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Abstract. This paper describes a general technique that can be used to obtain approximation
schemes for various NP-complete problems on planar graphs. The strategy depends on decompos-
ing a planar graph into subgraphs of a form we call k-outerplanar. For fixed k, the problems of

interest are solvable optimally in linear time on k-outerplanar graphs by dynamic programming.
For general planar graphs, if the problem is a maximization problem, such as maximum

independent set, this technique gives for each k a linear time algorithm that produces a solution

whose size is at least k/(k + 1)optimal. If the problem is a minimization problem, such as

minimum vertex cover, it gives for each k a linear time algorithm that produces a solution whose

size is at most (k + 1)/k optimal. Taking k = [c log log nl or k = [c log nl, where n is the
number of nodes and c is some constant, we get polynomial time approximation algorithms whose
solution sizes converge toward optimal as n increases. The class of problems for which this
approach provides approximation schemes includes maximum independent set, maximum tile
salvage, partition into triangles, maximum H-matching, minimum vertex cover, minimum dominat-
ing set, and minimum edge dominating set. For these and certain other problems, the proof of

solvability on k-outerplanar graphs also enlarges the class of planar gmphs for which the
problems are known to be solvable in polynomial time.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms; G.2.2 [Discrete Mathematics]: Graph Theory

General Terms: Algorithms, Theory
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ing set, Hamiltonian circuit, Hamiltonian path, independent set, NP-complete, partition into
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1. Introduction

This paper describes a general technique that can be used to obtain approxi-

mation schemes for various NP-complete problems on planar graphs. The

strategy depends on decomposing a planar graph into subgraphs of a form we

call k-outerplanar, and combining optimal solutions for the k-outerplanar
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subgraphs. For fixed k, the problems of interest are solvable optimally in linear

time on k-outerplanar graphs by dynamic programming. For general planar

graphs, if the problem is a maximization problem, such as maximum indepen-

dent set, this technique gives for each k a linear-time algorithm that produces

a solution whose size is at least k\( k + 1) optimal. If the problem is a

minimization problem, such as minimum vertex cover, it gives for each k a

linear-time algorithm that produces a solution whose size is at most (k + 1)/k

optimal. Taking k = I c log log n 1 or k = [c log n 1, where n is the number of

vertices and c is some constant, we get polynomial-time approximation algo-

rithms whose solution sizes converge toward optimal as n increases.

The heart of the technique lies in the adaptability of k-outerplanar graphs to

dynamic programming. Intuitively, a k-outerplanar graph has a planar embed-

ding with disjoint cycles properly nested at most k deep. (A formal definition is

given in the next section.) “Outerplanar” is equivalent to “ l-outerplanar” and

is the class of all planar graphs that can be laid out with all vertices on the

exterior face 1 [HaraV, 1971]. Every planar graph is k-outerplanar for some k.

Given a planar graph G, a k-outerplanar embedding of G for which k is

minimal can be found in time polynomial in the number of vertices [Bienstock

and Monma, 1990].

For purposes of discussion, we focus on maximum independent set: Given a

graph G = (V, 13) and positive integer K, does G contain an independent set

of size at least K, that is, a subset V’ of V with size at least K such that no

two vertices in V’ are joined by an edge in E? For planar graphs, finding a

maximum independent set is NP-complete [Garey and Johnson, 1979]. At the

end of this section, we list a number of other NP-complete problems for which

the technique works.

For a planar graph, we show that 0(8Lkn ) time is sufficient to find an

independent set whose size is at least k/(k + 1) optimal, where n is the

number of nodes. Substituting k = fl n ) into these expressions, we get approxi-

mation algorithms that run in time 0(8 f(’’)~( n)n) and produce solutions that

are at least ~(n )/(jln) + 1) optimal. If jl n) is O(log n), the running time will

be polynomial; there is a trade-off between the running time and the solution’s

rate of convergence to optimal.

Several approximation algorithms or schemes have been proposed previously

for maximum independent set on planar graphs. Of the polynomial-time

algorithms that produce solutions that come within some constant times

optimal, the best previous result is an 0( n log n) algorithm that achieves at

least half optimal [Chiba et al., 1982]. By comparison, for any k, we have a

linear-time algorithm that achieves at least k/(k + 1) optimal.

In a very different approach, Lipton and Tarjan applied their planar separa-
tor theorcm [1979] to obtain an approximation algorithm for maximum inde-

pendent set [1980]. They showed that time 0( n max{log n, 2 f(” ‘}) is sufficient to

obtain an independent set of size at least (1 – 0(1\ ~)) optimal [Lipton

and Tarjan, 1980]. Thus, for ~(n) = log log n, O(n log n) time is sufficient to

obtain a solution whose size is at least (1 – 0(1/ ~=)) optimal. Unfor-

tunately, Chiba et al. [1982] calculated that for the solution to have size at least

‘The regons defined by a planar embeddmg are called faces. The unbounded face i~ called the
exterior face: other faces are znfermr faces.
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half optimal, the graph must have at least

22’”(’

nodes!z

Both the Lipton–Tarjan approach and our approach have trade-offs between

running time and convergence rate. However, for the same running time, the

guaranteed convergence rate of our approximation algorithm is better. For

example, if we allow the Lipton–Tarjan approach to use O(rz(log rr)4) time by

setting f(n) = 4 log log n, it finds an independent set whose size is at least

(1 – 0(l\(2~=)) optimal. By contrast, if we pick f(n) = [log log n] so

that our algorithm runs in time O(n(log n)3 log log n), it achieves a solution

that is at least [log log n 1/(1 + [log log nl) optimal. Moreover, the solution will

be at least 2/3 optimal for n >4 and at least 3/4 optimal for n >16.

Another difference between the Lipton–Tarjan approach and ours is that

their approach requires at least Q(n log n) time for the worst case. For ours,

picking f(n) small enough, such that, f(n) = [(log log n)/61, gives running

times of o(n log n) without losing the convergence toward optimal with in-

creasing n.

The power of our approach is due to the adaptability of the structure of

k-outerplanar graphs to dynamic programming. The basic idea is as follows:

Recursively decompose the graph into subgraphs, and organize a dynamic

programming algorithm around the decomposition. The union of the maximum

independent sets for two subgraphs with some common boundary nodes is an

independent set for the union of the subgraphs only if the two sets are

compatible, that is, if no node of one independent set is adjacent to a node of

the other independent set in the union of the subgraphs. A straightforward way

of guaranteeing compatibility is take unions only of independent sets that

agree on which common nodes are in the set.

The number of boundary nodes for each subgraph will be bounded by 2k.

Thus, for each subgraph, a table with 22k entries will be needed to keep track

of the size of the maximum independent set for each combination of boundary

nodes allowed to be in the set.

A k-outerplanar graph can easily be decomposed into two subgraphs with

just 2k common boundary nodes. In continuing the decomposition, care must

be taken to avoid generating more than 2k boundary nodes for smaller

subgraphs, since table sizes will be exponential in the number of boundary

nodes. Figure l(a) shows a cutting strategy that fails in this regard: If each cut

generates at most 2k boundary nodes, region A formed by three successive

cuts could have 6k boundary nodes. Figure 1(b) shows a more suitable strategy:

The graph is sliced like a pie. Unfortunately, the notion of cutting up the graph

like a pie is too simplistic. The difficulty arises from nodes embedded within

adjoining cycles; there is no single center to cut from. Analysis of the structure

of the graphs leads to a decomposition with two inductive steps: one relating

adjoining cycles, and the other cutting inward within a cycle.

Dolev et al. [1984] studied width k graphs, which are closely related to

k-outerplanar graphs. They obtained planar embedding based on a simple
recursive decomposition of width k graphs. The additional machinery devel-

2Djidjev’s improvements [1982] in the planar separator theorem bounds can be used to reduce

this number substantially, although not to practicality.
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FIG. 1. Schematics showing
decomposing planar graphs.

two possible strategies for
(a)

(b)

oped in this paper is needed to bound the size of the tables in the dynamic

programming and to obtain running times of O( n log n).

Some other problems for which our technique provides approximation

schemes are the following problems that are NP-complete for planar graphs:

maximum tile salvage [Berman et al., 1982], partition into triangles [Garey and

Johnson, 1979, problem GT1 1], maximum H-matching [Berman et al., 1990],

minimum vertex cover [Garey and Johnson, 1979, problem GT1], minimum

dominating set [Garey and Johnson, 1979, problem GT2], and minimum edge

dominating set [Garey and Johnson, 1979, problem GT2]. (Weights may be

allowed on the graphs where appropriate.) For each of these problems, there is

a linear-time algorithm that achieves a solution that is at least k/(k + 1)

optimal, or at most (k + 1)/k optimal, as appropriate, for fixed k, and there is

a polynomial-time asymptotically optimal approximation algorithm.

For all of the above problems, our results improve on the best previous

approximation algorithms or schemes, which are:

(1) applications of the Lipton–Tarjan planar separator theorem to minimum
vertex cover [Bar-Yehuda and Even, 1982; Chiba et al., 1981] and to

maximum H-matching on planar graphs of bounded degree (F. T. Leighton,

personal communications), with bounds similar to those described above

for maximum independent set,

(2) for maximum 2 X 2 tile salvage, a linear-time algorithm that achieves at
least half optimal [Berman et al., 1982], and

(3) for minimum vertex cover, a linear-time algorithm that achieves at most
5/3 optimal [Bar-Yehuda and Even, 1982], an O(nz log n)-time algorithm

that achieves at most 8/5 optimal [Hochbaum, 1981], and a polynomial-time
algorithm that achieves at most 3/2 optimal [Hochbaum, 1981].

All of the problems mentioned above are solvable in linear time on k-outer-

planar graphs for fixed k, as are the following (all problems in this paragraph

appear in Garey and Johnson, 1979): minimum maximal matching [problem
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GTIO], 3-colorability [problem GT4], Hamiltonian circuit [problem GT37], and

Hamiltonian path [problem GT39]. In addition, the dynamic programming

strategy of this paper can also be used to solve partition into perfect matchings

[problem GT16] on k-outerplanar graphs in polynomial time for fixed k. (For

general planar graphs, the problems listed in this paragraph are not amenable

to approximation by the techniques described in this paper.) In general, the

dynamic programming technique will work for problems that involve local

conditions on nodes and edges.

The largest subclasses of planar graphs for which any of the above problems

were previously known to be solvable in polynomial time are trees (for

maximum independent set [Mitchell, 1977; Mitchell et al. 1979], minimum

dominating set [Cockayne et al., 1975], and minimum edge-dominating set

[Mitchell and Hedetniemi, 1975; Yannakakis and Gavril, 1980]), maximal

outerplanar graphs (for maximum independent set and minimum coloring

[Gavril, 1972]), and series-parallel graphs (for minimum vertex cover and

partition into triangles [Takamizawa et al., 1982]). Both trees and maximal

outerplanar graphs are subclasses of outerplanar (1-outerplanar) graphs; se-

ries-parallel graphs include outerplanar graphs but are a proper subclass of

planar graphs.

In related work, Bui and Peck [1992] have applied the dynamic programming

techniques of this paper to the graph bisection problem. They consider s-parti-

tions of a graph, where an s-partition is a partition of the vertices of G into

disjoint sets of size s and n – s; an optimal s-partition is one for which the size

of the cutset is minimal over all s-partitions. They show that given an n-vertex

planar graph G, an integer s, O s s < n, and a planar embedding of G such

that each biconnected component is at most m-outerplanar, 0(m2rL323~ ) time

is sufficient to find the optimal s-partition of the graph. Also, Bui and Jones

[1992] have used the dynamic programming techniques of this paper to show

that optimal vertex separators for planar graphs with vertex separators of size

O(log n) can be computed in polynomial time.

In the remainder of the paper, we prove the results for maximum indepen-

dent set. The overall strategy is the same for the other problems listed.

Differences arise for the various problems in how to decompose general planar

graphs into k-outerplanar graphs and in what to keep in the tables used in the

dynamic programming. Some general comments about the differences are

given in the last section, and the individual problems are discussed in the

appendix.

2. Definitions and OLlerall Strategy for the Approximation Algorithms

First, we define level k nodes in a planar embedding E of a planar graph G.

(See Figure 2.) A node is at leLel 1 if it is on the exterior face. Call a cycle of
level i nodes a level i face if it is an interior face in the subgraph induced by

the level i nodes. For each level i face f, let Gf be the subgraph induced by all

nodes placed inside f in this embedding. Then the nodes on the exterior face

of Gt are at level i + 1.

Throughout the paper, we assume that the planar embedding is represented
by an appropriate data structure such as that used by Lipton and Tarjan [1979].

Thus, levels of nodes can be computed in linear time.

A planar embedding is k-level if it has no nodes of level > k. A planar graph

is k-leuel if it has a k-outerplanar embedding.
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D

FIG. 2. A 3-outerplanar embeddmg. Nodes A–G are at level 1, nodes a–g are at level 2, and
nodes 1–8 are at level 3.

Now, let us assume the following theorem, whose proof will be given in the

next section.

THEOREM 1. Let k be a positile integer. Giuen a k-outeiplanar embedding of a

k-outeplanar graph, an optimal solution for maximum independent set can be

obtained in time 0(8kn ), wkere n is the number of nodes.

For any positive integer k, the linear time algorithm of Theorem 1 can be

incorporated as follows into a linear-time algorithm that achieves solutions at

least k/(k + 1) optimal for general planar graphs. First, given a planar graph

G, we generate a planar embedding using the linear-time algorithm of Hopcroft

and Tarjan [1974]. Let SoP~ be a maximum independent set for G. For at least

one r, O < r s k, at most 1/( k + 1) of the nodes in SoP~ are at a level that is
congruent to r (mod k + 1). Thus, for each i, O s i s k, we do the following.

Let G, be the graph obtained by deleting all nodes of G whose levels are

congruent to i (mod k + 1).The remaining graph is composed of components

with k-outerplanar embedding. Thus, we may apply the linear-time algorithm

to each component to obtain a maximum independent set, and the union of

these solutions is the maximum independent set for G,. From above, the

solution for G, is at least k/(k + 1) as large as the optimal solution for G. By
taking the largest of the solutions for the G,’s as the solution for G, we get an

independent set whose size is at least k/(k + 1) optimal. Thus, we have the

following theorem.

THEOREM 2. For fwed k, there is an 0(8kkn)-time algorithm for maximlum

independent set that achieL1es a solution of size at least k/( k + 1) optimal for

general planar graphs. Choosing k = [c log log n ], where c is a constant, yields an
approximation algon”thm that runs in time 0( n( log n )3’ log log n ) and achiel~es a

solution of size at least [c log log n]/(1 + [c log log n 1) optimal. In each case, n is

the number of nodes in the graph.
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3. A Linear-Time Algorithm for OuterPlanar Graphs

In this section, we show how to solve the maximum independent set problem in

linear time for outerplanar graphs. The techniques used here will be general-

ized in the next section to handle k-outerplanar graphs.

Given a connected outerplanar graph, replace each bridge3 (x, y) by two
edges between x and y. This will allow us to treat a bridge as a face rather

than as a special case. Call the resulting graph G. Define an edge of G to be

exterior if it lies on the exterior face, and inten”or, othenvise.

The maximum independent set jor G will be computed by recursively

processgg an ordered, rooted tree G that represents the structure of G. Each
leaf of G will represent an exterior edge of G; every other vertex will represent

a face of G and will be called a face vertex. ~ is constructed as follows:

First, suppose there are no cutpoints4 in G. Place a vertex5 in each interior

face and on each exterior edge, and draw an edge from each vertex represent-

ing a face f to each vertex representing either an adjacent face (i.e., a face

sharing an edge with f) or an exterior edge of f. (This tree is closely related to

the dual of the graph; however, the dual would lack vertices for exterior edges

and would have an additional vertex for the exterior face.) An example is

shown in Figure 3. The planar embedding induces a cyclic ordering on the

edges of each vertex in the tree. Choosing a face vertex u as the root and

choosing which child of u is to be its leftmost child determine the parent and

ordering of children for every other vertex of G. (See Figure 4.)

Label the vertices of ~ recursively, as follows: Label each leaf of the tree

with the oriented exterior edge it represents. Label each face vertex with the

first and last nodes in its children’s labels.

If a face vertex is labeled (.x, y), the leaves of its subtree represent a directed

walk of exterior edges in a counterclockwise direction from x to y. For the

root, x = y and the directed walk covers all the exterior edges. For any other

face vertex ~, x #y, and (x, y) is an interior edge shared by the face

represented by [1 and the face represented by its parent in the tree. For

example, consider Figure 4. The leaves of the node labeled (3,7) represent a

walk along nodes 3,4,5,6, 7. The leaves of the root in Figure 4 represent a

counterclockwise walk around the exterior edges beginning and ending at node

1. The vertex labeled (1,3) represents the face containing nodes 1–3, its parent

represents the face containing nodes 1,3,7,9, and (1, 3) is the interior edge

shared by these faces.

Now, suppose G has cutpoints. Since we have eliminated bridges by turning

them into faces with two edges, each cutpoint is a vertex at which two or more

faces meet (without sharing an edge). As before, place a vertex in each interior

face and on each exterior edge, create an edge between each pair of vertices

representing faces sharing an edge, and create an edge between each face

vertex and the vertices on its exterior edges. This gives a tree for each

biconnected component; faces that meet at a cutpoint have their vertices in

different trees. Now, create an edge between any pair of vertices representing

faces that share a vertex and lie in different trees,~nd continue to do this until

all the trees have been joined into a single tree G. For example, in Figure 5,

3A brwige is an edge whose removal disconnects the graph.

4A cutpoozt is a node whose removal disconnects the graph.
‘To avoid confusion, we will use node for the original graph and certex for trees.
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2

FIG. 3, An outerplanar graph (with
no cutpoints) and a tree (drawn with
dashed lines).

8

(1,1)

(1,3) (3,7) (7,9) (9,1)

,lAd“t’k~(7,8) (8,9)

A
(4,5) (5,6)

FIG, 4. A rooted, ordered, labeled tree ~ for the graph G of Figure 3,

node 9 is a cutpoint, and an edge has been created between the vertices for two

faces sharing this cutpoint, namely, the faces with nodes 7,8,9 and 9,10,11,

respectively; an edge joining the vertices for the faces with nodes 9, 1,3,7 and

9,10,11 could equally well have been chosen. The rooting and ordering of the

tree are again determined by choosing a face vertex as the root and choosing

one of its children as its leftmost child, as illustrated in Figure 6.
Label the vertices recursively as before. The label of each leaf again

represents an oriented exterior edge, and as before, the leaves of any subtree

represent a directed walk of exterior edges. The root is again labeled (r, r) for

some node r. For any other face vertex labeled (.x, y), if x # y, the label again

represents an interior edge shared by two faces. However, if x = y, the label

represents a cutpoint shared by two faces, as for the vertex labeled (9,9) in

Figure 6.

Computation of the maximum independent set proceeds as follows: The

result of processing a vertex L’ labeled (x, y) is a table that gives the sizes of

maximum independent sets for the subgraph represented by the subtree rooted
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FIG. 5. An outerplanar graph with a cutpoint (node 9) and a corresponding tree (shown by

dashed lines).

(1,1)

(1,3) (3,7)

(/l,) (A) (7A9).,

FIG. 6. A rooted ordered, labeled tree ~ for the graph G of Figure 5.

at ~~,according to whether the nodes x and y are in the set. That is, for each of

the four possible bit pairs representing whether each of x and y is in the set,

the table contains the size of the maximum independent set for the subgraph.

The procedure that computes a table for vertex u is given in Figure 7.

The details not given in Figure 7 are as follows: The table for a leaf u

representing an edge (x, y) specifies that the size of a maximum independent

set for the subgraph is 1 if exactly one endpoint of (x, y) is in the set, O if

neither is in it, and undefined (illegal) if both are in it. The procedure merge

works as follows: For some z, the current table T has a value for each bit pair
representing x and z, the child c has label (z, w) for some w, and table(c) has

a value for each bit pair representing z and w. The updated table T has a

value for each bit pair representing x and w. This updated value is found for

bit pair (b ~, b~) (representing x and w) by taking the maximum over 0–1 values
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procedure table(L)
begin
if L’ is a level 1 leaf with label (x, y)

then return a table representing the edge (.x, y);

else \ * L is a face vertex* /
begin
T = table (zt), where u is the leftmost child of c;

for each other child c of L) from left to right
~ = merge (T, table (c));

return (adjust(T)):
end

end
FIG. 7. Procedure for computing a table for vertex L.

of bit bz of V(T) + V(table(c)) – b2, where V(T) is the value of T for (bl, bz)

(representing x and z) and V(table(c)) is the value of table(c) for (b,, b,)

(representing z and w). Subtracting bz prevents counting z twice if z is in the
maximum independent set. When all of the children’s tables have been

processed, T has a value for each bit pair representing x and y. Finally, the

label (x, y) is incorporated into T by the procedure adjust. In particular, if

x = y, the table entry is set to “undefined” for each bit pair requiring exactly

one of x and y to be in the maximum independent set, and the value

representing the inclusion of both x and y in the set is decremented by one to

avoid counting x = y twice. If x # y, the table entry for the bit pair specifying

that both x and y are in the set is set to “undefined,” because (x, y ) represents

an edge.

When table is called on the root (r, r) of the tree, it results in a table with

entries for four bit pairs. Thanks to the procedure adjust, two of the values are

undefined because they represent inconsistency as to whether r is in the

maximum independent set. The larger of the two remaining values is the size of

the maximum independent set for the graph.

4. A Linear-Time Algorithm for k-Level Graphs

In this section, we prove Theorem 1 by developing a linear-time algorithm for

maximum independent set on k-outerplanar graphs. The algorithm is based on

finding a recursive decomposition in which each subgraph has at most 2k

boundary nodes.

We assume that the graph is connected and that the level i nodes within

every level i – 1 face induce a connected subgraph. (If not, add some fake

edges to obtain connectivity, but in computing values in tables, ignore these

edges.) We refer to this connected induced subgraph as a lelel i component.

Note that a level i component is an outerplanar graph. We assume that every
bridge in a level i component has been replaced by two edges, so that we can

treat it as a face with exactly two edges, as in the preceding section.

4.1. TREES. Each level i component is outerplanar, and hence we can use

the method of the preceding section to construct a tree for it. As before, the

leaves of a level i tree represent edges exterior to the level i component, the

other vertices represent faces of the level i component, and the leaves from

left to right represent a counterclockwise walk around the exterior edges of C.

The only additional constraints are on how the root and its leftmost child are

selected for a tree at level i, i > 1. Suppose the level i – 1 trees have already
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e d

a b

FIG. 8. Triangulating regions between levels 2 and 3 for the graph of Figure 2. Edges added in
the triangulation are shown as dashed lines.

been constructed. Consider a level i component C enclosed by a level i – 1

face f. Let T be a triangulation of the region between C and f obtained by

adding edges as necessary between nodes of C and nodes of ~, such a

triangulation can be generated in linear time by scanning the nodes of C and f

in parallel.

Suppose the vertex representing f has label (x, y). The tree for C will have

a root with label (z, z), where z is adjacent to x in T. In particular, if .x = y,

pick z to be any node adjacent to x in T; ifx #y, pick z to be the third node

in the triangle with x and y in T.

Figure 8 illustrates possible triangulations for two regions of the graph of

Figure 2. Suppose C is the level 2 component with nodes 1–5, and f consists of

nodes a, b, d, e. If the vertex representing f has label (e, e), then z could be

node 1, 3, or 5; if the vertex representing f has label (d, b), then z would be

node 4.

If C has just the one node z, then its tree will consist of just the root.

Otherwise, the leftmost child of the root will have label (z, u), where (z, u) is

the first exterior edge of C counterclockwise around z from (z, x) in T. The

root will represent the face of C containing (z, u). For example, in Figure 8, let

C again be the level-2 component containing nodes 1–5. If z is node 4 and x is

node d, then the leftmost child will represent exterior edge (4,5) of C’; if z is

node 3 and x is node e, then the leftmost child will represent exterior edge

(3, 1) of c.

Finally, the remainder of the tree is constructed as in Section 3, so that the

leaves from left to right represent a counterclockwise walk around the exterior

edges of C. Figure 9 shows a possible set of trees for the 3-outerplanar graph

of Figure 2.

4.2. SLICES. The dynamic programming will involve repeatedly merging

tables of subgraphs into tables for the union of the subgraphs. The relevant

subgraphs will be called slices, by analogy with cutting a pie into slices. Each

vertex of each tree will have a corresponding slice, and the tables for the slices
will be computed recursively. Each boundary of a slice for a level-i vertex

contains i nodes, one for each level from 1 to i, listed in order of decreasing

level. However, a slice for a level-i vertex may include higher-level nodes

nested within the slice in the embedding. In particular, the slice for a level-i
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(A,A) (1,1)

(A,B) (B, C) (C E) (E,F) (F,G) (G,A)

A
(C,D) (D,E) (3,4)(4,5)(5,3)

(a,a) (6,6)

(6,7) (7,8) (8,6)

(b,c)(c,d) (e,f)(~,g)(g,e)

FIG.9. Trees forthegraph of Figure2.

face vertex includes the nodes enclosed by the face, and is obtained by

recursing on the root of the tree of the enclosed level i + 1 component. The

table for the face vertex will include the higher-level nodes in its counts, but

the merger of tables for adjoining slices can proceed as if there were no

higher-level nodes, because the slices have a common boundary of length i.

This is the trick that handles adjoining faces with embedded higher-level nodes.

Three slices for the graph of Figure 2 are shown in Figure 10. These are

associated with the vertices for level 3 edges (6, 7), (7, 8), and (8, 6), respec-

tively, and do not contain any higher-level nodes. The boundaries of the slice

for (6, 7) are 6, b, A and 7, b, A, the boundaries of the slice for (7, 8) are 7, b, A

and 8, c, B, and the boundaries of the slice for (8,6) are 8, c, B and 6, d, C.

The level 2 face vertex labeled (b, d) in Figure 9 represents a face that

encloses the level 3 nodes 6, 7, and 8. The slice for this face vertex consists of

the union of the slices shown in Figure 10 plus the edge (b, d). Hence, it

contains the level 3 nodes 6, 7, and 8. Its boundaries are b, A and d, C.

The structure of the algorithm for computing the dynamic programming

tables is based on the recursive definition of slices. Informally, slices are

defined recursively, as follows, beginning with the slice of the root of the level 1

tree. Let L be a tree vertex labeled (x, y).

(1) If t’ represents a level i face with no enclosed nodes, i >1, its slice is the
union of the slices of its children, plus (x, y).

(2)

(3)

(4)

If u represents a level i face enclosing a level i + 1 component C, its slice

is that of the root of the tree for C plus (x, y). (However, as noted above,

the boundaries only run from level i to level 1 instead of from level i + 1

to 1.)
If u represents a level 1 leaf, its slice is the subgraph consisting of (x, y).

If L’ represents a level i leaf, i > 1, then its slice includes (x, Y), edges from
x and y to level i nodes, and the slices computed recursively for appropri-

ate level i trees. Here, “appropriate” is determined by slice boundaries

placed along edges in a triangulation of the region between level i and
level i + 1.

Formalizing these ideas depends on defining how boundaries are laid out

between levels. Essentially, triangulations are used to draw boundaries so that

no edges cross slice boundaries.
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c

FIG. 10. Three slices for the grdph of Figure 2. Bounda~ nodes are connected with dashed lines
where no edge exists.

Let C be a level i component enclosed by a level i – 1 Face f whose tree

vertex is labeled (x, y). Let 7RI(C, f) be the triangulation of the region

between C and f already constructed in defining the trees. For any pair of

successive edges (xl, Xz), (xz, X3) in a counterclockwise walk around the exte-

rior edges of C, there is at least one node y of f that is adjacent to Xz in

TRKC, f ) such that the edges (X2, xl ), (xz, y), (x,, X3) occur in counterclock-

wise order around Xz. Call such a node y a di~~idirzg point for (xl, XQ) and

(X2, X3).
For example, according to the triangulations shown in Figure 8, a and b are

dividing points for (1, 2) and (2, 3), b is a dividing point for (2,3) and (3, 4), and

e is a dividing point for (5,3) and (3, 1). Note that node 3 is a cutpoint of the

component containing nodes 1–5 and occurs between two pairs of successive

exterior edges. (The definition of dividing point was chosen to be with respect

to two edges because of cutpoints.)

We wish to use the dividing points to construct slice boundaries running

from one level to the next. If there were no cutpoints at any level, it would be

possible to define a boundary from a function assigning a level i – 1 node to

each level i node. Because of cutpoints, however, we must define functions

relating tree vertices rather than just graph nodes.

Therefore, to define how left and right boundaries of slices run from our

level i component ~ to the enclo@g face f, we use the dividing points to

define functions from vertices of C to 1,2,..., r, where r is the number of

children of the tree vertex corresponding to f. These functions are called LB

and

(Fl)

RB for Left Boundary and Right B&ndary, respectively.

Let the leaves of ~ be Ul, Uz, ..., Ut from left to right, and let u] have

label (x,, x,+ ,), for 1 s j s t.Let the children of uertex(f ) be z,, zZ, ..., z,

from left to right, where Zj has labeled ( y~, y~. ,), for 1 s j s r. Define

Ll?(vl) = 1 and RB(u,) = r + 1. For 1 <j < t, define LB(v ) = q if q is

(’the least p > LB( u, _ ~) for which y~ is a dividing point for x,-~, x,) and

(X,, X,+ I). For 1 <.j < t, define RB(u,) = LB(uj+ l).
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(F2) If u isaface vertex of ~, with leftmost child CL and rightmost child CR,

define LB(~’) = LB(c~) and RB(~) = RB(cR).

Note that if the edges of C are taken in counterclockwise order, successive

dividing points also occur in counterclockwise order around ~. Therefore, in

rule Fl, there will always be a value of p satisfying p > LB( LIJ_, ). This

condition is needed only for the case where the vertex for ~ is labeled (a, a) for

some u and some dividing point is a. For this case, the condition ensures that

the values of LB and RB are nondecreasing for sibling vertices from left to

right.

Figure 11 indicates the values of LB and RB for the level i trees given in

Figure 9, i >1. For each vertex z’, LB(~) and RB(L ) are printed to its left and

right, respectively. (The inductive definition implies that for two successive

vertices L) and v,+ ~ at the same level, RB( ~J,) = LB( L’~+, ), so that only one

value needs to be given between each such pair of vertices. ) For example. if L}

is the vertex labeled (b, d), LB(u) = 1 and RB( ~’) = 3. The values for the

level-3 trees are consistent with the triangulations given in Figure 8; the

triangulation giving the values for the tree of the level 2 component containing

nodes a – g is not shown.

The boundaries of slices follow the values of LB and RB from one level to

the next. More precisely, the boundaries of slices are defined inductively as

follows for a vertex u labeled (x, v).

(Bl) If L’ is a level 1 leaf, the left boundary of shke(~) is .x and the right
boundary is y.

(B2) Suppose L} is a vertex of a tree for a level i component enclosed by

the level i. – 1 face ~. Let S be the number of children of ~ertex(~). In

the following, define the right boundary of the Oth child of ~}elze-x(~) to be

the same as the left boundary of the first child of Lw-tex( ~), and the left

boundary of the (s + l)st child to be the same as the right boundary of

the sth child. If LB(t)) = q, the left boundary of slice(u) is x plus the left

boundary of the slice of the qth child of ~’etie.z( ~). If RB( L’ ) = t, the right

bounda~ of slice( L’) is y plus the right boundary of the slice of the

(t– l)st child of Lertex(~).

By rules B1 and B2, each boundary (left and right) of a level i vertex has

exactly one node of each level less than or equal to i, for i > 1.

From these rules and the values of LB given in Figure 11, it may be verified

that the left boundary of the slice for the vertex labeled (A, B) is A, the left

bounda~ for the slice of the vertex labeled (b, c) is b, A, and the left boundary

for the slice of the vertex labeled (7,8) is 7, b, A, as shown in Figure 10.
Similarly, the right boundary of the vertex labeled (A, B) is B, the right

boundary of the vertex labeled (b, c) is c, B, and the right boundary of the

vertex labeled (7. 8) is 8, c, B.

PROPOSITION 1. For any face L)ertex 11,the left bounda~ of L)’s slice is the same

as the left boundary of the slice of L”s leftmost child, and the right bounda~ of 1”s

slice is the same as the right boundary of the slice of v‘s rightmost child.

PROOF. By rule B2, the first node in the boundary of a vertex L’ is the first

node in L)’s label and the remainder is determined by LB(u). The labeling of

trees causes the first node in the label of ~~to be the same as the first node in
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~
1 (a,b) 1 (b,d) 3 (d,e) 4

A

(e,e) 5 (e,a) 7

1 (b,c) 2 (c,d) 3 4 (e,f) 4 (~,g) 5 (g,e) 5

~
1 (1,2) 1 (2,3) 2 (3,3) 4 (3,1) 6

2 (3,4) 2 (4,5) 3 (5,3) 4

&
1 (6,7) 1 (7,8) 2 (8,6) 3

FIG. 11. Values of LB and RB for the level-2 and level-3 trees of Figure 9.

the label of its leftmost child CL. By rule F2, LB( L’ ) is defined to be the same

as LB(c L ). A similar analysis applies to right boundaries. ❑

An easy induction argument shows that for any pair of successive siblings u ~

and L12 in a level i tree, the right boundary of the slice of u 1 is the same as the

left boundary of the slice of Vz.

Slices are defined formally as follows: Let L1 be a level i vertex, i 21, with

label (x, y). Again, if a vertex u has s children, define the left boundary of the

(s + l)st child to be the same as the right boundary of the sth child.

(s1)

(s2)

(s3)

(s4)

If L] is a face vertex, and face( L’) encloses no level i + 1 nodes, then

slice(L)) is the union of the slices of the children of L], together with (x, y)

if (x, y) is an edge (i.e., x # y).

If L is a face vertex and face( L’) encloses a level i + 1 component C, then

slice(u) is the subgraph containing slice( root(~)) plus (x, y) (if (x, y) is an
edge).

If ~ is a level 1 leaf, then slice(u) is the subgraph consisting of (x, y).

Suppose u is a level i leaf, i >1. Suppose the enclosing face is f, and

ve;ex( f ) has children u,, 1 < j s t,where U~ has label (ZJ, Z,+ I ). If

LB(~) # RB( L’), then slice(u) is the subgraph containing (x, y), any edges

frOm x or y tO Zj, fOr ~~(LI) S j < ~~(u), and Slice(ul), fOr ~~(LJ) S j <

RB( L’). If LB(L)) = RB(LJ) = L’, then slice(v) is the subgraph containing

(x, y), any edges from x or y to z., the left boundary of slice(u,), and any

edges between boundary nodes of successive levels.

Using rules S3 and S4, it is easily verified that the slices in Figure 10 are

correct for the vertices labeled (6, 7), (7, 8), and (8, 6). Using rule S1, it may be

seen that the slice for the level-3 vertex labeled (6, 6) is the union of the slices

in Figure 10. Using rule S2 in addition reveals that the slice for the vertex
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FIG. 12. Thesllces fortheleaves of thetree forthecomponent wlthnodes1 5.

labeled (b, d) consists of edge (b, d) plus the union of the slices in Figure 10, as

claimed earlier.

Figure 12 shows the slices for the leaves of the level 3 component containing

nodes 1–5. By rule S4, the slice for the vertex labeled (4,5) includes the slice of

the vertex labeled (b, d) plus edges (4,5) and (4, d), and therefore includes

nodes 6–8 of the other level 3 component. The slice for the vertex labeled (3, 1)

includes the slice for the level 2 vertices labeled (e, e) and (e, a) by rule S4; the

slice for (e, e) includes those of (e, ~), (~, g), and (g, e) by rule S2, and by rules

S4 and S3, these in turn include the level-l edge (E, F), while the slice for

(e, a) includes (F, G) and (G, A).

PROPOSITION 2. The slice for any uertex u of a tree T includes the slices of all

its descendants in T plus the slices of all L)ertices for components enclosed by faces

corresponding to descendants of 1.

PROOF. The proof is by double induction starting with level k. For level k,

rule S1 applies to each face vertex and consequently each level k face vertex

includes the slices of its descendants. (No components are enclosed by level k

faces.) Assume that the result holds for level j, and consider a vertex u in a

level j – 1 tree. If u is a leaf, the statement is vacuously true. Assume that the

result holds for all descendants of u. Then, either rule S1 applies, implying that

the slice for u is the union of the slices of L)’s children, or rule S2 applies,

implying that the slice for LI includes the slice of the root of ~, where C is the

component enclosed by ~ace( ~)). In the latter case, by the indu~ion hypothesis,
the slice of the root of C includes the slices of the leaves of C, as well as the

slices of vertices for components enclosed by faces of C. By the way LB and

RB were defined in rule Fl, the slices of the leaves of ~ include the slices of

all the children of u. Thus, in either case, the slice of u includes the slices of its

descendants (including the slices of any vertices for enclosed components) and

the slices of any vertices corresponding to the component (if any) enclosed by

face(u). By induction, the result holds for all vertices at level j – 1. ❑

PROPOSITION 3. Every edge of the graph is included in the slice of at least one
tree uertex.
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PROOF. Every edge between two level i nodes, i >1, is the label of some

tree vertex and is included in the slice for that vertex by rules S1–S4. So

consider an edge e between a level i node LL and a level i – 1 node of the

enclosing face. By planarity, e lies between two successive exterior edges el

and ez incident on u. By rules Fl, B2, and S4, e is included in the slice for one

of el and ez. ❑

4.3. THE DYNAMIC PROGRAMMING. In this subsection, we show how to

construct and manipulate tables by dynamic programming to compute the

maximum independent set. A table will be constructed for each slice. Since a

level-i slice S has 2i boundary nodes, there are 22’ possible subsets of

boundary nodes (ignoring possible duplications of nodes between the two

boundaries). The table for S has 22’ entries, one for each subset. The entry for

a subset is either the size of a maximum independent set of S containing

exactly that subset of bounda~ nodes, or undefined if that subset cannot be

part of an independent set (e.g., because two of the bounda~ nodes of the

subset are adjacent). In this computation, duplicate nodes on the two bound-

aries are treated as distinct except for nodes at level i.

The recursive definition of slices determines the organization of the dynamic

programming. As rule S2 suggests, the table for the whole graph, which is the

slice for the level 1 root, is obtained from the table for the slice of the level 2

root labeled (a, a), which in turn is obtained from the table for the slice of the

level 3 root labeled (1, 1). As rule S 1 suggests, the slice of this level 3 root is

obtained by merging the tables of its children, and so forth. This strategy yields

the main procedure table of the dynamic programming algorithm. The proce-

dure is given in Figure 13. (The procedures merge, adjust, contract, extend, and

create are described below.)

The table manipulations at each step are accomplished by several basic

operations. The operations corresponding to rules S1–S3 are straightforward.

Corresponding to rule S1, which takes the union of slices, is an operation

called me~e, which merges the tables of the slices. Corresponding to rule S2,

which obtains a level-i slice from a level i + 1 slice, is a procedure called

contract, which modifies the level i + 1 table to reflect the shorter boundary of

the level i slice. Since rules S1 and S2 incorporate (x, y) into the slice, where

(x, y) is the label of the level-i vertex, a procedure called adjust is used to
incorporate (x, y) into the table: either to reflect the existence of an edge

(x, y), or to reflect the fact that both boundaries contain a common node
x = y. For rule S3, a table is computed directly for the level-l edge.

The table processing corresponding to rule S4 is tricky. In the second case of

rule S4, where LB(o) = RB( u), the desired table is constructed directly for the

desired slice by the procedure create. But consider the first case of rule S4, with

U?(u) # RB(u), which must take level i – 1 slices and add level-i edge (x, y)

plus edges from x to y to the level i – 1 nodes. The basic idea of the table

manipulation is to use create to create an initial level-i table, extend to turn

each level i – 1 table into a level-i table, and rne~e to merge these tables. The
tricky part is that no edge may cross a slice boundaq in the course of doing the

table manipulation. In particular, in order to handle the edges from x and y to

the next lower level, a point must be found between the edges from x and the

edges from y. Fortunately, because of the planarity constraint, there is some

level i – 1 node ZP such that all the nodes other than ZP adjacent to x are
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procedure table(U)
begin

let(x, v) bc the level of L:
let L be the level of l);
if t is a face vertex and face(u) encloses no level [ + 1 component

then begin
T=table(u), where u lstheleftmost chddof i;
for each other child c of L’ from left torigbt

T = merge (T, table (c)):
return (adjust(T));

end
else if LI is a face vertex and face(r) encloses a level t + 1 component C

then return (adjust(contract( table(root(~))));
ekeif L) 1s a level 1 leaf

then return stable representing the edge (x, v);
else /* [ is a level i leaf, z > I*/

begin

let ~ be the level i fidceenclosmg the component for L:
let the labels of the children of ~errex(f) be(z,,:z)i

(Z,, zj),..., (zm, zm+, )
if y isadJacent tosomez,. LB(u) <r<~(L’),

then let p be the least such r

else p =RB(L);

\*notezP isapoint between nodcsadjacent toxandnodes ~djacentto v~i

T = create(c, p);

\*extend the leftmost ptables to include xand edges from x to=,. r<p,

and merge with T*\
j=p–l:

while / > LB(LI) do begin
T = merge(extend(x, table (u,), T )),

where ul is the Jthchddof L)ertex(f’);
~=1–1:

end

\*extend theremamm gtablestomclude vandedgesfromy to ar, r>p.

and merge with T*/

]=p;

while ] < RB(LJ) do begin
T = merge (T, extend(y, table)),

where u, is the jth chdd of ~erfer(~);
]= J+l;

end
return(T):

end
FIG. 13. Thcdynamlc programming algorithm.

clockwise from ZP, while all the nodes other than ZP adjacent to y are

counterclockwise from ZP. Only ZP can be adjacent to both x and y. Thus, the

approach is to find ZP, use create to construct an initial level i table for a

subgraph containing ZP, and then to extend the tables on one side using a and

the tables on the other side using y.

For example, consider the slice shown in Figure 14(a) for the level 2 vertex

labeled (e, a). The algorithm finds that ZP = G is a point between the level-l

nodes adjacent to e and the level 1 nodes adjacent to a. Create constructs a
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level 2 table T for the middle subgraph of Figure 14(b). This subgraph is not a

slice according to rules S1–S4 but may be considered to have boundaries e, G

and a, G. The table for the level 1 leaf labeled (F, G) is extended to include

the level 2 node e and the edge (e, G) and is then merged with T. Next, the

table for the level 1 leaf labeled (G, A) is extended to include the level 2 node

a and the edges from a to G and A. Finally, the last two tables are merged to

give a table for the whole slice shown in Figure 14(a).

We describe procedures adjust, merge, contract, create, and extend informally

since the details of the table manipulations are tedious and straightforward.

(1)

(2)

adjust(T). This operation checks the relationship between the two highest

level nodes in the boundaries of the slice represented by T and modifies T

accordingly. In particular, suppose the highest level nodes in the left and

right boundaries are x and y, respectively. If x = y, then any entry

requiring exactly one of x and y to be in the maximum independent set is

set to “undefined,” and for any entry with both in the independent set, the

count of nodes in the independent set is corrected to avoid counting x = Y

twice. If x + y and (x, y) is an edge in the graph, any entry that requires

both x and y to be in the set is set to “undefined.”

rnerge(T1, 7’Z). This operation merges two tables Tl and Tz for level i

slices S1 and Sz, respectively, that share a common boundary, that is, the

right boundary of SI is the same as the left bounda~ of Sz. The resulting

table will be for a slice whose first boundary is the left boundary of S1 and

whose second bounda~ is the right boundary of Sz. For each pair of
vectors ii, D representing whether each vertex in the boundaries of the new

slice is in the set, the new value will be the maximum over all 2 of the

value in T, for ii, 2 plus the value in T2 for .2, U minus the number of 1’s in

2 (to avoid counting any vertex twice).
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(3) contract(T). This operation changes a level i + 1 table T into_a level i

table T‘ (with a shorter boundary). Here, T is the table for root(C), where

~ is the tree of a level i + 1 component C w~hin a level-i face ~, and T‘ is

the table for tertex( ~). Let S = slice(root(C )) and S‘ = slice( uertex( ~)).

For some ii and D, the left and right boundaries, respectively, for

slice( ueltex(f )) are x, ii and y, fi. By construction, the label of the root of F

is (z, z) for some z, and the boundaries of S are z, x, ii and z, y, D. For

each pair of (0, 1)-valued vectors representing whether each node of

x, ii, y, and U is in the independent set, T has two values: one for z in the

set, and one for z not in the set. “Contract” picks the larger of these two

values as the new value for x, ii and y, U. The resulting table has 2Z’

entries, reflecting the boundaries of length i of S‘.

(4) create( L’, p). In this case, L is a leaf of a tree for a level i + 1 component

enclosed by a face ~, and p s t + 1, where the children of ~~erte.x(~) are

u,, u?, ..., Ut. This operation creates a table for the subgraph including (i)

the edge (x, y) represented by 1’, (ii) the subgraph induced by the left

boundary of UP, if p < t, or the right boundary of UP if p = t + 1,and (iii)

any edges from x or y to the level-i node of this bounda~. Since at most

i + 2 nodes and i + 2 edges can occur in this slice, each entry of the table

can be computed in O(i) time.

(5) extend(z, T). Given a table T for a level-i slice and a level i + 1 node z,

this operation computes a table for a level i + 1 slice as follows: The

boundaries of the new slice will be the old boundaries plus z. For any ii, Z

representing whether each of the boundary points of the level-i slice is in

the maximum independent set, the new table has two entries: one for z in

the set, and one for z not in the set. For z not in the set, the value in the

new table will be the same as the old value for ii, U. For z in the set, the

new value is undefined if z and a level i boundary node are both in the set

and are adjacent, and one more than before otherwise.

We claim that the above algorithm produces a correct table for the slice of

the root of the level-1 tree, this slice includes the whole graph, and the

boundaries of this slice are both a, where (a, a) is the label of the root of the

level 1 tree. By definition of tables, the table includes four values, according to

whether each of the bounda~ nodes is in the independent set. Two of the

values are undefined since they represent inconsistency as to whether a is in

the set. Taking the best of the remaining two values gives the solution for the

maximum independent set.

4.4. PROOF OF CORRECTNESS. First, we show that the recursion is finite.

LEMMA 1. Calling the main procedure table on the root of the lelel-1 tree leads
to exactly one recursiLe call on elery other uertex of each tree of each lelel.

PROOF. First, we show by contradiction that table cannot be called more

than once on the same tree vertex. For if so, list in order the successive vertices

on which table is called, and let 14 be the first vertex that appears for the

second time in the list. If u is the root of a tree, table is called on u only from

within a call on uertex(f), where f is the face enclosing the component

corresponding to u; since no second call has occurred on LIertex( f ) by the time

the second call occurs for LL, u cannot be the root of a tree. Let L be the
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parent of u. If face(u) does not enclose a higher level component, then table is
called on u only from within a call on u; as before, since v has not had a

second call, this case cannot apply. Therefore, face(u) encloses a higher level

component C, and table is called on u only while processing a leaf of ~.

Sup~ose u is the jth child of ~J.If table is called on u while processing a leaf y

of C, then according to the algorithm, LB(y) s j < RB( y). But the definitions

of LB and RB imply that each is nondecreasing for leaves taken from left to

right, and RB( y) = LB(z), where z is the right sibling (if any) of y. Therefore,

j < ~B( y) = LB(z) and table cannot be called on a while processing any leaf

of C to the right of y. We conclude that table is called at most once on u,

contradicting the choice of u.

Next, we show that the main procedure is called on every vertex. We do this

inductively by showing that for every vertex t), a call on u results in a call on

every descendant of u and on every vertex of a tree for a component enclosed

by a face corresponding to u or a descendant of L). For a level k vertex L], there

are no enclosed components and the structure of the algorithm causes recur-

sive calls on descendants. Assume that the statement is true for level j < k and

for descendants of a level j – 1 node u. If L is a leaf, the statement is vacuous.

So suppose u is not a leaf. If face(u) does not enclose any higher-outerplanar

component, we need only apply the induction hypothesis to obtain the desired

result. If face(L)) encloses a higher-outerplanar comp&ent, a call on u results

in a call on the root of the tree for this component, and by the induction

hypothesis, this call results in calls on all the leaves of this tree. But calls on

the leaves result in calls on the children of LI; because of the way LB and RB

are defined, a call is made on every child of L). By the induction hypothesis

applied to the children of L’, the desired result holds. ❑

LE~~A 2. A call of table on the root of the level 1 tree results in a correct table

for the con-esponding slice.

PROOF. We show that a call on a vertex LJ results in a correct table for the

slice of LI. The proof is by induction on the number of recursive calls caused by

a call on L. By Lemma 1, the number of recursive calls is always finite. We

assume that the procedures adjust, me~e, extend, create, and contract are

implemented correctly, and that the algorithm computes a table correctly for a

level-l leaf.

If a call on u does not generate any recursive calls, either L) is a level 1 leaf,

or u is a level-i leaf, i > 1, LB( t’ ) = RB( L’), and a table is computed by create.

In either case, the resulting table is correct by assumption.

Assume for j that whenever at most j recursive calls are made a correct

table is computed. Suppose the call on a level-i vertex o generates j + 1

recursive calls. We show that the table computed for L) must also be correct.

Let (x, y) be the label of l].

First, suppose u is a face vertex and face(L) encloses no level i + 1

component. By rule S1, the slice for L) is the union of the slices of L]’s children

plus (x, y) if (x, y) is an edge. Also, the left (right) boundary of the slice of L) is
the same as the left boundary of L”s leftmost (rightmost) child by Proposition 1
above. After the tables for the children are merged in pairs, the resulting table

is for a slice consisting of the union of the children’s slices and the left (right)

bounda~ of the slice is derived from the leftmost (rightmost) child. By

Proposition 1, the left boundary includes x and the right boundary includes y.
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However, at this point, the table assumes that x # y and (x, y) is not an edge.

It also assumes that all lower-level boundary nodes are distinct, even though

they might be duplicated on the left and right boundaries. However, our

definition of a level i table requires that any duplicate boundary nodes not at

level i be treated as if they are distinct. Therefore, the table is correct except

for the treatment of x and y. If x = y, adjust sets to “undefined” any table

entry requiring exactly one of them to be in the independent set and corrects

the count in any table entry requiring both to be in the independent set. If

x # y and (x, y) is an edge, adjust sets to “undefined” any entry that requires

both x and y to be in the independent set. Thus, the final table computed for
~) is correct.

Second, suppose u is a face vertex and face(~) encloses a level i + 1

component C. By rule S2, the slice for L’ is the subgraph consisting of the slice

of mot(~) plus (x, y) if (x, y) is an edge. Also, the left (right) boundary of LI’s

slice is the same as the left (right) boundary of l]’s leftmost (right~ost) child by

Proposition 1. Now, the left (right) boundary of the slice of root(C) is the same

as the left (right) boundary of the slice of the leftmost (rightmost) leaf of ~ by

Proposition 1 applied inductively. Let u ~ and 14~ be the leftmost and rightmost

leaves of ~, respectively. Let (c, d) be the label of the root of ~. By the

definition of tree labeling, c is the first node in the label of L4~ and d is the

second node in the label of 14~. By rule B1 of the definition of LB and RB,

LB(u~) = 1 and RB(24~) = r + 1, where r is the number of children of u. By

rule B2 of the definition of boundaries, the left boundary of L1~ is c plus the

left boundary of the leftmost child of ~, and the right boundary of u~ is d plus

the right boundary of the rightmost child of L. Therefo~e, the boundaries of

L)’s slice are the same as those of the slice of the root of C except for the extra

level i + 1 nodes c and d for the lattqr slice. Consequently, the table

computed by the algorithm for the root of C is correct for u except for (i) the

extra nodes in the boundaries, (ii) the nonincorporation of (x, y) if (.x, y) is an

edge, and (iii) ignorance of the duplication of .x if x = y (since duplication is

taken into account only for level-(i + 1) nodes). The procedure contract

corrects for (i). By Proposition 1 and the definition of boundaries, x and y are

on the left and right boundaries, respectively of the slices of ~ and u. Hence,

adjust corrects for (ii) and (iii). Therefore, the final table is correct for l).

Finally, suppose u is a leaf and LB(1) < RB( ~1). By rule S4, slice( [)) is the

subgraph consisting of (x, y), any edges from x or y to z,, for LB(u) s j s

RB(~l), and slice(u,), for LB(L)) s j < RB( u), where 14, is the jth child of the

vertex for the enclosing face ~. By rule B2 of the definition of boundaries, its

left boundary is x plus the left boundary of the qth child of ~ertex(f), where

LB(u) = q, and its right boundary is y plus the right boundary of the (t– l)st

child of uertex( ~), where RB( ~~) = t.Let the label of the J th child of z’ertex( ~ )

be ( Zj, z, + ~) as in the algorithm, for 1 < j s m, where m is the number of

children of [Vertex. The algorithm finds a p such that if x is adjacent to z,,

then j <p, and if y is adjacent to z,, then y > p. It applies create to construct

a table T for a slice including the edge (x, y), edges from x and y to ZP, and

the left boundary of UP (if p s m) or the right boundary of UP_ ~(if p = m + 1).

By applying exterzd(x, table(ul )) for j <p, these tables are made compatible for

merging with T on the left; similarly, extend( y, table(u, )) applied to j > p

makes these tables compatible for merging with T on the right. Since the table

mergers/extensions include precisely the tables for u,, where LB( L’) < j <
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RI?(v), and incorporate the edges from x and y to z], where LB(L) < j s

RB( v), the final table for [J is correct. ❑

We have shown that the table computed for the root R of the level 1 tree is

correct for its slice. From Proposition 2, R’s slice includes the slices of all tree

vertices. By Proposition 3, every edge is included in the slice for some tree

vertex. Therefore, the slice for R includes the whole graph. The table has four

entries, according to whether the left and right boundary nodes are in the set.

From Proposition 1, the boundaries of the slice are both a, where the label of

the root is (a, a). The definition of tables requires that the entries be undefined

where the corresponding subset would imply inconsistency as to whether a is in

the set. Thus, there are just two meaningful values, representing the size of the

maximum independent set for a in the set and for a not in the set. The

maximum of these is obviously the size of the maximum independent set as

claimed.

4.5. PERFORMANCE BOUNDS. Building the trees and computing boundaries

of slices requires linear time. From above, the algorithm is called recursively at

most once for each tree vertex. Since each leaf in a tree represents an oriented

exterior edge, the number of vertices in trees is at most the number of edges in

the ~-outerplanar graph. For a planar graph, the number of edges is linear in

the number of nodes. Therefore, the number of calls on the main procedure is

linear in the number of nodes. Each call on adjust, extend, or contract requires

0(4~ ) time, each call on merge requires 0(8k ) time, and each call on create

requires 0(k4k) time. The time used for these five operations dominates the

time for other bookkeeping operations. Each of these five operations is

performed at most once per recursive call on the main procedure. Therefore,

the algorithm uses 0(8kn) time, where n is the number of nodes in the

k-outerplanar graph.

The space required is 0(4~n). If only the size of the maximum independent

set is desired, the tables can be deleted after they are used. If the actual

solution set is needed, the tables can be kept and the set computed by

retracting the steps of the computation.

This completes the proof of Theorem 1.

5. Adapting the Above Algorithm to Handle Problems Other than Maximum

Independent Set

The appendix contains comments about algorithms for the other problems

mentioned in the introduction. The following are some general comments.

First, we discuss how to solve the problems optimally on k-outerplanar

graphs. The structure of each algorithm is the same; the only difference is in

the tables used in the dynamic programming. For some r determined by each

problem, each table for a slice of level at most k has at most r possible values

for each of the k nodes in the boundary. (These values encode information

such as whether the node or an edge incident on the node is in the solution set,

or in the more complex case of H-matching, what part of H each node and
boundary edge represent and what part of H must lie on each side of the

boundary.) Thus, the table has at most r2k entries, and if the encoding is

chosen carefully, tables can be merged in 0(r3k) time or 0(r4k ) time. For

independent set, vertex cover, dominating set, and edge dominating set, r = 2;
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for minimum maximum matching and 3-coloring, r = 3. For H-matching, r

depends on H. (See the appendix for the definition of H-matching.) For

Hamiltonian path and cycle, r = O(k).

To incorporate the above algorithms on k-outerplanar graphs into approxi-

mation algorithms on general planar graphs, the general planar graph must be

decomposed into k-outerplanar graphs. The details of the decomposition differ

for the various problems listed in the first section, but are essentially like that

described for maximum independent set. (The greatest difference is for maxi-

mum H-matching, for which to get a solution at least ( k – 1)/k optimal.

kh-outerplanar graphs must be used, where h is the diameter of H. More

details are given in the appendix.)

Appendix. Problems Sok’able in Polynomial Time for k-Oute@mar Grapils

The introduction lists a number of problems besides maximum independent set

as being solvable in polynomial time on k-outerplanar graphs for fixed k.

Several of these have approximation schemes for planar graphs as well. For

each problem, the overall strategy is similar to that for maximum independent

set, but the details differ. In the following, we sketch for each problem

whatever new ideas are needed for that problem.

Al. Problems that Haue Approximation Schemes for Planar Graphs

(1) kfl?Li~?lLlm V37L’X COL’W, Given a graph G = (V, E) and a positive inte-

ger h’ s I V I , is there a vertex cover of size K or less for G, that is, a subset

V’ c V with I V’ I < K such that for each edge (u, ~) = E at least one of LL

and LI belongs to V’ [Garey and Johnson, 1979, problem GT1]?

Minimum vertex cover has a linear-time algorithm on k-outerplane graphs

that is similar to that of maximum independent set except in the details of

bookkeeping. Each table contains the minimum size of a vertex cover for the

slice covered by the table, subject to which boundary nodes are in the set.

For fixed k, a linear-time algorithm that finds a vertex cover of size at most

(k + 1)/k optimal proceeds as follows. given a planar graph. For each i,
O < i < k, ituscs the above algorithm for (k + 1)-outerplanar graphs to obtain

optimal solutions for the overlapping (k + 1)-outerplanar graphs induced by

levels jk + i to (j + l)k + i, j >0, For each i, the union over j of the

solutions gives a vertex cover for the whole graph. The algorithm picks the best

of these as its approximation to optimal. To see that this approximation is at

most (k + 1)/k optimal, consider any optimal solution S. For some t,O s t < k,

at most I S I/k nodes in S are in levels congruent to t (mod k). For j >_O, let

S, be the set of nodes in S in levels jk + t through (j + l)k + t,and S, the
optimal solution for the subgraph induced by these levels. Clearly, I ~, I < I Sj I

for each j. The sum over j of the I S] I ‘s is at most ((k + 1)/k) I S I , since

only nodes in levels congruent to t(mod k ) are counted twice. But the

algorithm produces a vertex cover of size no larger than the sum of the I ~, I ‘s.

An asymptotically optimal polynomial-time approximation algorithm is ob-

tained.

(2) Minimum Dominating Set. Given a graph G = (V, E) and a positive

integer K s IV 1, is there a dominating set of size K or less for G, that is, a

subset V’ c V with IV’ I s K such that for all u = V – V’ there is a L = V’ for

which (u, ~’) ● E [Garey and Johnson, 1979, problem GT2]?
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Again, the linear-time algorithm to solve the problem on k-outerplanar

graphs differs from that of maximum independent set only in the bookkeeping

operations. Each table contains the size of a minimum dominating set for the

slice covered by the table, according to which boundary nodes are in the set.

The approximation algorithms and schemes are similar to those of minimum

vertex cover in using (k + 1)-outerplanar graphs induced by levels jk + i

through (j + l)k + i, j >0.

(3) Minimum Edge Dominating Set. Given a graph G = (V, E) and a

positive integer Ks I V I , is there a set E’ s E of K or fewer edges such that

every edge in E shares at least one endpoint with some edge in E‘ [Garey and

Johnson, 1979, problem GT2]?

The structure of the linear-time algorithm for minimum edge dominating set

on k-outerplanar graphs is similar to that of maximum independent set, but the

bookkeeping operations differ because a dominating set contains edges rather

than vertices. Each table contains the size of a minimum edge dominating set

according to which boundary nodes are endpoints of edges in the set for the

slice covered by the table. The approximation algorithms and schemes are

similar to those of minimum vertex cover in using (k + 1)-outerplanar graphs

induced by levels jk + i through (j + l)k + i, j >0.

(4) Maximum Triangle Matching. Given a planar graph G = (V, E) and

integer K < I V I /3, are there at least K node-disjoint induced subgraphs that

are triangles? (This is a variation on partition into triangles [Garey and

Johnson, 1979, problem GT1l].)

The overall strate~ on k-outerplanar graphs is similar to that for maximum

independent sets, but the table mergers are more complicated. Each table

entry contains the maximum number of disjoint triangles in the slice according

to which boundary nodes are in triangles. Each triangle is either within a single

level or within two successive levels. Therefore, when a boundary node is in a

triangle, the triangle includes at least two edges not on the boundary. In

merging two tables, when a node of the common boundary is in a triangle in

both slices, the triangles are distinct but not disjoint, and this value must be

ignored in computing the value in the merged tables. By examining all pairs of

vectors representing which nodes in the common boundary are in triangles in

the two slices, a table merger can be accomplished in 0(16~) time, and the

overall algorithm runs in 0(16~ I V I) time.

For fixed k, to obtain a solution that is at least (k – 1)/k optimal, the

approximation algorithm solves the problem for each k-outerplanar subgraph

induced by deleting edges between levels congruent to i and i + 1 (mod k), for

each i, O < i < k, and takes the best of the solutions as its approximation. For

some i, O s i < k, at most l/k of the triangles in an optimal solution for the

whole graph include edges between levels congruent to i and i + 1 (mod k),

since every triangle lies either entirely within one level or within two successive

levels. Hence, the approximation is at least (k – 1)/k optimal.

An asymptotically optimal polynomial-time approximation algorithm is ob-
tained in the same manner as for maximum independent set.

(5) Maximum H-Matching and Maximum Tile Saluage. Let H be a con-

nected graph with 3 or more nodes. Given G = (V, E) and a positive integer k,
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does G contain k or more induced node-disjoint subgraphs isomorphic to H

[Berman et al., 1990]? (Maximum triangle matching and maximum tile salvage

[Berman et al., 1982] are subproblems.)

To solve H-matching on a k-outerplanar graph, each table T must encode

the number of copies or partial copies of H in the slice covered by the table,

according to what subgraphs of H occur along the boundaries. Since H is fixed

and finite, there are a bounded number of possibilities for how each boundary

node or edge can occur in H (including which of its neighbors in H are in the

slice). Thus, for some r, each table has size O(r~). Table mergers can be done

in time O(rz~), and the overall time is linear in I V I .
Let h be the diameter of H. The approximation algorithm on planar graphs

finds a solution that is at least (k – 1)/k optimal as follows: It applies the

above algorithm to kh-outerplanar graphs obtained by deleting edges between

levels congruent to hi – 1 and hi (mod kh), where O s i < k, and takes the

best of the k sets. For some i, O < i < k, at most I/k of the copies of H in an

optimal solution S have their highest level nodes in a level congruent to

hi + j (mod kh) for some j, O s j < h, since there are k such possible groups of

levels. Because a copy of H spans at most h levels, removing edges between

levels congruent to hi – 1 and hi (mod kh) can break only copies of H whose

highest levels are congruent to hi + j (mod kh), O < j < h, that is, at most l/k

of the copies in S. Therefore, the algorithm produces a solution whose size is

at least (k – 1)/k optimal.

An asymptotically optimal polynomial-time approximation algorithm is ob-

tained in the same manner as for maximum independent set.

A2. Problems Solwzble in Linear Time on k-Outeqianar Graphs, but not

Amenable to Approximation on General Planar Graphs

(1) Minimum Maximal Matching. Given a graph G = (V, E) and a positive

integer K < I E I , is there a subset E’ CE with I E’ I s K such that E’ is a

maximal matching, that is, no two edges in E‘ share a common endpoint and

every edge in E – E‘ shares a common endpoint with some edge in E‘ [Garey

and Johnson, 1979, problem GTIO]?

The algorithm on lc-outerplanar graphs is similar to that for maximum

independent set except in the bookkeeping. Each table contains the size of a

minimum maximal matching according to whether each boundary node is on

an edge in the set, not on an edge in the set but sharing a common endpoint

with an edge in the set, or neither. In table mergers, each node on the common

boundary must either be on an edge in exactly one set or must share a common
endpoint with an edge in the merged set.

The usual approximation approach does not work for minimum maximal

matching because a subset of an optimal solution may not satisfy the require-

ment that every edge in E – E‘ share a common endpoint with an edge in E‘.

(2) Tlwee-Colorability. Given a graph G = (V, E), is G 3-colorable, that is,
can the nodes be colored with three colors such that adjacent nodes are always

assigned different colors [Garey and Johnson, 1979, problem GT4]?

The algorithm on k-outerplanar graphs is similar to that for maximum

independent set except in the bookkeeping. A table encodes whether the slice
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can be 3-colored for each possible coloring of the boundary nodes. Thus, there

are 32~ entries in each table, and a table merger takes time 0(33k ).

(3) Hamiltolzian Circuit and Hamikonian Path. Does G contain a Hamilto.
nian circuit [Garey and Johnson, 1979, problem GT37]? Does G contain a

Hamiltonian path [Garey and Johnson, 1979, problem GT39]?

The overall strategy of the algorithms on k-outerplanar graphs is similar for

both problems to that for the maximum independent set, but the bookkeeping

is quite different. Each table encodes sets of disjoint paths covering all nodes

in the slice; the endpoints of each path must be boundary nodes. A boundary

node may be either an endpoint of a path or an intermediate point on a path.

For a given set of paths, a labeling of the nodes specifies for each node either

that it is an intermediate node or the other endpoint (i.e., which boundary the

other endpoint is on and its level). For each labeling of the bounda~ nodes,

the table contains 1 if there is a set of paths consistent with the labeling, and O

otherwise. A merger requires joining paths in the two slices. Since k is fixed,

the overall running time is linear in I V I .

A3. A Problem Sokabie in Po~nomial Time on k-Oute~lanar Graphs

Partition into Pe~ect Matchings. Given a graph G = (V, E) and a positive

integer K s I V I , can the vertices of G be partitioned into r s K disjoint sets

Vl, v,,.. ., ~ such that the subgraph induced by each ~ is a perfect matching

(consists entirely of vertices of degree one) [Garey and Johnson, 1979, problem

GT16]?

The algorithm on k-outerplanar graphs is similar to that of maximum

independent set except in the bookkeeping. For each slice, a label for a

boundary node specifies a number from 1 to K and whether the node is

adjacent to a vertex with the same number in the slice. For each labeling of the

boundary nodes of a slice, a table contains 1 if there is a partition of the slice

consistent with the labeling and consistent with being extended into a solution

for the whole graph, and O otherwise. Since K < I V I and k is fixed, the size of

the tables and the overall running time are polynomial in I V I .
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