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1. Introduction 

Recent advances in fiber optics make the construction of networks with 
immense bandwidth realizable. As more and more personal and business 
communication will take place over these systems, issues of correctness and 
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privacy become increasingly important. In this paper, we solve the problem of 
perfectly secure message transmission in communication networks, without 
complexity-theoretic assumptions and with perfect correctness, for processor 
and edge faults alike. Our approach is to abstract away the network entirely 
and concentrate on solving the Secret Message Transmission (SMT) problem 
for a single pair of processors we call Sender and Receiver. In the SMT 
problem, two synchronized nonfaulty processors, Sender and Receiver, are 
connected by some number IZ of wires. We may think of these wires as a 
collection of vertex-disjoint paths between Sender and Receiver in the underly- 
ing network; each path corresponds to a wire. The Sender has a secret message 
m, drawn from a finite set Q of values. There are two parameters, (T (for 
secrecy) and p (for resiliency). The problem is for the Sender to convey m to 
the Receiver while satisfying: 

Pe$ect Secrecy. For all sets L of at most CT wires, no listening adversary ML, 
listening to all the wires of L, learns anything about m (secrecy must be 
information theoretic). 

Pe$ect Resiliency. For all sets D of at most p wires (possibly, but not 
necessarily, disjoint from L), Receiver correctly learns m, regardless of the 
disrupting adversary MD controlling and coordinating the behavior of the wires 
in D. 

Since each wire corresponds to a path in the underlying network, a compro- 
mised wire in Secret Message Transmission corresponds to a compromised 
processor or edge on the corresponding network path. Thus, connectivity 
bounds for SMT yield connectivity bounds in the network as a function of the 
number of faulty nodes or edges to be tolerated. 

Our protocol for secure transmission in general networks is the first to 
simultaneously achieve the three goals of perfect secrecy, perfect resiliency, 
and worst-case time linear in the diameter of the network (the constant is at 
most 3). This contrasts with the similarly fast protocol of Rabin and Ben-Or, 
based on the idea of “check vectors,” which has unconditional secrecy but has 
small probability of error [201. Ben-Or, et al. [3] showed that every function of 
p inputs can be efficiently computed by a complete network of p processors 
even in the presence of t <p/3 Byzantine faults so that no set of t faulty 
processors gets any information other than the function value (see also [l], [7], 
[161, and [221). Using our protocol for secret message transmission we can 
immediately extend these results to any p processor network of connectivity 
2t + 1, at no cost in secrecy or correctness (connectivity 2 t + 1 is necessary 18, 
161). The analogous result obtained by Rabin and Ben-Or in [20] for general 
networks suffers a small probability of error. In this low-probability case, 
because the entire computation can go awry, the privacy of correct processors 
is not guaranteed, even though messages sent between correct processors enjoy 
perfect secrecy. Our solution does not suffer from this weakness, and pays no 
price in time. 

The bounds on connectivity needed for ( (+, p)-SMT vary according to whether 
or not the solution must be l-way, in that information flows only from Sender 
to Receiver, or 2+vuy, where Sender and Receiver “converse.” The bounds are 
also strongly affected by the extent to which L$ can communicate to JZ$ its 
view of the communication. on the wires in D. One possibility is that the two 
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adversaries share a “back channel” allowing them explicitly to communicate. A 
more interesting case is when there is no such channel. Here J$~ can communi- 
cate information to LZ?~ if the sets D and L intersect (by placing messages on 
the shared wires). More subtly, even if the two sets are disjoint, LZ?,‘, may be 
able to transmit information to J%‘~ by disrupting the protocol so as to elicit 
certain behavior on the part of Sender or Receiver that LZ?. can recognize. One 
situation in which JZZ’~ clearly cannot communicate useful information to ML is, 
informally, when it disrupts obliviously, independent of the information on the 
wires in D. As an example, we propose the weaker fault model in which 
communication is disrupted only by random noise. 

The case in which &‘,, and JZZ~ are constrained so that D G L or L c D is an 
important one, and in this case we say the containment assumption holds. In 
this case, there is effectively one adversary. This is the worst-case assumption 
made in previous papers treating secrecy and resiliency simultaneously [3, 4, 5, 
15, 201. Generally, we assume u 2 p and derive our bounds for this case. In 
some models, we can drop this assumption and replace all terms u in our 
bounds by max{cr, p}. In other models, the problem has no solution if u < p. 
We return to this point as needed. Not only do our lower and upper bounds 
match under the containment assumption, but in this case they are indepen- 
dent of the extent of communication between the adversaries. Under the 
containment assumption, there is a solution to the l-way Secret Message 
Transmission problem if and only if n, the number of wires connecting Sender 
and Receiver, satisfies IZ 2 CT + 2p + 1. The solution requires computation 
and message length polynomial in IZ. However, if communication is 2-way, in 
that Sender and Receiver converse, then II 2 max{ g + p + 1,2p + 1) wires 
are necessary and sufficient (the latter term arises even in the case u = 0, that 
is, we require correctness but no secrecy). A phase is a send from Sender to 
Receiver or vice versa. Surprisingly, the 2-way protocol requires only three 
phases. 

For this value of it we have even obtained a 2-phase protocol (beginning with 
a transmission from Receiver to Sender), but, unlike our l-phase and 3-phase 
solutions, the computation and communication costs of the two-phase solution 
are not polynomial in IZ. Our 3-phase solution uses two new techniques. The 
first is a simple fault detection technique, a powerful generalization of which 
has already been applied to another problem [lo]. We say more about the 
generalization and its application in Section 9. The second is a method of 
parallelizing our first technique, permitting us to collapse loop iterations in a 
O( p&phase algorithm to obtain the 3-phase algorithm. This too, has been 
applied in [lo]. 

If the two adversaries can communicate explicitly during the execution of the 
protocol, say, through some auxiliary “back channel,” but the containment 
assumption does not hold, then the (lower and upper) bounds on y1 increase by 
exactly p for both the l-way and 2-way cases. This is because when JZ?,, can 
communicate with LX” it is as if there are u + p listeners, of which at most p 
are disruptors. This is the containment assumption with secrecy parameter 
u + p and resiliency parameter p, and the bounds increase accordingly over 
the case with only u listeners. 

Even if the two adversaries cannot communicate through a back channel, it 
may be possible for the disrupting adversary to elicit certain behavior from 
Sender or Receiver that communicates some extra information to the listening 
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adversary. In fact, at least an additional p - 1 wires must be added for both 
the l-way and 2-way cases. These last results are tight for the l-way case and 
leave a gap of a single wire in the 2-way case. However, we also show that in 
this case any 3-phase algorithm requires exactly p additional wires, even if the 
disruptors and listeners cannot move between phases. This bound is tight, and 
our algorithm permits these sets to move. All our protocols tolerate adversaries 
of unlimited computational power. 

l-way SMT has an interesting relation to Verifiable Secret Sharing (VSS), a 
problem first defined by Char, et al. [51. VSS plays a central role in implement- 
ing a global coin [13], as well as in the more general results of [3, 4, 203.’ 
Ben-Or, et al. remark without proof that secure computation is impossible with 
2t + 1 processors, even in the presence of a broadcast channel 131. We prove 
that even the more funda.mental task of Verifiable Secret Sharing cannot be 
achieved in this model.* Our approach is to reduce a weakened version of 
l-way SMT to VSS so that each processor in the VSS protocol corresponds to a 
wire in the SMT protocol. We then prove a lower bound on connectivity of 
3t + 1 for this weakened version of SMT. Interestingly, our lower bound of 
3t + 1 also applies to a weak version of VSS called Unuetified Secret Sharing 
(t-Z&S>. This is essentially VSS without Verification. Thus, the processor cost 
of Verifiable Secret Sharing comes from the conflicting requirements of 
secrecy and reconstructability, rather than from ‘the ability to verify that the 
secret was correctly dealt out. 

Rabin and Lehmann [19] showed that in a distributed environment there 
exist problems with randomized solutions but with no deterministic solution 
(see also [2], [9], and [17]). There exist error-free and small-error solutions to 
t-USS requiring 3t + 1 and 2t + 1 processors, respectively [3] and [20]. The 
lower bound of 3t + 1 processors for error-free t-USS yields a new kind of 
separation result: within the class of problems admitting no deterministic 
solution, the cost of an error-free solution may necessarily significantly exceed 
the cost of a solution with even very small probability of error. In a certain 
model, it is therefore possible to separate error-free randomized computation 
from randomized computation with error. 

We also explore the problem of secure communication in graphs of bounded 
degree. Techniques of Dwork, et al. [ll] for (nonsecret) communication in size 
IZ networks of bounded degree, can be extended to show that for substantial (as 
a function of n) (T and p, no matter which (T nodes are chosen by J;4L, and no 
matter which p nodes are chosen by JZ’~, there is a large set of nodes that can 
communicate secretly and correctly among themselves, even though the 
network is of bounded degree. 

The rest of the paper is organized as follows: Section 2 describes our 
adversary models. Section 3 contains definitions of the Secret Message Trans- 
mission and the two Secret Sharing problems. Section 4 contains our 3-phase 
solution to SMT. Additional results for the containment and noncontainment 

’ Roughly speaking, t-VSS permits a (possibly faulty) dealer to commit to a secret in such a way 
that the secret can later be uniquely reconstructed despite the interference of up to t faulty 
processors, possibly including the dealer. Moreover, if the dealer is correct then the faulty 
processors cannot learn any information about the secret until the correct processors execute a 
;econstruction protocol. 

The lower bound for t-VSS with a broadcast channel was obtained independently by Rabin and 
Ben-Or [20]. An informal argument is also given by Chaum, et al. [4]. 
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cases appear in Sections 5 and 7. Our results about Verifiable Secret Sharing 
and the separation result for problems with no deterministic solution appear in 
Section 6. Applications to networks of bounded degree are discussed in Section 
8. Section 9 contains additional remarks. 

2. Adversaries 

An adversary is an algorithm that takes as input transmissions on certain wires, 
random bits, and the phase number, and produces a choice of additional wires 
together with either (faulty) traffic on the chosen wires, in the case of the 
disrupting adversary tiD, or a guess of the message being transmitted, in the 
case of the listening adversary, G”. A wire tapped or under the control of an 
adversary is said to be compromised. 

For our algorithms, our adversaries may be adaptive, in the sense that 
information (communication traffic) obtained from a set of compromised wires 
can affect the choice of the next wire to be compromised, while our lower 
bounds hold even if the adversaries are not adaptive. 

Our algorithms have a special form: The first phase uses a low-quality 
“secret” channel, while all subsequent phases use a perfect “public” channel. 
Without going into detail here of how we achieve these different types of 
channels, we point out that the issue of choosing wires to compromise in 
subsequent phases as a function of traffic in the first phase is moot for these 
algorithms. Similarly moot is the issue of whether ti’ even exists after the first 
phase, since by definition it cannot interfere with the perfect public channel. 
Of course, LX” may use all the information it has gleaned over the entire 
execution of the protocol for making its guess as to which message is transmit- 
ted. The lower bounds hold even for static adversaries that choose which wires 
to compromise before execution begins. We therefore assume the sets D and 
L of disrupting and listening wires are chosen by the end of the first phase. 

In this paper, we assume in general that JX’~ and LZ?~ work together to defeat 
the algorithm. If the adversaries can communicate explicitly during execution 
of the algorithm, say, through some “back channel,” then we simply say that 
dL and JZ?,~ communicate. Here, a back channel is some channel other than the 
wires connecting Sender and Receiver. In this case, for example, the adver- 
saries might converse before choosing which wires to compromise. If there is 
no “back channel” we say JZ’,, and &” do not communicate. Even in this case, 
some communication is possible. For example, if the sets D and L intersect, 
then &” can convey information to LZ$ by putting this information onto the 
shared wire(s) or disrupting communication on a shared wire. Even if D and L 
are disjoint, the protocol may require Sender and Receiver to send over wires 
in L information reflecting the choice of D. This too could be meaningful 
to dL,. 

We also consider the special case in which JX?’ behaves obliviously, choosing 
D, communicating with JzZ~, and disrupting communication along the wires in 
D, without regard to the information placed along these wires by Sender and 
Receiver (but possibly dependent on information it receives from LX”, in the 
case that the adversaries communicate). This adversary models the special case 
in which disruption is due only to random noise. Clearly, an oblivious &” 
cannot give to ML any information about the transmissions of Sender and 
Receiver not already available to LZ?~. Not surprisingly, we obtain better upper 
bounds against this weaker adversary than in the nonoblivious case. 



22 

3. Definitions 

D. DOLEV ET AL 

Sender and Receiver are modeled by communicating probabilistic Turing 
Machines that communicate through the II wires connecting them. Randomiza- 
tion is modeled by coin flipping (bounded branching). 

Throughout, our messages m are drawn from a finite field Q of prime 
cardinal@ greater than n, where n is always the number of wires between 
Sender and Receiver in Secret Message Transmission or the number of 
participants in a secret sharing protocol, whichever is appropriate to the 
context. We let lI denote the underlying probability distribution on Q. 

We use the notation [k] to denote the set of natural numbers less than or 
equal to k. Note that 0 P [k]. We let (k) = {O} u [k]. For any set S, we let S’ 
denote the set of j-subsets of S where 0 I j I i. 

For any alphabet C, for any vectors W, I/ E C”, the distance between W and 
V, denoted dist(W, V), is the number of components on which the two vectors 
differ. 

Fix any secret message transmission protocol, P, and let LZ?~ be a listening 
adversary. Intuitively, we require that for all messages m, m’ and for all 
disrupting adversaries LX&, the probability distribution on ~~2~‘s view, given that 
the message transmitted is m and the disrupting adversary is tiD, is identical to 
the probability distributiorn on ML’s view, given that the message transmitted is 
m’ and the adversary is still LP”. Here, the probability space is the space of all 
coin tosses of &“,&‘,,, Sender, and Receiver, and the view, intuitively, is 
everything seen by A?‘. 

More precisely, the view of a listening adversary LX” at any point in the 
execution of the protocol consists of 

(1) the algorithms JY” and tiD, and the protocol P; 
(2) the random choices that ML has made so far; 
(3) the “back channel” messages received up to this point, if any (and if there 

is a back channel); 
(4) for each wire 1 in the subset of L chosen so far, conversations between 

Sender and Receiver over 1 from the time the wire was compromised until 
this point; 

(5) for each wire w  in the tsubset of L n D chosen so far, the changes by LZ?’ to 
conversations over w  from the time w  was compromised until this point. 

Sometimes we combine the last two items in the view, calling the combi- 
nation the trafic over the wires in L. 

None of our lower bound proofs use the assumption that ti’ sees both the 
original data placed on wires in L n D by Sender and Receiver, as well as the 
changes A?‘~ makes to these wires. Some proofs use the ability of & to detect 
that LZ?~ has disrupted communication on a certain wire, while others (specifi- 
cally, in the case D n L == 0) rely on the ability of &” to see the conversa- 
tions. However, our algorithms work even if JZ” has access to all the traffic 
over the wires in L. 

For every mess:ge m E Q, any pair of adversaries tiL, MD, and any protocol 
P for SMT, let II&Y’, m,d’, P) denote the probability distribution, on the 
views of LZ?~ at the end of the executions of P when the message sent is m and 
the disrupting adversary is &‘. The probability distribution is taken over the 
coin tosses of zZD, A?~, Sender, and Receiver. 
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Definition. (a, p&Secret Message Transmission ((c, p)-SMT). The Sender 
begins with a message m drawn from an arbitrary probability distribution II on 
Q. For every LZ”,JZZ’,,, compromising at most (T and p wires, respectively, we 
require: 

Secrecy. Vm’ E Q fi(~~$, rn,tiD, P) = fib& rn’,dD, P). 

Resiliency. Receiver correctly learns m. 

In particular, the secrecy requirement implies that at any point in the execu- 
tion LYZ” has absolutely no information about which message is being transmit- 
ted. It follows that the choice of L is independent of the message being 
transmitted, as is the probability distribution on conversations over wires in L. 
Our definition of secrecy is equivalent to requiring that the probability that J$ 
can correctly guess the secret being transmitted is 

P max = maxII( 
mEQ 

where the probability is taken over all coin flips of Sender, Receiver, JY’~ and 
tiD and choice of m (we can think of m as being randomly chosen according to 
II). We mention this equivalence because we sometimes prove lower bounds by 
exhibiting a pair of adversaries LP’~ and &$, such that, if the connectivity is 
insufficient, ~2~ can guess the secret message transmitted with probability 
greater than pm,,. 

A solution to l-way (a, p)-SMT runs in exactly one synchronous phase. A 
solution to 2-way (a, p)-SMT is a solution to (a, p)-SMT of two or more 
phases. We adopt the convention that if (T = 0, then there is no secrecy 
requirement, and if p = 0, then there is no resiliency requirement. If JZZ’~ and 
tiL are constrained so that D c L or L G D, then we say the containment 
assumption holds. Unless otherwise noted, we assume u 2 p, and in this 
case the containment assumption says that D c L. All our results for the con- 
tainment case are independent of the degree of communication between dL 
and JzZ~. Under the containment assumption the secrecy condition above is 
equivalent to the following condition: 

Secrecy Under Containment. Vm, m’ E Q, b’tiD,dL, VL E (n - 1)” com- 
promised by dL, VD E L p compromised by J$, for all possible traffic TL over 
wires in L, the probability that TL occurs, given that the message transmitted 
is m and given &“, &“, is equal to the probability that TL occurs, given that the 
message is m’ and given tiD and JzZ~. The probability space is the set of coin 
tosses of dD, LZ?‘, Sender, and Receiver. 

Note that for any fixed ML, G’,‘, pair, the probability that &. will compromise 
wire 0 is independent of the secret message. Thus, the probability that L$ 
chooses any particular L not containing 0 is independent of the message. 

As described in the Introduction, we will study a weakened form of l-way 
SMT (under containment) in which there is no secrecy requirement if tiL 
compromises wire 0. We call this weakened l-way &VT. Specifically, we weaken 
the above definition to read “If 0 66 L, then for all possible traffic. . . .” 

We now turn briefly to secret sharing. This is actually a class of problems, all 
having a similar form. The model is a distributed system in which certain 
processors may be disruptors and certain others may be listeners. As above, the 
disruptors are controlled by a disrupting adversary JP”, while the messages and 
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other inputs received by the listeners are available to a listening adversary JZ”. 
In this model, there is no way to prevent the disruptors from sending messages 
to the listeners, and hence LX’,‘, can communicate with LX?‘. Thus, either we work 
under the containment ass8umption or we assume JY” is oblivious. 

Definition. ( CT, p&Secret Sharing. A protocol for a (CT, PI-Secret Sharing 
problem is a pair of n-processor protocols CL?,, ga,>, run-in sequence, and 
designed to tolerate up to p faults in any execution of the pair. In other words, 
if some number k I p processors fail in $PD1, then ~3’~ need only tolerate faulty 
behavior by those same k processors and up to p - k additional processors. 
One special processor, pO, is called the dealer. The dealer has a private input 
m. During 9, the dealer distributes shares of m in such a way that no set of u 
processors not including the dealer, learns any information about the secret 
during execution of Y1. ~9’~ is a protocol for reconstructing the secret m from 
the shares distributed during 9i. Finally, if the dealer p0 remains nonfaulty 
throughout Pdl, then the value obtained by applying P2 is in fact the initial 
value (input) of pO, provided at most p processors fail in total. 

In analogy to the definition of SMT, we assume LX’;. compromises a set L of 
listening processors, and ,m% compromises a set D of disrupting processors. In 
this case, the view of HL is the complete history of every processor in L, from 
the moment it is compromised by J;s, until the beginning of the execution of 
.9$, together with any information received directly from ~2~. In the case of 
Unverified Secret Sharing, we assume D G L. This is also the assumption in 
Verifiable Secret Sharing in the literature. 

Definition. (a, p)-Unverified Secret Sharing. For every m E Q, if pO has 
input m and remains nonfaulty throughout execution of 9,, we require that 
for all zZL and JZ” compromising sets L E (n - 1)” and D E L P, respectively. 

Secrecy. Vm’ E Q, if p. P L, then the probability distribution on the views 
of tiL, given dL,z$, and given that p,, has input m, is identical to the 
probability distribution on the views of LX’~ given J$,Lz”, and given that pO has 
input m’. 

Resiliency. At the end of P2, every processor not in D outputs m, regard- 
less of the behavior of the members of D. 

Note that execution of 9, need not immediately follow execution of P1, but 
may be delayed, so even if the dealer is correct throughout execution of ~3’~ it 
may fail before execution of zP2. 

As in the case of weakened l-way SMT, it follows from this definition that 
the probability that LZ?” compromises p. given that the secret is m is the same 
as the probability that &” compromises pO given that the secret is m’. Again, 
as in that case, for all m, m’, JX’,,, JY’~, for all L E [n - l]“, all D E L p, and all 
possible views V, that dL could have at the end of execution of 9’,, given this 
choice of L, the probability that V, occurs given &D and zZL, and given that 
the secret is m, is identical to the probability that V, occurs given LX?~,L.X?~, and 
given that the secret is m’. 

In the case of (t, t&Unverified Secret Sharing, the definition says that if pO 
remains nonfaulty throughout 9,, then no set F of at most t faulty players can 
prevent the nonfaulty players from outputtting m at the end of gd2, and 
moreover, if F does not contain p,, then the members of F have no informa- 
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tion, in an information theoretic sense, about the secret m. When the secrecy 
and resiliency parameters are the same, as in this case, we simply write 
t-Unverified Secret Sharing. 

t-Verifiable Secret Sharing is t-Unverified Secret Sharing with additional 
correctness constraints for the case in which the dealer is faulty during 
execution of 9i. Specifically, even if the dealer is faulty during execution of 

9r, VSS requires that the outcome of 9’, is uniquely determined by the states 
of any subset of n - t processors correct at the end of Pal, provided at most t 
processors fail in total during execution of the two protocols. That is, once 9, 
is completed, the dealer is committed to the secret dealt out. Clearly, t-USS 
reduces to t-VSS. 

4. The Main Algorithm 

In this section, we present our 3-phase protocol for 2-way (a, p)-SMT. The 
protocol requires connectivity max{a + p + 1,2p + 1) under the containment 
assumption or in the case dj is oblivious. We prove in Section 5 that this is 
optimal. Extensions to the noncontainment case appear in Section 7. Commu- 
nication and computation costs are polynomial in (7 and p. 

We develop the protocol in three stages. We begin with an algorithm that 
might require O( p) phases, proceed to an algorithm that can be made to run 
in three phases with any probability less than 1, and finally arrive at the 
3-phase solution. 

Throughout this section, we take the field Q to be Z,, where 4 is a prime 
greater than the connectivity n. This is for ease of notation, since in this case 
the nonzero elements of Q are simply the integers 1,2,. . . , q - 1. For arbitrary 
Q, we let (or,. . ., aq-i be the nonzero elements of Q and, in the sequel, 
replace all 1 I i < n with (Y~. 

Let T = (t t i, 2,. . . , t,), where ti E Q, 1 5 i I n. If the points (i, ti) can be 
interpolated by a polynomial of degree d, we say simply that T can be 
interpolated by a polynomial of degree d. (In the case of a general field Q, we 
would interpolate the points (ai, tJ.1 

Let r = max{a, p}. In Theorem 5.2, we prove that 2-way (a, p)-SMT re- 
quires connectivity n 2 r + p + 1. Henceforth, assume n = r + p + 1. Then, 
since Sender and Receiver are at least 2p + 1 connected, they are essentially 
connected by a fault-free public channel. To send a message x over this public 
channel, Sender can simply send x on every wire, that is, x is replicated 
n r 2p + 1 times, and at most p of these copies will be destroyed or modified. 
Thus, Receiver can simply see which message appears at least p + 1 times, and 
that is the message that Sender sent. Similarly, Receiver can send things to 
Sender in a fault-free, but public, fashion. 

The slow protocol works as follows: Let m E Q be the secret message 
Sender wishes to send to Receiver. First, Sender chooses uniformly at random 
a pad p E Q; p bears no relation to m. Sender attempts secret transmission of 
p. If secret transmission of p is successful, Sender will send Z = p @ m to 
Receiver over the “public channel.” In this case, Receiver computes m = Z 8 p 
(all arithmetic is done in the field Q). If the secret transmission of p fails, then 
Sender and Receiver will use the public channel to detect at least one 
previously undetected faulty wire, and the entire protocol is repeated but 
without the detected faulty wires. During the error detection the secrecy of the 
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pad p is lost; however, since p was chosen independently of m this yields no 
information about m. 

There are two drawbacks to this general approach. First, Sender may have to 
attempt to transmit up to p + 1 times. Second, the faulty wires D cannot 
change between phases. Our three-phase solution will overcome both of these 
drawbacks. 

We now present the slow protocol. 3 The input W is a set of labeled wires. 
Note that we have labeled the wires from 1 to k (rather than from 0 to k - 1 
as in the impossibility proofs). Initially, k = it, but in the recursive calls k < II. 
This is because faulty wires are eliminated from the set of wires as errors are 
detected. All missing or syntactically incorrect messages are treated as zeros. 
Steps labeled “S” (respectively, “R”> are taken by the Sender (respectively, 
Receiver). 

SlowSMT(W = {w,, . . . , w,), 7, Q, private to S:m) 
PHASES 1 and 2: 

S: Choose random polynomial f(x) E Q(x) of degree 7. 
Send si = f(i) on wi. Let p = f(O). 

R: Let T = (t,, . . . , t,) where ti E Q is received on wi. 
IF T can be interpolat.ed by a degree r polynomial g 

Then set p = g(0) and publicly send “OK” to Sender 
Else publicly send T to Sender 

FI 

PHASE 3: 
S: IF “OK” received over the public channel in Phase 2, 

Then send Z = p @ m to Receiver over the public channel. 
Else DO: 

For each j such that fj # sj, remove w. from IV. 
Send new W to Receiver over the public channel 
Call SlowSMnnew W, T, Q, m). 

OD 
FI 

R: IF “OK” sent to Sender in Phase 2 
Then receive Z on the public channel and compute m = Z 8 p. 
Else DO. 

Receive new W from Sender over the public channel. 
Call SlowSMTInew W, T, Q, . ). 

OD 
FI 

End of SlowSMT 

Protocol SlowSMT can be speeded up a bit by overlapping the last transmis- 
sion in a given invocation with the first transmission in the recursive call, but 
this is not of interest. Our point in presenting this protocol is to develop 
certain techniques that will be used later. 

CLAIM 4.1. SlowSMT satisfies the resiliency and secrecy conditions for 2-way 
(a, p)-SMT. 

PROOF. Let us call each recursive call to SlowSMT an iteration of the 
protocol. Initially, SlowSMT is called with all n = r + p + 1 wires and secrecy 
parameter r = max{a, p). Thus, in the first iteration, there exist good wires 
x1,...,x7+1 such that t,, = sXi for all 1 5 i I r + 1. These values completely 

3 Our slow algorithm was originally more complex. The simplified version described here is due to 
Rabin and Ben-Or [20]. 
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determine the degree r polynomials g and h, so if Receiver says “OK” in 
Phase 2, then gc.1 = h(e). 

Conversely, if tj # sj, then wire j is faulty. Thus, only truly faulty wires are 
removed from W by Sender. A simple induction shows that in every subse- 
quent iteration there exist good wires x1,. . . , x,, r such that t,, = s,, for all 
l<is5-+1. 

Since eventually Receiver either says “OK” or there are more than p faulty 
wires, the resiliency condition is satisfied. 

For secrecy, we first observe that the initial and all recursive calls have the 
same secrecy parameter T, so we are always using polynomials of degree T, no 
matter how many faulty wires are eliminated. Thus, for any successfully 
transmitted pad p, the shares si are r-wise independent and uniformly dis- 
tributed over Q, independent of the value of m. Moreover, they are completely 
independent of all previous pads. 

Since we are working under the containment assumption (or I;s, is oblivious), 
~2~ learns absolutely nothing about the secret from the number of phases 
required, or from the choice of D, since these variables are controlled by tin 
and G” has access to all the shares available to J%‘~. Thus, if p is successfully 
transmitted, it is secret according to the definition of secrecy for ((T, p)-SMT. 

A little more formally, fix a secret message m E Q. Let i be any integer 
0 I i < IQl. We claim that for any view VL of &‘, V, occurs with the same 
probability in a transmission of m as in a transmission of m’ = m 6~ i. Clearly, 
for every destroyed pad this is true, since the destroyed pads are chosen and 
destroyed without relation to m or to the values of shares on wires outside L. 
Consider the first phase in which the pad is not destroyed, and let f be the 
random degree r polynomial chosen by sender in this phase (the pad is f(O)>. 
The choice of which shares of f are seen is independent of f(O). In fact, ML’s 
view is equally likely in the case that chosen polynomial is f’, where every 
share of f’ corresponding to wire in L is identical to the corresponding share 
of f, but f’(O) = f(O) 8 i. Thus, 

.z = m 63 f(0) = (m @ i) @f’(O) = m’ $ f’(O), 

appears (on the public channel) with the same probability given &“,G”, and 
given that the message is m as it does when the message is m CB i. III 

We now describe a variant of SlowSMT requiring optimal connectivity 
IZ = r + p + 1, which, when run with error parameter k, achieves (a, p)-SMT 
in three phases with probability 1 - pe -k 12. Here, Sender chooses 1 = 2pk 
random pads p,, pz, . . . , pI, each one chosen exactly as was done in SlowSMT, 
and sends each one as a vector Si = (sir, si2,. . . , sin) exactly as was done in 
SlowSMT. For each sent vector Si corresponding to random pad pi, let ?;. be 
the actual vector of shares received. If any 7;. can be interpolated by a 
polynomial of degree 7, then Receiver sends “OK; i” over the public channel 
and the algorithm proceeds as in SlowSMT with a successfully transmitted pad. 

In no vector q can be interpolated by a degree r polynomial, then Receiver 
chooses at random pk = l/2 of the received vectors T,,, . . . , Trpk and sends all 
these vectors to Sender on the public channel, together with the indices 
r17.. . , rpk- Sender does error detection on the returned vectors and publicly 
sends to Receiver the set of detected faulty wires, together with zi = pi CB m 
for each index i @ {r,, . . . , rpk}. 



28 D. DOLEV ET AL 

For each remaining (unreturned) vector q, Receiver deletes from T all 
shares tij for wires j declared faulty by Sender. If the resulting “corrected” 
vector Ti can be interpolated then Receiver computes m = zi 8 pi. 

CLAIM 4.2. With probability at least 1 - pepkj2 at least one unreturned, 
corrected vector 7;. can be interpolated. 

PROOF. Let F be the set of faulty wires w  such that w  corrupted at least k 
pads. For any w  E F, if a pad P is chosen at random from among the failed 
pads, then the probability that w  corrupted P is at least 1/2p. Thus, if a set H 
of pk pads are chosen at random, the probability that w  did not corrupt any 
pad in H is bounded by (3 - 1/2p)pk = e- k/2. Finally, since there are only p 
faulty wires, the probability that there exists a wire w  E F, such that w  does 
not corrupt any pad in H, is at most pepk12. 

For all wires u P F, u corrupted strictly fewer than k pads (by definition of 
F). Thus, together, the set of all wires not in F collectively corrupted fewer 
than pk pads. It follows that at least one of the pk vectors Ti that Receiver 
does not return to Sender for error detection was corrupted only by wires in F. 
Let T be such a vector. Since with probability at least 1 - pepk12 every wire in 
F corrupted at least one of the returned vectors, the probability that every wire 
in F is detected is at least 1 - pe . -k/2 In this case, Receiver will be able to 
remove all the corrupted shares of T and the corrected T will interpolate 
correctly. 

Secrecy for this three phase algorithm is argued as above. The fact that JV” is 
oblivious or D _C L prevents J&‘~ from learning any information about shares of 
retained pads on wires not in L from the indices of the pads that were sent 
back or from the text sent and the faults discovered. 0 

Our error-free 3-phase: algorithm is very similar to the algorithm just 
described. However, we “strengthen” each random pad by sending, in addition 
to the shares of a random polynomial, some additional “checking” information. 
This technique has appeared several times in the literature in the context of 
verifiable secret sharing and other problems in distributed computing (see, e.g., 
[3, 4, 12, 13, 201). After describing the stronger pads, we show that if sufficiently 
many ( pn + 1) pads are sent then either at least one succeeds (essentially 
defined as before) or it is possible for Receiver to choose a set of pn pads to 
return to Sender such that all the faulty shares of the one retained pad belong 
to wires whose faultiness will be detected by Sender in the pn returned pads. 
Thus, the faulty shares of the retained pad will be removed and the remaining 
shares can be interpolated. 

To send a random pad to Receiver, Sender again chooses a random polyno- 
mial f(x) E Q(x) of degree r and sets p = f(0). For each i, 1 2 i I n, we call 
f(i) a principal share of the pad. For each 1 I i I n (recall n = 7 + p + 11, 
Sender chooses an additional random degree r polynomial hi(x) E Q(x) 
satisfying hi(O) =f(i>. Recall that in the more simple pads, si =f(i> is what 
Sender sends on wire i. I-n the stronger pad, Sender sends the entire polyno- 
mial hi(*) together with a vector Ci = (cli,czi,. . . , cni) of checking pieces, 
satisfying, for all 1 I i, j 5; n, cji = hj(i). (To send hi(*), Sender need only send 
the 7 + 1 coefficients of hi.) Since hi(O) = f(i) = si, the wire carries all the 
information it carried in the simpler pad, plus additional checking information. 

Throughout this discussion, we let hi,Ci denote the information placed by 
Sender on wire i, and we let g,, Di denote the (possibly corrupted) information 
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received by Receiver on wire i. Consider attempted transmission of a single 
strong pad. Let T be the received information. If wire i is correct, then gi = hi 
and Di = Ci. (This just says that if wire i is correct then what is received on 
wire i is the same as what is sent on wire i.) Thus, if i and j are both correct 
wires, then dii = gi(i) (because i correct implies dji = cji; j correct implies 
gj = hi; and by construction cji = hi(i)). 

If dji # gj(i), we say the unordered pair (i, j) is a conflict of T. Clearly in 
case of a conflict (i, j> at least one of i and j is faulty. 

When Sender attempts to send a strong pad to Receiver, Receiver is said to 
“throw out” (ignore) all wires j carrying syntactically incorrect messages. 
In particular, if gj is not a polynomial of degree 7, then Receiver throws out 
wire j. 

A strong pad is said to fail if for all wires i not thrown out, the points 
(i, gi(0)> cannot be interpolated by a degree 7 polynomial. Otherwise, it 
succeeds, regardless of conflicts. 

We now describe the three-phase protocol FastSMT. The parameters of 
FastSMT are the same as those for SlowSMT. 

FastSMT(W, T, Q, private to S:m) 
Phases 1 and 2: 

S: Send np + 1 strong pads P,, Pz,. , . , P,,, ,. 
R:Forl ~i~npfl 

Let T, be received in the attempted transmission of Pi. 
Ignoring those wires thrown out, 
IF any T, succeeds 

Then compute Pa from T, and publicly send “a, OK” to Sender 
Else find an i such that 

{conflicts Of T} C_ U j+ i{COIlfliCtS Of 7;}. 

FI 
Publicly send ‘5” and all q, j # i, back to Sender. 

PHASE 3: 
S: IF “a, OK” received over the public channel in Phase 2, 

Then send Z = Pa 8 m to Receiver over the public channel. 
Else perform error detection on all q received from Receiver and publicly send 

detected faults and Z = P, 8 m to Receiver. 
FI 

R: IF “a, OK” sent to Sender in Phase 1, 
Then compute m = Z 8 Pa. 
Else correct retained T, to obtain Pi; compute m = Z 8 Pi. 

FI 
End of FastSMT 

LEMMA 4.1. If all np + 1 strong pads fail, then there exists an i such that 

{ conjlicts of TJ G U {conflicts of q). 
jti 

PROOF. With p faulty wires there can be at most pn conflicts (distinct 
pairs (i, j), not counting multiplicities). The lemma follows by a pigeon hole 
argument. 0 

For every conflict (x, y) of the retained q, (x, y) is a conflict of some 
returned q, so Receiver learns of the faultiness of at least one of x and y. Of 
course, both may be faulty. Without loss of generality, suppose the Sender 
detects that x is faulty, and publicly sends this information to the Receiver. 
The next lemma says that even if y is faulty, if Sender did not also identify y as 
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faulty, then the principal share of the retained pad reported by y is the correct 
share of that pad. 

LEMMA 4.2. Let P be the retained pad (Pi in the algorithm, but we eliminate 
the subscripts for ease of discussion). For every wire y that is neither thrown out nor 
detected faulty by Sender, gY = h,. 

PROOF. Let y be undetected and not thrown out. Since y is not thrown out 
g, is a polynomial of degree 7. Let x,, . . . , x,, , be nonfaulty wires. If for all 
1 I i I 7 + 1, g&xi) = d,,, (= cYX, = h&xi) because xi is good), then g, = h,. 
Let us assume, for the sake of contradiction, that gY # h,. In this case 
g&xi) f d,,, for some nonfaulty xi, whence (y, xi> is a conflict of T. By choice 
of T (Ti in the protocol), (:y, xi> is a conflict of some other strong pad T’ # T, 
so Sender detects the faultiness of at least one of y, xi. However, Xi 
is nonfaulty, so Sender detects of the faultiness of y, contradicting the 
assumption that y is not cletected. •I 

That FastSMT satisfies the resiliency condition of ((T, p)-SMT follows from 
the last two lemmas. Secrecy is argued essentially as it was for SlowSMT, with 
the further observation that for every share hi(.) of a strong pad and checking 
pieces cji are T-wise independent and uniformly distributed over Q. We 
therefore have 

THEOREM 4.1. Under the containment assumption, or if J$, is oblivious, there 
is a three phase error-free protocol for ( (T , p)-SMT requiting connectivity u + p + 1 
and communication polynomial in n.4 

The communication complexity can be improved somewhat. The improve- 
ments involve using bivariate polynomials as done in [12] and 1131 to represent 
the checking pieces more compactly. A second improvement yields a reduction 
in the number of strong pads to p2 + 1 (from np + 1). This is because if a wire 
j is involved in conflicts with more than p distinct wires, then Receiver can 
detect the faultiness of j without sending anything to Sender. Let Receiver 
throw out all such wires j. The remaining wires can yield at most p* conflicts 
(ignoring multiplicities), so the same counting argument as above shows that if 
no strong pad succeeds Receiver can still find a Ti whose (remaining) conflicts 
are contained in the union of the (remaining) conflicts of the q, j # i. 

For completeness, we briefly describe our 2-phase protocol requiring connec- 
tivity u + p + 1 under containment or when &‘D is oblivious. The protocol 
begins with the Receiver sending an enormous number z of strong pads to the 
Sender. The intent is to send enough pads to that, if all are destroyed by tiD, 
then there will be k = ( ;) pads, renumbered P,, . . . , Pk, and additional pads 

R,, . . . , R,-, such that for each i 

z-k 

{conflicts(Pi)} c U {conj7icts(Rj)}. 
j=l 

Something similar was done in Algorithm FastSMT to obtain a single retained 
pad whose conflicts were all covered by the conflicts of the returned pads. 
Here, because we need k retained pads, we let z = np + k. 

4 If .c$ is not oblivious and p 2 (T 2 0, then under the containment assumption 2p + 1 wires 
suffice. 
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Sender chooses the k pads to retain, renumbers them P,, . . . , Pk, and 
computes a set of possible “fault sets” of wires as follows. Let Y= {F,, . . . , Fkg}, 
for some k’ 5 k, such that the sets 4. E Fare precisely those of cardinality p 
with the property that by removing all principal shares corresponding to wires 
in F):, Sender can interpolate all the z pads received. For each of the first k’ 
retained pads Pi, 1 I i < k’ Sender computes the value of the pad Pi obtained 
by deleting the principal shares received on wires in Fi. Let ui be the value 
obtained. Letting m be the secret message, Sender sends to Receiver over the 
public channel: 

(1) a list of the indices of the retained pads (before renumbering); 
(2) the ordered set Z 
(3)si=ui@mforeach15i5k’, 
(4) everything received in the attempted transmission of the pads R,, . . . , R,-, 

(these are the “returned pads”). 

Receiver does error detection on the set of returned pads to obtain a set F 
of faulty wires. It finds an Fj E Ysuch that F c Fj (we must argue one exists), 
and subtracts from sj the actual value encoded by the jth pad listed in item (1). 
We argue that the resulting value is the message m. 

CLAIM 4.3. Let G be the set of wires that actually destroyed at least one 
primary share in any of the z strong pads transmitted. Then for every extension 
G* 2 G of size p,G* ~9. 

PROOF. Consider any received pad p. Since no wire not in G destroyed a 
primary share, deleting all the primary shares of wires in G from P allows the 
remaining shares in this pad to be interpolated by a polynomial of degree 
r 2 (7. All these shares are correct, so any subset of n - p L 7 + 1 of these 
shares can be interpolated to yield the same value. Thus, every extension G* of 
G to a set of size p has the property that deleting all the primary shares of 
wires in G* allows all received pads to be interpolated, so every such G* is in 
97 0 

CLAIM 4.4. 3j such that F c q.. 

PROOF. Let G be as in the previous claim. If IGI = p, then we are done, 
since every wire in G is faulty and every wire in F is faulty and there are only 
p faulty wires in total. If ICI < p, then by the proof of the previous claim every 
extension G* of G to a set of size p is in si: Now, by Lemma 4.2 all wires that 
destroyed at least one primary share in any of the retained pads P,, . . . , Pk are 
in F. Moreover, F also contains any wire that destroyed a primary share in any 
of the returned pads, since all information received by Sender for those pads 
was returned over the public channel and used in the fault detection. Thus, 
F I G, so F is an extension of G of size at most p. Since every extension of G 
to a set of size p is in q every extension of F to a set of size p is contained 
in3; 0 

Let -i;i be as in Claim 4.4. By Lemma 4.2, deleting all shares of retained pad 
5 received on wires in c. deletes all corrupted primary shares of Pj and leaves 
Intact at least n - p > T + 1 correct shares of Pi. Thus, the value uj computed 
by Sender is the correct value of the original pad, and we are done. 
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Secrecy hinges on three facts: the pads are mutually independent; for any 
given retained pad Pi there is only one fault set Fi for which Sender reveals 
ui CB m; for every retained pad Pi, &” has access only to u I r shares (both in 
the containment case and in the case &’ is oblivious). This completes our 
discussion of the 2-phase protocol. 

5. Tight Bounds for the Containment Case 

In this section, we restrict attention to the containment case. Generally, we 
assume u 2 p. When dD is not oblivious, if p > u 2 1 and L c D, then dD 
can always inform J;4L of all the traffic on the wires in D, either by communi- 
cating explicitly to &L through a back channel or by writing its entire view on 
one of the jointly compromised wires. The situation is then as if there were p 
listening wires, all of which could be disruptors, and the lower and upper 
bounds for ( p, p)-SMT apply. 

All the results of this section apply without the containment assumption 
provided MD is oblivious. The upper bounds hold because tiD cannot communi- 
cate to &” any information about the conversations on wires not in L. The 
lower bounds hold because even an tiD that disrupts completely at random 
could generate the scenarios leading to erroneous outcomes that will be used 
in those proofs. 

Disruptor-ffee executions are critical to many of our lower bound proofs. The 
proofs are by contradiction. We assume the existence of a protocol with a 
certain amount of connectivity. The protocol must work even against an empty 
disrupting adversary. We study the protocol with this adversary to learn about 
its structure and the types of messages Sender and Receiver must send. We 
then define an &‘,, that is chosen accordingly and force an erroneous outcome. 

LEMMA 5.1. Let P be any protocol for weakened l-way ( u, p)-SMT. Then the 
information sent on any n - 2p wires completely determines the secret. 

PROOF. Letn=cr+p+r,wherel<arp,n-2p<P<nandO<y 
I p. We say an n-vector encodes a value m if in some execution of P, when 
Sender begins with message m it places the ith component of V on wire i, 
O_<i_<n-1. 

Suppose, for the sake of contradiction that the Lemma is false. Without loss 
of generality, there exist values m # m’ E Q and vectors V, I/’ encoding m 
and m’, respectively, such that I/ = XYZ, where X E 2”, Y E C p, and 2 E 27 
and I/’ = X’YZ’, where X’ E 2;” and 2’ E zy (Y remains unchanged). The 
point here is that Y is a subvector of at least IZ - 2p components that does not 
determine the secret, since Y occurs in an encoding of m and in an encoding 
of m’. 

Let W = XYZ’, where X is as in V, Y is as in both V and I/‘, and Z’ is as 
in V’. 

Now, dist(W, V) I p, so by the resiliency requirement if Receiver receives W 
it must output m. However, dist(W, V’) I p, so Receiver must output m’, a 
contradiction. q 

COROLLARY 5.1. Weakened l-way (a, p)-SMT under the containment as- 
sumption requires u < n -- 2p, that is, n 2 u + 2 p + 1. 
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PROOF. It follows from Lemma 5.1 that if (T 2 y1 - 2p, then listening to 
any u wires not including wire 0 yields the secret. Thus, by a-secrecy, 
u < n - 2p, whence n 2 (T + 2p + 1. 0 

It is surprising that the issue of containment did not arise in the proof of the 
lower bound. Intuitively, this is because the Sender does not know in advance 
which wires tiL and MD will compromise. Thus, it must simultaneously protect 
against disruption on any p wires (in which case we let L = D so D c L) and 
listening on any (7 wires (in which case we let D = 0 so again D c L), even if 
at most one of these adversaries attacks in any single execution. 

THEOREM 5.1. Under the containment assumption, connectivity n = u + 2p 
+ 1 is necessary and sujjkient for l-way (a, P)-SMT.~ 

PROOF. The lower bound is immediate from Corollary 5.1. McEliece and 
Sarwate [18] observed that Shamir’s scheme [21] for sharing secrets is closely 
related to Reed-Solomon coding schemes. As McEliece and Sarwate point out, 
the errors-and-erasures decoding algorithms for these codes can be used to 
detect and correct up to p errors, provided the codewords are of length 
u + 2p + 1 and the polynomials used in the construction of the codewords are 
of degree u. A similar observation was made by Ben-Or, et al. [3] who used 
these codes in constructing their solution to the harder problem of Verifiable 
Secret Sharing. q 

We now turn to lower bounds on connectivity for the 2-way case. We begin 
with a technical lemma that hinges on our assumption that the random choices 
of Sender and Receiver are made by coin flipping, which yields only bounded 
branching. An alternative would be to allow unbounded branching at each 
choice node in the computation tree. Although all our results hold in this 
model as well, the proofs are more difficult. 

LEMMA 5.2. Let P be a protocol for 2-way SMT. Then there exists an upper 
bound B on the number of phases in any disruptor-free execution of P. 

PROOF. Since we require perfect resiliency, P cannot have infinite disrup- 
tor-free executions. Consider executions of P with an empty disrupting adver- 
sary. Fix an input to the sender and consider the tree of all possible coin-flip 
sequences. Since the random choices of Sender and Receiver are made by 
flipping coins, this tree has bounded branching. ‘Suppose there is no bound B 
on the length of any path in the tree. Then at least one child of the root is itself 
the root of a tree of unbounded depth. We can continue down the tree in this 
fashion forever, but the execution corresponding to the path we follow does not 
terminate, violating correctness. 0 

THEOREM 5.2. Let P be any protocol for 2-way (o, p)-SMT. Then P re- 
quires connectivity n 2 max{a + p + 1,2p + 11, euen under the containment 
assumption. 

PROOF. The condition n 2 u + p + 1 is needed for u-secrecy, even if 
p = 0. Specifically, we show that in a disruptor-free execution any n - p wires 
must contain enough information to completely determine the secret. It follows 

’ I f  p > g 2 1 and .c& is not oblivious, then, as explained at the beginning of this section, the 
bound becomes 3p + 1. If  (T = 0, then 2p + 1 wires suffice. 
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that if (T 2 n - p, then listening to any (T wires yields the secret. Thus, 
a<n-p,whencenka+p+l. 

Suppose for the sake of contradiction that in some disruptor-free execution 
E of P, there is a set Z ‘of n - p wires such that the information sent over Z 
in E is insufficient to determine m, the message being sent. This is equivalent 
to saying there exists a message m’ and a disruptor-free execution E’ transmit- 
ting m’, such that E and E’ have exactly the same conversations on the wires 
in Z. Let B be the upper bound on the number of phases of any disruptor-free 
execution of P given by Lemma 5.2. Throughout the proof of this theorem we 
assume without loss of generality that B is odd and the first phase is from 
Sender to Receiver. 

Let C, (C,) denote the random coin tosses of Sender (Receiver) in E, and 
Ck (CA) denote the random coin tosses of Sender (Receiver) in E’. Let us 
describe the communication in E as 

where CY; represents what is sent in phase i over the wires in Z, and pi 
represents what is sent in phase i over all the wires not in Z. Then for some 
Y],..., yB, the communication in E’ can be described as 

fflY1 

cf2Y2 

where the ai’s are as before and the yi’s denote the communication during E’ 
in phases i over wires not in Z. We now construct an execution E* in which 
the p wires not in Z are faulty. Let us call them D. The notation (X + y) 
means that x is placed on the wires in D, but these wires (erroneously) 
transmit y instead. In E*, Sender wishes to send message m and has random 
flips C,, while Receiver has flips Ch. The conversations are: 

“I (PI + Yl) 

a2i (Y2i + P2i) 

a2i+ 1 ( P2i+ 1 + Y2i+l ) 

In other words, the wires in D behave towards Sender as if they are in 
execution E: in even rounds 2i they transmit p2i, while behaving towards 
Receiver as if they are in execution E’: in odd rounds 2i + 1 they transmit 
Y2i+ 1’ Since Sender cannot distinguish Em from E, it does not send after phase 
B. Since Receiver cannot distinguish E* from E’, it outputs m’, violating 
correctness. 

Notice that the set L of wires compromised by ML is not mentioned in the 
description of E*, and can therefore be arbitrary. It follows that the proof 
holds even under the containment assumption. 



Perfectly Secure Message Transmission 35 

The condition n 2 2p + 1 is needed for p-resiliency, even if u = 0. Intu- 
itively, we see that if n = 2p then half the wires can “behave as if’ the input 
to Sender is some value m, and the other half can “behave as if” the input is 
some m’ # m, and Receiver cannot tell which is the true input. 

Assume, for the sake of contradiction, that there exists a protocol P for 
2-way (0, p)-SMT requiring connectivity 2p. Let m # m’ E Q. We construct 
two executions E and E’ of P that, for every k, are indistinguishable to 
Receiver after k phases: it has the same coin flip sequence and sees exactly the 
same messages in each execution. However, in E the secret is m, while in E’ 
the secret is m’. Thus, these executions cannot terminate, violating resiliency. 
We define the executions in parallel, phase by phase. In the following, the Q’S, 
y’s, and x’s are always placed on wires 0, 1, . . . , p - 1, and the p’s, 6’s, and y’s 
are placed on wires p, . . . ,2p - 1. In E, for all 0 5 i, let (Ye;+, &+ i be sent 
by Sender in Phase 2i + 1, and let yzi+ 182i+, be sent by Sender in Phase 
2i + 1 of E’. The executions begin 

E: E’: 

a1 (PI + 4) h + 4 4 

x2 Y2 x2 Y2 

ff2i+ 1 (P2ifl’ ‘2i+l) (Y2i+ 1 + a2i+l) ‘21+1 

x2(;+ 1) Yzci+ 1) X2(if 1) YZ(i+ 1) 

Clearly, since Receiver cannot distinguish the two executions Sender must 
continue, and the executions run forever, violating the resiliency requirement. 

We can actually extend the proof to demonstrate an adversary that can force 
every execution to run forever with probability depending only on Q and II, the 
underlying probability distribution on messages. The construction is as above. 
&” only disrupts during odd phases. We will describe, for each i 2 0 what the 
adversary does in phase 2i + 1. For every j r 0, we let Ej (respectively, Ej) 
denote the first j phases of execution E (respectively, E’). Let m’ be a 
message of minimal probability according to II. As above, let C, and C, 
denote the coin flip sequences of Sender and Receiver in E, and let m be the 
Sender’s secret in E. 

J$ will decide how to disrupt during E by simulating a random instance E’ 
of the protocol, in which Sender has input m’ and randomly chosen coin flip 
sequence C& Receiver has coin flip sequence C,, and there is a different 
adversary &L. It will not be necessary for X$ to know C,, since &” will arrange 
for E and E’ to be indistinguishable to Receiver, and therefore Receiver’s 
transmissions in E and E’ will be identical. 

Assume inductively that E2i and Eii are indistinguishable to Receiver. This 
clearly holds for i = 0. For i 2 0, let a2;+r p2;+ 1 be generated by Sender at 
phase 2i + 1 of E. By simulating Sender with history Ebi, tiD can compute 
y2i+, a2;+, generated by Sender in E’. During phase 2i + 1 of E, &’ replaces 
P2i+ 1 with 82i+ r. During phase 2i + 1 of E’, &‘L replaces y2i+ 1 with aZifl. 
Thus, 

E2i+l = E2i . [ a2i+ I( P2i+ I --f a2i+ *)I, 

EL+ 1 =E;;.[(Y~~+I 4 a2i+1)62;+ll* 
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Since Eki,, is indistinguishable to Receiver from Ezi+ i, Receiver gives the 
same response in phase 2i + 2 of E’. Note that although the actual communi- 
cation is the same in E and E’, the executions are not identical: In general, 
they are distinguishable to Sender. However, since Receiver has the same coin 
flip sequence and sees the same messages in the two executions, it cannot 
distinguish them. This completes the induction. 

We have therefore shown that with connectivity 2p it is not even possible to 
solve 2-way (0, p)-SMT with probability one. q 

6. Perfect and Imperjiect Secret Sharing: A Separation Result 

In this section, we show that (a, p&Unverified Secret Sharing requires (T + 2p 
+ 1 processors. 6 This bound can be achieved (see the proof of Theorem 5.1) [3, 
181. Rabin and Ben-Or show that, for any k, t-USS can be achieved with 2t + 1 
processors with probability at most 2-k of error [20]. An immediate generaliza- 
tion of their result shows that with finite but arbitrarily small probability of 
error, (u, p)-USS can be achieved with u + p + 1 processors. 

As we demonstrate, (a, p)-SMT cannot be solved deterministically. It fol- 
lows that, within the class of problems that have no deterministic solution, 
error-free computation comes at a price (in this case, an extra p processors). It 
is therefore possible to separate error-free randomized computation from 
small-error randomized computation. 

Our c + 2p + l-processor lower bound for ((T, p)-USS holds even in the 
model with a broadcast channel. It follows that t-Verifiable Secret Sharing 
requires at least 3t + 1 processors, even in the presence of a broadcast 
channel. This result has been claimed elsewhere [4, 201. Because our lower 
bound applies to the weaker problem of t-US& our result is stronger. More- 
over, it follows from our result that the processor cost of Verifiable Secret 
Sharing has nothing to do with verification, but rather comes from the 
conflicting requirements of secrecy and resiliency. 

In keeping with the literature on secret sharing, the results in this section are 
for the case in which the containment assumption holds. We state the results 
for the case u 2 p. The general results can be obtained by replacing every 
occurence of “a ” by “max{ c, p].” In addition, all our results hold without the 
containment assumption if dD is oblivious. 

LEMMA 6.1. (a, p)-US.5 requires at least 2p + 1 processors even in the 
presence of a broadcast channel, and even under the containment assumption. 

PROOF. We assume for the sake of contradiction that there exists a pair of 
protocols (pi, $Fa2> solving ((7, p)-USS and requiring only 2p processors total. 
Let I/ = XY be a vector of histories of processors pa,. . . , pzp+ 1 at the end of a 
disruptor-free execution E of 9, in which p,, has input m. Here, X is the first 
p components of V and Y is the last p components of I/. Let m’ # m be 
arbitrary. By the secrecy constraint, since p I (T, there exists a disruptor-free 
execution E’ of 9i in which pO has input m’ and the resulting vector of 
histories is I” = X2. Consider an execution F of pd2, extending E, in which 
processors pp, . . . , pzp- I are faulty, begin yd2 with the states determined by 2, 
and make no further errors. Processors pO, . . . , pp- i begin F with the states 

6 We assume cr > 0, since secret sharing makes no sense if there is no secrecy requirement. 
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determined by X and make no errors. At the end of F every correct processor 
must output m, since this was the input to p0 in E, and p0 did not fail during 
E. On the other hand, F must yield m’, since F is also a valid extension of E’ 
in which all processors are correct. 0 

We now describe the relationship between (a, p)-USS and l-way ((T, p)-SMT 
under containment. 

THEOREM 6.1. Any n processor solution to (a, p)-USS with or without a 
broadcast channel, yields a connectivity n solution to weakened l-way (a, p)-SMT 
under containment. 

PROOF. By Lemma 6.1, n 2 2p + 1. Let the wires be labelled 0, 1, . . . , n - 
1. Let the processors be pO, . . . , p, _ r. To send a message m, the Sender first 
simulates a disruptor-free execution E of 9r in which p,,‘s input is m. Letting 
ui denote the complete history of pi in E, for 1 I i I n - 1, Sender places ui 
onwirei.LetV=(u, ,..., u,_,).Let W=(w, ,..., w,-,)denotethevectorof 
histories received by the Receiver. By assumption, dist(V, W) I p. To compute 
the message encoded by the vector W, Receiver simulates that execution of PDz 
in which each processor pi begins in the state given by wi and no further 
disruption occurs. This results in a set of outputs, one for each pi. Receiver 
outputs that value which is output by a majority of processors in the simulation. 

To see that the secrecy condition is met, we have by the secrecy of 
(a, p)-USS that no set of u processors not containing pO has any information 
about the message m before execution of Pa2. Let L be any set of at most q 
wires compromised by dL. Since D G L, the only information about m avail- 
able to &’ is the subvector of I/ containing the views of the processors 
corresponding to the wires in L. By definition of secrecy for (a, p)-USS, if 
0 $Z L then for every m’ E Q this view appears with the same probability with 
secret m as with secret m’. On the other hand, if 0 E L, weakened l-way SMT 
has no secrecy requirement at all. 

To see that the resiliency condition is met, we first note that since at most p 
wires are compromised by @“, a majority of the wires are not compromised. 
Thus, in the simulation, the Receiver is simulating at least n - p 2 p + 1 
correct processors, which, by the resiliency condition for ga2 must all output 
the input value m. Note that the simulated faulty processors may output no 
value. However, Receiver need only simulate Yz until p + 1 processors output 
the same value. Although not all of these processors need be correct, this is the 
correct value, since of the first p + 1 processors to output at least one is a 
correct processor, and all correct processors (eventually) output the same 
value. Moreover, since there are at least p + 1 nonfaulty processors, all of 
which will output the same value, the simulation terminates. III 

Since VSS is stronger than USS, we have: 

COROLLARY 6.1. Any n processor solution to ( u , p)-VSS yields a connectivity 
n solution to weakened l-way (a, p)-SMT under containment. 

COROLLARY 6.2. (u, p)-Unverified Secret Sharing requires at least u + 2p + 1 
processors, with or without a broadcast channel. 

PROOF. The proof is immediate from Theorem 6.1 and the lower bound for 
weakened l-way (a, p)-SMT under containment obtained in Corollary 5.1. 13 
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COROLLARY 6.3. t-Verifiable Secret Sharing requires 3t + 1 processors, even 
in the presence of a broadcast channel. 

The following observation states that the need for secrecy rules out the 
possibility of a deterministic solution to Secret Message Transmission, and this 
holds even if there is no resiliency requirement. 

LEMMA 6.2. For u 2 1, neither l-way nor 2-way (o, O)-SMT can be solved 
with a deterministic protocol. 

PROOF. For the sake of contradiction let us suppose there exists a deter- 
ministic solution P to the (l- or 2-way) (a, p)-SMT problem. For each m E Q 
and for each L E (n - l)“, let C(m, L) denote the conversation on the wires 
in L during the (unique) failure-free execution E, in which the secret message 
is m. 

Let m, m’, where m + m’, be arbitrary elements of Q. By the secrecy 
condition, VL E (n - 1)“: C(m, L) = C( m’, L). But since this holds for all 
sets L E (n - 1)” the conversations over all wires on inputs m and m’ in E, 
and E,,,, are identical. In particular, Receiver cannot distinguish the two 
executions. 0 

COROLLARY 6.4. (a, p)-USS has no deterministic solution. 

PROOF. The proof is immediate from Theorem 6.1 and Lemma 6.2. 0 

THEOREM 6.2. Within t-he class of problems having no deterministic solution, 
the cost of an error--ee solution can provably exceed the cost of a solution with 
arbitrarily small probability of error. 

PROOF. By Corollary 6.4 (a, p)-USS has no deterministic solution. For any 
k, there exists a (T + p + 1 processor solution to (cr, p)-USS with probability at 
most 2-k of error 1201. By Corollary 6.2, any error-free solution to ((T, p)-USS 
requires (T + 2p + 1 processors. This bound is tight [3, 181. 0 

7. Beyond Containment 

In this section, we study how the bounds obtained in Section 5 change when 
the containment assumption is removed, provided &” is not oblivious. To 
obtain upper bounds in this case is simple: any algorithm for (a + p, p)-SMT, 
under the containment assumption completely solves the general (a, p)-SMT 
problem, even if the adversaries are actually allowed to communicate during 
execution of the protocol. This yields an increase of p wires in both the l-way 
and 2-way case. We, therefore, have the following upper bounds: 

THEOREM 7.1. Connectivity o + 3p + 1 is suficient for l-way (a, p)-SMT, 
and connectivity o + 2 p + 1 is sufficient for 2-way (o, p)-SMT, even without the 
containment assumption. 

Since the bounds of Theorem 7.1 are tight when the two adversaries can 
communicate during the execution, we henceforth restrict our attention to the 
model in which they cooperate but do not communicate except through the 
shared wires. 

In the l-way case, we can do slightly better, adding only p - 1 wires. We also 
show this bound is tight. The reason only p - 1 additional wires are needed in 
the l-way case is that in this case JZ’~ can only communicate with JZZ’~ if the sets 
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D and L intersect. This is because, in the l-way case, there is no “behavior” of 
Receiver for &L to detect: Receiver is completely passive, while Sender sends 
just once, before J$, has a chance to act. Since in order to drive up the 
lower-bound D and L must intersect, ~2~ can convey to JZ” information about 
the communication on, at most, an additional IDI - 1 I p - 1 wires (those not 
in L), so we can apply the bounds for l-way (a + p - 1, p)-SMT under 
containment. 

For the 2-way case, we have only proved that full additional p wires are 
needed for all 3-phase algorithms and for algorithms of any number of phases 
that use only the public channel after the first phase. For the general case, we 
have a lower bound of only (T + 2p, off by a single wire. For the next proof, we 
assume HD can “disrupt” communication on a wire w  by placing some 
particular text on w  that J;4L, listening to w, can recognize as disruption. 

THEOREM 7.2. In the model in which tiL and .JZ” cooperate but do not 
communicate, if u 2 1, then ( CJ, p)-SMT requires u + 3p wires in the l-way case 
and u + 2p wires in the 2-way case.’ 

PROOF. The proofs for the two cases are similar. 
For the sake of contradiction, let P be a protocol for the l-way case 

requiring only n = u + 3p - 1 wires. Let L contain exactly wires { 1,2,. . . , u}, 
and let D = {a,cr+ l,..., u + p - l}. Let T be all wires not in L U D. 
Recall that, by Theorem 5.1, the information on wires in L U D completely 
determines the secret, since 1 L U DI = CT + p - 1 = n - 2 p wires. 

Let m’ E Q be a message of maximal probability, according to the underly- 
ing probability distribution II on messages. Let m be any message different 
from m’, and consider a particular disruptor-free execution E of P in which 
the message transmitted is m. Since this is a l-way protocol, communication 
consists of a single phase. Let X, denote the information sent during E over 
the wires in D. 

Let us choose tiD as follows: If the information sent over D is not X,, then 
JY” disrupts transmission on wire C, otherwise it does nothing. 

The corresponding strategy of ~2~ is: If communication on wire (T is not 
disrupted, then output the message determined by X, together with whatever 
has been sent over the wires {1,2,. . . , u - 1) (the contents of wire u are given 
by X,). Otherwise, output m’. 

To see that J;4L has an advantage in guessing the secret message, note that it 
is always correct when the message is actually m’ and it is always correct when 
communication on the wire is not disrupted, which occurs (by choice of E) in 
at least one transmission of m f m’. Thus, it does better than II( violating 
secrecy. 

The proof for the 2-way case is similar in spirit, but is technically more 
involved. This time, let us assume P is a protocol for the 2-way case requiring 
only c + 2p - 1 wires. Recall that by Lemma 5.2 there exists a bound B on 
the number of phases in any disruptor-free execution of P. 

As above, let m’ be a “likely” message and let m # m’ be arbitrary. Let L 
and D be chosen so that I LI = u, IDI = p, and IL n DI = 1. Let E be a 

’ I f  CT = 0, then connectivity 2p + 1 is necessary and sufficient for both the l-way and 2-way 
cases. 
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disruptor-free execution in which m is transmitted. Let X, (respectively, XJ 
be the full conversation on the wires in D (respectively, L) during E. 

By Lemma 5.2, in any disruptor-free execution the information sent over L 
and D together completely determines the secret. tiD disrupts on wire w  in the 
first phase in which the c’onversation over D differs from X,. 

The corresponding strategy for H;. is: If communication on wire w  has not 
been disrupted at the end of phase B and the conversation over the wires in L 
is X,, then output m, else output m’. 0 

Consider algorithm SlowSMT and let u > p. Let L contain exactly wires 
1 ..7 U, while D contains only wire u + 1. Let the strategy of tiD be to alter 
the contents of wire cr + 1 if and only if s,, i f 5. If Receiver responds “OK,” 
indicating that no disruption occurred, then &L learns an additional share of 
the pad, so if 7 = u, then &’ learns a total of u + 1 shares, enough to 
reconstruct the pad. Thus, even if the sets D and L are disjoint, tiD can 
indirectly communicate critical information to &“. We now prove that the 
bound of G + 2p + 1 wires is tight for 3-phase algorithms in which the 
adversaries do not communicate and dD is not oblivious. 

THEOREM 7.3. Let P be any protocol for 2-way (u, p)-SMT in the model in 
which s’;. and do do not communicate and AX?~ is not oblivious. If every execution 
of P lasts exactly 3 phases, beginning with a transmission jkom Sender to Receiver, 
then P requires n > u + 2p + 1 wires. 

PROOF. We assume, for the sake of contradiction, the existence of such a 
protocol P requiring only u + 2p wires. Let M = {m, m’} and let II(m) = 
II = l/2 be the underlying probability distribution on M. The secrecy 
condition for ((T, p)-SMT implies that no listening adversary can have probabil- 
ity better than l/2 of guessing the secret message being transmitted. We 
obtain our contradiction by exhibiting a pair of strategies for tiD and &” that 
will permit the listening adversary to guess the secret message with probability 
strictly greater than l/2, where the probability is taken over the random 
choices of Sender and Receiver. 

As before, we first study P against an empty disrupting adversary. In general, 
we describe certain parts of an execution, by specifying the message m being 
transmitted, and the coin flip vectors of Sender and of Receiver: C, and C,, 
respectively. We name such an execution E by writing E(m, C,, C,>. We break 
the wires into three groups: X = {1,2,. . . , cr}, Y = {a + 1,. . . , u + p), 
and Z = {a+ p + l,...: (T + 2p}. Throughout the proof, the only wires 
compromised by HL are those in X. 

Let the conversations in a particular disruptor-free execution E,(m, C!j, Cj> 
be 

a, PlYI 

a2 P2Y27 

a3 P3Y3 7 

where cyi (respectively, pi, ri> denotes what is sent over X (respectively, Y, Z> 
during phase i of E. 

For any given &“, let A<,, (Ye a3 1 m, tiD> denote the probability, taken over 
coin flips of Sender and Receiver, that &L sees (Y,(Y~(Y~ given that the secret 
message is m and the disruptor is the given &. In particular, let 
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I%< (pi q (Ye I m, 0) denote the probability, taken over coin flips of Sender and 
Receiver, that J$ sees (Y~CQ(Y~ given that the secret message is m and the 
disruptor is empty. Analogous definitions can be made for the case that the 
message is m’ and/or &L does not see (pi q cq (this last condition is denoted 
Gqa2aJ). 

LEMMA~.~. V&v fi(a,(~~cz~ I m,&v) = fi(oIozo3 I m’,~~‘v). That is, regard- 
less of do, LXJ’~ is equally likely to see this string when the secret is m as when the 
secret is m’. The probabilities are taken over the coin flips of Sender and Receiver. 

PROOF. The lemma is immediate from the definitions of secrecy. Indeed, 
for any &,, suppose, for the sake of contradiction, that II( (pi (Ye (Y) I m, MD> = p 
;t E, while II(cz, (Ye CY~ I m’, dD> = p for some E, p > 0. Then 
II(~(aia~aJ I m’,&v) = (1 -p). Consider the following strategy for J%‘~: If 
the conversation over X is (Y,(Y~(Y~, then output m, else output m’. 

Pr[tiL correct ItiD = II(m)A(o,a,a, I m,Mv> 

+ II(mr>fiI(7(a,a2a3> I m’,-dD) 

= ;(, + E) + ;(I -p) 

1 

> 5’ 
0 

LEMMA 7.2. There exists an execution E,(m’, Ci, CA> with conversations 

ffl 6, h + r,) 

a2 62 (72 + Y2) 

ff3 63 773 

for some S,, S,, 6,, rr+, Q, r/3’ The (Y;‘s and yi’s are the same here as in E,. 

PROOF. Let &” compromise precisely the wires in Z, and let its strategy be 
to always in phase 1 transmit y, and always in phase 2 transmit y2, regardless 
of what is originally placed on these wires. Suppose no execution such as E, 
exists. Then with this choice of &‘,,, the only time &” sees (pi (Ye a3 is when the 
transmitted message is m. In other words, fi<cz, LY~(Y~ I m’,&‘,,) = 0. In con- 
trast, II( (Y, a2 (Ye 1 m, &‘> > 0 (E, is a witness). This violates Lemma 7.1. 0 

COROLLARY 7.1. Vt3 there exists an execution E2(m’, Ci, Ci> with conver- 
sa tions 

ffl 6, hl -+ YA 

ff2 62 (72 + Y2L 

a3 63 h3 + Y3L 

where the y’s are as in E, (and therefore E,), and the r]‘s and S’s are as in E,. 

PROOF. The proof is immediate from Lemma 7.2 and the fact that every 
execution always stops after three phases. q 

Let &j have the following strategy: Compromise the wires in Z. If in the 
first two phases, the communication observed is y, y2, then replace y2 with n2; 
else do nothing. 
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The following lemma is used to prove first that n2 Z yz, so that this 
adversary is not effectively empty, and then to show that, for this specific 
choice of tiD, the probability that &” will see the sequence (Y~(Y~cx~ given that 
the message is m is smaller than the same conditional probability with the 
empty disrupting adversary. 

LEMMA 7.3. Fix an arbitrary disruptor-ji-ee execution E,(m,Ci, Ci> of the 
f OI-RI 

Ql Pl Yl 

a2 P2 Y2 

x3 Y3 23 

for some p,, p2, x3, y,, z3. There can be no execution E&m, C:, Ci), of the form 

a1 Pl Yl 

Q2 P2 (72 + 72) 

a3 r3 s3 

for any r3, s3. 

PROOF. By Corollary 7.1 there exists an execution E&m’, Ci,Ci) with 
conversations 

aI 4 (771 -+ Y,) 

a2 62 (72 + Y2) 

a3 63 (r/3 --9 s3). 

Assume for the sake of contradiction that E4 exists as described. We construct 
the following erroneous execution E,(m, Ci, Ci): 

a1 (PI + 6,) Yl 

a2 (62 +Pz) 72 

a3 (r3 -+ 6,) s3 

Sender cannot distinguish E, from E,, in which it is sending the message m, 
while Receiver cannot dist.inguish E6 from Es, in which it outputs m’. 0 

COROLLARY 7.2. 72 # y2. 

PROOF. Let E, = E,. Let the first two phases of E,(m, Ci, Cj> be 

a1 PI Yl 

a2 P2 (72 + 772). 

If q2 = y2, then the first two phases of E4 are not distinguishable to Sender 
(or Receiver) from the first two phases of E, (and hence, E,), so Sender sends 
a3 p3 y3 in phase 3 of E,, violating the lemma. Thus, q2 # y2. 0 

The corollary implies that the adversary syb that changes y2 to n2 if and only 
if the first two phases of communication on the wires in 2 are y, y2 and 
otherwise does nothing is not an empty adversary, in the sense that it some- 
times makes real changes to the messages carried on the wires in Z. 
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Lemma 7.3 says that when the message sent is m, then JX?~ is no more likely 
to see err a2 cq with this particular choice of tiD than with an empty disrupting 
adversary. In fact, by taking p, = pr and p2 = & we obtain the following very 
important corollary. 

COROLLARY 7.3. I?((Y~(Y~(Y~ Irn,~?,,) < I?((Y~(Y~(Y~ Im,0). 

In other words, when the message is m, &‘L is less likely to see (Y, (Ye (Ye with 
the active disrupting adversary MD than with the empty adversary. To see this, 
suppose the secret message is m. If A?~ is going to see (Y, CQCQ, then the 
execution must start 

a, . . . 
CQ . . . 

since MD does not act before the second phase. If the last column is not y, y2, 
then there will be no difference between the probability that A?~ sees CX, CQ q 
with $ and the probability that it sees this string with 0, since dD does 
nothing in this case. However, if the last column is yr yz, then the lemma says 
there is no extension to this execution in which JY” sees (Y,CQCY~ with &, but 
there is such an extension with 0 (witness E,). 

LEMMA 7.4. For all p,, pz, y,, z3, there is no disruptor-j?ee execution 
E7(rn’, Ci, Ci> with conversations 

a1 Pl YI 
a2 P2 Y2 

a3 Y3 23. 

PROOF. Suppose, for the sake of contradiction, that such an execution E, 
exists. Then, since the algorithm must always terminate in 3 phases, there exists 
an execution E&m’, Ci, C,$ 

a1 PI Yl 

a2 P2 Y2 

a3 Y3 (23 + y3). 

We again construct an erroneous execution E&m, C,O, Ci): 

a1 0% +P,) Yl 

a2 (P2 --) P2) Y2 

a3 (P3 +y3) Y3* 

E, is indistinguishable to Sender from E,, in which Sender transmit m, but 
it is also indistinguishable to Receiver from E,, in which Receiver outputs 
m’. 0 

Suppose the secret message is m’. If tiL is going to see (Y~cY~(Y~ then the 
execution must begin with cz1cz2 in the first two phases. If in the first two 
phases dD does not see yr y2, then the probability that the execution will 
continue with (Ye on the wires in X is the same with adversary MD as with 0, 
since tiD does nothing in’ this case. However, if the conversation on the wires in 
Z in the first two phases is y, y2 then the Lemma says there is no extension of 
the execution with 0 in which &” sees (Y, (y2a3, while there may be such an 
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extension with ~yb. We therefore have the following: 
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COROLLARY 7.4. fi<a,a,a, Im’,sf’) 2 fi(a,a2cx3 Id,@). 

In summary, let SX?” have the following strategy. Compromise the wires 2. If 
in the first two phases the communication observed is yIy2, then replace y2 
with r,r2; else do nothing. By Corollary 7.3, 

fi(cqa*cq I rn,sg < fi(cY,cQ(Y3 I m,0l. 

By Lemma 7.1, 

By Corollary 7.4, 

Thus, 

fil(ap2(Yg I m$J < fihp2(Y3 I &-$I), 

violating the secrecy condition for (a, p)-SMT. In fact, let JZ!’ have 
the following strategy: If the conversation on X is “ia2 (Ye, then output m’, 

else output m. Let p q = fit,, LY~(Y~ 1 m,0). Then Il(,(a, (Ye 1 m, 0) = 
1 - p. ,By Corollary 7.3, for some E > 0, I?( (Y, (Ye (Ye I m, sfD> = p - E. 
Thus, II( -J((Y~ CQ (Ye I m, &,,I = 1 - p + E. However, by Corollary 7.4, 
II( (or CY~ (Ye I m’, ~$1 2 p. Thus, 

1 
2 $1 -p + E) + zp 

8. Applications 

We can extend these results to networks of processors, with little change. 
Given g 2 p, we consider adversaries &’ and s$, that can compromise up to (T 
and p processors or edges, respectively. We require that for all sets L and D 
of processors compromised by Sy;. and JZ?~, respectively, for any pair of 
processors p, q E L U D, p can send a secret message m to q so that JS?~ 
learns absolutely nothing about m and q receives m correctly. Clearly, even 
without containment, connectivity v + 2p + 1 suffices. 

Using our transmission scheme as a building block, we can immediately 
extend the results of Ben-Or, et al. [3] for secure computation on complete 
networks to general networks of sufficient connectivity. The increase in time is 
proportional to the diameter of the network, and there is no loss of correctness 
or secrecy. 

A second application is to secure communication in networks of bounded 
degree. In [ll], Dwork, et al. consider the problem of simulating a completely 
connected network by bounded-degree networks containing t faulty processors. 
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The crux of the simulation is a transmission scheme for simulating the 
point-to-point transmissions of the complete network by sending messages 
along several paths in the bounded degree network. This is done in such a way 
that, for all choices T of at most t faulty processors, there exists a large set M 
of nonfaulty processors capable of communicating among themselves as if they 
comprise a completely connected subnetwork, independent of the behavior of 
the faulty processors. For every such set T, we let POOR(T) denote the set of 
correct processors that are not in M. It is shown in [ll] how to simulate the 
transmission of a message between two processors on the butterfly network 
such that the set POOR(T) is of size O(t log t). Additional results are obtained 
in [ll] for random networks of bounded degree, as well as for networks of 
small but unbounded degree. However, the transmission scheme in [ll] yields 
correct communication among all nonfaulty processors that are not in 
POOR(T), it does not allow these processors to communicate secretly. Conse- 
quently, even in a network in which adjacent vertices are connected by private 
channels, the transmission scheme cannot be used to simulate a complete 
network with private channels. 

Let tiD and &L compromise at most p and u processors, respectively. 
Letting D and L be defined as usual, we define POOR(D, L) such that all 
nonfaulty processors that are not in POOR(D, L) can communicate among 
themselves not only correctly but also such that their messages will be com- 
pletely secret from ML. If t = p = O(a), then the maximal size of POORCD, L) 
may increase by a constant factor over the bound on POOR(T) obtained in 
[ll]. The intuition is simple. Essentially, in the scheme of [ill, to send a 
message m from p to q (where both are neither faulty nor in POOR), p 
prepares an “encoding” of m consisting of some number k of replicas of m. 
Each replica is sent to q over a different path (the paths are not vertex 
disjoint.) The definition in [ll] of POOR(T) is that for any two processors not 
in POOR(T) more than k/2 of the paths connecting these processors contain 
no element of T. Thus, more than half the paths used in the transmission of m 
contain no processor in T, so q can determine m by taking that value 
appearing on more than k/2 paths. Suppose p = (T = t. Then, for example, 
using the protocol for l-way SMT without containment, we can construct an 
encoding of m of length k = 4t + 1 using BCH error correcting codes with 
secrecy parameter t. If fewer than k/4 of the paths from p to q contain a 
processor in D U L, then p can transmit a secret message m to q such that q 
receives m and ~8” learns nothing about m. Plugging in this stronger require- 
ment for correct transmission only affects the bounds on the maximal size of 
D U L by a constant. 

9. Additional Remarks 

The concept of two distinct adversaries, &” and dD, is an intriguing one. 
Generally, we have assumed in this paper that the adversaries cooperate with 
the goal of defeating the algorithm. However, it may be the case that 
the adversaries do not cooperate. Essentially, this is the situation when dD 
simply disrupts at random. As we have seen, without the containment assump- 
tion the upper bounds are better in this case than when the adversaries cooper- 
ate. Are there other models and problems in which it makes sense to consider 
noncooperating adversaries? 
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Our study of the roles of the adversaries highlighted a small weakness in the 
two error-free VSS protocols known to us [3, 131. Specifically, these protocols 
have the property that even if the dealer is good, the t faulty processors can 
force a scenario in which every nonfaulty processor knows the dealer’s secret 
with certainty. It has recently been shown [lo] that this weakness can be 
removed without increasing the number of processors from the lower bound of 
3t + 1. The construction relies heavily on a generalization of the technique 
used in the slow protocol sketched in Section 5 for removing faulty wires (or 
processors) from the system. It also uses the technique for parallelizing error 
detection used in protocol FastSMT. 

In the generalization of the fault-detection technique, instead of identifying 
and removing the faulty processors (often impossible unless 12 2 (t + 1j2>, the 
correct processors agree on a set of 2k processors, of which at least k are 
faulty. Even if we begin with only 3t + 1 processors, removing all 2k proces- 
sors from the system results in a new system of 3t + 1 - 2k = t + 1 + 2(t - k) 

processors, of which at most t - k are faulty. Then, for example, using an 
extension of the methods of [3], any computation can be run in the remaining 
system using secrecy threshold t and resiliency threshold (t - k). We believe 
the generalized fault detection technique and its parallelization are very 
powerful, and we expect them to have an impact in the design of fault tolerant 
algorithms in a Byzantine environment. 
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