’s cloud environ-
ment sharing information between tasks, if not carefully done, can
quickly become a serious bottleneck. Moreover, the extreme scala-
bility of Hadoop’s design is a cornerstone of Hadoop’s success [43,
44]. Future work can analyze what is the minimum amount of in-
formation that, if shared, can yield maximum benefits. Also, it is
useful to analyze the trade-off between the shared information’s
freshness and the overall gain on the system’s performance.

Decoupling failure recovery from overload recovery. TCP
connection failures are not only an indication of task failures but
also of congestion. However, the two factors require different ac-
tions. It makes sense to restart a reducer placed disadvantageously
in a network position susceptible to recurring congestion. How-
ever, it is inefficient to restart a reducer because it cannot connect
to a failed TaskTracker. The data will still be unavailable regardless
of whether the reducer is restarted or not. Unfortunately, the news
of a connection failure does not by itself help Hadoop distinguish
the underlying cause. This overloading of connection failure se-
mantics ultimately leads to a more fragile system as exemplified by
the induced reducer death problem.

In the future, it can prove useful to decouple failure recov-
ery from overload recovery entirely. For dealing with compute
node load, solutions can leverage the history of a compute node’s
behavior which has been shown to be a good predictor of tran-
sient compute node load over short time scales [15]. For deal-
ing with network congestion, the use of network protocols such
as AQM/ECN [30, 40, 26] that expose more information to the ap-
plications can be considered.

The need for adaptivity. Timeouts and thresholds in Hadoop
are static. The disadvantage of static timeouts is that they cannot
correctly handle all situations. Conservative timeouts are useful to
cause a task’s progress rate to slow down in order to be noticed
by the speculative execution algorithm. Conservative timeouts are
also useful for protection against temporary network or compute
node overload. However, short timeouts may allow fail-over to
other DataNodes when data can be read from or written to multi-
ple DataNodes. TaskTracker thresholds are also static and we have
shown that this leads to poor performance when few reducers are
impacted by a TaskTracker failure.

Future work should consider adaptive timeouts that are set us-
ing system wide information about congestion, state of a job and
availability of data. As a more general solution it would prove
useful to complement Hadoop’s design with a dependable failure
detection and performance measuring mechanism, that would go
beyond timeouts and guesswork - approaches that we have shown
to be inadequate today. Hadoop needs to be much more aware of its
environment and adapt to performance influencing environmental
characteristics: reliability, sharing of resources, use of virtualiza-
tion, performance variability.

The need for analysis work on large scale computing frame-
works. Our paper is the first to provide a thorough analysis of
Hadoop’s performance under failure conditions. We believe such
analysis work is fundamental for improving application perfor-
mance in cloud environments. There is already a large body of
work analyzing the performance of representative cloud infrastruc-
tures [41, 33, 48, 31]. We think this should be complemented with
analysis work on representative cloud applications especially given
their large but still increasing popularity. We hope our paper is an
insightful first step to this end.

We have shown that Hadoop’s internal mechanisms cause sig-
nificant and unpredictable performance variations under failures.

These results suggest that it is challenging to model Hadoop’s per-
formance under failure conditions. Comparing our results against
recent work on simulating the performance of Hadoop [47] un-
der failures highlights the difficulty in developing accurate mod-
els of Hadoop’s behavior based mainly on Hadoop’s high-level de-
sign specifications. The subtle interactions that lead to performance
variations do not appear in the model. Nevertheless such modeling
work is very important in the cloud since users need to be able to
estimate application performance in order to choose suitable large
scale computing frameworks or cloud environments. We believe
analysis work such as ours can be leveraged in the development of
more advanced models of Hadoop’s behavior.

6. RELATED WORK

In the existing literature, smart replication of intermediate data
(e.g. map outputs) has been proposed to improve performance un-
der TaskTracker failures [36, 15]. Replication minimizes the need
for re-computation of intermediate data and allows for fast failover
if one replica cannot be contacted as a result of a failure. Unfor-
tunately, replication may not be always beneficial. It has been
shown [36] that replicating intermediate data guards against cer-
tain failures at the cost of overhead during periods without failures.
Moreover, replication can aggravate the severity of existing hot-
spots. Therefore, complementing replication with an understand-
ing of failure detection and recovery is equally important. Existing
work on leveraging opportunistic environments for large distributed
computations [37] can also benefit from this understanding as such
environments exhibit behavior that is similar to failures.

A recent study [31] characterizes the effect of network-related
failures in the cloud. While the study does not deal with
application-level effects, it shows network-related failures have an
important effect on the data transfers. Applications built on top of
large scale computing frameworks like Hadoop typically rely heav-
ily on data transfers. Our study paints a complementary picture to
the effects of network-related failures. We look at compute node
failures and specifically target application-level design inefficien-
cies and interactions.

Other recent studies have found and analyzed significant cloud
performance variability [41, 33, 48, 42]. The variability detected
by these studies mainly stems from environmental causes such as
sharing the data center network, using virtualized environments or
leveraging the functionality provided by cloud services. Our work
complements these study by identifying and analyzing the signifi-
cant performance variation caused by the design of a cloud applica-
tion itself. We showed that this variation can appear even in cloud
environments with predictable performance.

Our work is also related to recent efforts for improving the per-
formance of speculative execution algorithms in large scale com-
puting frameworks [50, 15]. There are however important differ-
ences. Our work goes beyond speculative execution. This related
body of work does not consider failure detection but we do so in de-
tail. These related studies only relate to failure indirectly through
outliers which are one possible effect of failures. Instead we an-
alyze the effect of failures directly and exhaustively. We find that
failures interact with Hadoop’s inner workings in subtle ways (e.g.
induced reducer death) and are at odds with Hadoop’s design de-
cisions (not sharing any information for scalability reasons). We
have even discovered possible improvements to this past body of
work. We analyzed the LATE algorithm [50] and showed it can be
improved under failures. Moreover, the delayed speculative exe-
cution problem we uncovered is a new and important concern for
statistical speculative execution algorithms.

7. CONCLUSION

In this paper we exposed and analyzed Hadoop’s sluggish, vari-
able and unpredictable performance under compute node failures.
We identified several design decisions responsible: delayed specu-
lative execution, the lack of sharing of failure information and the
overloading of connection failure semantics. We believe our find-
ings are generally insightful beyond Hadoop and will pave the way
for a new class of more advanced large scale computing frame-
works that are more predictable and more robust.

8. ACKNOWLEDGEMENTS

This research was sponsored by NSF CAREER Award CNS-
0448546, NeTS FIND CNS-0721990, NeTS CNS- 1018807, by
an Alfred P. Sloan Research Fellowship, an IBM Faculty Award,
and by Microsoft Corp. Views and conclusions contained in this
document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of
NSF, the Alfred P. Sloan Foundation, IBM Corp., Microsoft Corp.,
or the U.S. government.

9. REFERENCES

[1] Apache Mahout. http://mahout.apache.org/.
[2] Cloud9. http://lintool.github.com/Cloud9/.
[3] Cloudera. http://www.cloudera.com/hadoop/.
[4] Contrail.
http://sourceforge.net/apps/mediawiki/contrail-bio/index.php?title=Contrail.
[5] Failure Rates in Google Data Centers.
http://www.datacenterknowledge.com/archives/2008/05/30/
failure-rates-in-google-data-centers/.
[6] Hadoop. http://hadoop.apache.org/.
[7]1 Hadoop Wiki - Powered By. http://wiki.apache.org/hadoop/PoweredBy.
[8] How Rackspace Now Uses MapReduce and Hadoop to Query Terabytes of
Data. http://highscalability.com/how-rackspace-now-uses-mapreduce-and-
hadoop-query-terabytes-data.
J. Zawodny - Yahoo! Launches World’s Largest Hadoop Production
Application. http://developer.yahoo.com/blogs/hadoop/posts/2008/02/yahoo-
worlds-largest-production-hadoop/.
[10] Microsoft Embraces Elephant of Open Source.
http://www.wired.com/wiredenterprise/2011/10/microsoft-and-hadoop/.
[11] Open Cirrus(TM). https://opencirrus.org/.
[12] Pegasus. http://www.cs.cmu.edu/ pegasus/.
[13] X-RIME. http://xrime.sourceforge.net/.
[14] A. Abouzeid, K. Bajda Pawlikowski, D. Abadi, A. Silberschatz, and A. Rasin.
Hadoopdb: An architectural hybrid of mapreduce and dbms technologies for
analytical workloads. In VLDB, 2009.
G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, and
E. Harris. Reining in the outliers in map-reduce clusters using mantri. In OSDI,
2010.
[16] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding a needle in
haystack: Facebook’s photo storage. In OSDI, 2010.
[17] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding Data Center
Traffic Characteristics. In WREN, 2009.
[18] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N. Spiegelberg,
H. Kuang, K. Ranganathan, D. Molkov, A. Menon, S. Rash, R. Schmidt, and
A. Aiyer. Apache hadoop goes realtime at facebook. SIGMOD, 2011.
[19] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. Haloop: Efficient iterative
data processing on large clusters. In VLDB, 2010.
[20] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The Case for Evaluating
MapReduce Performance Using Workload Suites. In MASCOTS, 2011.
[21] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears.
Mapreduce online. In NSDI, 2010.
[22] J. Dean. Experiences with MapReduce, an Abstraction for Large-Scale
Computation. In Keynote I: PACT, 2006.
[23] J. Dean and S. Ghemawat. Mapreduce: Simplified Data Processing on Large
Clusters. In OSDI, 2004.
[24] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s Highly Available Key-value Store. In SOSP, 2007.
[25] F Dinuand T. S. E. Ng. Hadoop’s Overload Tolerant Design Exacerbates
Failure Detection and Recovery. In NETDB, 2011.
[26] F. Dinuand T. S. E. Ng. Inferring a Network Congestion Map with Zero Traffic
Overhead. In ICNP, 2011.

[9

[15

[27]

[28]

[29]

[30]
[31]

[32]

[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]
[50]

F. Dinu and T. S. E. Ng. Synergy2Cloud: Introducing Cross-Sharing of
Application Experiences Into the Cloud Management Cycle. In Hot-ICE, 2012.
J. Dittrich, J-A Q. Ruiz, A. Jindal, Y. Kargin, V. Setty, and J. Schad. Hadoop++:
Making a yellow elephant run like a cheetah (without it even noticing). In
VLDB, 2010.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya,

Y. Fainman, G. Papen, and A. Vahdat. Helios: A Hybrid Electrical/Optical
Switch Architecture for Modular Data Centers. In SIGCOMM, 2010.

S. Floyd and V. Jacobson. Random early detection gateways for congestion
avoidance. IEEE/ACM Transactions on Networking, 1(4):397-413, 1993.

P. Gill, N. Jain, and N. Nagappan. Understanding Network Failures in Data
Centers: Measurement, Analysis, and Implications. In SIGCOMM, 2011.

C. Gkantsidis, D. Vytiniotis, O. Hodson, D. Narayanan, and A. Rowstron.
Automatic io filtering for optimizing cloud analytics. In Technical Report no.
MSR-TR-2012-3, Microsoft Research, January 2012.
http://research.microsoft.com/apps/pubs/default.aspx?id=157556.

A. Tosup, N. Yigitbasi, and D. Epema. On the Performance Variability of
Production Cloud Services. In CCGrid, 2011.

E. Jahani, M. J. Cafarella, and C. Re. Automatic optimization for mapreduce
programs. In VLDB, 2011.

S. Kandula, J. Padhye, and P. Bahl. Flyways to De-Congest Data Center
Networks. In HotNETS, 2009.

S. Y. Ko, I. Hoque, B. Cho, and I. Gupta. Making Cloud Intermediate Data
Fault-Tolerant. In SOCC, 2010.

H. Lin, X. Ma, J. Archuleta, W. Feng, M. Gardner, and Z. Zhang. MOON:
MapReduce On Opportunistic eNvironments. In HPDC, 2010.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: A
Not-So-Foreign Language for Data Processing. In SIGMOD, 2008.

P. Hunt and M. Konar and F. P. Junqueira and B. Reeed. Zookeeper: Wait-Free
Coordination for Internet-Scale Systems. In USENIX ATC, 2010.

K. Ramakrishnan, S. Floyd, and D. Black. RFC 3168 - The Addition of Explicit
Congestion Notification to IP, 2001.

J. Schad, J. Dittrich, and J-A Q. Ruiz. Runtime Measurements in the Cloud:
Observing, Analyzing, and Reducing Variance. In VLDB, 2010.

A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B.Saha. Sharing the Data
Center Network. In NSDI, 2011.

A. Thusoo, S. Anthony, N. Jain, R. Murthy, Z. Shao, D. Borthakur, J. S. Sarma,
and H. Liu. Data warehousing and analytics infrastructure at facebook. In
SIGMOD, 2010.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony,

H. Liu, and R. Murthy. Hive - a petabyte scale data warehouse using hadoop. In
ICDE, 2010.

K. Venkatesh and N. Nagappan. Characterizing Cloud Computing Hardware
Reliability. In SOCC, 2010.

G. Wang, D. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng,

M. Kozuch, and M. Ryan. c-Through: Part-time Optics in Data Centers. In
SIGCOMM, 2010.

G. Wang, A. R. Butt, P. Pandey, and K. Gupta. A Simulation Approach to
Evaluating Design Decisions in MapReduce Setups. In MASCOTS, 2009.

G. Wang and T. S. E. Ng. The Impact of Virtualization on Network
Performance of Amazon EC2 Data Center. In INFOCOM, 2010.

T. White. Hadoop: The definitive guide.

M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica. Improving
MapReduce performance in heterogeneous environments. In OSDI, 2008.

