skip to main content
research-article

Anomaly detection: A survey

Published:30 July 2009Publication History
Skip Abstract Section

Abstract

Anomaly detection is an important problem that has been researched within diverse research areas and application domains. Many anomaly detection techniques have been specifically developed for certain application domains, while others are more generic. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. We have grouped existing techniques into different categories based on the underlying approach adopted by each technique. For each category we have identified key assumptions, which are used by the techniques to differentiate between normal and anomalous behavior. When applying a given technique to a particular domain, these assumptions can be used as guidelines to assess the effectiveness of the technique in that domain. For each category, we provide a basic anomaly detection technique, and then show how the different existing techniques in that category are variants of the basic technique. This template provides an easier and more succinct understanding of the techniques belonging to each category. Further, for each category, we identify the advantages and disadvantages of the techniques in that category. We also provide a discussion on the computational complexity of the techniques since it is an important issue in real application domains. We hope that this survey will provide a better understanding of the different directions in which research has been done on this topic, and how techniques developed in one area can be applied in domains for which they were not intended to begin with.

References

  1. Abe, N., Zadrozny, B., and Langford, J. 2006. Outlier detection by active learning. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, New York, 504--509. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Abraham, B. and Box, G. E. P. 1979. Bayesian analysis of some outlier problems in time series. Biometrika 66, 2, 229--236.Google ScholarGoogle ScholarCross RefCross Ref
  3. Abraham, B. and Chuang, A. 1989. Outlier detection and time series modeling. Technometrics 31, 2, 241--248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Addison, J., Wermter, S., and MacIntyre, J. 1999. Effectiveness of feature extraction in neural network architectures for novelty detection. In Proceedings of the 9th International Conference on Artificial Neural Networks. vol. 2. 976--981.Google ScholarGoogle ScholarCross RefCross Ref
  5. Aeyels, D. 1991. On the dynamic behaviour of the novelty detector and the novelty filter. In Analysis of Controlled Dynamical Systems: Progress in Systems and Control Theory, B. Bonnard, B. Bride, J. Gauthier, and I. Kupka, Eds. vol. 8. Springer, Berlin, 1--10.Google ScholarGoogle Scholar
  6. Agarwal, D. 2005. An empirical Bayes approach to detect anomalies in dynamic multidimensional arrays. In Proceedings of the 5th IEEE International Conference on Data Mining. IEEE Computer Society, 26--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Agarwal, D. 2006. Detecting anomalies in cross-classified streams: A Bayesian approach. Knowl. Inform. Syst. 11, 1, 29--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Aggarwal, C. 2005. On abnormality detection in spuriously populated data streams. In Proceedings of the 5th SIAM Data Min. Conference. 80--91.Google ScholarGoogle ScholarCross RefCross Ref
  9. Aggarwal, C. and Yu, P. 2001. Outlier detection for high dimensional data. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM Press, 37--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Aggarwal, C. C. and Yu, P. S. 2008. Outlier detection with uncertain data. In Proceedings of the International Conference on Data Mining (SDM). 483--493.Google ScholarGoogle Scholar
  11. Agovic, A., Banerjee, A., Ganguly, A. R., and Protopopescu, V. 2007. Anomaly detection in transportation corridors using manifold embedding. In Proceedings of the 1st International Workshop on Knowledge Discovery from Sensor Data. ACM Press.Google ScholarGoogle Scholar
  12. Agrawal, R. and Srikant, R. 1995. Mining sequential patterns. In Proceedings of the 11th International Conference on Data Engineering. IEEE Computer Society, 3--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Agyemang, M., Barker, K., and Alhajj, R. 2006. A comprehensive survey of numeric and symbolic outlier mining techniques. Intel. Data Anal. 10, 6, 521--538. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Albrecht, S., Busch, J., Kloppenburg, M., Metze, F., and Tavan, P. 2000. Generalized radial basis function networks for classification and novelty detection: Self-organization of optional Bayesian decision. Neural Netw. 13, 10, 1075--1093. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Aleskerov, E., Freisleben, B., and Rao, B. 1997. Cardwatch: A neural network based database mining system for credit card fraud detection. In Proceedings of the IEEE Conference on Computational Intelligence for Financial Engineering. 220--226.Google ScholarGoogle Scholar
  16. Allan, J., Carbonell, J., Doddington, G., Yamron, J., and Yang, Y. 1998. Topic detection and tracking pilot study. In Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop. 194--218.Google ScholarGoogle Scholar
  17. Anderson, D. Lunt, T. F., Javitz, H., Tamaru, A., and Valdes, A. 1995. Detecting unusual program behavior using the statistical components of NIDES. Tech. rep. SRI--CSL--95--06, Computer Science Laboratory, SRI International.Google ScholarGoogle Scholar
  18. Anderson, D., Frivold, T., Tamaru, A., and Valdes, A. 1994. Next-generation intrusion detection expert system (NIDES), software users manual, beta-update release. Tech. rep. SRI--CSL--95--07, Computer Science Laboratory, SRI International.Google ScholarGoogle Scholar
  19. Ando, S. 2007. Clustering needles in a haystack: An information theoretic analysis of minority and outlier detection. In Proceedings of the 7th International Conference on Data Mining. 13--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Angiulli, F. and Pizzuti, C. 2002. Fast outlier detection in high dimensional spaces. In Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge Discovery. Springer-Verlag, 15--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Anscombe, F. J. and Guttman, I. 1960. Rejection of outliers. Technometrics 2, 2, 123--147.Google ScholarGoogle ScholarCross RefCross Ref
  22. Arning, A., Agrawal, R., and Raghavan, P. 1996. A linear method for deviation detection in large databases. In Proceedings of the 2nd International Conference of Knowledge Discovery and Data Mining. 164--169.Google ScholarGoogle Scholar
  23. Augusteijn, M. and Folkert, B. 2002. Neural network classification and novelty detection. Int. J. Rem. Sens. 23, 14, 2891--2902.Google ScholarGoogle ScholarCross RefCross Ref
  24. Bakar, Z., Mohemad, R., Ahmad, A., and Deris, M. 2006. A comparative study for outlier detection techniques in data mining. Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems. 1--6.Google ScholarGoogle Scholar
  25. Baker, D., Hofmann, T., McCallum, A., and Yang, Y. 1999. A hierarchical probabilistic model for novelty detection in text. In Proceedings of the International Conference on Machine Learning.Google ScholarGoogle Scholar
  26. Barbara, D., Couto, J., Jajodia, S., and Wu, N. 2001a. Adam: A testbed for exploring the use of data mining in intrusion detection. SIGMOD Rec. 30, 4, 15--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Barbara, D., Couto, J., Jajodia, S., and Wu, N. 2001b. Detecting novel network intrusions using Bayes estimators. In Proceedings of the 1st SIAM International Conference on Data Mining.Google ScholarGoogle Scholar
  28. Barbara, D., Li, Y., Couto, J., Lin, J.-L., and Jajodia, S. 2003. Bootstrapping a data mining intrusion detection system. In Proceedings of the ACM Symposium on Applied Computing. ACM Press, 421--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Barnett, V. 1976. The ordering of multivariate data (with discussion). J. Royal Statis. Soc. Series A 139, 318--354.Google ScholarGoogle ScholarCross RefCross Ref
  30. Barnett, V. and Lewis, T. 1994. Outliers in Statistical Data. John Wiley.Google ScholarGoogle Scholar
  31. Barson, P., Davey, N., Field, S. D. H., Frank, R. J., and McAskie, G. 1996. The detection of fraud in mobile phone networks. Neural Netw. World 6, 4.Google ScholarGoogle Scholar
  32. Basu, S., Bilenko, M., and Mooney, R. J. 2004. A probabilistic framework for semi-supervised clustering. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 59--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Basu, S. and Meckesheimer, M. 2007. Automatic outlier detection for time series: an application to sensor data. Know. Inform. Syst. 11, 2, 137--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Bay, S. D. and Schwabacher, M. 2003. Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 29--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Beckman, R. J. and Cook, R. D. 1983. Outlier...s. Technometrics 25, 2, 119--149.Google ScholarGoogle Scholar
  36. Bejerano, G. and Yona, G. 2001. Variations on probabilistic suffix trees: statistical modeling and prediction of protein families. Bioinformatics 17, 1, 23--43.Google ScholarGoogle ScholarCross RefCross Ref
  37. Bentley, J. L. 1975. Multi-dimensional binary search trees used for associative searching. Comm. ACM 18, 9, 509--517. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Bianco, A. M., Ben, M. G., Martinez, E. J., and Yohai, V. J. 2001. Outlier detection in regression models with arima errors using robust estimates. J. Forecast. 20, 8, 565--579.Google ScholarGoogle ScholarCross RefCross Ref
  39. Bishop, C. 1994. Novelty detection and neural network validation. In Proceedings of the IEEE Conference on Vision, Image and Signal Processing. vol. 141. 217--222.Google ScholarGoogle ScholarCross RefCross Ref
  40. Blender, R., Fraedrich, K., and Lunkeit, F. 1997. Identification of cyclone-track regimes in the north atlantic. Quart. J. Royal Meteor. Soc. 123, 539, 727--741.Google ScholarGoogle ScholarCross RefCross Ref
  41. Bolton, R. and Hand, D. 1999. Unsupervised profiling methods for fraud detection. In Proceedings of the Conference on Credit Scoring and Credit Control VII.Google ScholarGoogle Scholar
  42. Boriah, S., Chandola, V., and Kumar, V. 2008. Similarity measures for categorical data: A comparative evaluation. In Proceedings of the 8th SIAM International Conference on Data Mining. 243--254.Google ScholarGoogle Scholar
  43. Borisyuk, R., Denham, M., Hoppensteadt, F., Kazanovich, Y., and Vinogradova, O. 2000. An oscillatory neural network model of sparse distributed memory and novelty detection. Biosystems 58, 265--272.Google ScholarGoogle ScholarCross RefCross Ref
  44. Box, G. E. P. and Tiao, G. C. 1968. Bayesian analysis of some outlier problems. Biometrika 55, 1, 119--129.Google ScholarGoogle ScholarCross RefCross Ref
  45. Branch, J., Szymanski, B., Giannella, C., Wolff, R., and Kargupta, H. 2006. In-network outlier detection in wireless sensor networks. In Proceedings of the 26th IEEE International Conference on Distributed Computing Systems. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Brause, R., Langsdorf, T., and Hepp, M. 1999. Neural data mining for credit card fraud detection. In Proceedings of the IEEE International Conference on Tools with Artificial Intelligence. 103--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. 1999. Optics-of: Identifying local outliers. In Proceedings of the 3rd European Conference on Principles of Data Mining and Knowledge Discovery. Springer-Verlag, 262--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. 2000. LOF: Identifying density-based local outliers. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM Press, 93--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Brito, M. R., Chavez, E. L., Quiroz, A. J., and Yukich, J. E. 1997. Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier detection. Statis. Prob. Lett. 35, 1, 33--42.Google ScholarGoogle ScholarCross RefCross Ref
  50. Brockett, P. L., Xia, X., and Derrig, R. A. 1998. Using Kohonen's self-organizing feature map to uncover automobile bodily injury claims fraud. J. Risk Insur. 65, 2, 245--274.Google ScholarGoogle ScholarCross RefCross Ref
  51. Bronstein, A., Das, J., Duro, M., Friedrich, R., Kleyner, G., Mueller, M., Singhal, S., and Cohen, I. 2001. Bayesian networks for detecting anomalies in Internet-based services. In Proceedings of the International Symposium on Integrated Network Management.Google ScholarGoogle Scholar
  52. Brotherton, T. and Johnson, T. 2001. Anomaly detection for advanced military aircraft using neural networks. In Proceedings of the IEEE Aerospace Conference.Google ScholarGoogle Scholar
  53. Brotherton, T., Johnson, T., and Chadderdon, G. 1998. Classification and novelty detection using linear models and a class dependent-elliptical basis function neural network. In Proceedings of the IJCNN Conference.Google ScholarGoogle Scholar
  54. Budalakoti, S., Srivastava, A., Akella, R., and Turkov, E. 2006. Anomaly detection in large sets of high-dimensional symbol sequences. Tech. rep. NASA TM-2006-214553, NASA Ames Research Center.Google ScholarGoogle Scholar
  55. Byers, S. D. and Raftery, A. E. 1998. Nearest neighbor clutter removal for estimating features in spatial point processes. J. Amer. Statis. Assoc. 93, 577--584.Google ScholarGoogle ScholarCross RefCross Ref
  56. Byungho, H. and Sungzoon, C. 1999. Characteristics of autoassociative MLP as a novelty detector. In Proceedings of the IEEE International Joint Conference on Neural Networks. Vol. 5. 3086--3091.Google ScholarGoogle Scholar
  57. Cabrera, J. B. D., Lewis, L., and Mehra, R. K. 2001. Detection and classification of intrusions and faults using sequences of system calls. SIGMOD Rec. 30, 4, 25--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Campbell, C. and Bennett, K. 2001. A linear programming approach to novelty detection. In Proceedings of the Conference on Advances in Neural Information Processing. vol. 14. Cambridge Press.Google ScholarGoogle Scholar
  59. Caudell, T. and Newman, D. 1993. An adaptive resonance architecture to define normality and detect novelties in time series and databases. In Proceedings of the IEEE World Congress on Neural Networks. IEEE, 166--176.Google ScholarGoogle Scholar
  60. Chakrabarti, S., Sarawagi, S., and Dom, B. 1998. Mining surprising patterns using temporal description length. In Proceedings of the 24rd International Conference on Very Large Data Bases. Morgan Kaufmann Publishers Inc., 606--617. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Chandola, V., Banerjee, A., and Kumar, V. 2007. Anomaly detection: A survey. Tech. rep. 07-017, Computer Science Department, University of Minnesota.Google ScholarGoogle Scholar
  62. Chandola, V., Boriah, S., and Kumar, V. 2008. Understanding categorical similarity measures for outlier detection. Tech. rep. 08-008, University of Minnesota.Google ScholarGoogle Scholar
  63. Chandola, V., Eilertson, E., Ertoz, L., Simon, G., and Kumar, V. 2006. Data mining for cyber security. In Data Warehousing and Data Mining Techniques for Computer Security, A. Singhal, Ed. Springer.Google ScholarGoogle Scholar
  64. Chatzigiannakis, V., Papavassiliou, S., Grammatikou, M., and Maglaris, B. 2006. Hierarchical anomaly detection in distributed large-scale sensor networks. In Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC). IEEE Computer Society, 761--767. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Chaudhary, A., Szalay, A. S., and Moore, A. W. 2002. Very fast outlier detection in large multidimensional data sets. In Proceedings of the ACM SIGMOD Workshop in Research Issues in Data Mining and Knowledge Discovery (DMKD). ACM Press.Google ScholarGoogle Scholar
  66. Chawla, N. V., Japkowicz, N., and Kotcz, A. 2004. Editorial: special issue on learning from imbalanced data sets. SIGKDD Explor. 6, 1, 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Chen, D., Shao, X., Hu, B., and Su, Q. 2005. Simultaneous wavelength selection and outlier detection in multivariate regression of near-infrared spectra. Anal. Sci. 21, 2, 161--167.Google ScholarGoogle ScholarCross RefCross Ref
  68. Chiu, A. and Chee Fu, A. W. 2003. Enhancements on local outlier detection. In Proceedings of the 7th International Database Engineering and Applications Symposium. 298--307.Google ScholarGoogle Scholar
  69. Chow, C. and Yeung, D.-Y. 2002. Parzen-window network intrusion detectors. In Proceedings of the 16th International Conference on Pattern Recognition. vol. 4. IEEE Computer Society, 40385. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Cox, K. C., Eick, S. G., Wills, G. J., and Brachman, R. J. 1997. Visual data mining: Recognizing telephone calling fraud. J. Data Min. Knowl. Disc. 1, 2, 225--231. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Crook, P. and Hayes, G. 2001. A robot implementation of a biologically inspired method for novelty detection. In Proceedings of the Towards Intelligent Mobile Robots Conference.Google ScholarGoogle Scholar
  72. Crook, P. A., Marsland, S., Hayes, G., and Nehmzow, U. 2002. A tale of two filters: Online novelty detection. In Proceedings of the International Conference on Robotics and Automation. 3894--3899.Google ScholarGoogle Scholar
  73. Cun, Y. L., Boser, B., Denker, J. S., Howard, R. E., Hubbard, W., Jackel, L. D., and Henderson, D. 1990. Handwritten digit recognition with a back-propagation network. In Advances in Neural Information Processing Systems. 396--404. Morgan Koufamann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Das, K. and Schneider, J. 2007. Detecting anomalous records in categorical datasets. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Dasgupta, D. and Majumdar, N. 2002. Anomaly detection in multidimensional data using negative selection algorithm. In Proceedings of the IEEE Conference on Evolutionary Computation. 1039--1044. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Dasgupta, D. and Nino, F. 2000. A comparison of negative and positive selection algorithms in novel pattern detection. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. vol. 1. 125--130.Google ScholarGoogle Scholar
  77. Davy, M. and Godsill, S. 2002. Detection of abrupt spectral changes using support vector machines, an application to audio signal segmentation. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing.Google ScholarGoogle Scholar
  78. Debar, H., Dacier, M., Nassehi, M., and Wespi, A. 1998. Fixed vs. variable-length patterns for detecting suspicious process behavior. In Proceedings of the 5th European Symposium on Research in Computer Security. Springer-Verlag, 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Denning, D. E. 1987. An intrusion detection model. IEEE Trans. Softw. Eng. 13, 2, 222--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Desforges, M., Jacob, P., and Cooper, J. 1998. Applications of probability density estimation to the detection of abnormal conditions in engineering. In Proceedings of the Institute of the Mechanical Engineers. vol. 212. 687--703.Google ScholarGoogle Scholar
  81. Diaz, I. and Hollmen, J. 2002. Residual generation and visualization for understanding novel process conditions. In Proceedings of the IEEE International Joint Conference on Neural Networks. IEEE, 2070--2075.Google ScholarGoogle Scholar
  82. Diehl, C. and Hampshire, J. 2002. Real-time object classification and novelty detection for collaborative video surveillance. In Proceedings of the IEEE International Joint Conference on Neural Networks. IEEE.Google ScholarGoogle Scholar
  83. Donoho, S. 2004. Early detection of insider trading in option markets. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 420--429. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Dorronsoro, J. R., Ginel, F., Sanchez, C., and Cruz, C. S. 1997. Neural fraud detection in credit card operations. IEEE Trans. Neural Netw. 8, 4, 827--834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Du, W., Fang, L., and Peng, N. 2006. Lad: Localization anomaly detection for wireless sensor networks. J. Paral. Distrib. Comput. 66, 7, 874--886. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Duda, R. O., Hart, P. E., and Stork, D. G. 2000. Pattern Classification 2nd Ed. Wiley-Interscience. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Dutta, H., Giannella, C., Borne, K., and Kargupta, H. 2007. Distributed top-k outlier detection in astronomy catalogs using the DEMAC system. In Proceedings of the 7th SIAM International Conference on Data Mining.Google ScholarGoogle Scholar
  88. Edgeworth, F. Y. 1887. On discordant observations. Philosoph. Mag. 23, 5, 364--375.Google ScholarGoogle ScholarCross RefCross Ref
  89. Emamian, V., Kaveh, M., and Tewfik, A. 2000. Robust clustering of acoustic emission signals using the Kohonen network. In Proceedings of the IEEE International Conference of Acoustics, Speech and Signal Processing. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Endler, D. 1998. Intrusion detection: Applying machine learning to solaris audit data. In Proceedings of the 14th Annual Computer Security Applications Conference. IEEE Computer Society, 268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Ertoz, L., Eilertson, E., Lazarevic, A., Tan, P.-N., Kumar, V., Srivastava, J., and Dokas, P. 2004. MINDS—Minnesota Intrusion Detection System. In Data Mining—Next Generation Challenges and Future Directions. MIT Press.Google ScholarGoogle Scholar
  92. Ertöz, L., Steinbach, M., and Kumar, V. 2003. Finding topics in collections of documents: A shared nearest neighbor approach. In Clustering and Information Retrieval. 83--104.Google ScholarGoogle Scholar
  93. Escalante, H. J. 2005. A comparison of outlier detection algorithms for machine learning. In Proceedings of the International Conference on Communications in Computing.Google ScholarGoogle Scholar
  94. Eskin, E. 2000. Anomaly detection over noisy data using learned probability distributions. In Proceedings of the 17th International Conference on Machine Learning. Morgan Kaufmann Publishers Inc., 255--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Eskin, E., Arnold, A., Prerau, M., Portnoy, L., and Stolfo, S. 2002. A geometric framework for unsupervised anomaly detection. In Proceedings of the Conference on Applications of Data Mining in Computer Security. Kluwer Academics, 78--100.Google ScholarGoogle Scholar
  96. Eskin, E., Lee, W., and Stolfo, S. 2001. Modeling system call for intrusion detection using dynamic window sizes. In Proceedings of DARPA Information Survivability Conference and Exposition (DISCEX).Google ScholarGoogle Scholar
  97. Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, E. Simoudis, J. Han, and U. Fayyad, Eds. AAAI Press, 226--231.Google ScholarGoogle Scholar
  98. Fan, W., Miller, M., Stolfo, S. J., Lee, W., and Chan, P. K. 2001. Using artificial anomalies to detect unknown and known network intrusions. In Proceedings of the IEEE International Conference on Data Mining. IEEE Computer Society, 123--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. Fawcett, T. and Provost, F. 1999. Activity monitoring: noticing interesting changes in behavior. In Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 53--62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. Forrest, S., D'haeseleer, P., and Helman, P. 1996a. An immunological approach to change detection: Algorithms, analysis and implications. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE Computer Society, 110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. Forrest, S., Esponda, F., and Helman, P. 2004. A formal framework for positive and negative detection schemes. In IEEE Trans. Syst. Man Cybernetics, Part B. IEEE, 357--373. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Forrest, S., Hofmeyr, S. A., Somayaji, A., and Longstaff, T. A. 1996b. A sense of self for unix processes. In Proceedings of the IEEE ISRSP. 120--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Forrest, S., Perelson, A. S., Allen, L., and Cherukuri, R. 1994. Self-nonself discrimination in a computer. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE Computer Society, 202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. Forrest, S., Warrender, C., and Pearlmutter, B. 1999. Detecting intrusions using system calls: Alternate data models. In Proceedings of the IEEE ISRSP. IEEE Computer Society, 133--145.Google ScholarGoogle Scholar
  105. Fox, A. J. 1972. Outliers in time series. J. Royal Statis. Soc. Series B 34, 3, 350--363.Google ScholarGoogle ScholarCross RefCross Ref
  106. Fujimaki, R., Yairi, T., and Machida, K. 2005. An approach to spacecraft anomaly detection problem using kernel feature space. In Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. ACM Press, 401--410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. Galeano, P., Pea, D., and Tsay, R. S. 2004. Outlier detection in multivariate time series via projection pursuit. Statistics and econometrics working articles ws044211, Departamento de Estadïstica y Econometrïca, Universidad Carlos III.Google ScholarGoogle Scholar
  108. Ghosh, A. K., Schwartzbard, A., and Schatz, M. 1999a. Learning program behavior profiles for intrusion detection. In Proceedings of the 1st USENIX Workshop on Intrusion Detection and Network Monitoring. 51--62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Ghosh, A. K., Schwartzbard, A., and Schatz, M. 1999b. Using program behavior profiles for intrusion detection. In Proceedings of the SANS 3rd Conference and Workshop on Intrusion Detection and Response. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Ghosh, A. K., Wanken, J., and Charron, F. 1998. Detecting anomalous and unknown intrusions against programs. In Proceedings of the 14th Annual Computer Security Applications Conference. IEEE Computer Society, 259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. Ghosh, S. and Reilly, D. L. 1994. Credit card fraud detection with a neural-network. In Proceedings of the 27th Annual Hawaii International Conference on System Science. vol. 3.Google ScholarGoogle Scholar
  112. Ghoting, A., Parthasarathy, S., and Otey, M. 2006. Fast mining of distance-based outliers in high dimensional datasets. In Proceedings of the SIAM International Conference on Data Mining.Google ScholarGoogle Scholar
  113. Gibbons, R. D. 1994. Statistical Methods for Groundwater Monitoring. John Wiley & Sons, Inc.Google ScholarGoogle Scholar
  114. Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., and Stanley, H. E. 2000. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101, 23, e215--e220. Circulation Electronic Pages: http://circ.ahajournals.org/cgi/content/full/101/23/e215.Google ScholarGoogle ScholarCross RefCross Ref
  115. Gonzalez, F. A. and Dasgupta, D. 2003. Anomaly detection using real-valued negative selection. Genetic Program. Evolv. Mach. 4, 4, 383--403. Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. Grubbs, F. 1969. Procedures for detecting outlying observations in samples. Technometrics 11, 1, 1--21.Google ScholarGoogle ScholarCross RefCross Ref
  117. Guha, S., Rastogi, R., and Shim, K. 2000. ROCK: A robust clustering algorithm for categorical attributes. Inform. Syst. 25, 5, 345--366. Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. Gunter, S., Schraudolph, N. N., and Vishwanathan, S. V. N. 2007. Fast iterative kernel principal component analysis. J. Mach. Learn. Res. 8, 1893--1918. Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. Guttormsson, S. E, Marks R. J. II, El-Sharkawi, M. A., and Kerszenbaum, I. 1999. Elliptical novelty grouping for online short-turn detection of excited running rotors. IEEE Trans. Energy Conv. 14, 1.Google ScholarGoogle ScholarCross RefCross Ref
  120. Gwadera, R., Atallah, M. J., and Szpankowski, W. 2004. Detection of significant sets of episodes in event sequences. In Proceedings of the 4th IEEE International Conference on Data Mining. IEEE Computer Society, 3--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. Gwadera, R., Atallah, M. J., and Szpankowski, W. 2005a. Markov models for identification of significant episodes. In Proceedings of the 5th SIAM International Conference on Data Mining.Google ScholarGoogle Scholar
  122. Gwadera, R., Atallah, M. J., and Szpankowski, W. 2005b. Reliable detection of episodes in event sequences. Knowl. Inform. Syst. 7, 4, 415--437.Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. Harris, T. 1993. Neural network in machine health monitoring. Professional Engin.Google ScholarGoogle Scholar
  124. Hartigan, J. A. and Wong, M. A. 1979. A k-means clustering algorithm. Appl. Stat. 28, 100--108.Google ScholarGoogle ScholarCross RefCross Ref
  125. Hautamaki, V., Karkkainen, I., and Franti, P. 2004. Outlier detection using k-nearest neighbour graph. In Proceedings of the 17th International Conference on Pattern Recognition. vol. 3. IEEE Computer Society, 430--433. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. Hawkins, D. 1980. Identification of Outliers. Chapman and Hall, London and New York.Google ScholarGoogle Scholar
  127. Hawkins, D. M. 1974. The detection of errors in multivariate data using principal components. J. Amer. Statis. Assoc. 69, 346, 340--344.Google ScholarGoogle ScholarCross RefCross Ref
  128. Hawkins, S., He, H., Williams, G. J., and Baxter, R. A. 2002. Outlier detection using replicator neural networks. In Proceedings of the 4th International Conference on Data Warehousing and Knowledge Discovery. Springer-Verlag, 170--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. Hazel, G. G. 2000. Multivariate Gaussian MRF for multi-spectral scene segmentation and anomaly detection. GeoRS 38, 3, 1199--1211.Google ScholarGoogle Scholar
  130. He, H., Wang, J., Graco, W., and Hawkins, S. 1997. Application of neural networks to detection of medical fraud. Expert Syst. Appl. 13, 4, 329--336.Google ScholarGoogle ScholarCross RefCross Ref
  131. He, Z., Deng, S., and Xu, X. 2002. Outlier detection integrating semantic knowledge. In Proceedings of the 3rd International Conference on Advances in Web-Age Information Management. Springer-Verlag, 126--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  132. He, Z., Deng, S., Xu, X., and Huang, J. Z. 2006. A fast greedy algorithm for outlier mining. In Proceedings of the 10th Pacific-Asia Conference on Knowledge and Data Discovery. 567--576. Google ScholarGoogle ScholarDigital LibraryDigital Library
  133. He, Z., Xu, X., and Deng, S. 2003. Discovering cluster-based local outliers. Pattern Recog. Lett. 24, 9--10, 1641--1650. Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. He, Z., Xu, X., and Deng, S. 2005. An optimization model for outlier detection in categorical data. In Proceedings of the International Conference on Intelligent Computing. Lecture Notes in Computer Science, vol. 3644. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. He, Z., Xu, X., Huang, J. Z., and Deng, S. 2004a. A Frequent Pattern Discovery Method for Outlier Detection. Springer, 726--732.Google ScholarGoogle Scholar
  136. He, Z., Xu, X., Huang, J. Z., and Deng, S. 2004b. Mining Class Outliers: Concepts, Algorithms and Applications. Springer, 588--589.Google ScholarGoogle Scholar
  137. Heller, K. A., Svore, K. M., Keromytis, A. D., and Stolfo, S. J. 2003. One class support vector machines for detecting anomalous windows registry accesses. In Proceedings of the Workshop on Data Mining for Computer Security.Google ScholarGoogle Scholar
  138. Helman, P. and Bhangoo, J. 1997. A statistically-based system for prioritizing information exploration under uncertainty. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. vol. 27. IEEE, 449--466.Google ScholarGoogle Scholar
  139. Helmer, G., Wong, J., Honavar, V., and Miller, L. 1998. Intelligent agents for intrusion detection. In Proceedings of the IEEE Information Technology Conference. 121--124.Google ScholarGoogle Scholar
  140. Hickinbotham, S. J. and Austin, J. 2000a. Novelty detection in airframe strain data. In Proceedings of the 15th International Conference on Pattern Recognition. Vol. 2. 536--539.Google ScholarGoogle Scholar
  141. Hickinbotham, S. J. and Austin, J. 2000b. Novelty detection in airframe strain data. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. vol. 6. 24--27.Google ScholarGoogle Scholar
  142. Ho, L. L., Macey, C. J., and Hiller, R. 1999. A distributed and reliable platform for adaptive anomaly detection in IP networks. In Proceedings of the 10th IFIP/IEEE International Workshop on Distributed Systems: Operations and Management. Springer-Verlag, 33--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. Ho, T. V. and Rouat, J. 1997. A novelty detector using a network of integrate and fire neurons. Lecture Notes in Computer Science, vol. 1327. 103--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  144. Ho, T. V. and Rouat, J. 1998. Novelty detection based on relaxation time of a network of integrate-and-fire neurons. In Proceedings of the 2nd IEEE World Congress on Computational Intelligence. 1524--1529.Google ScholarGoogle Scholar
  145. Hodge, V. and Austin, J. 2004. A survey of outlier detection methodologies. Artif. Intel. Rev. 22, 2, 85--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  146. Hofmeyr, S. A., Forrest, S., and Somayaji, A. 1998. Intrusion detection using sequences of system calls. J. Comput. Secur. 6, 3, 151--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. Hollier, G. and Austin, J. 2002. Novelty detection for strain-gauge degradation using maximally correlated components. In Proceedings of the European Symposium on Artificial Neural Networks. 257--262--539.Google ScholarGoogle Scholar
  148. Hollmen, J. and Tresp, V. 1999. Call-based fraud detection in mobile communication networks using a hierarchical regime-switching model. In Proceedings of the Conference on Advances in Neural Information Processing Systems II. MIT Press, 889--895. Google ScholarGoogle ScholarDigital LibraryDigital Library
  149. Horn, P. S., Feng, L., Li, Y., and Pesce, A. J. 2001. Effect of outliers and nonhealthy individuals on reference interval estimation. Clinical Chem. 47, 12, 2137--2145.Google ScholarGoogle ScholarCross RefCross Ref
  150. Hu, W., Liao, Y., and Vemuri, V. R. 2003. Robust anomaly detection using support vector machines. In Proceedings of the International Conference on Machine Learning. Morgan Kaufmann Publishers Inc., 282--289.Google ScholarGoogle Scholar
  151. Huber, P. 1974. Robust Statistics. Wiley, New York.Google ScholarGoogle Scholar
  152. Huber, P. J. 1985. Projection pursuit (with discussions). Ann. Stat. 13, 2, 435--475.Google ScholarGoogle ScholarCross RefCross Ref
  153. Ide, T. and Kashima, H. 2004. Eigenspace-based anomaly detection in computer systems. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 440--449. Google ScholarGoogle ScholarDigital LibraryDigital Library
  154. Idé, T., Papadimitriou, S., and Vlachos, M. 2007. Computing correlation anomaly scores using stochastic nearest neighbors. In Proceedings of the International Conference Data Mining. 523--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  155. Ihler, A., Hutchins, J., and Smyth, P. 2006. Adaptive event detection with time-varying Poisson processes. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 207--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  156. Ilgun, K., Kemmerer, R. A., and Porras, P. A. 1995. State transition analysis: A rule-based intrusion detection approach. IEEE Trans. Softw. Eng. 21, 3, 181--199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  157. Jagadish, H. V., Koudas, N., and Muthukrishnan, S. 1999. Mining deviants in a time series database. In Proceedings of the 25th International Conference on Very Large Data Bases. Morgan Kaufmann Publishers Inc., 102--113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  158. Jagota, A. 1991. Novelty detection on a very large number of memories stored in a hopfield-style network. In Proceedings of the International Joint Conference on Neural Networks. vol. 2. 905.Google ScholarGoogle ScholarCross RefCross Ref
  159. Jain, A. K. and Dubes, R. C. 1988. Algorithms for Clustering Data. Prentice-Hall, Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  160. Jakubek, S. and Strasser, T. 2002. Fault-diagnosis using neural networks with ellipsoidal basis functions. In Proceedings of the American Control Conference. vol. 5. 3846--3851.Google ScholarGoogle Scholar
  161. Janakiram, D., Reddy, V., and Kumar, A. 2006. Outlier detection in wireless sensor networks using Bayesian belief networks. In Proceedings of the 1st International Conference on Communication System Software and Middleware. 1--6.Google ScholarGoogle Scholar
  162. Japkowicz, N., Myers, C., and Gluck, M. A. 1995. A novelty detection approach to classification. In Proceedings of the International Joint Conference on Artificial Intelligence. 518--523. Google ScholarGoogle ScholarDigital LibraryDigital Library
  163. Javitz, H. S. and Valdes, A. 1991. The SRI IDES statistical anomaly detector. In Proceedings of the IEEE Symposium on Research in Security and Privacy. IEEE Computer Society.Google ScholarGoogle Scholar
  164. Jiang, M. F., Tseng, S. S., and Su, C. M. 2001. Two-phase clustering process for outliers detection. Patt. Recog. Lett. 22, 6-7, 691--700. Google ScholarGoogle ScholarDigital LibraryDigital Library
  165. Jin, W., Tung, A. K. H., and Han, J. 2001. Mining top-n local outliers in large databases. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 293--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  166. Joachims, T. 2006. Training linear SVMS in linear time. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 217--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  167. Jolliffe, I. T. 2002. Principal Component Analysis, 2nd Ed. Springer.Google ScholarGoogle Scholar
  168. Joshi, M. V., Agarwal, R. C., and Kumar, V. 2001. Mining needle in a haystack: classifying rare classes via two-phase rule induction. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM Press, 91--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  169. Joshi, M. V., Agarwal, R. C., and Kumar, V. 2002. Predicting rare classes: can boosting make any weak learner strong? In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 297--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  170. Kadota, K., Tominaga, D., Akiyama, Y., and Takahashi, K. 2003. Detecting outlying samples in micro-array data: A critical assessment of the effect of outliers on sample classification. Chem-Bio Informatics 3, 1, 30--45.Google ScholarGoogle ScholarCross RefCross Ref
  171. Karypis, G. and Kumar, V. 1998. Multi-level k-way partitioning scheme for irregular graphs. J. Paral. Distrib. Comput. 48, 1, 96--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  172. Kearns, M. J. 1990. Computational Complexity of Machine Learning. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  173. Keogh, E., Lin, J., Lee, S.-H., and Herle, H. V. 2006. Finding the most unusual time series subsequence: Algorithms and applications. Knowl. Inform. Syst. 11, 1, 1--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  174. Keogh, E., Lonardi, S., and chi' Chiu, B. Y. 2002. Finding surprising patterns in a time series database in linear time and space. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 550--556. Google ScholarGoogle ScholarDigital LibraryDigital Library
  175. Keogh, E., Lonardi, S., and Ratanamahatana, C. A. 2004. Towards parameter-free data mining. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 206--215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  176. Keogh, E. and Smyth, P. 1997. A probabilistic approach to fast pattern matching in time series databases. In Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, D. Heckerman, H. Mannila, D. Pregibon, and R. Uthurusamy, Eds. AAAI Press, 24--30.Google ScholarGoogle Scholar
  177. King, S., King, D., P. Anuzis, K. A., Tarassenko, L., Hayton, P., and Utete, S. 2002. The use of novelty detection techniques for monitoring high-integrity plant. In Proceedings of the International Conference on Control Applications. vol. 1., 221--226.Google ScholarGoogle Scholar
  178. Kitagawa, G. 1979. On the use of AIC for the detection of outliers. Technometrics 21, 2, 193--199.Google ScholarGoogle ScholarCross RefCross Ref
  179. Knorr, E. M. and Ng, R. T. 1997. A unified approach for mining outliers. In Proceedings of the Conference of the Centre for Advanced Studies on Collaborative Research. IBM Press, 11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  180. Knorr, E. M. and Ng, R. T. 1998. Algorithms for mining distance-based outliers in large datasets. In Proceedings of the 24rd International Conference on Very Large Data Bases. Morgan Kaufmann Publishers Inc., 392--403. Google ScholarGoogle ScholarDigital LibraryDigital Library
  181. Knorr, E. M. and Ng, R. T. 1999. Finding intensional knowledge of distance-based outliers. VLDB J. 211--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  182. Knorr, E. M., Ng, R. T., and Tucakov, V. 2000. Distance-based outliers: Algorithms and applications. VLDB J. 8, 3-4, 237--253. Google ScholarGoogle ScholarDigital LibraryDigital Library
  183. Ko, H. and Jacyna, G. 2000. Dynamical behavior of autoassociative memory performing novelty filtering. In IEEE Trans. Neural Netw. Vol. 11. 1152--1161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  184. Kohonen, T., Ed. 1997. Self-Organizing Maps. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  185. Kojima, K. and Ito, K. 1999. Autonomous learning of novel patterns by utilizing chaotic dynamics. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. Vol. 1. IEEE, 284--289.Google ScholarGoogle Scholar
  186. Kosoresow, A. P. and Hofmeyr, S. A. 1997. Intrusion detection via system call traces. IEEE Softw. 14, 5, 35--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  187. Kou, Y., Lu, C.-T., and Chen, D. 2006. Spatial weighted outlier detection. In Proceedings of the SIAM Conference on Data Mining.Google ScholarGoogle Scholar
  188. Kruegel, C., Mutz, D., Robertson, W., and Valeur, F. 2003. Bayesian event classification for intrusion detection. In Proceedings of the 19th Annual Computer Security Applications Conference. IEEE Computer Society, 14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  189. Kruegel, C., Toth, T., and Kirda, E. 2002. Service specific anomaly detection for network intrusion detection. In Proceedings of the ACM symposium on Applied Computing. ACM Press, 201--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  190. Kruegel, C. and Vigna, G. 2003. Anomaly detection of Web-based attacks. In Proceedings of the 10th ACM Conference on Computer and Communications Security. ACM Press, 251--261. Google ScholarGoogle ScholarDigital LibraryDigital Library
  191. Kumar, V. 2005. Parallel and distributed computing for cybersecurity. IEEE Distrib. Syst. Online 6, 10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  192. Labib, K. and Vemuri, R. 2002. NSOM: A real-time network-based intrusion detection using self-organizing maps. Netw. Security.Google ScholarGoogle Scholar
  193. Lakhina, A., Crovella, M., and Diot, C. 2005. Mining anomalies using traffic feature distributions. In Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. ACM Press, 217--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  194. Lane, T. and Brodley, C. E. 1997a. An application of machine learning to anomaly detection. In Proceedings of the Conference on 20th NIST-NCSC National Information Systems Security Conference. 366--380.Google ScholarGoogle Scholar
  195. Lane, T. and Brodley, C. E. 1997b. Sequence matching and learning in anomaly detection for computer security. In Proceedings of the Conference on AI Approaches to Fraud Detection and Risk Management, Fawcett, Haimowitz, Provost, and Stolfo, Eds. AAAI Press, 43--49.Google ScholarGoogle Scholar
  196. Lane, T. and Brodley, C. E. 1999. Temporal sequence learning and data reduction for anomaly detection. ACM Trans. Inform. Syst. Secur. 2, 3, 295--331. Google ScholarGoogle ScholarDigital LibraryDigital Library
  197. Lauer, M. 2001. A mixture approach to novelty detection using training data with outliers. In Proceedings of the 12th European Conference on Machine Learning. Springer-Verlag, 300--311. Google ScholarGoogle ScholarDigital LibraryDigital Library
  198. Laurikkala, J., Juhola, M., and Kentala., E. 2000. Informal identification of outliers in medical data. In Proceedings of the 5<sup>th</sup> International Workshop on Intelligent Data Analysis in Medicine and Pharmacology. 20--24.Google ScholarGoogle Scholar
  199. Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., and Srivastava, J. 2003. A comparative study of anomaly detection schemes in network intrusion detection. In Proceedings of the SIAM International Conference on Data Mining. (SIAM).Google ScholarGoogle Scholar
  200. Lee, W. and Stolfo, S. 1998. Data mining approaches for intrusion detection. In Proceedings of the 7th USENIX Security Symposium. Google ScholarGoogle ScholarDigital LibraryDigital Library
  201. Lee, W., Stolfo, S., and Chan, P. 1997. Learning patterns from UNIX process execution traces for intrusion detection. In Proceedings of the AAAI Workshop on AI Methods in Fraud and Risk Management.Google ScholarGoogle Scholar
  202. Lee, W., Stolfo, S. J., and Mok, K. W. 2000. Adaptive intrusion detection: A data mining approach. Artif. Intell. Rev. 14, 6, 533--567. Google ScholarGoogle ScholarDigital LibraryDigital Library
  203. Lee, W. and Xiang, D. 2001. Information-theoretic measures for anomaly detection. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE Computer Society, 130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  204. Li, M. and Vitanyi, P. M. B. 1993. An Introduction to Kolmogorov Complexity and Its Applications. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  205. Li, Y., Pont, M. J., and Jones, N. B. 2002. Improving the performance of radial basis function classifiers in condition monitoring and fault diagnosis applications where unknown faults may occur. Patt. Recog. Lett. 23, 5, 569--577. Google ScholarGoogle ScholarDigital LibraryDigital Library
  206. Lin, J., Keogh, E., Fu, A., and Herle, H. V. 2005. Approximations to magic: Finding unusual medical time series. In Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems. IEEE Computer Society, 329--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  207. Lin, S. and Brown, D. E. 2003. An outlier-based data association method for linking criminal incidents. In Proceedings of the 3rd SIAM Data Mining Conference.Google ScholarGoogle Scholar
  208. Liu, J. P. and Weng, C. S. 1991. Detection of outlying data in bioavailability/bioequivalence studies. Stat. Med. 10, 9, 1375--89.Google ScholarGoogle ScholarCross RefCross Ref
  209. Lu, C.-T., Chen, D., and Kou, Y. 2003. Algorithms for spatial outlier detection. In Proceedings of the 3rd International Conference on Data Mining. 597--600. Google ScholarGoogle ScholarDigital LibraryDigital Library
  210. Ma, J. and Perkins, S. 2003a. Online novelty detection on temporal sequences. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 613--618. Google ScholarGoogle ScholarDigital LibraryDigital Library
  211. Ma, J. and Perkins, S. 2003b. Time-series novelty detection using one-class support vector machines. In Proceedings of the International Joint Conference on Neural Networks. Vol. 3. 1741--1745.Google ScholarGoogle Scholar
  212. MacDonald, J. W. and Ghosh, D. 2007. Copa--cancer outlier profile analysis. Bioinformatics 22, 23, 2950--2951. Google ScholarGoogle ScholarDigital LibraryDigital Library
  213. Mahoney, M. V. and Chan, P. K. 2002. Learning nonstationary models of normal network traffic for detecting novel attacks. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 376--385. Google ScholarGoogle ScholarDigital LibraryDigital Library
  214. Mahoney, M. V. and Chan, P. K. 2003. Learning rules for anomaly detection of hostile network traffic. In Proceedings of the 3rd IEEE International Conference on Data Mining. IEEE Computer Society, 601. Google ScholarGoogle ScholarDigital LibraryDigital Library
  215. Mahoney, M. V., Chan, P. K., and Arshad, M. H. 2003. A machine learning approach to anomaly detection. Tech. rep. CS--2003--06, Department of Computer Science, Florida Institute of Technology Melbourne.Google ScholarGoogle Scholar
  216. Manevitz, L. M. and Yousef, M. 2000. Learning from positive data for document classification using neural networks. In Proceedings of the 2nd Bar-Ilan Workshop on Knowledge Discovery and Learning.Google ScholarGoogle Scholar
  217. Manevitz, L. M. and Yousef, M. 2002. One-class SVMS for document classification. J. Mach. Learn. Res. 2, 139--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  218. Manikopoulos, C. and Papavassiliou, S. 2002. Network intrusion and fault detection: A statistical anomaly approach. IEEE Comm. Mag. 40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  219. Manson, G. 2002. Identifying damage sensitive, environment insensitive features for damage detection. In Proceedings of IES Conference.Google ScholarGoogle Scholar
  220. Manson, G., Pierce, G., and Worden, K. 2001. On the long-term stability of normal conditions for damage detection in a composite panel. In Proceedings of the 4th International Conference on Damage Assessment of Structures. Cardiff, UK.Google ScholarGoogle Scholar
  221. Manson, G., Pierce, S. G., Worden, K., Monnier, T., Guy, P., and Atherton, K. 2000. Long-term stability of normal condition data for novelty detection. In Proceedings of the Conference on Smart Structures and Integrated Systems. 323--334.Google ScholarGoogle Scholar
  222. Marceau, C. 2000. Characterizing the behavior of a program using multiple-length n-grams. In Proceedings of the Workshop on New Security Paradigms. ACM Press, 101--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  223. Marchette, D. 1999. A statistical method for profiling network traffic. In Proceedings of the 1st USENIX Workshop on Intrusion Detection and Network Monitoring. 119--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  224. Markou, M. and Singh, S. 2003a. Novelty detection: A review-part 1: Statistical approaches. Sig. Proc. 83, 12, 2481--2497. Google ScholarGoogle ScholarDigital LibraryDigital Library
  225. Markou, M. and Singh, S. 2003b. Novelty detection: A review-part 2: Neural network based approaches. Sig. Proc. 83, 12, 2499--2521. Google ScholarGoogle ScholarDigital LibraryDigital Library
  226. Marsland, S., Nehmzow, U., and Shapiro, J. 1999. A model of habituation applied to mobile robots. In Proceedings of Towards Intelligent Mobile Robots Conference. Department of Computer Science, Manchester University, Technical rep. UMCS-99-3-1.Google ScholarGoogle Scholar
  227. Marsland, S., Nehmzow, U., and Shapiro, J. 2000a. Novelty detection for robot neotaxis. In Proceedings of the 2nd International Symposium on Neural Compuatation. 554--559.Google ScholarGoogle Scholar
  228. Marsland, S., Nehmzow, U., and Shapiro, J. 2000b. A real-time novelty detector for a mobile robot. In Proceedings of the EUREL Conference on Advanced Robotics Systems.Google ScholarGoogle Scholar
  229. Martinelli, G. and Perfetti, R. 1994. Generalized cellular neural network for novelty detection. IEEE Trans. Circ. Syst. I: Fundamental Theory Application 41, 2, 187--190.Google ScholarGoogle ScholarCross RefCross Ref
  230. Martinez, D. 1998. Neural tree density estimation for novelty detection. IEEE Trans. Neural Netw. 9, 2, 330--338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  231. McCallum, A., Nigam, K., and Ungar, L. H. 2000. Efficient clustering of high-dimensional data sets with application to reference matching. In Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 169--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  232. McNeil, A. 1999. Extreme value theory for risk managers. In Internal Modelling and CAD II, 93--113.Google ScholarGoogle Scholar
  233. Mingming, N. Y. 2000. Probabilistic networks with undirected links for anomaly detection. In Proceedings of the IEEE Systems, Man, and Cybernetics Information Assurance and Security Workshop. 175--179.Google ScholarGoogle Scholar
  234. Motulsky, H. 1995. Intuitive Biostatistics: Choosing a Statistical Test. Oxford University Press, Chapter 37.Google ScholarGoogle Scholar
  235. Moya, M., Koch, M., and Hostetler, L. 1993. One-class classifier networks for target recognition applications. In Proceedings of the World Congress on Neural Networks, International Neural Network Society. 797--801.Google ScholarGoogle Scholar
  236. Murray, A. F. 2001. Novelty detection using products of simple experts: A potential architecture for embedded systems. Neural Netw. 14, 9, 1257--1264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  237. Nairac, A., Corbett-Clark, T., Ripley, R., Townsend, N., and Tarassenko, L. 1997. Choosing an appropriate model for novelty detection. In Proceedings of the 5th IEEE International Conference on Artificial Neural Networks. 227--232.Google ScholarGoogle Scholar
  238. Nairac, A., Townsend, N., Carr, R., King, S., Cowley, P., and Tarassenko, L. 1999. A system for the analysis of jet engine vibration data. Integ. Comput.-Aided Eng. 6, 1, 53--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  239. Ng, R. T. and Han, J. 1994. Efficient and effective clustering methods for spatial data mining. In Proceedings of the 20th International Conference on Very Large Data Bases. Morgan Kaufmann Publishers Inc., 144--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  240. Noble, C. C. and Cook, D. J. 2003. Graph-based anomaly detection. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 631--636. Google ScholarGoogle ScholarDigital LibraryDigital Library
  241. Odin, T. and Addison, D. 2000. Novelty detection using neural network technology. In Proceedings of the COMADEN Conference.Google ScholarGoogle Scholar
  242. Otey, M., Parthasarathy, S., Ghoting, A., Li, G., Narravula, S., and Panda, D. 2003. Towards NIC-based intrusion detection. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 723--728. Google ScholarGoogle ScholarDigital LibraryDigital Library
  243. Otey, M. E., Ghoting, A., and Parthasarathy, S. 2006. Fast distributed outlier detection in mixed-attribute data sets. Data Min. Knowl. Disc. 12, 2-3, 203--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  244. Palshikar, G. K. 2005. Distance-based outliers in sequences. Lecture Notes in Computer Science, vol. 3816, 547--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  245. Papadimitriou, S., Kitagawa, H., Gibbons, P. B., and Faloutsos, C. 2002. Loci: Fast outlier detection using the local correlation integral. Tech. rep. IRP-TR-02-09, Intel Research Laboratory.Google ScholarGoogle Scholar
  246. Parra, L., Deco, G., and Miesbach, S. 1996. Statistical independence and novelty detection with information preserving nonlinear maps. Neural Comput. 8, 2, 260--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  247. Parzen, E. 1962. On the estimation of a probability density function and mode. Annals Math. Stat. 33, 1065--1076.Google ScholarGoogle ScholarCross RefCross Ref
  248. Patcha, A. and Park, J.-M. 2007. An overview of anomaly detection techniques: Existing solutions and latest technological trends. Comput. Netw. 51, 12, 3448--3470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  249. Petsche, T., Marcantonio, A., Darken, C., Hanson, S., Kuhn, G., and Santoso, I. 1996. A neural network autoassociator for induction motor failure prediction. In Proceedings of the Conference on Advances in Neural Information Processing. vol. 8. 924--930.Google ScholarGoogle Scholar
  250. Phoha, V. V. 2002. The Springer Internet Security Dictionary. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  251. Phua, C., Alahakoon, D., and Lee, V. 2004. Minority report in fraud detection: Classification of skewed data. SIGKDD Explorer Newsletter 6, 1, 50--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  252. Phuong, T. V., Hung, L. X., Cho, S. J., Lee, Y., and Lee, S. 2006. An anomaly detection algorithm for detecting attacks in wireless sensor networks. Intel. Secur. Inform. 3975, 735--736. Google ScholarGoogle ScholarDigital LibraryDigital Library
  253. Pickands, J. 1975. Statistical inference using extreme order statistics. Annals Stat. 3, 1, 119--131.Google ScholarGoogle ScholarCross RefCross Ref
  254. Pires, A. and Santos-Pereira, C. 2005. Using clustering and robust estimators to detect outliers in multivariate data. In Proceedings of the International Conference on Robust Statistics.Google ScholarGoogle Scholar
  255. Platt, J. 2000. Probabilistic Outputs for Support Vector Machines and Comparison to Regularized Likelihood Methods. In Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Schoelkopf, and D. Schuurmans, Eds. MIT Press, 61--74.Google ScholarGoogle Scholar
  256. Pokrajac, D., Lazarevic, A., and Latecki, L. J. 2007. Incremental local outlier detection for data streams. In Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining.Google ScholarGoogle Scholar
  257. Porras, P. A. and Neumann, P. G. 1997. EMERALD: Event monitoring enabling responses to anomalous live disturbances. In Proceedings of the 20th NIST-NCSC National Information Systems Security Conference. 353--365.Google ScholarGoogle Scholar
  258. Portnoy, L., Eskin, E., and Stolfo, S. 2001. Intrusion detection with unlabeled data using clustering. In Proceedings of the ACM Workshop on Data Mining Applied to Security.Google ScholarGoogle Scholar
  259. Protopapas, P., Giammarco, J. M., Faccioli, L., Struble, M. F., Dave, R., and Alcock, C. 2006. Finding outlier light curves in catalogues of periodic variable stars. Monthly Notices Royal Astronomical Soc. 369, 2, 677--696.Google ScholarGoogle ScholarCross RefCross Ref
  260. Qin, M. and Hwang, K. 2004. Frequent episode rules for Internet anomaly detection. In Proceedings of the 3rd IEEE International Symposium on Network Computing and Applications. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  261. Ramadas, M., Ostermann, S., and Tjaden, B. C. 2003. Detecting anomalous network traffic with self-organizing maps. In Proceedings of the Conference on Recent Advances in Intrusion Detection. 36--54.Google ScholarGoogle Scholar
  262. Ramaswamy, S., Rastogi, R., and Shim, K. 2000. Efficient algorithms for mining outliers from large data sets. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM Press, 427--438. Google ScholarGoogle ScholarDigital LibraryDigital Library
  263. Ratsch, G., Mika, S., Scholkopf, B., and Muller, K.-R. 2002. Constructing boosting algorithms from SVMS: An application to one-class classification. IEEE Trans. Patt. Anal. Mach. Intel. 24, 9, 1184--1199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  264. Roberts, S. 1999. Novelty detection using extreme value statistics. In Proceedings of the IEEE Vision, Image and Signal Processing Conference Vol. 146. 124--129.Google ScholarGoogle ScholarCross RefCross Ref
  265. Roberts, S. 2002. Extreme value statistics for novelty detection in biomedical signal processing. In Proceedings of the 1st International Conference on Advances in Medical Signal and Information Processing. 166--172.Google ScholarGoogle Scholar
  266. Roberts, S. and Tarassenko, L. 1994. A probabilistic resource allocating network for novelty detection. Neural Comput. 6, 2, 270--284. Google ScholarGoogle ScholarDigital LibraryDigital Library
  267. Rosner, B. 1983. Percentage points for a generalized ESD many-outlier procedure. Technometrics 25, 2, 165--172.Google ScholarGoogle ScholarCross RefCross Ref
  268. Roth, V. 2004. Outlier detection with one-class kernel Fisher discriminants. In Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS).Google ScholarGoogle Scholar
  269. Roth, V. 2006. Kernel fisher discriminants for outlier detection. Neural Comput. 18, 4, 942--960. Google ScholarGoogle ScholarDigital LibraryDigital Library
  270. Rousseeuw, P. J. and Leroy, A. M. 1987. Robust Regression and Outlier Detection. John Wiley &amp; Sons, Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  271. Roussopoulos, N., Kelley, S., and Vincent, F. 1995. Nearest neighbor queries. In Proceedings of the ACM-SIGMOD International Conference on Management of Data. Google ScholarGoogle ScholarDigital LibraryDigital Library
  272. Ruotolo, R. and Surace, C. 1997. A statistical approach to damage detection through vibration monitoring. In Proceedings of the 5th Pan-American Congress of Applied Mechanics.Google ScholarGoogle Scholar
  273. Salvador, S. and Chan, P. 2003. Learning states and rules for time-series anomaly detection. Tech. rep. CS--2003--05, Department of Computer Science, Florida Institute of Technology Melbourne.Google ScholarGoogle Scholar
  274. Sarawagi, S., Agrawal, R., and Megiddo, N. 1998. Discovery-driven exploration of OLAP data cubes. In Proceedings of the 6th International Conference on Extending Database Technology. Springer-Verlag, 168--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  275. Sargor, C. 1998. Statistical anomaly detection for link-state routing protocols. In Proceedings of the 6th International Conference on Network Protocols. IEEE Computer Society, 62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  276. Saunders, R. and Gero, J. 2000. The importance of being emergent. In Proceedings of the Conference on Artificial Intelligence in Design.Google ScholarGoogle Scholar
  277. Scarth, G., McIntyre, M., Wowk, B., and Somorjai, R. 1995. Detection of novelty in functional images using fuzzy clustering. In Proceedings of the 3rd Meeting of the International Society for Magnetic Resonance in Medicine. 238.Google ScholarGoogle Scholar
  278. Sch&amp;#246;lkopf, B., Platt, J. C., Shawe-Taylor, J. C., Smola, A. J., and Williamson, R. C. 2001. Estimating the support of a high-dimensional distribution. Neural Comput. 13, 7, 1443--1471. Google ScholarGoogle ScholarDigital LibraryDigital Library
  279. Scott, S. L. 2001. Detecting network intrusion using a Markov modulated nonhomogeneous Poisson Process. Journal of the American Statistical Association.Google ScholarGoogle Scholar
  280. Sebyala, A. A., Olukemi, T., and Sacks, L. 2002. Active platform security through intrusion detection using naive Bayesian network for anomaly detection. In Proceedings of the London Communications Symposium.Google ScholarGoogle Scholar
  281. Sequeira, K. and Zaki, M. 2002. Admit: Anomaly-based data mining for intrusions. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 386--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  282. Sheikholeslami, G., Chatterjee, S., and Zhang, A. 1998. Wavecluster: A multi-resolution clustering approach for very large spatial databases. In Proceedings of the 24rd International Conference on Very Large Databases. Morgan Kaufmann Publishers Inc., 428--439. Google ScholarGoogle ScholarDigital LibraryDigital Library
  283. Shekhar, S., Lu, C.-T., and Zhang, P. 2001. Detecting graph-based spatial outliers: Algorithms and applications (a summary of results). In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 371--376. Google ScholarGoogle ScholarDigital LibraryDigital Library
  284. Shewhart, W. A. 1931. Economic Control of Quality of Manufactured Product. D. Van Nostrand Company.Google ScholarGoogle Scholar
  285. Shyu, M.-L., Chen, S.-C., Sarinnapakorn, K., and Chang, L. 2003. A novel anomaly detection scheme-based on principal component classifier. In Proceedings of the 3rd IEEE International Conference on Data Mining. 353--365.Google ScholarGoogle Scholar
  286. Siaterlis, C. and Maglaris, B. 2004. Towards multi-sensor data fusion for dos detection. In Proceedings of the ACM Symposium on Applied Computing. ACM Press, 439--446. Google ScholarGoogle ScholarDigital LibraryDigital Library
  287. Singh, S. and Markou, M. 2004. An approach to novelty detection applied to the classification of image regions. IEEE Trans. Knowl. Data Eng. 16, 4, 396--407. Google ScholarGoogle ScholarDigital LibraryDigital Library
  288. Smith, R., Bivens, A., Embrechts, M., Palagiri, C., and Szymanski, B. 2002. Clustering approaches for anomaly-based intrusion detection. In Proceedings of the Intelligent Engineering Systems through Artificial Neural Networks. ASME Press, 579--584.Google ScholarGoogle Scholar
  289. Smyth, P. 1994. Markov monitoring with unknown states. IEEE J. Select. Areas Comm. (Special Issue on Intelligent Signal Processing for Communications) 12, 9, 1600--1612.Google ScholarGoogle ScholarDigital LibraryDigital Library
  290. Snyder, D. 2001. Online intrusion detection using sequences of system calls. M.S. thesis, Department of Computer Science, Florida State University.Google ScholarGoogle Scholar
  291. Sohn, H., Worden, K., and Farrar, C. 2001. Novelty detection under changing environmental conditions. In Proceedings of the 8th Annual SPIE International Symposium on Smart Structures and Materials.Google ScholarGoogle Scholar
  292. Solberg, H. E. and Lahti, A. 2005. Detection of outliers in reference distributions: Performance of Horn's algorithm. Clinical Chem. 51, 12, 2326--2332.Google ScholarGoogle ScholarCross RefCross Ref
  293. Song, Q., Hu, W., and Xie, W. 2002. Robust support vector machine with bullet hole image classification. IEEE Trans. Syst. Man Cyber.&amp;#8212;Part C: Applications and Reviews 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  294. Song, S., Shin, D., and Yoon, E. 2001. Analysis of novelty detection properties of auto-associators. In Proceedings of the Conference on Condition Monitoring and Diagnostic Engineering Management. 577--584.Google ScholarGoogle Scholar
  295. Song, X., Wu, M., Jermaine, C., and Ranka, S. 2007. Conditional anomaly detection. IEEE Trans. Knowl. Data Eng. 19, 5, 631--645. Google ScholarGoogle ScholarDigital LibraryDigital Library
  296. Soule, A., Salamatian, K., and Taft, N. 2005. Combining filtering and statistical methods for anomaly detection. In Proceedings of the 5th ACM SIGCOMM Conference on Internet Measurement. ACM, 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  297. Spence, C., Parra, L., and Sajda, P. 2001. Detection, synthesis and compression in mammographic image analysis with a hierarchical image probability model. In Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. IEEE Computer Society, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  298. Srivastava, A. 2006. Enabling the discovery of recurring anomalies in aerospace problem reports using high-dimensional clustering techniques. In Proceedings of the IEEE Aerospace Conference, 17--34.Google ScholarGoogle ScholarCross RefCross Ref
  299. Srivastava, A. and Zane-Ulman, B. 2005. Discovering recurring anomalies in text reports regarding complex space systems. In Proceedings of the IEEE Aerospace Conference, 3853--3862.Google ScholarGoogle Scholar
  300. Stefano, C., Sansone, C., and Vento, M. 2000. To reject or not to reject: that is the question: An answer in the case of neural classifiers. IEEE Trans. Syst. Manag. Cyber. 30, 1, 84--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  301. Stefansky, W. 1972. Rejecting outliers in factorial designs. Technometrics 14, 2, 469--479.Google ScholarGoogle ScholarCross RefCross Ref
  302. Steinwart, I., Hush, D., and Scovel, C. 2005. A classification framework for anomaly detection. J. Mach. Learn. Res. 6, 211--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  303. Streifel, R., Maks, R., and El-Sharkawi, M. 1996. Detection of shorted-turns in the field of turbine-generator rotors using novelty detectors--development and field tests. IEEE Trans. Energy Conv. 11, 2, 312--317.Google ScholarGoogle ScholarCross RefCross Ref
  304. Subramaniam, S., Palpanas, T., Papadopoulos, D., Kalogeraki, V., and Gunopulos, D. 2006. Online outlier detection in sensor data using non-parametric models. In Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB). VLDB Endowment, 187--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  305. Sun, H., Bao, Y., Zhao, F., Yu, G., and Wang, D. 2004. CD-trees: An efficient index structure for outlier detection. In Proceedings of the 5th International Conference on Web-Age Information Management (WAIM). 600--609.Google ScholarGoogle Scholar
  306. Sun, J., Qu, H., Chakrabarti, D., and Faloutsos, C. 2005. Neighborhood formation and anomaly detection in bipartite graphs. In Proceedings of the 5th IEEE International Conference on Data Mining. IEEE Computer Society, 418--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  307. Sun, J., Xie, Y., Zhang, H., and Faloutsos, C. 2007. Less is more: Compact matrix representation of large sparse graphs. In Proceedings of the 7th SIAM International Conference on Data Mining.Google ScholarGoogle Scholar
  308. Sun, P. and Chawla, S. 2004. On local spatial outliers. In Proceedings of the 4th IEEE International Conference on Data Mining. 209--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  309. Sun, P. and Chawla, S. 2006. SLOM: A new measure for local spatial outliers. Knowl. Inform. Syst. 9, 4, 412--429.Google ScholarGoogle ScholarCross RefCross Ref
  310. Sun, P., Chawla, S., and Arunasalam, B. 2006. Mining for outliers in sequential databases. In Proceedings of the SIAM International Conference on Data Mining.Google ScholarGoogle Scholar
  311. Surace, C. and Worden, K. 1998. A novelty detection method to diagnose damage in structures: An application to an offshore platform. In Proceedings of the 8th International Conference of Off-Shore and Polar Engineering. vol. 4. Colorado, 64--70.Google ScholarGoogle Scholar
  312. Surace, C., Worden, K., and Tomlinson, G. 1997. A novelty detection approach to diagnose damage in a cracked beam. In Proceedings of the SPIE. vol. 3089. 947--953.Google ScholarGoogle Scholar
  313. Suzuki, E., Watanabe, T., Yokoi, H., and Takabayashi, K. 2003. Detecting interesting exceptions from medical test data with visual summarization. In Proceedings of the 3rd IEEE International Conference on Data Mining. 315--322. Google ScholarGoogle ScholarDigital LibraryDigital Library
  314. Sykacek, P. 1997. Equivalent error bars for neural network classifiers trained by Bayesian inference. In Proceedings of the European Symposium on Artificial Neural Networks. 121--126.Google ScholarGoogle Scholar
  315. Tan, P.-N., Steinbach, M., and Kumar, V. 2005. Introduction to Data Mining. Addison-Wesley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  316. Tandon, G. and Chan, P. 2007. Weighting versus pruning in rule validation for detecting network and host anomalies. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  317. Tang, J., Chen, Z., chee Fu, A. W., and W. Cheung, D. 2002. Enhancing effectiveness of outlier detections for low density patterns. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining. 535--548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  318. Taniguchi, M., Haft, M., Hollmn, J., and Tresp, V. 1998. Fraud detection in communications networks using neural and probabilistic methods. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. vol. 2. IEEE Computer Society, 1241--1244.Google ScholarGoogle Scholar
  319. Tao, Y., Xiao, X., and Zhou, S. 2006. Mining distance-based outliers from large databases in any metric space. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 394--403. Google ScholarGoogle ScholarDigital LibraryDigital Library
  320. Tarassenko, L. 1995. Novelty detection for the identification of masses in mammograms. In Proceedings of the 4th IEEE International Conference on Artificial Neural Networks. vol. 4. 442--447.Google ScholarGoogle ScholarCross RefCross Ref
  321. Tax, D. and Duin, R. 1999a. Data domain description using support vectors. In Proceedings of the European Symposium on Artificial Neural Networks, M. Verleysen, Ed., 251--256.Google ScholarGoogle Scholar
  322. Tax, D. and Duin, R. 1999b. Support vector data description. Patt. Recog. Lett. 20, 11-13, 1191--1199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  323. Tax, D. M. J. 2001. One-class classification; concept-learning in the absence of counter-examples. Ph.D. thesis, Delft University of Technology.Google ScholarGoogle Scholar
  324. Teng, H., Chen, K., and Lu, S. 1990. Adaptive real-time anomaly detection using inductively generated sequential patterns. In Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy. IEEE Computer Society Press, 278--284.Google ScholarGoogle Scholar
  325. Theiler, J. and Cai, D. M. 2003. Resampling approach for anomaly detection in multispectral images. In Proceedings of the SPIE. vol. 5093, 230--240.Google ScholarGoogle Scholar
  326. Thompson, B., II, R. M., Choi, J., El-Sharkawi, M., Huang, M., and Bunje, C. 2002. Implicit learning in auto-encoder novelty assessment. In Proceedings of the International Joint Conference on Neural Networks. 2878--2883.Google ScholarGoogle Scholar
  327. Thottan, M. and Ji, C. 2003. Anomaly detection in IP networks. IEEE Trans. Sig. Proc. 51, 8, 2191--2204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  328. Tibshirani, R. and Hastie, T. 2007. Outlier sums for differential gene expression analysis. Biostatistics 8, 1, 2--8.Google ScholarGoogle ScholarCross RefCross Ref
  329. Tomlins, S. A., Rhodes, D. R., Perner, S., Dhanasekaran, S. M., Mehra, R., Sun, X. W., Varambally, S., Cao, X., Tchinda, J., Kuefer, R., Lee, C., Montie, J. E., Shah, R., Pienta, K. J., Rubin, M., and Chinnaiyan, A. M. 2005. Recurrent fusion of tmprss2 and ets transcription factor genes in prostate cancer. Science 310, 5748, 603--611.Google ScholarGoogle Scholar
  330. Torr, P. and Murray, D. 1993. Outlier detection and motion segmentation. In Proceedings of the SPIE. Sensor Fusion VI, S. Schenker, Ed. vol. 2059. 432--443.Google ScholarGoogle Scholar
  331. Tsay, R. S., Pea, D., and Pankratz, A. E. 2000. Outliers in multi-variate time series. Biometrika 87, 4, 789--804.Google ScholarGoogle ScholarCross RefCross Ref
  332. Vaidya, J. and Clifton, C. 2004. Privacy-preserving outlier detection. In Proceedings of the 4th IEEE International Conference on Data Mining. 233--240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  333. Valdes, A. and Skinner, K. 2000. Adaptive, model-based monitoring for cyber attack detection. In Proceedings of the 3rd International Workshop on Recent Advances in Intrusion Detection. Springer-Verlag, 80--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  334. Vapnik, V. N. 1995. The Nature of Statistical Learning Theory. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  335. Vasconcelos, G., Fairhurst, M., and Bisset, D. 1994. Recognizing novelty in classification tasks. In Proceedings of the Neural Information Processing Systems Workshop on Novelty Detection and Adaptive Systems Monitoring.Google ScholarGoogle Scholar
  336. Vasconcelos, G. C., Fairhurst, M. C., and Bisset, D. L. 1995. Investigating feed-forward neural networks with respect to the rejection of spurious patterns. Patt. Recog. Lett. 16, 2, 207--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  337. Vilalta, R. and Ma, S. 2002. Predicting rare events in temporal domains. In Proceedings of the IEEE International Conference on Data Mining. IEEE Computer Society, 474. Google ScholarGoogle ScholarDigital LibraryDigital Library
  338. Vinueza, A. and Grudic, G. 2004. Unsupervised outlier detection and semi-supervised learning. Tech. rep. CU-CS-976-04, University of Colorado at Boulder.Google ScholarGoogle Scholar
  339. Wei, L., Qian, W., Zhou, A., and Jin, W. 2003. Hot: Hypergraph-based outlier test for categorical data. In Proceedings of the 7th Pacific-Asia Conference on Knowledge and Data Discovery. 399--410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  340. Weigend, A. S., Mangeas, M., and Srivastava, A. N. 1995. Nonlinear gated experts for time-series: Discovering regimes and avoiding overfitting. Int. J. Neural Syst. 6, 4, 373--399.Google ScholarGoogle ScholarCross RefCross Ref
  341. Weiss, G. M. and Hirsh, H. 1998. Learning to predict rare events in event sequences. In Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, R. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro, Eds. AAAI Press, 359--363.Google ScholarGoogle Scholar
  342. Whitehead, B. and Hoyt, W. 1993. A function approximation approach to anomaly detection in propulsion system test data. In Proceedings of the 29th AIAA/SAE/ASME/ASEE Joint Propulsion Conference. IEEE Computer Society.Google ScholarGoogle Scholar
  343. Williams, G., Baxter, R., He, H., Hawkins, S., and Gu, L. 2002. A comparative study of RNN for outlier detection in data mining. In Proceedings of the IEEE International Conference on Data Mining. IEEE Computer Society, 709. Google ScholarGoogle ScholarDigital LibraryDigital Library
  344. Wong, W.-K., Moore, A., Cooper, G., and Wagner, M. 2002. Rule-based anomaly pattern detection for detecting disease outbreaks. In Proceedings of the 18th National Conference on Artificial Intelligence. MIT Press. http://www.cs.cmu.edu/~awm/antiterror. Google ScholarGoogle ScholarDigital LibraryDigital Library
  345. Wong, W.-K., Moore, A., Cooper, G., and Wagner, M. 2003. Bayesian network anomaly pattern detection for disease outbreaks. In Proceedings of the 20th International Conference on Machine Learning. AAAI Press, 808--815.Google ScholarGoogle Scholar
  346. Worden, K. 1997. Structural fault detection using a novelty measure. J. Sound Vibr. 201, 1, 85--101.Google ScholarGoogle ScholarCross RefCross Ref
  347. Wu, M. and Jermaine, C. 2006. Outlier detection by sampling with accuracy guarantees. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 767--772. Google ScholarGoogle ScholarDigital LibraryDigital Library
  348. Wu, N. and Zhang, J. 2003. Factor analysis based anomaly detection. In Proceedings of the IEEE Workshop on Information Assurance. United States Military Academy.Google ScholarGoogle Scholar
  349. Yairi, T., Kato, Y., and Hori, K. 2001. Fault detection by mining association rules from housekeeping data. In Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space.Google ScholarGoogle Scholar
  350. Yamanishi, K. and ichi Takeuchi, J. 2001. Discovering outlier filtering rules from unlabeled data: Combining a supervised learner with an unsupervised learner. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 389--394. Google ScholarGoogle ScholarDigital LibraryDigital Library
  351. Yamanishi, K., Takeuchi, J.-I., Williams, G., and Milne, P. 2004. Online unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Min. Knowl. Disc. 8, 275--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  352. Ye, N. and Chen, Q. 2001. An anomaly detection technique based on a chi-square statistic for detecting intrusions into information systems. Quality Reliability Engin. Int. 17, 105--112.Google ScholarGoogle ScholarCross RefCross Ref
  353. Yi, B.-K., Sidiropoulos, N., Johnson, T., Jagadish, H. V., Faloutsos, C., and Biliris, A. 2000. Online data mining for co-evolving time sequences. In Proceedings of the 16th International Conference on Data Engineering. IEEE Computer Society, 13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  354. Ypma, A. and Duin, R. 1998. Novelty detection using self-organizing maps. In Progress in Connectionist Based Information Systems. vol. 2. Springer, 1322--1325.Google ScholarGoogle Scholar
  355. Yu, D., Sheikholeslami, G., and Zhang, A. 2002. Findout: Finding outliers in very large datasets. Knowl. Inform. Syst. 4, 4, 387--412. Google ScholarGoogle ScholarDigital LibraryDigital Library
  356. Yu, J. X., Qian, W., Lu, H., and Zhou, A. 2006. Finding centric local outliers in categorical/numerical spaces. Knowl. Inform. Syst. 9, 3, 309--338.Google ScholarGoogle ScholarDigital LibraryDigital Library
  357. Zeevi, A. J., Meir, R., and Adler, R. 1997. Time series prediction using mixtures of experts. In Advances in Neural Information Processing. vol. 9. MIT Press.Google ScholarGoogle Scholar
  358. Zhang, J. and Wang, H. 2006. Detecting outlying subspaces for high-dimensional data: The new task, algorithms, and performance. Knowl. Inform. Syst. 10, 3, 333--355. Google ScholarGoogle ScholarDigital LibraryDigital Library
  359. Zhang, K., Shi S., Gao, H., and Li, J. 2007. Unsupervised outlier detection in sensor networks using aggregation tree. In Advanced Data Mining and Applications 4632, 158--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  360. Zhang, Z., Li, J., Manikopoulos, C., Jorgenson, J., and Ucles, J. 2001. Hide: A hierarchical network intrusion detection system using statistical preprocessing and neural network classification. In Proceedings of the IEEE Workshop on Information Assurance and Security. West Point, 85--90.Google ScholarGoogle Scholar
  361. Zimmermann, J. and Mohay, G. 2006. Distributed intrusion detection in clusters based on non-interference. In Proceedings of the Australasian Workshops on Grid Computing and E-Research (ACSW Frontiers). Australian Computer Society, Inc., 89--95. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Anomaly detection: A survey

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Computing Surveys
      ACM Computing Surveys  Volume 41, Issue 3
      July 2009
      284 pages
      ISSN:0360-0300
      EISSN:1557-7341
      DOI:10.1145/1541880
      Issue’s Table of Contents

      Copyright © 2009 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 30 July 2009
      • Accepted: 1 May 2008
      • Revised: 1 March 2008
      • Received: 1 November 2007
      Published in csur Volume 41, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader