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Abstract

We prove that for every d > 1 and every undirected, weighted graph
G = (V,E), there exists a weighted graph H with at most ⌈d |V |⌉ edges
such that for every x ∈ IRV ,

1 ≤ xTLHx

xTLGx
≤ d+ 1 + 2

√
d

d+ 1− 2
√
d
,

where LG and LH are the Laplacian matrices of G and H , respectively.

1 Introduction

A sparsifier of a graph G = (V,E) is a sparse graph H that is ‘similar’ to
G. We consider the spectral notion of ‘similar’ introduced by Spielman and
Teng [ST04]: we say that H is a κ-approximation of G if for all x ∈ IRV ,

1 ≤ xTLHx

xTLGx
≤ κ. (1)

In the case where G is the complete graph, optimal sparsifiers are supplied
by Ramanujan Graphs [LPS88, Mar88]. These are d-regular graphs H that
κ-approximate the complete graph, for

κ =
d+ 2

√
d− 1

d− 2
√
d− 1

.

In this paper, we prove that every graph can be approximated at least this
well with only twice as many edges (as a d-regular graph has dn/2 edges).

∗This material is based upon work supported by the National Science Foundation under
Grant CCF-0634957. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

†Yale College.
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Theorem 1.1. For every d > 1, every undirected weighted graph G with n
vertices contains a weighted subgraph H with ⌈dn⌉ edges (i.e., average degree
2d) that satisfies:

1 ≤ xTLHx

xTLGx
≤ d+ 1 + 2

√
d

d+ 1− 2
√
d
.

We remark that while the edges of H are subset of the edges of G, the
weights of edges in H and G will typically be different.

At the end of the paper, we observe that our proof provides a deterministic
algorithm for computing the graph H in time O(dn3m).

2 Prior Work

Spielman and Teng [ST04] introduced the notion of sparsification that we con-

sider, and proved that (1 + ǫ)-approximations with Õ(n/ǫ2) edges could be

constructed in Õ(m) time. They were inspired by the notion of sparsification
introduced by Benczur and Karger [BK96] for cut problems, which only re-

quired inequality (1) to hold for all x ∈ {0, 1}V ; Benczur and Karger showed
how to construct graphs H meeting this guarantee with O(n log n/ǫ2) edges in
O(m log3 n) time.

Spielman and Srivastava [SS08] recently proved the existence of spectral

sparsifiers with O(n logn/ǫ2) edges, and showed how to construct them in Õ(m)
time. They conjectured that it should be possible to find such sparsifiers with
only O(n/ǫ2) edges. We resolve this conjecture.

Very recently, partial progress was made towards the conjecture by Goyal,
Rademacher and Vempala [GRV08], who show how to find graphs H with only
2n edges that O(log n)-approximate bounded degree graphs G under the cut
notion of Benczur and Karger.

We remark that all of these constructions were randomized. Ours is the first
deterministic algorithm to achieve the guarantees of any of these papers.

3 Preliminaries

3.1 The Incidence Matrix and the Laplacian

Let G = (V,E,w) be a connected weighted undirected graph with n vertices
and m edges and edge weights we > 0. If we orient the edges of G arbitrarily, we
can write its Laplacian as L = BTWB, where Bm×n is the signed edge-vertex
incidence matrix, given by

B(e, v) =






1 if v is e’s head
−1 if v is e’s tail
0 otherwise
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and Wm×m is the diagonal matrix with W (e, e) = we. Denote the row vectors
of B by {be}e∈E and note that bT(u,v) = (χv − χu). It is well known that that

im(B) ⊆ R
m is the cut space of G [GR01].

It is immediate that L is positive semidefinite since:

xTLx = xTBTWBx = ‖W 1/2Bx‖22 ≥ 0 for every x ∈ R
n.

We also have ker(L) = ker(W 1/2B) = span(1), since

xTLx = 0 ⇐⇒ ‖W 1/2Bx‖22 = 0

⇐⇒
∑

uv∈E

wuv(x(u) − x(v))2 = 0

⇐⇒ x(u)− x(v) = 0 for all edges (u, v)

⇐⇒ x is constant, since G is connected.

3.2 The Pseudoinverse

Since L is symmetric we can diagonalize it and write

L =

n−1∑

i=1

λiuiu
T
i

where λ1, . . . , λn−1 are the nonzero eigenvalues of L and u1, . . . , un−1 are a cor-
responding set of orthonormal eigenvectors. The Moore-Penrose Pseudoinverse
of L is then defined as

L+ =
n−1∑

i=1

1

λi
uiu

T
i .

Notice that ker(L) = ker(L+) and that

LL+ = L+L =

n−1∑

i=1

uiu
T
i ,

which is simply the projection onto the span of the nonzero eigenvectors of L
(which are also the eigenvectors of L+). Thus, LL+ = L+L is the identity on
im(L) = ker(L)⊥ = R

n \ span(1).

3.3 The Sherman-Morrison Formula

We use the following well-known theorem from Linear Algebra, which describes
the behavior of the inverse of a matrix under rank-one updates (see [GV96,
Section 2.1.3]).

Lemma 3.1. If A is a nonsingular n× n matrix and π is a vector, then

(A+ ππ
T )−1 = A−1 − A−1

ππ
TA−1

1 + π
TA−1

π

.
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4 The Main Result

As in [SS08], we begin by considering the m×mmatrix Π = W 1/2BL+BTW 1/2.
We will exploit the properties of Π stated in the following lemma. See [SS08]

for a proof.

Lemma 4.1 (Projection Matrix). (i) Π is a projection matrix. (ii) im(Π) =
im(W 1/2B) ⊆ R

m. (iii) The eigenvalues of Π are 1 with multiplicity n− 1 and
0 with multiplicity m− n+ 1.

Each column (and row) of Π is associated with an edge of G. Let πe denote
the restriction of the column associated with edge e to the image of Π, under
an arbitrary choice of orthonormal basis for the image of Π. By restricting to
this space, we have ∑

e

πeπ
T
e = I.

When H = (V, F, w̃) is a subgraph of G = (V,E,w), there is a simple
relationship between LH and LG via the m×m diagonal matrix

SH(e, e) =
w̃e

we
;

specifically, we have
LH = BTW 1/2SHW 1/2B,

and
ΠSHΠ =

∑

e

SH(e, e)πeπ
T
e .

This immediately gives the following identity, which reduces the task of sparsi-
fication to choosing a small, well-conditioned subset of the columns of Π, up to
rescaling.

Lemma 4.2 (Condition Number). If SH is defined as above, then

λmin(ΠSHΠ) ≤ xTLHx

xTLGx
≤ λmax(ΠSHΠ) ∀x ⊥ ker(LG) = span(1),

where λmax and λmin are the smallest and largest eigenvalues of the restriction
of ΠSHΠ to im(Π).

Proof. Notice that

xTLHx

xTLGx
=

xTBTW 1/2SHW 1/2Bx

xTBTWBx

=
yTΠTSHΠy

yTΠΠy
for some y ∈ im(Π), since im(W 1/2B) = im(Π)

=
yTΠSHΠy

yT y
since Π = ΠT and Πy = y for y ∈ im(Π).

But this is just the Rayleigh quotient of ΠSHΠ, and therefore bounded between
λmin(ΠSHΠ) and λmax(ΠSHΠ) for y ∈ im(Π).
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So what we have to do is choose a small set of coefficients se so that∑
e seπeπ

T
e is well-conditioned. To this end we define two ‘barrier’ potential

functions which measure the quality of the eigenvalues of a matrix.

Definition 4.3. For u, l ∈ R and A a symmetric matrix with eigenvalues λ1 ≤
λ2, . . . , λn−1, define:

Φu(A) , Tr(uI −A)−1 =
∑

i

1

u− λi
Upper potential function.

Φl(A) , Tr(A− lI)−1 =
∑

i

1

λi − l
Lower potential function.

As long as A ≺ uI and A ≻ lI (i.e., λmax(A) < u and λmin(A) > l), these
potential functions measure how far the eigenvalues of A are from the barriers u
and l. In particular, they blow up as any eigenvalue approaches a barrier, since
then uI −A (or A− lI) approaches a singular matrix.

To prove the theorem, we will construct a sequence of matrices

0 = A(0), A(1), . . . , A(s), . . . A(S)

along with positive constants u0, l0, δu, δl, ǫu and ǫl which satisfy the following
conditions:

1. Initially, the potentials are

Φu0(A(0)) = ǫu and Φl0(A
(0)) = ǫl.

2. Each matrix is obtained by a rank-one update of the previous one —
specifically by adding some multiple of a column of Π.

A(s+1) = A(s) + tππT for some π ∈ {πe}e∈E and t ≥ 0.

3. If we shift the barriers u and l by δu and δl respectively at each step, then
the upper and lower potentials do not increase. For every s = 0, 1, . . . S,

Φu+δu(A(s+1)) ≤ Φu(A(s)) ≤ ǫu for u = u0 + sδu.

Φl+δl(A
(s+1)) ≤ Φl(A

(s)) ≤ ǫl for l = l0 + sδl.

4. No eigenvalue ever jumps accross a barrier. For every s = 0, 1, . . . S,

λmax(A
(s)) < u0 + sδu

λmin(A
(s)) > l0 + sδl.
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To complete the proof we will choose u0, l0, δu, δl, ǫu and ǫl so that after S = dn
steps, the condition number of A(S) is bounded by

λmax(A
(S))

λmin(A(S))
≤ d+ 1+ 2

√
d

d+ 1− 2
√
d
.

The main technical challenge is to show that there is always a choice of
ππ

T to add to the current matrix which allows us to shift both barriers up by
a constant without increasing either potential. We achieve this in the following
3 lemmas.

Lemma 4.4 (Upper Barrier Shift). Suppose λmax(A) < u and π is any vector.
If

1

t
≥ π

T ((u + δu)I −A)−2
π

Φu(A) − Φu+δu(A)
+ π

T ((u+ δu)I −A)−1
π , UA(π)

then
Φu+δu(A+ tππT ) ≤ Φu(A) and λmax(A+ tππT ) < u+ δu.

That is, if we add t times ππ
T to A and shift the upper barrier by δu, then we

do not increase the upper potential.

Proof. Let u′ = u + δu. By the Sherman-Morrison formula, we can write the
updated potential as:

Φu+δu(A+ tππT ) = Tr(u′I −A− tππT )−1

= Tr

(
(u′I − A)−1 +

t(u′I −A)−1
ππ

T (u′I −A)−1

1− tπT (u′I −A)−1
π

)

= Tr(u′I −A)−1 +
tTr(πT (u′I −A)−1(u′I −A)−1

π)

1− tπT (u′I −A)−1
π

since Tr is linear and Tr(XY ) = Tr(Y X)

= Φu+δu(A) +
tπT (u′I −A)−2

π

1− tπT (u′I −A)−1
π

= Φu(A)− (Φu(A)− Φu+δu(A)) +
π

T (u′I −A)−2
π

1/t− π
T (u′I −A)−1

π

Substituting 1/t ≥ UA(π) gives Φu+δu(A + tππT ) ≤ Φu(A) < ∞ for all
t ∈ [0, 1/UA(π)]\Γ, where Γ = {t : {λi(A+ tππT )} ∋ (u+ δu)} is the set where
h(t) = Φu+δu(A+ tππT ) is not defined.

Assume for contradiction that λmax(A + t0ππ
T ) ≥ (u + δu) for some t0 ∈

[0, 1/UA(π)]. Since λmax(A + tππT ) is continuous and nondecreasing in t and
λmax(A) < u, there must be some least 0 < t1 ≤ t0 for which λmax(A+t1ππ

T ) =
u+ δu. Now h is defined on [0, t1) and h(t) ↑ ∞ as t ↑ t1. But this is impossible
since h(t) ≤ Φu(A) on [0, 1/UA(π)] \ Γ.
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Lemma 4.5 (Lower Barrier Shift). Suppose λmin(A) > l + δl and π is any
vector. If

1

t
≤ π

T (A− (l + δl)I)
−2

π

Φl+δl(A)− Φl(A)
− π

T (A− (l + δl)I)
−1

π , LA(π)

then
Φl+δl(A+ tππT ) ≤ Φl(A) and λmin(A+ tππT ) > l + δl.

That is, if we add t times ππ
T to A and shift the lower barrier by δl, then we

do not increase the lower potential.

Proof. We proceed as in the proof for the upper potential. Let l′ = l + δl. By
Sherman-Morrison, we have:

Φl+δl(A+ tππT ) = Tr(A+ tππT − l′I)−1

= Tr

(
(A− l′I)−1 − t(A− l′I)−1

ππ
T (A− l′I)−1

1 + tπT (A− l′)−1
π

)

= Tr(A− l′I)−1 − tTr(πT (A− l′I)−1(A− l′I)−1
π)

1 + tπT (A− l′I)−1
π

= Φl+δl(A)−
tπT (A− l′I)−2

π

1 + tπT (A− l′I)−1
π

= Φl(A) + (Φl+δl(A)− Φl(A)) −
π

T (A− l′I)−2
π

1/t+ π
T (A− l′I)−1

π

Rearranging shows that Φl+δl(A + tππT ) ≤ Φl(A) when 1/t ≤ LA(π). It is
immediate that λmin(A+ tππT ) > l+ δl since λmin(A+ tππT ) ≥ λmin(A).

Lemma 4.6 (Both Barriers). If Φu(A) ≤ ǫu,Φl(A) ≤ ǫl, and ǫu, ǫl, δu and δl
satisfy

0 ≤ 1

δu
+ ǫu ≤ 1

δl
− ǫl (2)

then there exists an e for which

LA(πe) ≥ UA(πe).

Proof. We will show that

∑

e

LA(πe) ≥
∑

e

UA(πe),

from which the claim will follow. We begin by bounding
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∑

e

UA(πe) =

∑
e π

T
e ((u + δu)I −A)−2

πe

Φu(A)− Φu+δu(A)
+
∑

e

π
T
e ((u+ δu)I −A)−1

πe

=
((u+ δu)I − A)−2 • (

∑
e πeπ

T
e )

Φu(A)− Φu+δu(A)
+ ((u + δu)I −A)−1 • (

∑

e

πeπ
T
e )

=
Tr((u + δu)I −A)−2

Φu(A)− Φu+δu(A)
+ Tr((u+ δu)I −A)−1

since
∑

e

πeπ
T
e = Π = I and X • I = Tr(X)

=

∑
i

1
(u+δu−λi)2∑

i
1

u−λi

−∑i
1

u+δu−λi

+Φu+δu(A)

=

∑
i

1
(u+δu−λi)2

δu
∑

i
1

(u−λi)(u+δu−λi)

+Φu+δu(A)

≤ 1

δu
+Φu+δu(A) as

∑

i

1

(u− λi)(u + δu − λi)
≥
∑

i

1

(u + δu − λi)2

≤ 1

δu
+Φu(A) ≤ 1

δu
+ ǫu.

On the other hand, we have

∑

e

LA(π) =

∑
e π

T
e ((A− (l + δl))

−2
πe

Φl+δl(A) − Φl(A)
−
∑

e

π
T
e (A− (l + δl)I)

−1
πe

=
(A− (l + δl)I)

−2 • (∑e πeπ
T
e )

Φl+δl(A)− Φl(A)
− (A− (l + δl)I)

−1 • (
∑

e

πeπ
T
e )

=
Tr(A− (l + δl)I)

−2

Φl+δl(A)− Φl(A)
− Tr(A− (l + δl)I)

−1

since
∑

e

πeπ
T
e = Π = I and X • I = Tr(X)

=

∑
i

1
(λi−l−δl)2∑

i
1

λi−l−δl
−
∑

i
1

λi−l

−
∑

i

1

λi − l − δl
.

≥ 1

δl
−
∑

i

1

λi − l
,

by Claim 4.7.
Putting everything together, we find that

∑

e

UA(πe) ≤
1

δu
+ ǫu ≤ 1

δl
− ǫl ≤

∑

e

LA(πe),

as desired.
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Claim 4.7. If λi > l for all i, 0 ≤∑(λi − l)−1 ≤ ǫl, and 1/δl − ǫl ≥ 0, then

∑
i

1
(λi−l−δl)2∑

i
1

λi−l−δl
−∑i

1
λi−l

−
∑

i

1

λi − l − δl
≥ 1

δl
−
∑

i

1

λi − l
. (3)

Proof. We have
δl ≤ 1/ǫl ≤ λi − l,

for every i. So, the denominator of the left-most term on the left-hand side is
positive, and the claimed inequality is equivalent to

∑

i

1

(λi − l − δl)2

≥
(
∑

i

1

λi − l − δl
−
∑

i

1

λi − l

)(
1

δl
+
∑

i

1

λi − l − δl
−
∑

i

1

λi − l

)

=

(
δl
∑

i

1

(λi − l − δl)(λi − l)

)(
1

δl
+ δl

∑

i

1

(λi − l − δl)(λi − l)

)

=
∑

i

1

(λi − l − δl)(λi − l)
+

(
δl
∑

i

1

(λi − l − δl)(λi − l)

)2

,

which, by moving the first term on the RHS to the LHS, is just

δl
∑

i

1

(λi − l − δl)2(λi − l)
≥
(
δl
∑

i

1

(λi − l− δl)(λi − l)

)2

.

But by Chauchy-Schwartz:

(
δl
∑

i

1

(λi − l − δl)(λi − l)

)2

≤
(
δl
∑

i

1

λi − l

)(
δl
∑

i

1

(λi − l− δl)2(λi − l)

)

≤ (δlǫl)

(
δl
∑

i

1

(λi − l − δl)2(λi − l)

)

since Φl(A) ≤ ǫl

≤ 1

(
δl
∑

i

1

(λi − l − δl)2(λi − l)

)

since
1

δl
− ǫl ≥ 0,

and so (3) is established.

Proof of Theorem 1.1. All we need to do now is set ǫu, ǫl, δu, and δl in a manner
that satisfies Lemma 4.6 and gives a good bound on the condition number.
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Then, we can take A(0) = 0 and construct A(s+1) from A(s) by choosing any
vector πe with

LA(s)(πe) ≥ UA(s)(πe)

(such a vector is guaranteed to exist by Lemma 4.6) and setting A(s+1) =
A(s) + tπeπ

T
e for any t ≥ 0 satisfying:

LA(s)(πe) ≥
1

t
≥ UA(s)(πe).

It is sufficient to take

δl = 1 ǫl =
1√
d

l0 = −n/ǫl

δu =

√
d+ 1√
d− 1

ǫu =

√
d− 1

d+
√
d

u0 = n/ǫu.

We can check that:

1

δu
+ ǫu =

√
d− 1√
d+ 1

+

√
d− 1√

d(
√
d+ 1)

= 1− 1√
d

=
1

δl
− ǫl

so that (2) satisfied.
The initial potentials are Φ

n

ǫu (0) = ǫu and Φ n

ǫ
l

(0) = ǫl. After dn steps, we

have

λmax(A
(dn))

λmin(A(dn))
≤ n/ǫu + dnδu

−n/ǫl + dnδl

=

d+
√
d√

d−1
+ d

√
d+1√
d−1

d−
√
d

=
d+ 2

√
d+ 1

d− 2
√
d+ 1

,

as desired.

To turn this proof into an algorithm, one must first compute the vectors πe,
which can be done in time O(n2m). For each iteration of the algorithm, we
must compute ((u + δu)I − A)−1, ((u + δu)I − A)−2, and the same matrices
for the lower potential function. This computation can be performed in time
O(n3). Finally, we can decide which edge to add in each iteration by computing
UA(πe) and LA(πe) for each edge, which can be done in time O(n2m). As we
run for dn iterations, the total time of the algorithm is O(dn3m).
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