skip to main content
10.1145/2079296.2079300acmconferencesArticle/Chapter ViewAbstractPublication PagesconextConference Proceedingsconference-collections
research-article

Concurrent Wi-Fi for mobile users: analysis and measurements

Published:06 December 2011Publication History

ABSTRACT

We present the first in-depth analysis of the performance of attempting concurrent AP connections from highly mobile clients. Previous solutions for concurrent Wi-Fi are limited to stationary wireless clients and do not take into account a myriad of mobile factors. Through an analytical model, optimization framework, and numerous outdoor experiments, we show that connection duration, AP response times, channel scheduling, available and offered bandwidth, node speed, and dhcp joins all affect performance. Building on these results, we design, implement, and evaluate a system, Spider, that establishes and maintains concurrent connections to 802.11 APs in a mobile environment. The system uses multi-AP selection, channel-based scheduling, and opportunistic scanning to maximize throughput while mitigating the overhead of association and dhcp. While Spider can manage multiple channels, we empirically demonstrate that it achieves maximum throughput when using multiple APs on a single channel. Our evaluation shows that Spider provides a 400% improvement in throughput and 54% improvement in connectivity over stock Wi-Fi implementations.

References

  1. H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz. A comparison of mechanisms for improving TCP performance over wireless links. In ACM SIGCOMM, pages 256--269, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Balasubramanian, R. Mahajan, and A. Venkataramani. Augmenting Mobile 3G Using WiFi: Measurement, Design, and Implementation. In Proc. ACM Mobisys, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. Balasubramanian, R. Mahajan, A. Venkataramani, B. N. Levine, and J. Zahorjan. Interactive WiFi Connectivity for Moving Vehicles. In ACM SIGCOMM, August 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. V. Bychkovsky, B. Hull, A. K. Miu, H. Balakrishnan, and S. Madden. A Measurement Study of Vehicular Internet Access Using in situ 802.11 Networks. In Proc. ACM MOBICOM, pages 50--61, Sept 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. Chandra, P. Bahl, and P. Bahl. MultiNet: Connecting to Multiple IEEE 802.11 Networks Using a Single Wireless Card. In Proc. IEEE INFOCOM, March 2004.Google ScholarGoogle ScholarCross RefCross Ref
  6. P. Deshpande, A. Kashyap, C. Sung, and S. Das. Predictive Methods for Improved Vehicular WiFi Access. In Proc. ACM Mobisys, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. N. Ekiz, T. Salih, S. Kucukoner, and K. Fidanboylu. An overview of handoff techniques in cellular networks. In Intl. Journal of Information Technology, 2006.Google ScholarGoogle Scholar
  8. J. Eriksson, H. Balakrishnan, and S. Madden. Cabernet: Vehicular Content Delivery Using WiFi. In Proc. ACM MobiCom, Sept. 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D. Giustiniano, E. Goma, A. Lopez, and P. Rodriguez. Wiswitcher: an efficient client for managing multiple aps. In ACM SIGCOMM workshop on Programmable routers for extensible services of tomorrow (PRESTO), pages 43--48, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih, H. Balakrishnan, and S. Madden. CarTel: A Distributed Mobile Sensor Computing System. In ACM SenSys, October 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. G. Judd and P. Steenkiste. Fixing 802.11 access point selection. In ACM CCR, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. Kandula, K. C.-J. Lin, T. Badirkhanli, and D. Katabi. FatVAP: aggregating AP backhaul capacity to maximize throughput. In Proc NSDI, pages 89--104, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. V. Leung and A. Au. A wireless local area network employing distributed radio bridges. Wirel. Netw., 2(2):97--107, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Miu, A. Miu, H. Balakrishnan, C. Emre, K. Mit, and C. Science. Improving Loss Resilience with Multi-Radio Diversity in Wireless Networks. Proc. ACM Mobicom, pages 16--30, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Miu, G. Tan, H. Balakrishnan, and J. Apostolopoulos. Divert: fine-grained path selection for wireless LANs. In Proc. ACM MobiSys, pages 203--216, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. V. Navda, P. Subramanian, K. Dhanasekaran, A. Timm-giel, and S. Das. Mobisteer: Using steerable beam directional antenna for vehicular network access. In Proc. ACM Mobisys, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Nicholson, Y. Chawathe, M. Chen, B. Noble, and D. Wetherall. Improved access point selection. In Proc. MobiSys, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Nicholson and B. Noble. BreadCrumbs: forecasting mobile connectivity. In Proc. ACM Mobicom, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Nicholson, S. Wolchok, and B. Noble. Juggler: Virtual Networks for Fun and Profit. In IEEE Trans. Mobile Computing, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Qureshi and J. Guttag. Horde: separating network striping policy from mechanism. In Proc. ACM MobiSys, pages 121--134, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. P. Release. AT&T Launches Major Wi-Fi Initiative to Deploy More Hotzones in Key Markets, December 2010.Google ScholarGoogle Scholar
  22. P. Rodriguez, R. Chakravorty, J. Chesterfield, I. Pratt, and S. Banerjee. Mar: a commuter router infrastructure for the mobile internet. In Proc. ACM MobiSys, pages 217--230, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. H. Soroush, P. Gilbert, N. Banerjee, B. N. Levine, M. D. Corner, and L. Cox. Spider: Improving mobile networking with concurrent wi-fi connections. UMass UM-CS-2011-016 Technical Report, 2011.Google ScholarGoogle Scholar
  24. N. Thompson, G. He, and H. Luo. Flow Scheduling for End-host Multihoming. In Proc. IEEE INFOCOM, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  25. A. Viterbi, A. Viterbi, K. Gilhousen, and E. Zehavi. Soft Handoff Extends CDMA Cell Coverage and Increase Reverse Link Capacity. In Proc. Intl. Zurich Seminar on Digital Communications, pages 541--551, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    CoNEXT '11: Proceedings of the Seventh COnference on emerging Networking EXperiments and Technologies
    December 2011
    364 pages
    ISBN:9781450310413
    DOI:10.1145/2079296

    Copyright © 2011 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 6 December 2011

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

    Acceptance Rates

    Overall Acceptance Rate198of789submissions,25%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader