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and a .758-approximation algorithm for MAX SAT, where the best previously known approxim a-
tion algorithms had performance guarantees of ~ and ~, respectively. Our algorithm gives the first
substantial progress in approximating MAX CUT in nearly twenty years, and represents the first
use of :semidefinite programming in the design of approximation algorithms.
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1. Introduction

Given an undirected graph G = (V, E) and nonnegative weights Wi i = Wii on

the edges (i, j) G E, the ‘maximum cut problem (MAX CUT) is that ‘of firidi~g

the set of vertices S that maximizes the weight of the edges in the cut (J, S);

that is, the weight of the edges with one endpoint in S and the other in S. For

simplicity, we usually set wil = O for (i, j) G E and denote the weight of a cut

(S>~) by ~(S>S) = ~ie~,j=~ Wij. The MAX CUT problem is one of the

Karp’s original NP-complete problems [Karp 1972] and has long been known to

be NP-complete even if the problem is unweighed; that is, if Wij = 1 for all

(i, j) ~ E [Garey et al. 1976]. The MAX CUT problem is solvable in polyno-
mial time for some special classes of graphs (e.g., if the graph is planar [Orlova

and Dorfman 1972; Hadlock 1975]). Besides its theoretical importance, the

MAX CUT problem has applications in circuit layout design and statistical

physics (Barahona et al. [1988]). For a comprehensive survey of the MAX CUT

problem, the reader is referred to Poljak and Tuza [1995].

Because it is unlikely that there exist efficient algorithms for NP-hard

maximization problems, a typical approach to solving such a problem is to find

a p-approximation algorithm; that is, a polynomial-time algorithm that delivers a

solution of value at least p times the optimal value. The constant p is

sometimes called the pe~ormance guarantee of the algorithm. We will also use

the term “p-approximation algorithm” for randomized polynomial-time algo-

rithms that deliver solutions whose expected value is at least p times the

optimal. Sahni and Gonzales [1976] presented a ~-approximation algorithm for

the MAX CUT problem. Their algorithm iterates through the vertices and

decides whether or not to assign vertex i to S based on which placement

maximizes the weight of the cut of vertices 1 to i. This algorithm is essentially

equivalent to the randomized algorithm that flips an unbiased coin for each

vertex to decide which vertices are assigned to the set S. Since 1976, a number

of researchers have presented approximation algorithms for the unweighed

MAX CUT problem with performance guarantees of

11
~+—

2m
[Vitfinyi 1981],

1 n–1
–+—
2 4m

[Poljak and Turzik 1982],

11
j+~ [Haglin and Venkatesan 1991],

and

11
~+z [Hofmeister and Lefmann 1995],



Algorithms for Maximum Cut and Satisfiability Problems 1117

(where n = IVI, m = IEl and A denotes the maximum degree), but no progress
was made in improving the constant in the performance guarantee beyond that

of Salhni and Gonzales’s straightforward algorithm.

We present a simple, randomized (a – ●)-approximation algorithm for the

maximum cut problem where

2(3
(y= min — >0.87856,

0< B<7, %- 1 –Cos$
and E is any positive scalar. The algorithm represents the first substantial

progress in approximating the MAX CUT problem in nearly twenty years. The

algorithm for MAX CUT also leads directly to a randomized ( a – c)-

approlximation algorithm for the maximum 2-satisfiability problem (MAX

2SAT). The best previously known algorithm for this problem has a perform-

ance guarantee of ~ and is due to Yannakakis [1994]. A somewhat simpler

~-approximation algorithm was given in Goemans and Williamson [1994b]. The
imprcwed 2SAT algorithm leads to .7584 -approximation algorithm for the

overall MAX SAT problem, fractionally better than Yannakakis’ ~-approxima-

tion algorithm for MAX SAT. Finally, a slight extension of our analysis yields a

( p – ~)-approximation algorithm for the maximum directed cut problem (MAX
DICUT), where

2 2r–3e
p= min >0.79607.

OSO<arccos(–1/3) ~ 1 + 3cos O

The best previously known algorithm for MAX DICUT has a performance

guarantee of ~ [Papadimitriou and Yannakakis 1991].

Our algorithm depends on a means of randomly rounding a solution to a

nonlinear relaxation of the MAX CUT problem. This relaxation can either be

seen as a semidejinite program or as an eigenvalue minimization problem. To our

knowledge, this is the first time that semidefinite programs have been used in

the design and analysis of approximation algorithms. The relaxation plays a

crucial role in allowing us to obtain a better performance guarantee: previous

approximation algorithms compared the value of the solution obtained to the

total sum of the weights xi< j Wij. This sum can be arbitrarily close to twice

the value of the maximum cut.

A semidefinite program is the problem of optimizing a linear function of a

symmetric matrix subject to linear equality constraints and the constraint that

the matrix be positive semidefinite. Semidefinite programming is a special case

of convex programming and also of the so-called linear programming over cones

or cone-LP since the set of positive semidefinite matrices constitutes a convex

cone. To some extent, semidefinite programming is very similar to lineiir

programming; see Alizadeh [1995] for a comparison. It inherits the very ele-

gant duality theory of cone-LP (see Wolkowicz [1981] and the exposition by

Alizadeh [1995]). The simplex method can be generalized to sernidefinite

programs (Pataki [1995]). Given any e >0, semidefinite programs can be solved

within an additive error of ● in polynomial time (c is part of the input, so the

running time dependence on ~ is polynomial in log 1/~). This can be done

through the ellipsoid algorithm (Grotschel et al. [1988]) and other polynomiaJ-
time algorithms for convex programming (Vaidya [1989]), as well as interior-

point methods (Nesterov and Nemirovskii [1989; 1994] and Alizadeh [1995]). To

terminate in polynomial time, these algorithms implicitly assume some require-

ment on the feasible space or on the size of the optimum solution; for details,
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see Grotschel et al. [1988] and Section 3.3 of Alizadeh [1995]. Since the work of

Nesterov and Nemirovskii, and Alizadeh, there has been much development in

the design and analysis of interior-point methods for semidefinite program-

ming; for several references available at the time of writing of this paper, see

the survey paper by Vandenberghe and Boyd [19961.

Semidefinite programming has many interesting applications in a variety of

areas including control theory, nonlinear programming, geomet~, and combi-

natorial optimization. 1 In combinatorial optimization, the importance of

semidefinite programming is that it leads to tighter relaxations than the

classical linear programming relaxations for many graph and combinatorial

problems. A beautiful application of semidefinite programming is the work of

Low%z [1979] on the Shannon capacity of a graph. In conjunction with the

polynomial-time solvability of semidefinite programs, this leads to the only

known polynomial-time algorithm for finding the largest stable set in a perfect
graph (Grotschel et al. [1981]). More recently, there has been increased

interest in semidefinite programming from a combinatorial point-of-view.z This

started with the work of LOV5SZ and Schrijver [1989; 1990], who developed a

machinery to define tighter and tighter relaxations of any integer program

based on quadratic and semidefinite programming. Their papers demonstrated

the wide applicability and the power of semidefinite programming for combina-

torial optimization problems. Our use of semidefinite programming relaxations

was inspired by these papers, and by the paper of Alizadeh [1995].

For MAX CUT, the semidefinite programming relaxation we consider is

equivalent to an eigenvalue minimization problem proposed by Delorme and

Poljak [1993a; 1993b]. An eigenvalue minimization problem consists of mini-

mizing a decreasing sum of the eigenvalues & of a matrix subject to equality

constraints on the matrix; that is, minimizing xi rni Ai, where Al > A2 > “.” >

h. and ml >mz > ““” > m. > 0. The equivalence of the semidefinite pro-

gram we consider and the eigenvalue bound of Delorme and Poljak was

established by Poljak and Rendl [1995a]. Building on work by Overton and

Womersley [1992; 1993], Alizadeh [1995] has shown that eigenvalue minimiza-

tion problems can in general be formulated as semidefinite programs. This is

potentially quite useful, since there is an abundant literature on eigenvalue

bounds for combinatorial optimization problems; see the survey paper by

Mohar and Poljak [1993].

As shown by Poljak and Rendl [1994; 1995b] and Delorme and Poljak

[1993 c], the eigenvalue bound provides a very good bound on the maximum cut

in practice. Delorme and Poljak [1993a; 1993b] study the worst-case ratio

between the maximum cut and their eigenvalue bound. The worst instance they

are aware of is the 5-cycle for which the ratio is

32
= 0.88445 ...,

25 + 56

but they were unable to prove a bound better than 0.5 in the worst case. Our

result implies a worst-case bound of a, very close to the bound for the 5-cycle.

1See, for example, Nesterov and Nemirovskii [1994], Boyd et al. [1994], Vandenberghe and Boyd
~1996],and Alizadeh [1995], and the references therein.

See, for example, Lov&z and Schrijver [1989; 1990], Alizadeh [1995], Poljak and Rendl [1995a],
Feige and Lowisz [1992], and Lovfisz [1992].
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The above discussion on the worst-case behavior indicates that straightfom--

ward modifications of our technique will not lead to significant improvements

in the MAX CUT result. Furthermore, MAX CUT, MAX 2SAT, and MAX

DICLJT are MAX SNP-hard [1991], and so it is known that there exists a

constant c < 1 such that a c-approximation algorithm for any of these prob-

lems would imply that P = NP [Arora et al. 1992]. Bellare et al. [unpublished

manuscript] have shown that c is as small as 83/84 for MAX CUT and 95/!16

for MAX 2SAT. Since bidirected instances of MAX DICUT are equivalent to

instan~ces of MAX CUT, the bound for MAX CUT also applies to MAX

DIC~JT.

Since the appearance of an abstract of this paper, Feige and Goemans [1995]

have extended our technique to yield a .931 -approximation algorithm for MAX

2SAT and a .859-approximation algorithm for MAX DICUT. By using semidef-

inite programming and similar rounding ideas, Karger -et al. [1994] have been

able to show how to color a k-colorable graph with 0( n* – ‘3’(~ + 1))) colors in

polynomial time. Frieze and Jerrum [1996] have used the technique to devise

approximation algorithms for the maximum k-way cut problem that improve on

the best previously known 1 – l/k performance guarantee. Chor and Sudan

[1995] apply ideas from this paper to the “betweenness” problem. Thus, it

seems likely that the techniques in this paper will continue to prove useful in

designing approximation algorithms.

We expect that in practice the performance of our algorithms will be much

better than the worst-case bounds. We have performed some preliminary

computational experiments with the MAX CUT algorithm which show that cm

a number of different types of random graphs the algorithm is usually within

.96 of the optimal solution.

A preliminary version of this paper [Goemans and Williamson 1994a] pre-

sented a method to obtain deterministic versions of our approximation algo-

rithm with the same performance guarantees. However, the method given had

a subtle error, as was pointed out to us by several researchers. Mahajan and

Ramesh [1995] document the error and propose their own derandomizaticm

schem~e for our algorithms.

The paper is structured as follows: We present the randomized algorithm for

MAX CUT in Section 2, and its analysis in Section 3. We elaborate on our

semidefinite programming bound and its relationship with other work on the

MAX CUT problem in Section 4. The quality of the relaxation is investigated

in Section 5, and computational results are presented in Section 6. In Section 7,

we show how to extend the algorithm to an algorithm for MAX 2SAT, MAX

SAT, MAX DICUT, and other problems. We conclude with a few remarks and

open lproblems in Section 8.

2. The Randomized Approximation Algorithm for MXX CUT

Given a graph with vertex set V = {1,..., n} and nonnegative weights Wij ~ ~<ji

for each pair of vertices i and j, the weight of the maximum cut w(S, S) N

given by the following integer quadratic program:

Maximize ~ ~,wij(l - .Yiyj)

1<J

(Q) subject to: yi c { – 1, 1} Vi G V.
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To see this, note that the set S = {il yi = 1} corresponds to a cut of weight

~(S,S) = ~ ~i< j W~j(l – Yiyj).

Since solving this integer quadratic program is NP-complete, we consider

relaxations of (Q). Relaxations of (Q) are obtained by relaxing some of the

constraints of (Q), and extending the objective function to the larger space;

thus, all possible solutions of (Q) are feasible for the relaxation, and the

optimal value of the relaxation is an upper bound on the optimal value of (Q).

We can interpret (Q) as restricting Yi to be a l-dimensional vector of unit

norm. Some very interesting relaxations can be defined by allowing yi to be a

multidimensional vector Ui of unit Euclidean norm. Since the linear space

spanned by the vectors Ui has dimension at most n, we can assume that these

vectors belong to R” (or Rm for some m < n), or more precisely to the
n-dimensional unit sphere S. (or S~ for m s n). To ensure that the result-

ing optimization problem is indeed a relaxation, we need to define the ob-

jective function in such a way that it reduces to ~ ~i. j Wij(l – yiyj) in the

case of vectors lying in a l-dimensional space. There are several natural

ways of guaranteeing this property. For example, one can replace (1 – yiyj) by

(1 – u, “ Uj), where u, “ Uj represents the inner product (or dot product) of ~i

and Vj. The resulting relaxation is denoted by (P):

Maximize ~ >, Wij(l - U, “ ‘j)
Z<J

(P) subject to: Ui G S. Vi E V.

We will show in Section 4 that we can solve this relaxation using semidefinite

programming. We can now present our simple randomized algorithm for the

MAX CUT problem.

(1) Solve (P), obtaining an optimal set of vectors Ui.

(2) Let r be a vector uniformly distributed on the unit sphere S..

(3) Set S = {il.ZJi “r > O}.

In other words, we choose a random hyperplane through the origin (with r as

its normal) and partition the vertices into those vectors that lie “above” the

plane (i.e., have a nonnegative inner product with r) and those that lie “below”

it (i.e., have a negative inner product with r). The motivation for this random-
ized step comes from the fact that (P) is independent of the coordinate system:

applying any orthonormal transformation to a set of vectors results in a

solution with the same objective value.

Let W denote the value of the cut produced in this way, and E[W] its

expectation. We will show in Theorem 3.1 in Section 3 that, given any set of
vectors Ui ● S., the expected weight of the cut defined by a random hyperplane

is

arccos( ui - uj )
E[W] = ~wij

i <j T

We will also show in Theorem 3.3 that

E[W] > a“ : ~wij(l – Ui”uj),
1<]
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where

26
~=”— > .878.

0%. %- 1 – Cos 8

If Z; ~ is the optimal value of the maximum cut and Z; is the optimal value of

the relaxation (P), then since the expected weight of the cut generated by the

algorithm is equal to E[ W] > aZj > aZ~c, the algorithm has a performance

guarantee of a for the MAX CUT problem.

We must argue that the algorithm can be implemented in polynomial timle.

We assume that the weights are integral. In Section 4, we show that the

program (P) is equivalent to a semidefinite program. Then we will show that,

by using an algorithm for semidefinite programming, we can obtain, for any

E > 0, a set of vectors Ui’s of value greater than 2$ – E in time polynomial in

the input size and log l/~. On these approximately optimal vectors, the

randclmized algorithm will produce a cut of expected value greater than or

equal to a (Z; – e) z ( a – e )Z~c. The point on the unit sphere S. can be

generated by drawing n values xl, X2, ..., x. independently from the standard

normal distribution, and normalizing the vector obtained (see Knuth [1981, p.

130]); for our purposes, there is no need to normalize the resulting vector x.

The standard normal distribution can be simulated using the uniform distribu-

tion between O and 1 (see Knuth [1981, p. 117]). The algorithm is thus a

randomized ( a – e)-approximation algorithm for MAX CUT,

3. Analysis of the Algorithm

In this section, we analyze the performance of the algorithm. We first analyze

the general case and then consider the case in which the maximum cut is large

and the generalization to negative edge weights. We conclude this section with

a new formulation for the MAX CUT problem.

Let {ul,..., u.} be any vectors belonging to S., and let E[W] be the expected

value of the cut w(S, ~) produced by the randomized algorithm given in the

previcms section. We start by characterizing the expected value of the cut.

THEOREM 3.1

Given a vector r drawn uniformly from the unit sphere S., we know by the

linearity of expectation that

E[W’] = ~wij “ pr[sgn(ui “ r) + sgn(~j “ r)],
i <j

where sgn(x) = 1 if x >0, and – 1 otherwise. Theorem 3.1 is thus implied by

the following lemma.

LEMMA 3.2

Pr[sgn(ui” r) # sgn(uj” r)] = +arccos(ui cuj).
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PROOF. A restatement of the lemma is that the probability the random

hyperplane separates the two vectors is directly proportional to the angle be-

tween the two vectors; that is, it is proportional to the angle f3 = arccos( Ui “ Uj).

By symmetry, Pr[sgn(ui” r-) # sgn( Uj “ r)] = 2 Pr[ Ui . r >0, Uj” r < O]. The set

{r: u,. r >0, Uj “ r < O} corresponds to the intersection of two half-spaces whose

dihedral angle is precisely 6; its intersection with the sphere is a spherical

digon of angle O and, by symmetry of the sphere, thus has measure equal to

t9/2m times the measure of the full sphere. In other words, Pr[ui .
r >0, Uj . r < O] = t9/2T, and the lemma follows. ❑

Our main theorem is the following: As we have argued above, this theorem

applied to vectors Ui’s of value greater than Z: – ~ implies that the algorithm

has a performance guarantee of a – ●. Recall that we defined

20
~=”—

03% m 1 – Cos 19”

THEOREM 3.3

E[W’] > + ~,wij(l – Ui”uj).
c<j

By using Theorem 3.1 and the nonnegativity of Wij, the result follows from

the following lemma applied to y = vi oUj.

LEMMA 3.4. For – 1 s y s 1, 1 arccos(y)\m > a” +(1 – y).

PROOF. The expression for a follows straightforwardly by using the change

of variables cos 6 = y. See Figure 1, part (i). ❑

The quality of the performance guarantee is established by the following

lemma.

LEMMA 3.5. a >.87856.

PROOF. Using simple calculus, one can see that a achieves its value for

9 = 2.331122..., the nonzero root of cos 6 + (3sin 6 = 1. To formally prove

the bound of 0.87856, we first observe that

26
— >1
%-1- COSO

for O < 6 s 7r/2. The concavity of ~(~) = 1 – cos 0 in the range 7r/2 s (3 s n-

implies that, for any O., we have ~(13) s ~(do) + ($ – 00)~’( 6), or 1 – cos 9 s

1 – cos 190+ (0 – t90)sin /30 = 9 sin 190+ (1 – cos 00 – 60sin 6.). Choosing f30
= 2.331122 for which 1 – cos 130– OOsin 00<0, we derive that 1 – cos O <

0 sin O., implying that

2
a> >0.87856. ❑

T sin 130

We have analyzed the expected value of the cut returned by the algorithm.

For randomized algorithms, one can often also give high probability results. In

this case, however, even computing the variance of the cut value analytically is

difficult. Nevertheless, one could use the fact that W is bounded (by ~i. j Wij)

to give lower bounds on the probability that W is less than (1 – ●)E[W].
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FIG. 1. (i) Plot of z = arccos(y)\~ as a function of t = ~(1 – y). The ratio z/t is thus the slope
of the line between (O,O) and (z, t). The minimum slope is precisely a = 0.742/0.844 and
corresponds to the dashed line. (ii) The plot also represents h(t) = arccos(l – 2t)/ r as ~
functi,on of t.As tapproaches 1, h(t)/t also approaches 1. (iii) The dashed line corresponds to h
between Oand y = .844.

3.1 ANALYSIS WHEN THE MAXIMUM CUT Is LARGE. We can refine the

analysis and prove a better performance guarantee whenever the value of the

relaxation (P) constitutes a large fraction of the total weight. Define JJ&

= ~i. j wij and h(t) = arccos(l - 2t)/m. Let y be the value of t attaining

the minimum of h(t)/t in the interval (O, 1]. The value of y is approximately

.84458.

THIEOREM 3.1.1. Let

A= #-g,wijl-; ””j<
tot1<J

IfA z y, then

The theorem implies a performance guarantee of h(A)/A – c when A > y.

As A varies between y and 1, one easily verifies that h(A)\xl varies between
a and 1 (see Figure 1, part (ii)).

PROOF. Letting A, = wij/ WtOt and x, = (1 – Ui” Uj)/2 for e = (i, j), we

can rewrite A as A = ~, A=X,. The expected weight of the cut produced by
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the algorithm is equal to

arccos( Ui cvj ) arccos(l – 2X, )
E[w] = ~w[j = Wtot ~ Ae

i cj T e ‘i-r

—. w&~AJz(xe).
e

To bound E[w], we evaluate

Min ~A.h(x.)

subject to: ; A~xg = A
e

O<xe <l.

Consider the rel~xation obtained by replacing h(t) by the largestx (pointwise)

convex function k(t) smaller or equal to h(t). It is easy to see that h(t) is linear

with slope a between O and y, and then equal to h(t) for any t greater than y.

See Figure 1, part (iii). But for A > y,

()
~A#(.x.) > ~&fi(x,) a k ~&xg = Z(A) = h(A),
e c e

where we have used the fact that ~e A, = 1, A. > 0 and that & is a convex

function. This shows that

E[w] > wtot/z(z4) = yp,wi,y’,
Z<J

proving the result. ❑

3.2 ANALYSIS FOR NEGATIVE EDGE WEIGHTS. So far, we have assumed that

the weights are nonnegative. In several practical problems, some edge weights

are negative [Barahona et al. 1988]. In this case the definition of the perfor-

mance guarantee has to be modified since the optimum value could be positive

or negative. We now give a corresponding generalization of Theorem 3.3 to

arbitrary weights.

THEOREM 3.2.1. Let W.= xi. j Wij, where x- = nzirz(O, x). Then

/ ){E[W] – W.} z ~ ~~~ij(l –ui. uj) – W. .

PROOF. The quantity E[w] –

arccos( ~i “ Uj )
~ I’vij ~

i<j:wij>o

\Li<j I

W. can be written as

( )
+ ~ l~,jl ~ _ arccos(ui “ ‘j) .

i<j:wi, <O %-
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(zSimilarly, ~ i< j Wij(l – Ui “ Uj) – W_) is equal to

I–vi”vj
~wij2+

i<,~j<O1’’’’ijll ‘~ “ ‘j .i<j:wij>O

The result therefore follows from Lemma 3.4 and the following variation of

it. El

LEMMA 3.2.2. For – 1 s z s 1, 1 – 1 arccos(z)/m > a” ~(1 + z).

PROOF. The lemma follows from Lemma 3.4 by using a change of variables

z = --y and noting that m – arccos(z) = arccos( –z). ❑

3.3 A NEW FORMULATION OF MAX CUT. An interesting consequence of

our analysis is a new nonlinear formulation of the maximum cut problem.

Consider the following nonlinear program:

Maximize

(R) subject to:

arccos( Ui “ vi)
~wij ~
i <j

Let Zj$ denote the optimal value of this program.

T13E0REM 3.3.1. Z: = Z~c.

PROOF. We first show that Z: > Z*MC. This follows since (R) is a relaxation

of (Q): the objective function of (R) reduces to ~ xi< j Wij (1 – Uivj) in the

case of vectors .vi lying in a l-dimensional space.

TO see that z: ~ Z&C> 1A the VeCtOrS Vi denote the optimal solution to (~~).
From Theorem 3.1, we see that the randomized algorithm gives a cut whose

expected value is exactly Z;, implying that there must exist a cut of value at

least Z:. ❑

4. Relaxations and Duality

In this section, we address the question of solving the relaxation (P). We do so

by showing that (P) is equivalent to a semidefinite program, We then explore

the dual of this semidefinite program and relate it to the eigenvalue minimiza-

tion bound of Delorme and Poljak [1993a; 1993b].

4.1 SOLVING THE RELAXATION. We begin by defining some terms and

notation. All matrices under consideration are defined over the reals. An

n x n matrix A is said to be positive semidefinite if for every vector x = R”,

X%.X :20. The following statements are equivalent for a symmetric matrix A

(see, e.g., Lancaster and Tismenets@ [19851); (i) A is positive semidefinite, (ii)
all eigenvalues of A are nonnegative, and (iii) there exists a matrix B such that

A = J?TB. In (iii), B can either be a (possibly singular) n X n matrix, or an
m X n matrix for some rrz < n. Given a symmetric positive semidefinit e matrix

A, an m x n matrix B of full row-rank satisfying (iii) can be obtained in 0(rz3)

time using an incomplete Cholesky decomposition [Golub and Van Loan 1983,

p. 90, P5.2-3].
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Using the decomposition Y = BTB, one can see that a positive semidefinite

Y with y,, = 1 corresponds precisely to a set of unit vectors UI, . . . . u. = S~:

simply correspond the vector Ui to the ith column of B. Then yij = ZJi. Uj. The

matrix Y is known as the Gram matrix of {u,, ..., u.} [Lancaster and Tismenet-

sky 1985, p. 110]. Using

semidefinite program:

Z: = Max ; ~,wij(l
G<]

(SD)

subject to :yii = 1

this equivalence;

– y~j)

we ;ai reformulate (P) as a

Y symmetric positive semidefinite

where Y = (y,j). The feasible solutions to (SD) are often referred to as

correlation matrices [Grone et al. 1990]. Strictly speaking, we cannot solve (SD)

to optimality in polynomial time; the optimal value Z; might in fact be

irrational. However, using an algorithm for semidefinite programming, one can

obtain, for any ~ >0, a solution of value greater than Z: – ● in time

polynomial in the input size and log l/~. For example, Alizadeh’s adaptation of
Ye’s interior-point algorithm to semidefinite programming [Alizadeh 1995]

performs O(&(log WtOt + log l/~)) iterations. By exploiting the simple struc-

ture of the problem (SD) as is indicated in Rendl et al. [1993] (see also

Vandenberghe and Boyd [1996, Sect. 7.4]), each iteration can be implemented

in 0(n3) time. Once an almost optimal solution to (SD) is found, one can use

an incomplete Cholesky decomposition to obtain vectors u ~, ..., u. E S~ for

some m s n such that

Among all optimum solutions to (SD), one can show the existence of a

solution of low rank. Grone et al. [1990] show that any extreme solution of

(SD) (i.e., which cannot be expressed as the strict convex combination of other
feasible solutions) has rank at most 1 where

1(1 + 1)
~ n,

2

that is,

For related results, see Li and Tam [1994], Christensen and Vesterstr@m [1979],

Loewy [1980], and Laurent and Poljak [1996]. This means that there exists a

primal optimum solution Y* to (SD) of rank less than m, and that the

optimum vectors u, of (P) can be embedded in R!~ with m < ~. This result

also follows from a more general statement about semidefinite programs due

to Barvinok [1995] and implicit in Pataki [1994]: any extreme solution of a

semidefinite program with k linear equalities has rank at most 1 where
1(1 + 1)/2 < k.
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4.2 THE SEMIDEFINITE DUAL. As mentioned in the introduction, there is an

elegant duality theory for semidefinite programming. We now turn to dis-

cussing the dual of the program (SD). It is typical to assume that the objective

function of a semidefinite program is symmetric. For this purpose, we can

rewrite the objective function of (SD) as ~ ~ ~. * ~~. ~ ~ij(l — yij), or even as

~~01 – ~ ~ ~ ~ j ~ijyij. In matrix form, the objective function can be com~e-

niently written as ~ WtOt – ~Tr(WY), where W = (wij) and Tr denotes the

trace.

The dual of (SD) has a very simple description:

(D) subject to: W + diag( y ) positive semidefinite,

where diag( y ) denotes the diagonal matrix whose ith diagonal entry is Yi. The

dual has a simple interpretation. Since W + diag(y) is positive semidefinite, it

can be expressed as C ‘C; in other words, the weight Wij can be viewed as Ci ~Cj
for some vectors Ci’s and -yi = Ci. Ci = llci112. The weight of any cut is thus

w(S, ~) = ( z ~6s ci) . ( ~j ~s cj), which is never greater than

Showing weak duality between (P) and (D), namely that Z: < Z:, is easy.

Consider any primal feasible solution Y and any dual vector y. Since both Y

and W + diag( y) are positive semidefinite, we derive that Tr((diag( y) + W)Y)
z O l(see Lancaster and Tismenetsky [1985, p. 218, ex. 14]). But Tr((diag( y) +

W)Y) = Tr(diag(y)Y) + Tr(WY) = xi yi + Tr(WY), implying that the clif-

ference of the dual objective function value and the primal objective function

value is nonnegative.

For semidefinite programs in their full generality, there is no guarantee that

the primal optimum value is equal to the dual optimum value. Also, the

maximum (respectively, minimum) is in fact a supremum (respectively, irlfi-

mum) and there is no guarantee that the supremum (respectively, infimum)l is

attained. These, however, are pathological cases. Our programs (SD) and (D)

behave nicely; both programs attain their optimum values, and these values are
equal (i.e., Z; = Z:). This can be shown in a variety of ways (see Poljak and

Rendl [1995a], Alizadeh [19951, and Barvinok [1995]).

Given that strong duality holds in our case, the argument showing weak

duality implies that, for the optimum primal solution Y* and the optimum dual

solution y*, we have Tr((diag(y *) + W) Y*) = 0. Since both diag(y *) + W

and Y* are positive semidefinite, we derive that (diag(y *) + W)Y* = O (see

Lancaster and Tismenetsky [1985, p. 218, ex. 14]). This is the strong form of

complementary slackness for semidefinite programs (see Alizadeh [1995]); the

component-wise product expressed by the trace is replaced by matrix multipli-

cation. This implies, for example, that Y* and diag( y *) + W share a system of
eigenvectors and that rank(Y*) + rank(diag(y *) + W) s n.

4.3 THE EIGENVALUE BOUND OF DELORME AND POLJAK. The relaxation

(D) (and thus (P)) is also equivalent to an eigenvalue upper bound on the
value of the maximum cut Z~c introduced by Delorme and poljak [1993a;

1993 b]. To describe the bound, we first introduce some notation. The Lapla-
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cian matrix L = (lij) is defined by lij = – Wij for i # j and lij = ~. ~ wj~.

The maximum eigenvalue of a matrix A is denoted by A~QX(A).

LEMMA 4.3.1 [DELORME AND POLJAK [1993b].] Let u G R“ satisfv U1

+ ... +Ufl = O. Then

;A~~X (L + diag(u))

is an upper bound on Z&c.

PROOF. The proof is simple. Let y be an optimal solution to the integer

quadratic program (Q). Notice that y~Ly = 4Z~c. By using the Rayleigh

principle ( A~~X(M) = mullXll= ~ x~lvfx), we obtain

A~.X(L + diag(u)) z
y~(L + diag(u))y

YTY

1

-[

n
— . yTLy + ~ Jj2Ui

n izl I

4Z;C

n’
proving the lemma. ❑

A vector u satisfying ~= ~ Ui = O is called a correcting uector. Let g(u) =

(n/4)&X(L + diag(u)). The bound proposed by Delorme and Poljak [1993b]
is to optimize g(u) over all correcting vectors:

Z&~ = Inf g(u)

(EIG) subject to: ~ Ui = O.
i=l

As mentioned in the introduction, eigenvalue minimization problems can be

formulated as semidefinite programs. For MAX CUT, the equivalence between

(SD) and (lSIG) was established by Poljak and Rendl [1995a].
For completeness, we derive the equivalence between (lZIG) and the dual

(D). For the optimum dual vector -y*, the smallest eigenvalue of diag( y *) + TV

must be O, since otherwise we could decrease all yi* by some ~ > 0 and thus

reduce the dual objective function. This can be rewritten as A~~x( – w –

diag(y ’)) = O. Define A as ( ~i y; + 2W,0,)/rz. By definition, Z; = nA/4.

Moreover, defining Ui = A – y: – ~j HJ,j, one easilJ verifies that xi u, = O
and that – W – diag(y”) = L + diag(u) – AI, implying that &~X(L +

diag(u)) = A. This shows that Z*EIG < z:. The converse inequality follows by
reversing the argument.

5. Qualip of the Relaxation

In this section we consider the tightness of our analysis and the quality of the

semidefinite bound Z:. Observe that Theorem 3.3 implies the following

corollaqr

COROLLARY 5.1. For any instance of MAX CUT,

Z;c
—> Q!.
z;
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Fc}r the 5-cycle, Delorme and Poljak [1993b] have shown that

Z;c 32
— .
Z;IG 25 + 56

= 0.88445 ...,

1:129

implying that our worst-case analysis is almost tight. One can obtain this bound

from~ the relaxation (P) by observing that for the 5-cycle 1–2–3–4–5–l, the

optimal vectors lie in a 2-dimensional subspace and can be expressed as

‘=(cos(asin(:))
fori=l,,,.,5

Since Z~r = 4

corresponding to

“=%+cosa=25+:fi
for the 5-cycle, this yields the bound of Delorme and Poljak.

Delclrme and Poljak have shown that

Z;c 32

Z;IG 2 25 + 56

holds for special subclasses of graphs, such as planar graphs or line graphs.

However, they were unable to prove a bound better than 0.5 in the absolute

worst-case.

Although the worst-case value of Z&c\Z~ is not completely settled, there

exist instances for which E[ W ]\Z~ is very close to a, showing that the

analysis of our algorithm is practically tight. Leslie Hall (personal communica-

tion) has observed that E[W]/Z~ = .8787 for the Petersen graph [Bondy and

Murty 1976, p. 55]. In Figure 2, we give an unweighed instance for which the

ratio is less than ,8796 in which the vectors have a nice three-dimensional

representation. We have also constructed a weighted instance on 103 vertices

for which the ratio is less than .8786. These two instances are based on strongly

self-dual polytopes due to Loviisz [1983]. A polytope P in R” is said to be

strongly self-dual [Lcn&z 1983], if (i) P is inscribed in the unit sphere, (ii) P is

circumscribed around the sphere with origin as center and with radius r for

some O < r z 1,and (iii) there is a bijection o between vertices and facets of

P such that, for every vertex o of P, the facet u(u) is orthogonal to the vector

u. Fcjr example, in R 2, the strongly self-dual polytopes are precisely the regular

odd :polygons. One can associate a graph G = (V, E) to a self-dual polytope P:

the vertex set V corresponds to the vertices of P and there k an edge (u, w) if

w belongs to the facet u(u) (or, equivalently, u belongs to u(w)). For the

regular odd polygons, these graphs are simply the odd cycles. Because of

conditions (ii) and (iii), the inner product u “ w for any pair of adjacent vertices

is eqpal to – r. As a result, a strongly self-dual polytope leads to a feasilble

solution of (P) of value ((1 + r)/2)WtOt. LOV6SZ [1983] gives a recursive

construction of a class of strongly self-dual polytopes. One can show that, by

choosing the dimension n large enough, his construction leads to strongly

self-dual polytopes for which r is arbitrarily close to the critical value giving a

bound of a. However, it is unclear whether, in general, for such polytopes,

nonnegative weights can be selected such that the vectors given by the polytope
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5
3

FIG. 2. Graph on 11 vertices for which the ratio E[w]/z~ is less than .8796 in the unweighed
case. The convex hull of the optimum vectors is depicted on the right; the circle represents the
center of the sphere.

constitute an optimum solution to (P). Nevertheless, we conjecture that such

instances lead to a proof that E[ W]/Z~ can be arbitrarily close to a. Even if

this could be shown, this would not imply anything for the ratio Z~c/Z~.

6. Computational Results

In practice, we expect that the algorithm will perform much better than the

worst-case bound of a. Poljak and Rendl [1994; 1995b] (see also Delorme and

Poljak [1993 c]) report computational results showing that the bound Z~I~ is

typically less than 2-5% and, in the instances they tried, never worse than 8%

away from Z~c. We also performed our own computational experiments, in

which the cuts computed by the algorithm were usually within 4% of the

semidefinite bound Z;, and never less than 9% from the bound. To implement

the algorithm, we used code supplied by Vanderbei [Rendl et al. 1993] for a

special class of semidefinite programs. We used Vanderbei’s code to solve the

semidefinite program, then we generated 50 random vectors r. We output

the best of the 50 cuts induced. We applied our code to a small subset of the
instances considered by Poljak and Rendl [1995 b]. In particular, we considered

several different types of random graphs, as well as complete geometric graphs

defined by Traveling Salesman Problem (TSP) instances from the TSPLIB (see

Reinelt [1991]).

For four different types of random graphs, we ran 50 instances on graphs of

50 vertices, 20 on graphs of size 100, and 5 on graphs of size 200. In the Type A
random graph, each edge (i, j) is included with probability 1/2. In the Type B

random graph, each edge is given a weight drawn uniformly from the interval

[– 50, 50]; the ratio of Theorem 3.2.1 is used in reporting nearness to the

semidefinite bound. In the Type C random graph of size n > 10, an edge (i, j)

is included with probability 10/n, leading to constant expected degree. Finally,

in the Type D random graphs, an edge (i, j) is included with probability .1 if
i s n/2 and j > n/2 and probability .05 otherwise, leading to a large cut

between the vertices in [1,..., n\2] and those in [n/2 + 1,..., ~]. We summa.

rize the results of our experiments in Table I. CPU Times are given in CPU

seconds on a Sun SPARCstation 1.
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TABLE I. SUMMARY OF RESULTSOF ALGORITHM ON RANDOM INSTANCES

Type of Graph Size Num ‘lkials Ave Int Gap Ave CPU Time

50 50 .96988 36.28

Type A 100 20 .96783 323.08

200 5 .97209 4629.62

50 50 .97202 23.06

Type B 100 20 .97097 217.42

200 5 .97237 2989.00

50 50 .95746 23.53

Type C 100 20 .94214 306.84

200 5 .92362 2546.42

50 50 .95855 27.35

Type D 100 20 .93984 355.32

200 5 .93635 10709.42

NOTE: Ave Int Gap is the average ratio of the value of the cut generated to
the semidefinite bound, except for Type B graphs, where it is the ratio of the
value of the cut generated minus the negative edge weights to the semidefinite
bound minus the negative edge weights.

In the case of the TSP instances, we used Euclidean instances from ‘the

TSPILIB, and set the edge weight Wij to the Euclidean distance between the

points i and j. We summarize our results in Table II. In all 10 instances, we

compute the optimal solution; for 5 instances, the value of the cut produceti is

equal to 2$, and for the others, we have been able to exploit additional

information from the dual semidefinite program to prove optimality (for the

problems dantzig42, gr48 and hk48, Poljak and Rendl [1995b] also show tlhat

our fsolution is optimal). For all TSPLIB instances, the maximum cut value is

within .995 of the semidefinite bound, Given these computational results, it is

tempting to speculate that a much stronger bound can be proven for these

Euclidean instances. However, the instance defined by a unit length equilateral

triangle has a maximum cut value of 2, but Z; = ~, for a ratio of $ = 0.8889.

Homer and Peinado [unpublished manuscript] have implemented our algo-

rithm on a CM-5, and have shown that it produces optimal or very neau-ly

optimal solutions to a number of MAX CUT instances derived from via

minimization problems. These instances were provided by Michael Junger

(personal communication) and have between 828 and 1366 vertices.

7. Generalizations

We can use the same technique as in Section 2 to approximate several otlher

problems. In the next section, we describe a variation of MAX CUT and give
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TABLE II. SUMMARY OF RESULTSOF
ALGORITHM ON TSPLIB INSTANCES

Instance Size SD Val Cut Val Time

dantzig42 42 42638 42638 43.35

gr120 120 2156775 2156667 754.87

gr48 48 321815 320277 26.17

gr96 96 105470 105295 531.50

hk48 48 771712 771712 66.52

kroAIOO 100 5897392 5897392 420.83

kroBIOO 100 5763047 5763047 917.47

kroCIOO 100 5890760 5890760 398.7,8

kroDIOO 100 5463946 5463250 469.48

kroEIOO 100 5986675 5986591 375.68

NOTE: SD Val is the value produced by the
semidefinite relaxation. Cut Val is the value of
the best cut output by the algorithm.

an ( a – ●)-approximation algorithm for it. In Section 7.2, we give an ( a – ~)-

approximation algorithm for the MAX 2SAT problem, and show that it leads to

a slightly improved algorithm for MAX SAT. Finally, in Section 7.3, we give a

(/3 - c)-approximation algorithm for the maximum directed cut problem (MAX
DICUT), where ~ >.79607. In all cases, we will show how to approximate

more general integer quadratic programs that can be used to model these

problems.

7.1 MAX RES CUT. The MAX RES CUT problem is a variation of MAX

CUT in which pairs of vertices are forced to be on either the same side of the

cut or on different sides of the cut. The extension of the algorithm to the MAX

RES CUT problem is trivial. We merely need to add the following constraints

to (P): Ui . Uj = 1 for (z, j) = E+ and Ui . Vj = –1 for (i, j) c E-, where E+

(respectively, E-) corresponds to the pair of vertices forced to be on the same
side (respectively, different sides) of the cut. Using the randomized algorithm
of Section 2 and setting yj = 1 if r . Ui > 0, and yi = – 1 otherwise, gives a

feasible solution to MAX RES CUT, assuming that a feasible solution exists.

Indeed, it is easy to see that if u, oUj = 1, then the algorithm will produce a

solution such that y, yj = 1. If Ui “ Uj = – 1, then the only case in which the

algorithm produces a solution such that yiyj # — 1 is when Ui . r = Uj “ r = O, an

event that happens with probability O. The analysis of the expected value of the

cut is unchanged and, therefore, the resulting algorithm is a randomized

(a – ~)-approximation algorithm.
Another approach to the problem is to use a standard reduction of MAX

RES CUT to MAX CUT based on contracting edges and “switching” cuts (see,
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e.g. [Poljak and Rendl to appear]). This reduction introduces negative edge

weights and so we do not discuss it here, although Theorem 3.2.1 can be used

to show that our MAX CUT algorithm applied to a reduced instance has a

performance guarantee of ( a – e) for the original MAX RES CUT instance.

In fact, a more general statement can be made: any p-approximation algorithm

(in the sense of Theorem 3.2.1) for MAX CUT instances possibly having

negative edge weights leads to a p-approximation algorithm for MAX RES

CUT.

7.2 MAX 2SAT AND MAX SAT. An instance of the maximum satisfiabillity

problem (MAX SAT) is defined by a collection & of Boolean clauses, where

each clause is a disjunction of literals drawn from a set of variables

{X*, X2,..., x.}. A literal is either a variable x or its negation Z The length

/(Cj) of a clause Cj is the number of distinct Iiterals in the clause. In addition,

for each clause Cj ● % there is an associated nonnegative weight ~j. An

optimal solution to a MAX SAT instance is an assignment of truth values to

the variables xl, ..., x. that maximizes the sum of the weight of the satisfied

clauses. MAX 2SAT consists of MAX SAT instances in which each clause has

length at most two. MAX 2SAT is NP-complete [Garey et al. 1976]; the best

approximation algorithm known previously has a performance guarantee of ~

and is due to Yannakakis [1994] (see also Goemans and Williamson [199412]).

As with the MAX CUT problem, MAX 2SAT is known to be MAX SNP-hard

[Papadimitriou and Yannakakis 1991]; thus, there exists some constant c ‘< 1

such that the existence of a c-approximation algorithm implies that P = NP

[Arora et al. 1992]. Bellare et al. [unpublished manuscript] have shown that a

95\96-approximation algorithm for MAX 2SAT would imply P = NP. Haglin

[1992] and Haglin (personal communication) has shown that any p-approxinaa-

tion algorithm for MAX RES CUT can be translated into a p-approximation

algorithm for MAX 2SAT, but we will show a direct algorithm here. Haglin’s

observation together with the reduction from MAX RES CUT to MAX CUT

mentioned in the previous section shows that any p-approximation for MAX

CUT with negative edge weights translates into a p-approximation algorithm

for MAX 2SAT.

7.2,.1 MAX 2SAT. In order to model MAX 2SAT, we consider the integer

quadratic program

Maximize ~ [aij(l - yiyj) + b,j(l + y,yj)]
i <j

(Q’) subject to: yi ● { – 1, 1} Vi = V,

where ai j and bi j are nonnegative. The objective function of (Q’) is thus a

nonnegative linear form in 1 ~ yi yj. To model MAX 2SAT using (Q ‘), we

introduce a variable yi in the quadratic program for each Boolean variable xi
in the 2SAT instance; wc also introduce an additional variable y.. The value of

y. will determine whether – 1 or 1 will correspond to “true” in the MAX

2SAT instance. More precisely, xi is true if y, = y. and false otherwise. Given

a Boolean formula C, we define its value u(C) to be 1 if the formula is true
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and O if the formula is false. Thus,

1 + YOYi
Z)(xi) =

2

and

1 – YOYi
Z)(ii) = 1 – Z)(xi) = z .

Observe that

1 – YOYi 1 – YOYj
/J(Xi VXj) = 1 – u(~i A~j) = 1 – U(Zi)U(Zj) = 1 – *

2

1
.—

(3 + yo.yj + YOYj – YtYiYj
4 )

l+ YOYi + l+ YOYj + l–YiYj——
4 4 4“

The value of other clauses with 2 literals can be similarly expressed; for

instance, if xi is negated one only needs to replace yi by – yi. Therefore, the

value u(C) of any clause with at most two literals per clause can be expressed

in the form required in (Q ‘). As a result, the MAX 2SAT problem can be

modelled as

Maximize ~ Wjv(cj)
C,e’?z

(SAT) subject to: yi G { – 1, 1} Vi={o,l,..., n},

where the U(Cj) are nonnegative linear combinations of 1 + yi yj and 1 – yi yj.

The (SAT) program is in the same form as (Q’),

We relax (Q’) to:

Maximize ~ [a,j(l – ZJi“ Uj) + bij(l + u,. .vj)]
i <j

(P’) subject to: Ui e S. Vi = V.

Let E[ V] be the expected value of the solution produced by the randomized

algorithm. By the linearity of expectation,

E[V] = 2~aijPr[sgn(ui ‘ r) # sgn(uj . r)]
i cj

+ 2~bijPr[sgn(ui . r) = sgn(uj “ r)].
i <j

Using the analysis of the max cut algorithm, we note that Pr[sgn(vi “ r) =

sgn( ~j or)] = 1 – l\m- arccos( Ui “ Uj), and thus the approximation ratio for the
more general program follows from Lemmas 3.4 and 3.2.2.

Hence, we can show the following theorem, which implies that the algorithm

is an ( a – .E)-approximation algorithm for (Q’) and thus for MAX 2SAT.
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THEOREM 7.2.1.1

E[V] > ax [aij(l – Uiwj) + b,$l + Uj .Uj)l.

i <j

7.2.2 MAX SAT. The improved MAX 2SAT algorithm leads to a slightly

imp roved approximation algorithm for MAX SAT. In Goemans and Williamson

[1994b], we developed several randomized ~-approximation algorithms for

MAX SAT. We considered the following linear programming relaxation of the

MAX SAT problem, where 1,+ denotes the set of nonnegated variables in

clause Cj and 1,7 is the set of ‘negated variables in Cj: -

subject to:

By associating yi = 1 with xi set true, yi = O with xi set false, Zj = 1 with

clause Cj satisfied, and Zj = O with clause Cj not satisfied, the program exactly

corresponds to the MAX SAT problem. We showed that for any feasible

solution (y, z), if xi is set to be true with probability yi, then the probability

that clause j will be satisfied is at least

(l-(l-;)’)zj,
for k = l(Cj). We then considered choosing randomly between the following

two algorithms: (1) set xi true independently with probability yi; (2) set xi true

independently with probability ~. Given this combined algorithm, the probabil-

ity that a length k clause is satisfied is at least

;(l-2-k)+;(l-(1 -;)k)zj.

This expression can be shown to be at least ~zj for all lengths k. Thus, if an

optimal solution to the linear program is used, the algorithm results in~ a

~-aplproximation algorithm for MAX SAT, since the expected value of the

algorithm is at least $ ~j WjZj.

We formulate a slightly different relaxation of the MAX SAT problem. Let

u(C) denote a relaxed version of the expression u used in the previous section

in wlhich the products yi yj are replaced by inner products of vectors ~i “ Uj.
Thus,
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and

We then consider the following relaxation,

U(cj) 2 Zj Vcj = %?,l(cj) = 2

Thus, if we set xi to be true with probability U(xi) for the optimal solution to

the corresponding semidefinite program, then by the arguments of Goemans

and Williamson [1994b], we satisfy a clause Cj of length k with probability at

least (1 – (1 – (l\k))~)zj.

To obtain the improved bound, we consider three algorithms: (1) set xi true

independently with probability ~; (2) set xi true independently with probability

U(xi) (given the optimal solution to the program); (3) pick a random unit vector

r and set xi true iff sgn( Ui “ r) = sgn( UO“ r). Suppose we use algorithm i with

probability pi, where pl + pz + pq = 1. From the previous section, for algo-

rithm (3) the probability that a clause Cj of length 1 or 2 is satisfied is at least

a u(Cj) > CYZj. Thus the expected value of the solution is at least

~ ‘j(-5~~ + (p,+ ap’3)zj) + ~ ‘j(.75p~ + (.75~~+ a~~)zj)

j:l(Cj)= 1 j:l(Cj)=2

If we set pl = p, = .4785 and p~ = .0430, then the expected value is at least

.7554 zj wjzj, yielding a .7554-approximation algorithm. To see this, we check

the value of the expression for lengths 1 through 4, and notice that

‘4-(1-3’)-+
and

( ).4785 (1 – 2-5) + 1 – ~ > .7554.
e

We can obtain even a slightly better approximation algorithm for the MAX

SAT problem. The bottleneck in the analysis above is that algorithm (3)

contributes no expected weight for clauses of length 3 or greater. For a given

clause Cj of length 3 or more, let Pj be a set of length 2 clauses formed by
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taking the literals of Cj two at a time; thus, ~ will contain
()

l(cj)
clauses. If at

least one of the literals in Cj is set true, then at least l(cj) –21 of the clauses

in pi will be satisfied. Thus, the following program is a relaxation of the IWAX

SAT problem:

subject to:

~ ‘(x,) + ~ ‘(z,) > ‘j Vcj e f7
i ● 11+ i ● Ij–

U(cj) > Zj Vcj e %’, l(cj) = 2

Vcj e %’,l(cj) >3

Algorithm (3) has expected value of au(C) for each C = Pj for any j, so tlhat

its expected value for any clause of length 3 or more becomes at least

a“ & ~;,u(c) = a oJ 1
()

~u(c)
l(Cj) l(C’j) – 1 ~GPj

1

2]

2
.—

2a l(Cj)zj’

so that the overall expectation of the algorithm will be at least

~ Wj(-5~~ + (~’2+ a~~)zj) + ~ wj(.75p, + (.75p2 + a!p,)zj)

j:l(Cj)= 1 j:l(Cj) = 2

[

+ ~ Wj (1 - 2-’(cJ)p1

j:l(Cj)>3

‘[(1-(1-*]’(c’))P2+ a&P3)zj)

By setting pl = pz = .467 and p~ = .066, we obtain a .7584-approximation

algorithm, which can be verified by checking the expression for lengths 1

through 6, and noticing that

((
.467 1 –

Other small improvements are

1
.

)
+(1–

e

possible by

)2-7) ? .7584.

tightening the analysis.
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7.3 MAX DICUT. Suppose we are given a directed graph G = (V, xl) and

weights Wij on each directed arc (i, j) = A, where i is the tail of the arc and j

k the head. The maximum directed cut problem is that of finding the set of

vertices S that maximizes the weight of the edges with their tails in S and their

heads in ~. The problem is NP-hard via a straightforward reduction from MAX

CUT. The best previously known approximation algorithm for MAX DICUT

has a performance guarantee of ~ [Papadimitriou and Yannakakis 1991].

To model MAX DICUT, we consider the integer quadratic program

+dij~(l – yiyj + y~Y~ + YjY~)]

(Q” ) subject to: y, = { –1, 1} ‘di ~ V,

where Cij~ and dij~ are nonnegative. Observe that 1 – y, yj – yi y~ + yj y~ can

also be written as (1 – yiyj)(l – yiy~) (or as (1 – yiyj)(l + yjy~)), and, thus, the

objective function of (Q”) can be interpreted as a nonnegative restricted

quadratic form in 1 i yiyj. Moreover, 1 – yiyj – yiy~ + yjy~ is equal to 4 if

Yi = ‘Yj = ‘Yk and O othe~ise~ while 1 + YiYj + Yiyk + Yjyk is 4 if Yi = yj = Y~
and is O otherwise.

We can model the MAX DICUT problem using the program (Q”) by

introducing a variable y, for each i G V, and, as with the MAX 2SAT program,

and introducing a variable yO that will denote the S side of the cut. Thus, i = S

iff yi = yO. Then arc (i, j) contributes weight

1 1
~w~j(l + YiY())(l – YjYO) = ~wij(l + YiYO – YjYO – YiYj)

to the cut. Summing over all arcs (i, j) = A gives a program of the same form

as (Q”). We observe that if the directed graph has weighted indegree of every

vertex equal to weighted outdegree, the program (Q”) reduces to one of the

form (Q ‘), and therefore our approximation algorithm has a performance

guarantee of ( a – 6).

We relax (Q”) to:

+dijk(l + U1. u, + Vi- Uk + u, . Vk)]

(P”) subject to: Ui = S. Vi ~ V.

We approximate (Q”) by using exactly the same algorithm as before. The

analysis is somewhat more complicated. As we will show, the performance

guarantee /3 is slightly weaker, namely

2 2v–36
p= min >0.79607.

0S9<arcc0s(- 1/3) ~ 1 + 3cos d
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Given a vector r drawn uniformly from the unit sphere S., we know by the

linearity of expectation that the expected value E[u] of the solution output is

4 X [Cijk “ Pr[f%n(ui “ ‘) # ‘EJn(uj“ ‘) = ‘gn(uk“ ‘)]
i,j, k

+dij~ “ Pr[sgn(ui” r) = sgn(uj “r) = sgn(uk “ r)]].

Consider any term in the sum, say ~ij~ “ Pr[sgn(ui . r) = sgn( ~j “r) = sgn(u~ “ r)].

The cij~ terms can be dealt with similarly by simply replacing vi by – vi. The

perfclrmance guarantee follows from the proof of the following two lemmas,

LEMMA 7.3.1

Pr[sgn(ui “r) = Sgn(uj or) = sgn(u~ “ r)]

= 1- &(arccos(ui . Z)j) + arccos(ui . Uk) + arCCOS(Uj . Uk)).

LEMMA 7.3.2. For any vi, Vj, v~ e S.,

1- #_(a~CCOS(Ui - Uj) + arccos(ui eU,) + a~CCOS(Uj - U,))

PROOF OF LEMMA 7.3.1. A very short proof can be given relying on

spherical geometry. The desired probability can be seen to be equal to twilce

the area of the spherical triangle polar to the spherical triangle defined by vi,

Vj, and v~. Stated this way, the result is a corollary to Girard’s [1629] formula

(see Rosenfeld [1988]) expressing the area of a spherical triangle with angles
@l, 6J, and tl~ as its excess @l + Oz i- OS – z-.

We also present a proof of the lemma from first principles. In fact, our proof

parallels Euler’s [1781] proof (see Rosenfeld [1988]) of Girard’s formula. We

define the following events:

A: Sgn(Ui . r) = Sgn(.lJj “r) = sgn(uk “r)

Bi : Sgn(lli - r) # Sgn(Uj “ r) = sgn(uk “ r)

Ci : sgn(vj or) = sgn(uk or)

Cj : Sgll(Vi “ r) = sgn(u~ “ r)

Ck : Sgll(L’i “ r) = Sgn(Uj “ r).

Note that Bi = Ci – A. We define Bj and B~ similarly, so that Bj = Cj – .A

and Ek = ck – A. Clearly,

Pr[A] + Pr[Bi] + Pr[Bj] + Pr[B~] = 1. (1)

Also, Pr[Ci] = Pr[ A ] + Pr[Bi] and similarly for j and k. Adding up these

equalities and subtracting (l), we obtain

Pr[Ci] + Pr[Cj] + Pr[C~] = 1 + 2Pr[A]. (2!)
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By Lemma 3.2, Pr[Ci] = 1 – I/z- arccos(~j . ~~) and

Together with (2), we derive

Pr[A] = 1 – ~ (arccos(ui “ Uj) + arccos(ui “ u~)

proving the lemma. ❑

AND D. P. WILLIAMSON

similarly for j and k.

+ arccos(uj ou~)),

PROOF OF LEMMA 7.3.2. One can easily verify that the defined value of ~ is

greater than 0.79607. Let a = arccos( u, “ Uj), b = arccos(ui “ u~), and c =

arccos( Uj. u~). From the theory of spherical triangles, it follows that the

possible values for (a, b, c) over all possible vectors Ui, Uj, and v~ define the set

S={(a, b,c):O<a<n, O<bs T,Osc S7r,

c<a+b, bga+c, a<b+ c,a+b+c S2~}.

(see Berger [1987, Corollary 18.6.12.3]). The claim can thus be restated as

1 – &(a + b + c) > ~(1 + cos(a) + cos(b) + cos(c))

for all (a, b, c) C S.

Let (a, b, c) minimize

h(a, b,c) = 1 – -&(a + b + c) – :(1 + cos(a) + COS(b) + COS(C))

over all (a, b, c) = S. We consider several cases:

(l)a-tb+c=27r. We

hand,

1 + cos(a)

=1+

=1+

have 1 – (l\2w)(a + b + c) = O. On the other

+ Cos(b) + Cos(c)

cos(a) + cos(h) + cos(u + b)

cOs(a+b’+2c0s(%c0s(=
= 2COS2

(+)+2c0s(+]c0s(+!

.2COS(+)[COS(+) +Cos( :)].

We now derive that

lz(a,b,c)> -; COS(+)[COS(+)+COS(+] 20,

the last inequality following from the fact that

(3)

T a+b a–b
—< —<v— —
2 2 2
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(2)

(3)

(4)

(5)

and thus

()
a+b

Cos —
2

<0

and [C”s(+)+cosrwl’o

a= b+corb=a+corc =a+b. Bysymmetry, assume thatc= a

+ b. Observe that

a+b
l– &(a+b+c)=l– —.

T

On the other hand, by (3) we have that

1 + cos(a) + cos(b) + COS(C)

.2COS(+)(COS(9) +COS(*))

( )(a+b
S2COS —

2
1

Letting x = (a + b)/2, we observe

1

( ))a+b
+ Cos —

2“

that the claim is equivalent to

. — 2 ; Cos(.x)(l + Cos(x))
,11 z.

One can in fact verify that

2x 0.81989
—->

2
Cos(x)(l + Cos(x))

T

implying the claim.

l–

for any O < x < r/2,

~z = O or b = O or c =’ O: Without loss of generality, let a = O. The

definition of S implies that b = c, and thus b = a + c. This case therefore

reduces to the previous one.

(z = n or b = n or c = rr. Assume a = m. This implies that b + c =’ n

and, thus, a + b + c = 2m. We have thus reduced the problem to case (1).

l[n the last case, (a, b, c) belongs to the interior of S. This implies that the.,.
gradient of h must vanish and-the hessian of h must be posi~ive semidefi-

nite at (a, b, c). In other words,

2
sina=sinb=sinc=—,

pn

and cos a 2 0, cos b z O and cos c > 0, From this, we derive that a =

b = C. But

h(a, a,a) = 1 – ~ – :(1 + 3cos(a)).

The lemma now follows from the fact that a s 2T/3, the definition of ~
and the fact that 1 + 3 cos a < 0 for a > arccos – 1/3. ❑

Thus, we obtain a ( ~ – e)-approximation algorithm for ( Q“ ) and for the

MAX DICUT problem.
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8. Concluding Remarks

Our motivation for studying semidefinite programming relaxations came from

a realization that the standard tool of using linear programming relaxations for

approximation algorithms had limits which might not be easily surpassed (see

the conclusion of Goemans and Williamson [1994b]). In fact, a classical linear

programming relaxation for the maximum cut problem can be shown to be

arbitrarily close to twice the value of the maximum cut in the worst case. Given

the work of LOV6SZ and Schrijver [1989; 1990], which showed that tighter and

tighter relaxations could be obtained through semidefinite programming, it

seemed worthwhile to investigate the power of such relaxations from a worst-

case perspective. The results of this paper constitute a first step in this

direction. As we mentioned in the introduction, further steps have already

been made, with improved results for MAX 2SAT and MAX DICUT by Feige

and Goemans, and for coloring by Karger, Motwani, and Sudan. We think that

the continued investigation of these methods is promising.

While this paper leaves many open questions, we think there are two

especially interesting problems. The first question is whether a .878 -approxima-

tion algorithm for MAX CUT can be obtained without explicitly solving the

semidefinite program. For example, the first 2-approximation algorithms for

weighted vertex cover involved solving a linear program [Hochbaum 1982], but

later Bar-Yehuda and Even [1981] devised a primal-dual algorithm in which

linear programming was used only in the analysis of the algorithm. Perhaps a

semidefinite analog is possible for MAX CUT. The second question is whether

adding additional constraints to the semidefinite program leads to a better

worst-case bound. There is some reason to think this might be true. Linear

constraints are known for which the program would find an optimal solution on

any planar graph, whereas there is a gap of 32/(25 + 5fi) for the current

semidefinite program for the 5-cycle.

One consequence of this paper is that the situation with several MAX SNP

problems is no longer clear-cut. When the best-known approximation results

for MAX CUT and MAX SAT had such long-standing and well-defined

bounds as ~ and ~, it was tempting to believe that perhaps no further work

could be done in approximating these problems, and that it was only a matter

of time before matching hardness results would be found. The improved results

in this paper should rescue algorithm designers from such fatalism. Although

MAX SNP problems cannot be approximated arbitrarily closely, there still is

work to do in designing improved approximation algorithms.
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