
Perfectly Secure Message Transmission

DANNY DOLEV AND CYNTHIA DWORK

IBM Almaden Research Center, San Jose, California

ORLI WAARTS

Stanford University Stanford, California

AND

MOT1 YUNG

IBM Thomas J. Watson Research Center, Yorktown Heights, New York

Abstract. This paper studies the problem of perfectly secure communication in general network in
which processors and communication lines may be faulty. Lower bounds are obtained on the
connectivity required for successful secure communication. Efficient algorithms are obtained that
operate with this connectivity and rely on no complexity-theoretic assumptions. These are the first
algorithms for secure communication in a general network to simultaneously achieve the three
goals of perfect secrecy, perfect resiliency, and worst-case time linear in the diameter of the
network.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General-secur-
ity and protection; C.2.4 [Computer-Communication Networks]: Distributed Systems-distributed
applications; F.1.2 [Computation by Abstract Devices]: Modes of Computation-probabilistic
computation.

General Terms: Algorithms, Reliability, Security

Additional Key Words and Phrases: Distributed computing, fault-tolerance, perfectly secure
communication

1. Introduction

Recent advances in fiber optics make the construction of networks with
immense bandwidth realizable. As more and more personal and business
communication will take place over these systems, issues of correctness and

The research of Cynthia Dwork was conducted while she was on sabbatical at the Laboratory for
Computer Science of the Massachusetts Institute of Technology.
The work of Orli Waarts was supported in part by Office of Naval Research N00014-68-K-0166.
Authors’ addresses: D. Dolev and C. Dwork, IBM Research Division, Almaden Research Center,
650 Harry Road, San Jose, CA 95120-6099; 0. Waarts, Stanford University, Stanford, CA; M.
Yung, IBM Thomas J. Watson Research Center, Yorktown Heights, NY.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
0 1993 ACM 0004-5411/93/0100-0017 $01.50

Journal of the Association for Computing Machinery. Vol. 40, No. 1, January 1993, pp. 17-47.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F138027.138036&domain=pdf&date_stamp=1993-01-02

18 D. DOLEV ET AL

privacy become increasingly important. In this paper, we solve the problem of
perfectly secure message transmission in communication networks, without
complexity-theoretic assumptions and with perfect correctness, for processor
and edge faults alike. Our approach is to abstract away the network entirely
and concentrate on solving the Secret Message Transmission (SMT) problem
for a single pair of processors we call Sender and Receiver. In the SMT
problem, two synchronized nonfaulty processors, Sender and Receiver, are
connected by some number IZ of wires. We may think of these wires as a
collection of vertex-disjoint paths between Sender and Receiver in the underly-
ing network; each path corresponds to a wire. The Sender has a secret message
m, drawn from a finite set Q of values. There are two parameters, (T (for
secrecy) and p (for resiliency). The problem is for the Sender to convey m to
the Receiver while satisfying:

Pe$ect Secrecy. For all sets L of at most CT wires, no listening adversary ML,
listening to all the wires of L, learns anything about m (secrecy must be
information theoretic).

Pe$ect Resiliency. For all sets D of at most p wires (possibly, but not
necessarily, disjoint from L), Receiver correctly learns m, regardless of the
disrupting adversary MD controlling and coordinating the behavior of the wires
in D.

Since each wire corresponds to a path in the underlying network, a compro-
mised wire in Secret Message Transmission corresponds to a compromised
processor or edge on the corresponding network path. Thus, connectivity
bounds for SMT yield connectivity bounds in the network as a function of the
number of faulty nodes or edges to be tolerated.

Our protocol for secure transmission in general networks is the first to
simultaneously achieve the three goals of perfect secrecy, perfect resiliency,
and worst-case time linear in the diameter of the network (the constant is at
most 3). This contrasts with the similarly fast protocol of Rabin and Ben-Or,
based on the idea of “check vectors,” which has unconditional secrecy but has
small probability of error [201. Ben-Or, et al. [3] showed that every function of
p inputs can be efficiently computed by a complete network of p processors
even in the presence of t <p/3 Byzantine faults so that no set of t faulty
processors gets any information other than the function value (see also [l], [7],
[161, and [221). Using our protocol for secret message transmission we can
immediately extend these results to any p processor network of connectivity
2t + 1, at no cost in secrecy or correctness (connectivity 2 t + 1 is necessary 18,
161). The analogous result obtained by Rabin and Ben-Or in [20] for general
networks suffers a small probability of error. In this low-probability case,
because the entire computation can go awry, the privacy of correct processors
is not guaranteed, even though messages sent between correct processors enjoy
perfect secrecy. Our solution does not suffer from this weakness, and pays no
price in time.

The bounds on connectivity needed for ((+, p)-SMT vary according to whether
or not the solution must be l-way, in that information flows only from Sender
to Receiver, or 2+vuy, where Sender and Receiver “converse.” The bounds are
also strongly affected by the extent to which L$ can communicate to JZ$ its
view of the communication. on the wires in D. One possibility is that the two

Perjectly Secure Message Transmission 19

adversaries share a “back channel” allowing them explicitly to communicate. A
more interesting case is when there is no such channel. Here J$~ can communi-
cate information to LZ?~ if the sets D and L intersect (by placing messages on
the shared wires). More subtly, even if the two sets are disjoint, LZ?,‘, may be
able to transmit information to J%‘~ by disrupting the protocol so as to elicit
certain behavior on the part of Sender or Receiver that LZ?. can recognize. One
situation in which JZZ’~ clearly cannot communicate useful information to ML is,
informally, when it disrupts obliviously, independent of the information on the
wires in D. As an example, we propose the weaker fault model in which
communication is disrupted only by random noise.

The case in which &‘,, and JZZ~ are constrained so that D G L or L c D is an
important one, and in this case we say the containment assumption holds. In
this case, there is effectively one adversary. This is the worst-case assumption
made in previous papers treating secrecy and resiliency simultaneously [3, 4, 5,
15, 201. Generally, we assume u 2 p and derive our bounds for this case. In
some models, we can drop this assumption and replace all terms u in our
bounds by max{cr, p}. In other models, the problem has no solution if u < p.
We return to this point as needed. Not only do our lower and upper bounds
match under the containment assumption, but in this case they are indepen-
dent of the extent of communication between the adversaries. Under the
containment assumption, there is a solution to the l-way Secret Message
Transmission problem if and only if n, the number of wires connecting Sender
and Receiver, satisfies IZ 2 CT + 2p + 1. The solution requires computation
and message length polynomial in IZ. However, if communication is 2-way, in
that Sender and Receiver converse, then II 2 max{ g + p + 1,2p + 1) wires
are necessary and sufficient (the latter term arises even in the case u = 0, that
is, we require correctness but no secrecy). A phase is a send from Sender to
Receiver or vice versa. Surprisingly, the 2-way protocol requires only three
phases.

For this value of it we have even obtained a 2-phase protocol (beginning with
a transmission from Receiver to Sender), but, unlike our l-phase and 3-phase
solutions, the computation and communication costs of the two-phase solution
are not polynomial in IZ. Our 3-phase solution uses two new techniques. The
first is a simple fault detection technique, a powerful generalization of which
has already been applied to another problem [lo]. We say more about the
generalization and its application in Section 9. The second is a method of
parallelizing our first technique, permitting us to collapse loop iterations in a
O(p&phase algorithm to obtain the 3-phase algorithm. This too, has been
applied in [lo].

If the two adversaries can communicate explicitly during the execution of the
protocol, say, through some auxiliary “back channel,” but the containment
assumption does not hold, then the (lower and upper) bounds on y1 increase by
exactly p for both the l-way and 2-way cases. This is because when JZ?,, can
communicate with LX” it is as if there are u + p listeners, of which at most p
are disruptors. This is the containment assumption with secrecy parameter
u + p and resiliency parameter p, and the bounds increase accordingly over
the case with only u listeners.

Even if the two adversaries cannot communicate through a back channel, it
may be possible for the disrupting adversary to elicit certain behavior from
Sender or Receiver that communicates some extra information to the listening

20 D. DOLEV ET AL

adversary. In fact, at least an additional p - 1 wires must be added for both
the l-way and 2-way cases. These last results are tight for the l-way case and
leave a gap of a single wire in the 2-way case. However, we also show that in
this case any 3-phase algorithm requires exactly p additional wires, even if the
disruptors and listeners cannot move between phases. This bound is tight, and
our algorithm permits these sets to move. All our protocols tolerate adversaries
of unlimited computational power.

l-way SMT has an interesting relation to Verifiable Secret Sharing (VSS), a
problem first defined by Char, et al. [51. VSS plays a central role in implement-
ing a global coin [13], as well as in the more general results of [3, 4, 203.’
Ben-Or, et al. remark without proof that secure computation is impossible with
2t + 1 processors, even in the presence of a broadcast channel 131. We prove
that even the more funda.mental task of Verifiable Secret Sharing cannot be
achieved in this model.* Our approach is to reduce a weakened version of
l-way SMT to VSS so that each processor in the VSS protocol corresponds to a
wire in the SMT protocol. We then prove a lower bound on connectivity of
3t + 1 for this weakened version of SMT. Interestingly, our lower bound of
3t + 1 also applies to a weak version of VSS called Unuetified Secret Sharing
(t-Z&S>. This is essentially VSS without Verification. Thus, the processor cost
of Verifiable Secret Sharing comes from the conflicting requirements of
secrecy and reconstructability, rather than from ‘the ability to verify that the
secret was correctly dealt out.

Rabin and Lehmann [19] showed that in a distributed environment there
exist problems with randomized solutions but with no deterministic solution
(see also [2], [9], and [17]). There exist error-free and small-error solutions to
t-USS requiring 3t + 1 and 2t + 1 processors, respectively [3] and [20]. The
lower bound of 3t + 1 processors for error-free t-USS yields a new kind of
separation result: within the class of problems admitting no deterministic
solution, the cost of an error-free solution may necessarily significantly exceed
the cost of a solution with even very small probability of error. In a certain
model, it is therefore possible to separate error-free randomized computation
from randomized computation with error.

We also explore the problem of secure communication in graphs of bounded
degree. Techniques of Dwork, et al. [ll] for (nonsecret) communication in size
IZ networks of bounded degree, can be extended to show that for substantial (as
a function of n) (T and p, no matter which (T nodes are chosen by J;4L, and no
matter which p nodes are chosen by JZ’~, there is a large set of nodes that can
communicate secretly and correctly among themselves, even though the
network is of bounded degree.

The rest of the paper is organized as follows: Section 2 describes our
adversary models. Section 3 contains definitions of the Secret Message Trans-
mission and the two Secret Sharing problems. Section 4 contains our 3-phase
solution to SMT. Additional results for the containment and noncontainment

’ Roughly speaking, t-VSS permits a (possibly faulty) dealer to commit to a secret in such a way
that the secret can later be uniquely reconstructed despite the interference of up to t faulty
processors, possibly including the dealer. Moreover, if the dealer is correct then the faulty
processors cannot learn any information about the secret until the correct processors execute a
;econstruction protocol.

The lower bound for t-VSS with a broadcast channel was obtained independently by Rabin and
Ben-Or [20]. An informal argument is also given by Chaum, et al. [4].

Peqfectly Secure Message Transmission 21

cases appear in Sections 5 and 7. Our results about Verifiable Secret Sharing
and the separation result for problems with no deterministic solution appear in
Section 6. Applications to networks of bounded degree are discussed in Section
8. Section 9 contains additional remarks.

2. Adversaries

An adversary is an algorithm that takes as input transmissions on certain wires,
random bits, and the phase number, and produces a choice of additional wires
together with either (faulty) traffic on the chosen wires, in the case of the
disrupting adversary tiD, or a guess of the message being transmitted, in the
case of the listening adversary, G”. A wire tapped or under the control of an
adversary is said to be compromised.

For our algorithms, our adversaries may be adaptive, in the sense that
information (communication traffic) obtained from a set of compromised wires
can affect the choice of the next wire to be compromised, while our lower
bounds hold even if the adversaries are not adaptive.

Our algorithms have a special form: The first phase uses a low-quality
“secret” channel, while all subsequent phases use a perfect “public” channel.
Without going into detail here of how we achieve these different types of
channels, we point out that the issue of choosing wires to compromise in
subsequent phases as a function of traffic in the first phase is moot for these
algorithms. Similarly moot is the issue of whether ti’ even exists after the first
phase, since by definition it cannot interfere with the perfect public channel.
Of course, LX” may use all the information it has gleaned over the entire
execution of the protocol for making its guess as to which message is transmit-
ted. The lower bounds hold even for static adversaries that choose which wires
to compromise before execution begins. We therefore assume the sets D and
L of disrupting and listening wires are chosen by the end of the first phase.

In this paper, we assume in general that JX’~ and LZ?~ work together to defeat
the algorithm. If the adversaries can communicate explicitly during execution
of the algorithm, say, through some “back channel,” then we simply say that
dL and JZ?,~ communicate. Here, a back channel is some channel other than the
wires connecting Sender and Receiver. In this case, for example, the adver-
saries might converse before choosing which wires to compromise. If there is
no “back channel” we say JZ’,, and &” do not communicate. Even in this case,
some communication is possible. For example, if the sets D and L intersect,
then &” can convey information to LZ$ by putting this information onto the
shared wire(s) or disrupting communication on a shared wire. Even if D and L
are disjoint, the protocol may require Sender and Receiver to send over wires
in L information reflecting the choice of D. This too could be meaningful
to dL,.

We also consider the special case in which JX?’ behaves obliviously, choosing
D, communicating with JzZ~, and disrupting communication along the wires in
D, without regard to the information placed along these wires by Sender and
Receiver (but possibly dependent on information it receives from LX”, in the
case that the adversaries communicate). This adversary models the special case
in which disruption is due only to random noise. Clearly, an oblivious &”
cannot give to ML any information about the transmissions of Sender and
Receiver not already available to LZ?~. Not surprisingly, we obtain better upper
bounds against this weaker adversary than in the nonoblivious case.

22

3. Definitions

D. DOLEV ET AL

Sender and Receiver are modeled by communicating probabilistic Turing
Machines that communicate through the II wires connecting them. Randomiza-
tion is modeled by coin flipping (bounded branching).

Throughout, our messages m are drawn from a finite field Q of prime
cardinal@ greater than n, where n is always the number of wires between
Sender and Receiver in Secret Message Transmission or the number of
participants in a secret sharing protocol, whichever is appropriate to the
context. We let lI denote the underlying probability distribution on Q.

We use the notation [k] to denote the set of natural numbers less than or
equal to k. Note that 0 P [k]. We let (k) = {O} u [k]. For any set S, we let S’
denote the set of j-subsets of S where 0 I j I i.

For any alphabet C, for any vectors W, I/ E C”, the distance between W and
V, denoted dist(W, V), is the number of components on which the two vectors
differ.

Fix any secret message transmission protocol, P, and let LZ?~ be a listening
adversary. Intuitively, we require that for all messages m, m’ and for all
disrupting adversaries LX&, the probability distribution on ~~2~‘s view, given that
the message transmitted is m and the disrupting adversary is tiD, is identical to
the probability distributiorn on ML’s view, given that the message transmitted is
m’ and the adversary is still LP”. Here, the probability space is the space of all
coin tosses of &“,&‘,,, Sender, and Receiver, and the view, intuitively, is
everything seen by A?‘.

More precisely, the view of a listening adversary LX” at any point in the
execution of the protocol consists of

(1) the algorithms JY” and tiD, and the protocol P;
(2) the random choices that ML has made so far;
(3) the “back channel” messages received up to this point, if any (and if there

is a back channel);
(4) for each wire 1 in the subset of L chosen so far, conversations between

Sender and Receiver over 1 from the time the wire was compromised until
this point;

(5) for each wire w in the tsubset of L n D chosen so far, the changes by LZ?’ to
conversations over w from the time w was compromised until this point.

Sometimes we combine the last two items in the view, calling the combi-
nation the trafic over the wires in L.

None of our lower bound proofs use the assumption that ti’ sees both the
original data placed on wires in L n D by Sender and Receiver, as well as the
changes A?‘~ makes to these wires. Some proofs use the ability of & to detect
that LZ?~ has disrupted communication on a certain wire, while others (specifi-
cally, in the case D n L == 0) rely on the ability of &” to see the conversa-
tions. However, our algorithms work even if JZ” has access to all the traffic
over the wires in L.

For every mess:ge m E Q, any pair of adversaries tiL, MD, and any protocol
P for SMT, let II&Y’, m,d’, P) denote the probability distribution, on the
views of LZ?~ at the end of the executions of P when the message sent is m and
the disrupting adversary is &‘. The probability distribution is taken over the
coin tosses of zZD, A?~, Sender, and Receiver.

Perfectly Secure Message Transmission 23

Definition. (a, p&Secret Message Transmission ((c, p)-SMT). The Sender
begins with a message m drawn from an arbitrary probability distribution II on
Q. For every LZ”,JZZ’,,, compromising at most (T and p wires, respectively, we
require:

Secrecy. Vm’ E Q fi(~~$, rn,tiD, P) = fib& rn’,dD, P).

Resiliency. Receiver correctly learns m.

In particular, the secrecy requirement implies that at any point in the execu-
tion LYZ” has absolutely no information about which message is being transmit-
ted. It follows that the choice of L is independent of the message being
transmitted, as is the probability distribution on conversations over wires in L.
Our definition of secrecy is equivalent to requiring that the probability that J$
can correctly guess the secret being transmitted is

P max = maxII(
mEQ

where the probability is taken over all coin flips of Sender, Receiver, JY’~ and
tiD and choice of m (we can think of m as being randomly chosen according to
II). We mention this equivalence because we sometimes prove lower bounds by
exhibiting a pair of adversaries LP’~ and &$, such that, if the connectivity is
insufficient, ~2~ can guess the secret message transmitted with probability
greater than pm,,.

A solution to l-way (a, p)-SMT runs in exactly one synchronous phase. A
solution to 2-way (a, p)-SMT is a solution to (a, p)-SMT of two or more
phases. We adopt the convention that if (T = 0, then there is no secrecy
requirement, and if p = 0, then there is no resiliency requirement. If JZZ’~ and
tiL are constrained so that D c L or L G D, then we say the containment
assumption holds. Unless otherwise noted, we assume u 2 p, and in this
case the containment assumption says that D c L. All our results for the con-
tainment case are independent of the degree of communication between dL
and JzZ~. Under the containment assumption the secrecy condition above is
equivalent to the following condition:

Secrecy Under Containment. Vm, m’ E Q, b’tiD,dL, VL E (n - 1)” com-
promised by dL, VD E L p compromised by J$, for all possible traffic TL over
wires in L, the probability that TL occurs, given that the message transmitted
is m and given &“, &“, is equal to the probability that TL occurs, given that the
message is m’ and given tiD and JzZ~. The probability space is the set of coin
tosses of dD, LZ?‘, Sender, and Receiver.

Note that for any fixed ML, G’,‘, pair, the probability that &. will compromise
wire 0 is independent of the secret message. Thus, the probability that L$
chooses any particular L not containing 0 is independent of the message.

As described in the Introduction, we will study a weakened form of l-way
SMT (under containment) in which there is no secrecy requirement if tiL
compromises wire 0. We call this weakened l-way &VT. Specifically, we weaken
the above definition to read “If 0 66 L, then for all possible traffic. . . .”

We now turn briefly to secret sharing. This is actually a class of problems, all
having a similar form. The model is a distributed system in which certain
processors may be disruptors and certain others may be listeners. As above, the
disruptors are controlled by a disrupting adversary JP”, while the messages and

24 D. DOLEV ET AL

other inputs received by the listeners are available to a listening adversary JZ”.
In this model, there is no way to prevent the disruptors from sending messages
to the listeners, and hence LX’,‘, can communicate with LX?‘. Thus, either we work
under the containment ass8umption or we assume JY” is oblivious.

Definition. (CT, p&Secret Sharing. A protocol for a (CT, PI-Secret Sharing
problem is a pair of n-processor protocols CL?,, ga,>, run-in sequence, and
designed to tolerate up to p faults in any execution of the pair. In other words,
if some number k I p processors fail in $PD1, then ~3’~ need only tolerate faulty
behavior by those same k processors and up to p - k additional processors.
One special processor, pO, is called the dealer. The dealer has a private input
m. During 9, the dealer distributes shares of m in such a way that no set of u
processors not including the dealer, learns any information about the secret
during execution of Y1. ~9’~ is a protocol for reconstructing the secret m from
the shares distributed during 9i. Finally, if the dealer p0 remains nonfaulty
throughout Pdl, then the value obtained by applying P2 is in fact the initial
value (input) of pO, provided at most p processors fail in total.

In analogy to the definition of SMT, we assume LX’;. compromises a set L of
listening processors, and ,m% compromises a set D of disrupting processors. In
this case, the view of HL is the complete history of every processor in L, from
the moment it is compromised by J;s, until the beginning of the execution of
.9$, together with any information received directly from ~2~. In the case of
Unverified Secret Sharing, we assume D G L. This is also the assumption in
Verifiable Secret Sharing in the literature.

Definition. (a, p)-Unverified Secret Sharing. For every m E Q, if pO has
input m and remains nonfaulty throughout execution of 9,, we require that
for all zZL and JZ” compromising sets L E (n - 1)” and D E L P, respectively.

Secrecy. Vm’ E Q, if p. P L, then the probability distribution on the views
of tiL, given dL,z$, and given that p,, has input m, is identical to the
probability distribution on the views of LX’~ given J$,Lz”, and given that pO has
input m’.

Resiliency. At the end of P2, every processor not in D outputs m, regard-
less of the behavior of the members of D.

Note that execution of 9, need not immediately follow execution of P1, but
may be delayed, so even if the dealer is correct throughout execution of ~3’~ it
may fail before execution of zP2.

As in the case of weakened l-way SMT, it follows from this definition that
the probability that LZ?” compromises p. given that the secret is m is the same
as the probability that &” compromises pO given that the secret is m’. Again,
as in that case, for all m, m’, JX’,,, JY’~, for all L E [n - l]“, all D E L p, and all
possible views V, that dL could have at the end of execution of 9’,, given this
choice of L, the probability that V, occurs given &D and zZL, and given that
the secret is m, is identical to the probability that V, occurs given LX?~,L.X?~, and
given that the secret is m’.

In the case of (t, t&Unverified Secret Sharing, the definition says that if pO
remains nonfaulty throughout 9,, then no set F of at most t faulty players can
prevent the nonfaulty players from outputtting m at the end of gd2, and
moreover, if F does not contain p,, then the members of F have no informa-

Pe$ectly Secure Message Transmission 25

tion, in an information theoretic sense, about the secret m. When the secrecy
and resiliency parameters are the same, as in this case, we simply write
t-Unverified Secret Sharing.

t-Verifiable Secret Sharing is t-Unverified Secret Sharing with additional
correctness constraints for the case in which the dealer is faulty during
execution of 9i. Specifically, even if the dealer is faulty during execution of

9r, VSS requires that the outcome of 9’, is uniquely determined by the states
of any subset of n - t processors correct at the end of Pal, provided at most t
processors fail in total during execution of the two protocols. That is, once 9,
is completed, the dealer is committed to the secret dealt out. Clearly, t-USS
reduces to t-VSS.

4. The Main Algorithm

In this section, we present our 3-phase protocol for 2-way (a, p)-SMT. The
protocol requires connectivity max{a + p + 1,2p + 1) under the containment
assumption or in the case dj is oblivious. We prove in Section 5 that this is
optimal. Extensions to the noncontainment case appear in Section 7. Commu-
nication and computation costs are polynomial in (7 and p.

We develop the protocol in three stages. We begin with an algorithm that
might require O(p) phases, proceed to an algorithm that can be made to run
in three phases with any probability less than 1, and finally arrive at the
3-phase solution.

Throughout this section, we take the field Q to be Z,, where 4 is a prime
greater than the connectivity n. This is for ease of notation, since in this case
the nonzero elements of Q are simply the integers 1,2,. . . , q - 1. For arbitrary
Q, we let (or,. . ., aq-i be the nonzero elements of Q and, in the sequel,
replace all 1 I i < n with (Y~.

Let T = (t t i, 2,. . . , t,), where ti E Q, 1 5 i I n. If the points (i, ti) can be
interpolated by a polynomial of degree d, we say simply that T can be
interpolated by a polynomial of degree d. (In the case of a general field Q, we
would interpolate the points (ai, tJ.1

Let r = max{a, p}. In Theorem 5.2, we prove that 2-way (a, p)-SMT re-
quires connectivity n 2 r + p + 1. Henceforth, assume n = r + p + 1. Then,
since Sender and Receiver are at least 2p + 1 connected, they are essentially
connected by a fault-free public channel. To send a message x over this public
channel, Sender can simply send x on every wire, that is, x is replicated
n r 2p + 1 times, and at most p of these copies will be destroyed or modified.
Thus, Receiver can simply see which message appears at least p + 1 times, and
that is the message that Sender sent. Similarly, Receiver can send things to
Sender in a fault-free, but public, fashion.

The slow protocol works as follows: Let m E Q be the secret message
Sender wishes to send to Receiver. First, Sender chooses uniformly at random
a pad p E Q; p bears no relation to m. Sender attempts secret transmission of
p. If secret transmission of p is successful, Sender will send Z = p @ m to
Receiver over the “public channel.” In this case, Receiver computes m = Z 8 p
(all arithmetic is done in the field Q). If the secret transmission of p fails, then
Sender and Receiver will use the public channel to detect at least one
previously undetected faulty wire, and the entire protocol is repeated but
without the detected faulty wires. During the error detection the secrecy of the

26 D. DOLEV ET AL

pad p is lost; however, since p was chosen independently of m this yields no
information about m.

There are two drawbacks to this general approach. First, Sender may have to
attempt to transmit up to p + 1 times. Second, the faulty wires D cannot
change between phases. Our three-phase solution will overcome both of these
drawbacks.

We now present the slow protocol. 3 The input W is a set of labeled wires.
Note that we have labeled the wires from 1 to k (rather than from 0 to k - 1
as in the impossibility proofs). Initially, k = it, but in the recursive calls k < II.
This is because faulty wires are eliminated from the set of wires as errors are
detected. All missing or syntactically incorrect messages are treated as zeros.
Steps labeled “S” (respectively, “R”> are taken by the Sender (respectively,
Receiver).

SlowSMT(W = {w,, . . . , w,), 7, Q, private to S:m)
PHASES 1 and 2:

S: Choose random polynomial f(x) E Q(x) of degree 7.
Send si = f(i) on wi. Let p = f(O).

R: Let T = (t,, . . . , t,) where ti E Q is received on wi.
IF T can be interpolat.ed by a degree r polynomial g

Then set p = g(0) and publicly send “OK” to Sender
Else publicly send T to Sender

FI

PHASE 3:
S: IF “OK” received over the public channel in Phase 2,

Then send Z = p @ m to Receiver over the public channel.
Else DO:

For each j such that fj # sj, remove w. from IV.
Send new W to Receiver over the public channel
Call SlowSMnnew W, T, Q, m).

OD
FI

R: IF “OK” sent to Sender in Phase 2
Then receive Z on the public channel and compute m = Z 8 p.
Else DO.

Receive new W from Sender over the public channel.
Call SlowSMTInew W, T, Q, .).

OD
FI

End of SlowSMT

Protocol SlowSMT can be speeded up a bit by overlapping the last transmis-
sion in a given invocation with the first transmission in the recursive call, but
this is not of interest. Our point in presenting this protocol is to develop
certain techniques that will be used later.

CLAIM 4.1. SlowSMT satisfies the resiliency and secrecy conditions for 2-way
(a, p)-SMT.

PROOF. Let us call each recursive call to SlowSMT an iteration of the
protocol. Initially, SlowSMT is called with all n = r + p + 1 wires and secrecy
parameter r = max{a, p). Thus, in the first iteration, there exist good wires
x1,...,x7+1 such that t,, = sXi for all 1 5 i I r + 1. These values completely

3 Our slow algorithm was originally more complex. The simplified version described here is due to
Rabin and Ben-Or [20].

Pefectly Secure Message Transmission 27

determine the degree r polynomials g and h, so if Receiver says “OK” in
Phase 2, then gc.1 = h(e).

Conversely, if tj # sj, then wire j is faulty. Thus, only truly faulty wires are
removed from W by Sender. A simple induction shows that in every subse-
quent iteration there exist good wires x1,. . . , x,, r such that t,, = s,, for all
l<is5-+1.

Since eventually Receiver either says “OK” or there are more than p faulty
wires, the resiliency condition is satisfied.

For secrecy, we first observe that the initial and all recursive calls have the
same secrecy parameter T, so we are always using polynomials of degree T, no
matter how many faulty wires are eliminated. Thus, for any successfully
transmitted pad p, the shares si are r-wise independent and uniformly dis-
tributed over Q, independent of the value of m. Moreover, they are completely
independent of all previous pads.

Since we are working under the containment assumption (or I;s, is oblivious),
~2~ learns absolutely nothing about the secret from the number of phases
required, or from the choice of D, since these variables are controlled by tin
and G” has access to all the shares available to J%‘~. Thus, if p is successfully
transmitted, it is secret according to the definition of secrecy for ((T, p)-SMT.

A little more formally, fix a secret message m E Q. Let i be any integer
0 I i < IQl. We claim that for any view VL of &‘, V, occurs with the same
probability in a transmission of m as in a transmission of m’ = m 6~ i. Clearly,
for every destroyed pad this is true, since the destroyed pads are chosen and
destroyed without relation to m or to the values of shares on wires outside L.
Consider the first phase in which the pad is not destroyed, and let f be the
random degree r polynomial chosen by sender in this phase (the pad is f(O)>.
The choice of which shares of f are seen is independent of f(O). In fact, ML’s
view is equally likely in the case that chosen polynomial is f’, where every
share of f’ corresponding to wire in L is identical to the corresponding share
of f, but f’(O) = f(O) 8 i. Thus,

.z = m 63 f(0) = (m @ i) @f’(O) = m’ $ f’(O),

appears (on the public channel) with the same probability given &“,G”, and
given that the message is m as it does when the message is m CB i. III

We now describe a variant of SlowSMT requiring optimal connectivity
IZ = r + p + 1, which, when run with error parameter k, achieves (a, p)-SMT
in three phases with probability 1 - pe -k 12. Here, Sender chooses 1 = 2pk
random pads p,, pz, . . . , pI, each one chosen exactly as was done in SlowSMT,
and sends each one as a vector Si = (sir, si2,. . . , sin) exactly as was done in
SlowSMT. For each sent vector Si corresponding to random pad pi, let ?;. be
the actual vector of shares received. If any 7;. can be interpolated by a
polynomial of degree 7, then Receiver sends “OK; i” over the public channel
and the algorithm proceeds as in SlowSMT with a successfully transmitted pad.

In no vector q can be interpolated by a degree r polynomial, then Receiver
chooses at random pk = l/2 of the received vectors T,,, . . . , Trpk and sends all
these vectors to Sender on the public channel, together with the indices
r17.. . , rpk- Sender does error detection on the returned vectors and publicly
sends to Receiver the set of detected faulty wires, together with zi = pi CB m
for each index i @ {r,, . . . , rpk}.

28 D. DOLEV ET AL

For each remaining (unreturned) vector q, Receiver deletes from T all
shares tij for wires j declared faulty by Sender. If the resulting “corrected”
vector Ti can be interpolated then Receiver computes m = zi 8 pi.

CLAIM 4.2. With probability at least 1 - pepkj2 at least one unreturned,
corrected vector 7;. can be interpolated.

PROOF. Let F be the set of faulty wires w such that w corrupted at least k
pads. For any w E F, if a pad P is chosen at random from among the failed
pads, then the probability that w corrupted P is at least 1/2p. Thus, if a set H
of pk pads are chosen at random, the probability that w did not corrupt any
pad in H is bounded by (3 - 1/2p)pk = e- k/2. Finally, since there are only p
faulty wires, the probability that there exists a wire w E F, such that w does
not corrupt any pad in H, is at most pepk12.

For all wires u P F, u corrupted strictly fewer than k pads (by definition of
F). Thus, together, the set of all wires not in F collectively corrupted fewer
than pk pads. It follows that at least one of the pk vectors Ti that Receiver
does not return to Sender for error detection was corrupted only by wires in F.
Let T be such a vector. Since with probability at least 1 - pepk12 every wire in
F corrupted at least one of the returned vectors, the probability that every wire
in F is detected is at least 1 - pe . -k/2 In this case, Receiver will be able to
remove all the corrupted shares of T and the corrected T will interpolate
correctly.

Secrecy for this three phase algorithm is argued as above. The fact that JV” is
oblivious or D _C L prevents J&‘~ from learning any information about shares of
retained pads on wires not in L from the indices of the pads that were sent
back or from the text sent and the faults discovered. 0

Our error-free 3-phase: algorithm is very similar to the algorithm just
described. However, we “strengthen” each random pad by sending, in addition
to the shares of a random polynomial, some additional “checking” information.
This technique has appeared several times in the literature in the context of
verifiable secret sharing and other problems in distributed computing (see, e.g.,
[3, 4, 12, 13, 201). After describing the stronger pads, we show that if sufficiently
many (pn + 1) pads are sent then either at least one succeeds (essentially
defined as before) or it is possible for Receiver to choose a set of pn pads to
return to Sender such that all the faulty shares of the one retained pad belong
to wires whose faultiness will be detected by Sender in the pn returned pads.
Thus, the faulty shares of the retained pad will be removed and the remaining
shares can be interpolated.

To send a random pad to Receiver, Sender again chooses a random polyno-
mial f(x) E Q(x) of degree r and sets p = f(0). For each i, 1 2 i I n, we call
f(i) a principal share of the pad. For each 1 I i I n (recall n = 7 + p + 11,
Sender chooses an additional random degree r polynomial hi(x) E Q(x)
satisfying hi(O) =f(i>. Recall that in the more simple pads, si =f(i> is what
Sender sends on wire i. I-n the stronger pad, Sender sends the entire polyno-
mial hi(*) together with a vector Ci = (cli,czi,. . . , cni) of checking pieces,
satisfying, for all 1 I i, j 5; n, cji = hj(i). (To send hi(*), Sender need only send
the 7 + 1 coefficients of hi.) Since hi(O) = f(i) = si, the wire carries all the
information it carried in the simpler pad, plus additional checking information.

Throughout this discussion, we let hi,Ci denote the information placed by
Sender on wire i, and we let g,, Di denote the (possibly corrupted) information

Perfectly Secure Message Transmission 29

received by Receiver on wire i. Consider attempted transmission of a single
strong pad. Let T be the received information. If wire i is correct, then gi = hi
and Di = Ci. (This just says that if wire i is correct then what is received on
wire i is the same as what is sent on wire i.) Thus, if i and j are both correct
wires, then dii = gi(i) (because i correct implies dji = cji; j correct implies
gj = hi; and by construction cji = hi(i)).

If dji # gj(i), we say the unordered pair (i, j) is a conflict of T. Clearly in
case of a conflict (i, j> at least one of i and j is faulty.

When Sender attempts to send a strong pad to Receiver, Receiver is said to
“throw out” (ignore) all wires j carrying syntactically incorrect messages.
In particular, if gj is not a polynomial of degree 7, then Receiver throws out
wire j.

A strong pad is said to fail if for all wires i not thrown out, the points
(i, gi(0)> cannot be interpolated by a degree 7 polynomial. Otherwise, it
succeeds, regardless of conflicts.

We now describe the three-phase protocol FastSMT. The parameters of
FastSMT are the same as those for SlowSMT.

FastSMT(W, T, Q, private to S:m)
Phases 1 and 2:

S: Send np + 1 strong pads P,, Pz,. , . , P,,, ,.
R:Forl ~i~npfl

Let T, be received in the attempted transmission of Pi.
Ignoring those wires thrown out,
IF any T, succeeds

Then compute Pa from T, and publicly send “a, OK” to Sender
Else find an i such that

{conflicts Of T} C_ U j+ i{COIlfliCtS Of 7;}.

FI
Publicly send ‘5” and all q, j # i, back to Sender.

PHASE 3:
S: IF “a, OK” received over the public channel in Phase 2,

Then send Z = Pa 8 m to Receiver over the public channel.
Else perform error detection on all q received from Receiver and publicly send

detected faults and Z = P, 8 m to Receiver.
FI

R: IF “a, OK” sent to Sender in Phase 1,
Then compute m = Z 8 Pa.
Else correct retained T, to obtain Pi; compute m = Z 8 Pi.

FI
End of FastSMT

LEMMA 4.1. If all np + 1 strong pads fail, then there exists an i such that

{ conjlicts of TJ G U {conflicts of q).
jti

PROOF. With p faulty wires there can be at most pn conflicts (distinct
pairs (i, j), not counting multiplicities). The lemma follows by a pigeon hole
argument. 0

For every conflict (x, y) of the retained q, (x, y) is a conflict of some
returned q, so Receiver learns of the faultiness of at least one of x and y. Of
course, both may be faulty. Without loss of generality, suppose the Sender
detects that x is faulty, and publicly sends this information to the Receiver.
The next lemma says that even if y is faulty, if Sender did not also identify y as

30 D. DOLEV ET AL

faulty, then the principal share of the retained pad reported by y is the correct
share of that pad.

LEMMA 4.2. Let P be the retained pad (Pi in the algorithm, but we eliminate
the subscripts for ease of discussion). For every wire y that is neither thrown out nor
detected faulty by Sender, gY = h,.

PROOF. Let y be undetected and not thrown out. Since y is not thrown out
g, is a polynomial of degree 7. Let x,, . . . , x,, , be nonfaulty wires. If for all
1 I i I 7 + 1, g&xi) = d,,, (= cYX, = h&xi) because xi is good), then g, = h,.
Let us assume, for the sake of contradiction, that gY # h,. In this case
g&xi) f d,,, for some nonfaulty xi, whence (y, xi> is a conflict of T. By choice
of T (Ti in the protocol), (:y, xi> is a conflict of some other strong pad T’ # T,
so Sender detects the faultiness of at least one of y, xi. However, Xi
is nonfaulty, so Sender detects of the faultiness of y, contradicting the
assumption that y is not cletected. •I

That FastSMT satisfies the resiliency condition of ((T, p)-SMT follows from
the last two lemmas. Secrecy is argued essentially as it was for SlowSMT, with
the further observation that for every share hi(.) of a strong pad and checking
pieces cji are T-wise independent and uniformly distributed over Q. We
therefore have

THEOREM 4.1. Under the containment assumption, or if J$, is oblivious, there
is a three phase error-free protocol for ((T , p)-SMT requiting connectivity u + p + 1
and communication polynomial in n.4

The communication complexity can be improved somewhat. The improve-
ments involve using bivariate polynomials as done in [12] and 1131 to represent
the checking pieces more compactly. A second improvement yields a reduction
in the number of strong pads to p2 + 1 (from np + 1). This is because if a wire
j is involved in conflicts with more than p distinct wires, then Receiver can
detect the faultiness of j without sending anything to Sender. Let Receiver
throw out all such wires j. The remaining wires can yield at most p* conflicts
(ignoring multiplicities), so the same counting argument as above shows that if
no strong pad succeeds Receiver can still find a Ti whose (remaining) conflicts
are contained in the union of the (remaining) conflicts of the q, j # i.

For completeness, we briefly describe our 2-phase protocol requiring connec-
tivity u + p + 1 under containment or when &‘D is oblivious. The protocol
begins with the Receiver sending an enormous number z of strong pads to the
Sender. The intent is to send enough pads to that, if all are destroyed by tiD,
then there will be k = (;) pads, renumbered P,, . . . , Pk, and additional pads

R,, . . . , R,-, such that for each i

z-k

{conflicts(Pi)} c U {conj7icts(Rj)}.
j=l

Something similar was done in Algorithm FastSMT to obtain a single retained
pad whose conflicts were all covered by the conflicts of the returned pads.
Here, because we need k retained pads, we let z = np + k.

4 If .c$ is not oblivious and p 2 (T 2 0, then under the containment assumption 2p + 1 wires
suffice.

Perfectly Secure Message Transmission 31

Sender chooses the k pads to retain, renumbers them P,, . . . , Pk, and
computes a set of possible “fault sets” of wires as follows. Let Y= {F,, . . . , Fkg},
for some k’ 5 k, such that the sets 4. E Fare precisely those of cardinality p
with the property that by removing all principal shares corresponding to wires
in F):, Sender can interpolate all the z pads received. For each of the first k’
retained pads Pi, 1 I i < k’ Sender computes the value of the pad Pi obtained
by deleting the principal shares received on wires in Fi. Let ui be the value
obtained. Letting m be the secret message, Sender sends to Receiver over the
public channel:

(1) a list of the indices of the retained pads (before renumbering);
(2) the ordered set Z
(3)si=ui@mforeach15i5k’,
(4) everything received in the attempted transmission of the pads R,, . . . , R,-,

(these are the “returned pads”).

Receiver does error detection on the set of returned pads to obtain a set F
of faulty wires. It finds an Fj E Ysuch that F c Fj (we must argue one exists),
and subtracts from sj the actual value encoded by the jth pad listed in item (1).
We argue that the resulting value is the message m.

CLAIM 4.3. Let G be the set of wires that actually destroyed at least one
primary share in any of the z strong pads transmitted. Then for every extension
G* 2 G of size p,G* ~9.

PROOF. Consider any received pad p. Since no wire not in G destroyed a
primary share, deleting all the primary shares of wires in G from P allows the
remaining shares in this pad to be interpolated by a polynomial of degree
r 2 (7. All these shares are correct, so any subset of n - p L 7 + 1 of these
shares can be interpolated to yield the same value. Thus, every extension G* of
G to a set of size p has the property that deleting all the primary shares of
wires in G* allows all received pads to be interpolated, so every such G* is in
97 0

CLAIM 4.4. 3j such that F c q..

PROOF. Let G be as in the previous claim. If IGI = p, then we are done,
since every wire in G is faulty and every wire in F is faulty and there are only
p faulty wires in total. If ICI < p, then by the proof of the previous claim every
extension G* of G to a set of size p is in si: Now, by Lemma 4.2 all wires that
destroyed at least one primary share in any of the retained pads P,, . . . , Pk are
in F. Moreover, F also contains any wire that destroyed a primary share in any
of the returned pads, since all information received by Sender for those pads
was returned over the public channel and used in the fault detection. Thus,
F I G, so F is an extension of G of size at most p. Since every extension of G
to a set of size p is in q every extension of F to a set of size p is contained
in3; 0

Let -i;i be as in Claim 4.4. By Lemma 4.2, deleting all shares of retained pad
5 received on wires in c. deletes all corrupted primary shares of Pj and leaves
Intact at least n - p > T + 1 correct shares of Pi. Thus, the value uj computed
by Sender is the correct value of the original pad, and we are done.

32 D. DOLEV ET AL

Secrecy hinges on three facts: the pads are mutually independent; for any
given retained pad Pi there is only one fault set Fi for which Sender reveals
ui CB m; for every retained pad Pi, &” has access only to u I r shares (both in
the containment case and in the case &’ is oblivious). This completes our
discussion of the 2-phase protocol.

5. Tight Bounds for the Containment Case

In this section, we restrict attention to the containment case. Generally, we
assume u 2 p. When dD is not oblivious, if p > u 2 1 and L c D, then dD
can always inform J;4L of all the traffic on the wires in D, either by communi-
cating explicitly to &L through a back channel or by writing its entire view on
one of the jointly compromised wires. The situation is then as if there were p
listening wires, all of which could be disruptors, and the lower and upper
bounds for (p, p)-SMT apply.

All the results of this section apply without the containment assumption
provided MD is oblivious. The upper bounds hold because tiD cannot communi-
cate to &” any information about the conversations on wires not in L. The
lower bounds hold because even an tiD that disrupts completely at random
could generate the scenarios leading to erroneous outcomes that will be used
in those proofs.

Disruptor-ffee executions are critical to many of our lower bound proofs. The
proofs are by contradiction. We assume the existence of a protocol with a
certain amount of connectivity. The protocol must work even against an empty
disrupting adversary. We study the protocol with this adversary to learn about
its structure and the types of messages Sender and Receiver must send. We
then define an &‘,, that is chosen accordingly and force an erroneous outcome.

LEMMA 5.1. Let P be any protocol for weakened l-way (u, p)-SMT. Then the
information sent on any n - 2p wires completely determines the secret.

PROOF. Letn=cr+p+r,wherel<arp,n-2p<P<nandO<y
I p. We say an n-vector encodes a value m if in some execution of P, when
Sender begins with message m it places the ith component of V on wire i,
O_<i_<n-1.

Suppose, for the sake of contradiction that the Lemma is false. Without loss
of generality, there exist values m # m’ E Q and vectors V, I/’ encoding m
and m’, respectively, such that I/ = XYZ, where X E 2”, Y E C p, and 2 E 27
and I/’ = X’YZ’, where X’ E 2;” and 2’ E zy (Y remains unchanged). The
point here is that Y is a subvector of at least IZ - 2p components that does not
determine the secret, since Y occurs in an encoding of m and in an encoding
of m’.

Let W = XYZ’, where X is as in V, Y is as in both V and I/‘, and Z’ is as
in V’.

Now, dist(W, V) I p, so by the resiliency requirement if Receiver receives W
it must output m. However, dist(W, V’) I p, so Receiver must output m’, a
contradiction. q

COROLLARY 5.1. Weakened l-way (a, p)-SMT under the containment as-
sumption requires u < n -- 2p, that is, n 2 u + 2 p + 1.

Perfectly Secure Message Transmission 33

PROOF. It follows from Lemma 5.1 that if (T 2 y1 - 2p, then listening to
any u wires not including wire 0 yields the secret. Thus, by a-secrecy,
u < n - 2p, whence n 2 (T + 2p + 1. 0

It is surprising that the issue of containment did not arise in the proof of the
lower bound. Intuitively, this is because the Sender does not know in advance
which wires tiL and MD will compromise. Thus, it must simultaneously protect
against disruption on any p wires (in which case we let L = D so D c L) and
listening on any (7 wires (in which case we let D = 0 so again D c L), even if
at most one of these adversaries attacks in any single execution.

THEOREM 5.1. Under the containment assumption, connectivity n = u + 2p
+ 1 is necessary and sujjkient for l-way (a, P)-SMT.~

PROOF. The lower bound is immediate from Corollary 5.1. McEliece and
Sarwate [18] observed that Shamir’s scheme [21] for sharing secrets is closely
related to Reed-Solomon coding schemes. As McEliece and Sarwate point out,
the errors-and-erasures decoding algorithms for these codes can be used to
detect and correct up to p errors, provided the codewords are of length
u + 2p + 1 and the polynomials used in the construction of the codewords are
of degree u. A similar observation was made by Ben-Or, et al. [3] who used
these codes in constructing their solution to the harder problem of Verifiable
Secret Sharing. q

We now turn to lower bounds on connectivity for the 2-way case. We begin
with a technical lemma that hinges on our assumption that the random choices
of Sender and Receiver are made by coin flipping, which yields only bounded
branching. An alternative would be to allow unbounded branching at each
choice node in the computation tree. Although all our results hold in this
model as well, the proofs are more difficult.

LEMMA 5.2. Let P be a protocol for 2-way SMT. Then there exists an upper
bound B on the number of phases in any disruptor-free execution of P.

PROOF. Since we require perfect resiliency, P cannot have infinite disrup-
tor-free executions. Consider executions of P with an empty disrupting adver-
sary. Fix an input to the sender and consider the tree of all possible coin-flip
sequences. Since the random choices of Sender and Receiver are made by
flipping coins, this tree has bounded branching. ‘Suppose there is no bound B
on the length of any path in the tree. Then at least one child of the root is itself
the root of a tree of unbounded depth. We can continue down the tree in this
fashion forever, but the execution corresponding to the path we follow does not
terminate, violating correctness. 0

THEOREM 5.2. Let P be any protocol for 2-way (o, p)-SMT. Then P re-
quires connectivity n 2 max{a + p + 1,2p + 11, euen under the containment
assumption.

PROOF. The condition n 2 u + p + 1 is needed for u-secrecy, even if
p = 0. Specifically, we show that in a disruptor-free execution any n - p wires
must contain enough information to completely determine the secret. It follows

’ I f p > g 2 1 and .c& is not oblivious, then, as explained at the beginning of this section, the
bound becomes 3p + 1. If (T = 0, then 2p + 1 wires suffice.

34 D. DOLEV ET AL

that if (T 2 n - p, then listening to any (T wires yields the secret. Thus,
a<n-p,whencenka+p+l.

Suppose for the sake of contradiction that in some disruptor-free execution
E of P, there is a set Z ‘of n - p wires such that the information sent over Z
in E is insufficient to determine m, the message being sent. This is equivalent
to saying there exists a message m’ and a disruptor-free execution E’ transmit-
ting m’, such that E and E’ have exactly the same conversations on the wires
in Z. Let B be the upper bound on the number of phases of any disruptor-free
execution of P given by Lemma 5.2. Throughout the proof of this theorem we
assume without loss of generality that B is odd and the first phase is from
Sender to Receiver.

Let C, (C,) denote the random coin tosses of Sender (Receiver) in E, and
Ck (CA) denote the random coin tosses of Sender (Receiver) in E’. Let us
describe the communication in E as

where CY; represents what is sent in phase i over the wires in Z, and pi
represents what is sent in phase i over all the wires not in Z. Then for some
Y],..., yB, the communication in E’ can be described as

fflY1

cf2Y2

where the ai’s are as before and the yi’s denote the communication during E’
in phases i over wires not in Z. We now construct an execution E* in which
the p wires not in Z are faulty. Let us call them D. The notation (X + y)
means that x is placed on the wires in D, but these wires (erroneously)
transmit y instead. In E*, Sender wishes to send message m and has random
flips C,, while Receiver has flips Ch. The conversations are:

“I (PI + Yl)

a2i (Y2i + P2i)

a2i+ 1 (P2i+ 1 + Y2i+l)

In other words, the wires in D behave towards Sender as if they are in
execution E: in even rounds 2i they transmit p2i, while behaving towards
Receiver as if they are in execution E’: in odd rounds 2i + 1 they transmit
Y2i+ 1’ Since Sender cannot distinguish Em from E, it does not send after phase
B. Since Receiver cannot distinguish E* from E’, it outputs m’, violating
correctness.

Notice that the set L of wires compromised by ML is not mentioned in the
description of E*, and can therefore be arbitrary. It follows that the proof
holds even under the containment assumption.

Perfectly Secure Message Transmission 35

The condition n 2 2p + 1 is needed for p-resiliency, even if u = 0. Intu-
itively, we see that if n = 2p then half the wires can “behave as if’ the input
to Sender is some value m, and the other half can “behave as if” the input is
some m’ # m, and Receiver cannot tell which is the true input.

Assume, for the sake of contradiction, that there exists a protocol P for
2-way (0, p)-SMT requiring connectivity 2p. Let m # m’ E Q. We construct
two executions E and E’ of P that, for every k, are indistinguishable to
Receiver after k phases: it has the same coin flip sequence and sees exactly the
same messages in each execution. However, in E the secret is m, while in E’
the secret is m’. Thus, these executions cannot terminate, violating resiliency.
We define the executions in parallel, phase by phase. In the following, the Q’S,
y’s, and x’s are always placed on wires 0, 1, . . . , p - 1, and the p’s, 6’s, and y’s
are placed on wires p, . . . ,2p - 1. In E, for all 0 5 i, let (Ye;+, &+ i be sent
by Sender in Phase 2i + 1, and let yzi+ 182i+, be sent by Sender in Phase
2i + 1 of E’. The executions begin

E: E’:

a1 (PI + 4) h + 4 4

x2 Y2 x2 Y2

ff2i+ 1 (P2ifl’ ‘2i+l) (Y2i+ 1 + a2i+l) ‘21+1

x2(;+ 1) Yzci+ 1) X2(if 1) YZ(i+ 1)

Clearly, since Receiver cannot distinguish the two executions Sender must
continue, and the executions run forever, violating the resiliency requirement.

We can actually extend the proof to demonstrate an adversary that can force
every execution to run forever with probability depending only on Q and II, the
underlying probability distribution on messages. The construction is as above.
&” only disrupts during odd phases. We will describe, for each i 2 0 what the
adversary does in phase 2i + 1. For every j r 0, we let Ej (respectively, Ej)
denote the first j phases of execution E (respectively, E’). Let m’ be a
message of minimal probability according to II. As above, let C, and C,
denote the coin flip sequences of Sender and Receiver in E, and let m be the
Sender’s secret in E.

J$ will decide how to disrupt during E by simulating a random instance E’
of the protocol, in which Sender has input m’ and randomly chosen coin flip
sequence C& Receiver has coin flip sequence C,, and there is a different
adversary &L. It will not be necessary for X$ to know C,, since &” will arrange
for E and E’ to be indistinguishable to Receiver, and therefore Receiver’s
transmissions in E and E’ will be identical.

Assume inductively that E2i and Eii are indistinguishable to Receiver. This
clearly holds for i = 0. For i 2 0, let a2;+r p2;+ 1 be generated by Sender at
phase 2i + 1 of E. By simulating Sender with history Ebi, tiD can compute
y2i+, a2;+, generated by Sender in E’. During phase 2i + 1 of E, &’ replaces
P2i+ 1 with 82i+ r. During phase 2i + 1 of E’, &‘L replaces y2i+ 1 with aZifl.
Thus,

E2i+l = E2i . [a2i+ I(P2i+ I --f a2i+ *)I,

EL+ 1 =E;;.[(Y~~+I 4 a2i+1)62;+ll*

36 D. DOLEV ET AL

Since Eki,, is indistinguishable to Receiver from Ezi+ i, Receiver gives the
same response in phase 2i + 2 of E’. Note that although the actual communi-
cation is the same in E and E’, the executions are not identical: In general,
they are distinguishable to Sender. However, since Receiver has the same coin
flip sequence and sees the same messages in the two executions, it cannot
distinguish them. This completes the induction.

We have therefore shown that with connectivity 2p it is not even possible to
solve 2-way (0, p)-SMT with probability one. q

6. Perfect and Imperjiect Secret Sharing: A Separation Result

In this section, we show that (a, p&Unverified Secret Sharing requires (T + 2p
+ 1 processors. 6 This bound can be achieved (see the proof of Theorem 5.1) [3,
181. Rabin and Ben-Or show that, for any k, t-USS can be achieved with 2t + 1
processors with probability at most 2-k of error [20]. An immediate generaliza-
tion of their result shows that with finite but arbitrarily small probability of
error, (u, p)-USS can be achieved with u + p + 1 processors.

As we demonstrate, (a, p)-SMT cannot be solved deterministically. It fol-
lows that, within the class of problems that have no deterministic solution,
error-free computation comes at a price (in this case, an extra p processors). It
is therefore possible to separate error-free randomized computation from
small-error randomized computation.

Our c + 2p + l-processor lower bound for ((T, p)-USS holds even in the
model with a broadcast channel. It follows that t-Verifiable Secret Sharing
requires at least 3t + 1 processors, even in the presence of a broadcast
channel. This result has been claimed elsewhere [4, 201. Because our lower
bound applies to the weaker problem of t-US& our result is stronger. More-
over, it follows from our result that the processor cost of Verifiable Secret
Sharing has nothing to do with verification, but rather comes from the
conflicting requirements of secrecy and resiliency.

In keeping with the literature on secret sharing, the results in this section are
for the case in which the containment assumption holds. We state the results
for the case u 2 p. The general results can be obtained by replacing every
occurence of “a ” by “max{ c, p].” In addition, all our results hold without the
containment assumption if dD is oblivious.

LEMMA 6.1. (a, p)-US.5 requires at least 2p + 1 processors even in the
presence of a broadcast channel, and even under the containment assumption.

PROOF. We assume for the sake of contradiction that there exists a pair of
protocols (pi, $Fa2> solving ((7, p)-USS and requiring only 2p processors total.
Let I/ = XY be a vector of histories of processors pa,. . . , pzp+ 1 at the end of a
disruptor-free execution E of 9, in which p,, has input m. Here, X is the first
p components of V and Y is the last p components of I/. Let m’ # m be
arbitrary. By the secrecy constraint, since p I (T, there exists a disruptor-free
execution E’ of 9i in which pO has input m’ and the resulting vector of
histories is I” = X2. Consider an execution F of pd2, extending E, in which
processors pp, . . . , pzp- I are faulty, begin yd2 with the states determined by 2,
and make no further errors. Processors pO, . . . , pp- i begin F with the states

6 We assume cr > 0, since secret sharing makes no sense if there is no secrecy requirement.

Perfectly Secure Message Transmission 37

determined by X and make no errors. At the end of F every correct processor
must output m, since this was the input to p0 in E, and p0 did not fail during
E. On the other hand, F must yield m’, since F is also a valid extension of E’
in which all processors are correct. 0

We now describe the relationship between (a, p)-USS and l-way ((T, p)-SMT
under containment.

THEOREM 6.1. Any n processor solution to (a, p)-USS with or without a
broadcast channel, yields a connectivity n solution to weakened l-way (a, p)-SMT
under containment.

PROOF. By Lemma 6.1, n 2 2p + 1. Let the wires be labelled 0, 1, . . . , n -
1. Let the processors be pO, . . . , p, _ r. To send a message m, the Sender first
simulates a disruptor-free execution E of 9r in which p,,‘s input is m. Letting
ui denote the complete history of pi in E, for 1 I i I n - 1, Sender places ui
onwirei.LetV=(u, ,..., u,_,).Let W=(w, ,..., w,-,)denotethevectorof
histories received by the Receiver. By assumption, dist(V, W) I p. To compute
the message encoded by the vector W, Receiver simulates that execution of PDz
in which each processor pi begins in the state given by wi and no further
disruption occurs. This results in a set of outputs, one for each pi. Receiver
outputs that value which is output by a majority of processors in the simulation.

To see that the secrecy condition is met, we have by the secrecy of
(a, p)-USS that no set of u processors not containing pO has any information
about the message m before execution of Pa2. Let L be any set of at most q
wires compromised by dL. Since D G L, the only information about m avail-
able to &’ is the subvector of I/ containing the views of the processors
corresponding to the wires in L. By definition of secrecy for (a, p)-USS, if
0 $Z L then for every m’ E Q this view appears with the same probability with
secret m as with secret m’. On the other hand, if 0 E L, weakened l-way SMT
has no secrecy requirement at all.

To see that the resiliency condition is met, we first note that since at most p
wires are compromised by @“, a majority of the wires are not compromised.
Thus, in the simulation, the Receiver is simulating at least n - p 2 p + 1
correct processors, which, by the resiliency condition for ga2 must all output
the input value m. Note that the simulated faulty processors may output no
value. However, Receiver need only simulate Yz until p + 1 processors output
the same value. Although not all of these processors need be correct, this is the
correct value, since of the first p + 1 processors to output at least one is a
correct processor, and all correct processors (eventually) output the same
value. Moreover, since there are at least p + 1 nonfaulty processors, all of
which will output the same value, the simulation terminates. III

Since VSS is stronger than USS, we have:

COROLLARY 6.1. Any n processor solution to (u , p)-VSS yields a connectivity
n solution to weakened l-way (a, p)-SMT under containment.

COROLLARY 6.2. (u, p)-Unverified Secret Sharing requires at least u + 2p + 1
processors, with or without a broadcast channel.

PROOF. The proof is immediate from Theorem 6.1 and the lower bound for
weakened l-way (a, p)-SMT under containment obtained in Corollary 5.1. 13

38 D. DOLEV ET AL

COROLLARY 6.3. t-Verifiable Secret Sharing requires 3t + 1 processors, even
in the presence of a broadcast channel.

The following observation states that the need for secrecy rules out the
possibility of a deterministic solution to Secret Message Transmission, and this
holds even if there is no resiliency requirement.

LEMMA 6.2. For u 2 1, neither l-way nor 2-way (o, O)-SMT can be solved
with a deterministic protocol.

PROOF. For the sake of contradiction let us suppose there exists a deter-
ministic solution P to the (l- or 2-way) (a, p)-SMT problem. For each m E Q
and for each L E (n - l)“, let C(m, L) denote the conversation on the wires
in L during the (unique) failure-free execution E, in which the secret message
is m.

Let m, m’, where m + m’, be arbitrary elements of Q. By the secrecy
condition, VL E (n - 1)“: C(m, L) = C(m’, L). But since this holds for all
sets L E (n - 1)” the conversations over all wires on inputs m and m’ in E,
and E,,,, are identical. In particular, Receiver cannot distinguish the two
executions. 0

COROLLARY 6.4. (a, p)-USS has no deterministic solution.

PROOF. The proof is immediate from Theorem 6.1 and Lemma 6.2. 0

THEOREM 6.2. Within t-he class of problems having no deterministic solution,
the cost of an error--ee solution can provably exceed the cost of a solution with
arbitrarily small probability of error.

PROOF. By Corollary 6.4 (a, p)-USS has no deterministic solution. For any
k, there exists a (T + p + 1 processor solution to (cr, p)-USS with probability at
most 2-k of error 1201. By Corollary 6.2, any error-free solution to ((T, p)-USS
requires (T + 2p + 1 processors. This bound is tight [3, 181. 0

7. Beyond Containment

In this section, we study how the bounds obtained in Section 5 change when
the containment assumption is removed, provided &” is not oblivious. To
obtain upper bounds in this case is simple: any algorithm for (a + p, p)-SMT,
under the containment assumption completely solves the general (a, p)-SMT
problem, even if the adversaries are actually allowed to communicate during
execution of the protocol. This yields an increase of p wires in both the l-way
and 2-way case. We, therefore, have the following upper bounds:

THEOREM 7.1. Connectivity o + 3p + 1 is suficient for l-way (a, p)-SMT,
and connectivity o + 2 p + 1 is sufficient for 2-way (o, p)-SMT, even without the
containment assumption.

Since the bounds of Theorem 7.1 are tight when the two adversaries can
communicate during the execution, we henceforth restrict our attention to the
model in which they cooperate but do not communicate except through the
shared wires.

In the l-way case, we can do slightly better, adding only p - 1 wires. We also
show this bound is tight. The reason only p - 1 additional wires are needed in
the l-way case is that in this case JZ’~ can only communicate with JZZ’~ if the sets

Perfectly Secure Message Transmission 39

D and L intersect. This is because, in the l-way case, there is no “behavior” of
Receiver for &L to detect: Receiver is completely passive, while Sender sends
just once, before J$, has a chance to act. Since in order to drive up the
lower-bound D and L must intersect, ~2~ can convey to JZ” information about
the communication on, at most, an additional IDI - 1 I p - 1 wires (those not
in L), so we can apply the bounds for l-way (a + p - 1, p)-SMT under
containment.

For the 2-way case, we have only proved that full additional p wires are
needed for all 3-phase algorithms and for algorithms of any number of phases
that use only the public channel after the first phase. For the general case, we
have a lower bound of only (T + 2p, off by a single wire. For the next proof, we
assume HD can “disrupt” communication on a wire w by placing some
particular text on w that J;4L, listening to w, can recognize as disruption.

THEOREM 7.2. In the model in which tiL and .JZ” cooperate but do not
communicate, if u 2 1, then (CJ, p)-SMT requires u + 3p wires in the l-way case
and u + 2p wires in the 2-way case.’

PROOF. The proofs for the two cases are similar.
For the sake of contradiction, let P be a protocol for the l-way case

requiring only n = u + 3p - 1 wires. Let L contain exactly wires { 1,2,. . . , u},
and let D = {a,cr+ l,..., u + p - l}. Let T be all wires not in L U D.
Recall that, by Theorem 5.1, the information on wires in L U D completely
determines the secret, since 1 L U DI = CT + p - 1 = n - 2 p wires.

Let m’ E Q be a message of maximal probability, according to the underly-
ing probability distribution II on messages. Let m be any message different
from m’, and consider a particular disruptor-free execution E of P in which
the message transmitted is m. Since this is a l-way protocol, communication
consists of a single phase. Let X, denote the information sent during E over
the wires in D.

Let us choose tiD as follows: If the information sent over D is not X,, then
JY” disrupts transmission on wire C, otherwise it does nothing.

The corresponding strategy of ~2~ is: If communication on wire (T is not
disrupted, then output the message determined by X, together with whatever
has been sent over the wires {1,2,. . . , u - 1) (the contents of wire u are given
by X,). Otherwise, output m’.

To see that J;4L has an advantage in guessing the secret message, note that it
is always correct when the message is actually m’ and it is always correct when
communication on the wire is not disrupted, which occurs (by choice of E) in
at least one transmission of m f m’. Thus, it does better than II(violating
secrecy.

The proof for the 2-way case is similar in spirit, but is technically more
involved. This time, let us assume P is a protocol for the 2-way case requiring
only c + 2p - 1 wires. Recall that by Lemma 5.2 there exists a bound B on
the number of phases in any disruptor-free execution of P.

As above, let m’ be a “likely” message and let m # m’ be arbitrary. Let L
and D be chosen so that I LI = u, IDI = p, and IL n DI = 1. Let E be a

’ I f CT = 0, then connectivity 2p + 1 is necessary and sufficient for both the l-way and 2-way
cases.

40 D. DOLEV ET AL

disruptor-free execution in which m is transmitted. Let X, (respectively, XJ
be the full conversation on the wires in D (respectively, L) during E.

By Lemma 5.2, in any disruptor-free execution the information sent over L
and D together completely determines the secret. tiD disrupts on wire w in the
first phase in which the c’onversation over D differs from X,.

The corresponding strategy for H;. is: If communication on wire w has not
been disrupted at the end of phase B and the conversation over the wires in L
is X,, then output m, else output m’. 0

Consider algorithm SlowSMT and let u > p. Let L contain exactly wires
1 ..7 U, while D contains only wire u + 1. Let the strategy of tiD be to alter
the contents of wire cr + 1 if and only if s,, i f 5. If Receiver responds “OK,”
indicating that no disruption occurred, then &L learns an additional share of
the pad, so if 7 = u, then &’ learns a total of u + 1 shares, enough to
reconstruct the pad. Thus, even if the sets D and L are disjoint, tiD can
indirectly communicate critical information to &“. We now prove that the
bound of G + 2p + 1 wires is tight for 3-phase algorithms in which the
adversaries do not communicate and dD is not oblivious.

THEOREM 7.3. Let P be any protocol for 2-way (u, p)-SMT in the model in
which s’;. and do do not communicate and AX?~ is not oblivious. If every execution
of P lasts exactly 3 phases, beginning with a transmission jkom Sender to Receiver,
then P requires n > u + 2p + 1 wires.

PROOF. We assume, for the sake of contradiction, the existence of such a
protocol P requiring only u + 2p wires. Let M = {m, m’} and let II(m) =
II = l/2 be the underlying probability distribution on M. The secrecy
condition for ((T, p)-SMT implies that no listening adversary can have probabil-
ity better than l/2 of guessing the secret message being transmitted. We
obtain our contradiction by exhibiting a pair of strategies for tiD and &” that
will permit the listening adversary to guess the secret message with probability
strictly greater than l/2, where the probability is taken over the random
choices of Sender and Receiver.

As before, we first study P against an empty disrupting adversary. In general,
we describe certain parts of an execution, by specifying the message m being
transmitted, and the coin flip vectors of Sender and of Receiver: C, and C,,
respectively. We name such an execution E by writing E(m, C,, C,>. We break
the wires into three groups: X = {1,2,. . . , cr}, Y = {a + 1,. . . , u + p),
and Z = {a+ p + l,...: (T + 2p}. Throughout the proof, the only wires
compromised by HL are those in X.

Let the conversations in a particular disruptor-free execution E,(m, C!j, Cj>
be

a, PlYI

a2 P2Y27

a3 P3Y3 7

where cyi (respectively, pi, ri> denotes what is sent over X (respectively, Y, Z>
during phase i of E.

For any given &“, let A<,, (Ye a3 1 m, tiD> denote the probability, taken over
coin flips of Sender and Receiver, that &L sees (Y,(Y~(Y~ given that the secret
message is m and the disruptor is the given &. In particular, let

Pegectly Secure Message Transmission 41

I%< (pi q (Ye I m, 0) denote the probability, taken over coin flips of Sender and
Receiver, that J$ sees (Y~CQ(Y~ given that the secret message is m and the
disruptor is empty. Analogous definitions can be made for the case that the
message is m’ and/or &L does not see (pi q cq (this last condition is denoted
Gqa2aJ).

LEMMA~.~. V&v fi(a,(~~cz~ I m,&v) = fi(oIozo3 I m’,~~‘v). That is, regard-
less of do, LXJ’~ is equally likely to see this string when the secret is m as when the
secret is m’. The probabilities are taken over the coin flips of Sender and Receiver.

PROOF. The lemma is immediate from the definitions of secrecy. Indeed,
for any &,, suppose, for the sake of contradiction, that II((pi (Ye (Y) I m, MD> = p
;t E, while II(cz, (Ye CY~ I m’, dD> = p for some E, p > 0. Then
II(~(aia~aJ I m’,&v) = (1 -p). Consider the following strategy for J%‘~: If
the conversation over X is (Y,(Y~(Y~, then output m, else output m’.

Pr[tiL correct ItiD = II(m)A(o,a,a, I m,Mv>

+ II(mr>fiI(7(a,a2a3> I m’,-dD)

= ;(, + E) + ;(I -p)

1

> 5’
0

LEMMA 7.2. There exists an execution E,(m’, Ci, CA> with conversations

ffl 6, h + r,)

a2 62 (72 + Y2)

ff3 63 773

for some S,, S,, 6,, rr+, Q, r/3’ The (Y;‘s and yi’s are the same here as in E,.

PROOF. Let &” compromise precisely the wires in Z, and let its strategy be
to always in phase 1 transmit y, and always in phase 2 transmit y2, regardless
of what is originally placed on these wires. Suppose no execution such as E,
exists. Then with this choice of &‘,,, the only time &” sees (pi (Ye a3 is when the
transmitted message is m. In other words, fi<cz, LY~(Y~ I m’,&‘,,) = 0. In con-
trast, II((Y, a2 (Ye 1 m, &‘> > 0 (E, is a witness). This violates Lemma 7.1. 0

COROLLARY 7.1. Vt3 there exists an execution E2(m’, Ci, Ci> with conver-
sa tions

ffl 6, hl -+ YA

ff2 62 (72 + Y2L

a3 63 h3 + Y3L

where the y’s are as in E, (and therefore E,), and the r]‘s and S’s are as in E,.

PROOF. The proof is immediate from Lemma 7.2 and the fact that every
execution always stops after three phases. q

Let &j have the following strategy: Compromise the wires in Z. If in the
first two phases, the communication observed is y, y2, then replace y2 with n2;
else do nothing.

42 D. DOLEV ET AL

The following lemma is used to prove first that n2 Z yz, so that this
adversary is not effectively empty, and then to show that, for this specific
choice of tiD, the probability that &” will see the sequence (Y~(Y~cx~ given that
the message is m is smaller than the same conditional probability with the
empty disrupting adversary.

LEMMA 7.3. Fix an arbitrary disruptor-ji-ee execution E,(m,Ci, Ci> of the
f OI-RI

Ql Pl Yl

a2 P2 Y2

x3 Y3 23

for some p,, p2, x3, y,, z3. There can be no execution E&m, C:, Ci), of the form

a1 Pl Yl

Q2 P2 (72 + 72)

a3 r3 s3

for any r3, s3.

PROOF. By Corollary 7.1 there exists an execution E&m’, Ci,Ci) with
conversations

aI 4 (771 -+ Y,)

a2 62 (72 + Y2)

a3 63 (r/3 --9 s3).

Assume for the sake of contradiction that E4 exists as described. We construct
the following erroneous execution E,(m, Ci, Ci):

a1 (PI + 6,) Yl

a2 (62 +Pz) 72

a3 (r3 -+ 6,) s3

Sender cannot distinguish E, from E,, in which it is sending the message m,
while Receiver cannot dist.inguish E6 from Es, in which it outputs m’. 0

COROLLARY 7.2. 72 # y2.

PROOF. Let E, = E,. Let the first two phases of E,(m, Ci, Cj> be

a1 PI Yl

a2 P2 (72 + 772).

If q2 = y2, then the first two phases of E4 are not distinguishable to Sender
(or Receiver) from the first two phases of E, (and hence, E,), so Sender sends
a3 p3 y3 in phase 3 of E,, violating the lemma. Thus, q2 # y2. 0

The corollary implies that the adversary syb that changes y2 to n2 if and only
if the first two phases of communication on the wires in 2 are y, y2 and
otherwise does nothing is not an empty adversary, in the sense that it some-
times makes real changes to the messages carried on the wires in Z.

Perfectly Secure Message Transmission 43

Lemma 7.3 says that when the message sent is m, then JX?~ is no more likely
to see err a2 cq with this particular choice of tiD than with an empty disrupting
adversary. In fact, by taking p, = pr and p2 = & we obtain the following very
important corollary.

COROLLARY 7.3. I?((Y~(Y~(Y~ Irn,~?,,) < I?((Y~(Y~(Y~ Im,0).

In other words, when the message is m, &‘L is less likely to see (Y, (Ye (Ye with
the active disrupting adversary MD than with the empty adversary. To see this,
suppose the secret message is m. If A?~ is going to see (Y, CQCQ, then the
execution must start

a, . . .
CQ . . .

since MD does not act before the second phase. If the last column is not y, y2,
then there will be no difference between the probability that A?~ sees CX, CQ q
with $ and the probability that it sees this string with 0, since dD does
nothing in this case. However, if the last column is yr yz, then the lemma says
there is no extension to this execution in which JY” sees (Y,CQCY~ with &, but
there is such an extension with 0 (witness E,).

LEMMA 7.4. For all p,, pz, y,, z3, there is no disruptor-j?ee execution
E7(rn’, Ci, Ci> with conversations

a1 Pl YI
a2 P2 Y2

a3 Y3 23.

PROOF. Suppose, for the sake of contradiction, that such an execution E,
exists. Then, since the algorithm must always terminate in 3 phases, there exists
an execution E&m’, Ci, C,$

a1 PI Yl

a2 P2 Y2

a3 Y3 (23 + y3).

We again construct an erroneous execution E&m, C,O, Ci):

a1 0% +P,) Yl

a2 (P2 --) P2) Y2

a3 (P3 +y3) Y3*

E, is indistinguishable to Sender from E,, in which Sender transmit m, but
it is also indistinguishable to Receiver from E,, in which Receiver outputs
m’. 0

Suppose the secret message is m’. If tiL is going to see (Y~cY~(Y~ then the
execution must begin with cz1cz2 in the first two phases. If in the first two
phases dD does not see yr y2, then the probability that the execution will
continue with (Ye on the wires in X is the same with adversary MD as with 0,
since tiD does nothing in’ this case. However, if the conversation on the wires in
Z in the first two phases is y, y2 then the Lemma says there is no extension of
the execution with 0 in which &” sees (Y, (y2a3, while there may be such an

44

extension with ~yb. We therefore have the following:

D. DOLEV ET AL

COROLLARY 7.4. fi<a,a,a, Im’,sf’) 2 fi(a,a2cx3 Id,@).

In summary, let SX?” have the following strategy. Compromise the wires 2. If
in the first two phases the communication observed is yIy2, then replace y2
with r,r2; else do nothing. By Corollary 7.3,

fi(cqa*cq I rn,sg < fi(cY,cQ(Y3 I m,0l.

By Lemma 7.1,

By Corollary 7.4,

Thus,

fil(ap2(Yg I m$J < fihp2(Y3 I &-$I),

violating the secrecy condition for (a, p)-SMT. In fact, let JZ!’ have
the following strategy: If the conversation on X is “ia2 (Ye, then output m’,

else output m. Let p q = fit,, LY~(Y~ 1 m,0). Then Il(,(a, (Ye 1 m, 0) =
1 - p. ,By Corollary 7.3, for some E > 0, I?((Y, (Ye (Ye I m, sfD> = p - E.
Thus, II(-J((Y~ CQ (Ye I m, &,,I = 1 - p + E. However, by Corollary 7.4,
II((or CY~ (Ye I m’, ~$1 2 p. Thus,

1
2 $1 -p + E) + zp

8. Applications

We can extend these results to networks of processors, with little change.
Given g 2 p, we consider adversaries &’ and s$, that can compromise up to (T
and p processors or edges, respectively. We require that for all sets L and D
of processors compromised by Sy;. and JZ?~, respectively, for any pair of
processors p, q E L U D, p can send a secret message m to q so that JS?~
learns absolutely nothing about m and q receives m correctly. Clearly, even
without containment, connectivity v + 2p + 1 suffices.

Using our transmission scheme as a building block, we can immediately
extend the results of Ben-Or, et al. [3] for secure computation on complete
networks to general networks of sufficient connectivity. The increase in time is
proportional to the diameter of the network, and there is no loss of correctness
or secrecy.

A second application is to secure communication in networks of bounded
degree. In [ll], Dwork, et al. consider the problem of simulating a completely
connected network by bounded-degree networks containing t faulty processors.

Pegectly Secure Message Transmission 45

The crux of the simulation is a transmission scheme for simulating the
point-to-point transmissions of the complete network by sending messages
along several paths in the bounded degree network. This is done in such a way
that, for all choices T of at most t faulty processors, there exists a large set M
of nonfaulty processors capable of communicating among themselves as if they
comprise a completely connected subnetwork, independent of the behavior of
the faulty processors. For every such set T, we let POOR(T) denote the set of
correct processors that are not in M. It is shown in [ll] how to simulate the
transmission of a message between two processors on the butterfly network
such that the set POOR(T) is of size O(t log t). Additional results are obtained
in [ll] for random networks of bounded degree, as well as for networks of
small but unbounded degree. However, the transmission scheme in [ll] yields
correct communication among all nonfaulty processors that are not in
POOR(T), it does not allow these processors to communicate secretly. Conse-
quently, even in a network in which adjacent vertices are connected by private
channels, the transmission scheme cannot be used to simulate a complete
network with private channels.

Let tiD and &L compromise at most p and u processors, respectively.
Letting D and L be defined as usual, we define POOR(D, L) such that all
nonfaulty processors that are not in POOR(D, L) can communicate among
themselves not only correctly but also such that their messages will be com-
pletely secret from ML. If t = p = O(a), then the maximal size of POORCD, L)
may increase by a constant factor over the bound on POOR(T) obtained in
[ll]. The intuition is simple. Essentially, in the scheme of [ill, to send a
message m from p to q (where both are neither faulty nor in POOR), p
prepares an “encoding” of m consisting of some number k of replicas of m.
Each replica is sent to q over a different path (the paths are not vertex
disjoint.) The definition in [ll] of POOR(T) is that for any two processors not
in POOR(T) more than k/2 of the paths connecting these processors contain
no element of T. Thus, more than half the paths used in the transmission of m
contain no processor in T, so q can determine m by taking that value
appearing on more than k/2 paths. Suppose p = (T = t. Then, for example,
using the protocol for l-way SMT without containment, we can construct an
encoding of m of length k = 4t + 1 using BCH error correcting codes with
secrecy parameter t. If fewer than k/4 of the paths from p to q contain a
processor in D U L, then p can transmit a secret message m to q such that q
receives m and ~8” learns nothing about m. Plugging in this stronger require-
ment for correct transmission only affects the bounds on the maximal size of
D U L by a constant.

9. Additional Remarks

The concept of two distinct adversaries, &” and dD, is an intriguing one.
Generally, we have assumed in this paper that the adversaries cooperate with
the goal of defeating the algorithm. However, it may be the case that
the adversaries do not cooperate. Essentially, this is the situation when dD
simply disrupts at random. As we have seen, without the containment assump-
tion the upper bounds are better in this case than when the adversaries cooper-
ate. Are there other models and problems in which it makes sense to consider
noncooperating adversaries?

46 D. DOLEV ET AL

Our study of the roles of the adversaries highlighted a small weakness in the
two error-free VSS protocols known to us [3, 131. Specifically, these protocols
have the property that even if the dealer is good, the t faulty processors can
force a scenario in which every nonfaulty processor knows the dealer’s secret
with certainty. It has recently been shown [lo] that this weakness can be
removed without increasing the number of processors from the lower bound of
3t + 1. The construction relies heavily on a generalization of the technique
used in the slow protocol sketched in Section 5 for removing faulty wires (or
processors) from the system. It also uses the technique for parallelizing error
detection used in protocol FastSMT.

In the generalization of the fault-detection technique, instead of identifying
and removing the faulty processors (often impossible unless 12 2 (t + 1j2>, the
correct processors agree on a set of 2k processors, of which at least k are
faulty. Even if we begin with only 3t + 1 processors, removing all 2k proces-
sors from the system results in a new system of 3t + 1 - 2k = t + 1 + 2(t - k)

processors, of which at most t - k are faulty. Then, for example, using an
extension of the methods of [3], any computation can be run in the remaining
system using secrecy threshold t and resiliency threshold (t - k). We believe
the generalized fault detection technique and its parallelization are very
powerful, and we expect them to have an impact in the design of fault tolerant
algorithms in a Byzantine environment.

ACKNOWLEDGMENTS. Many people have helped us by listening to early argu-
ments and making suggestions. In particular, we thank Hagit Attiya, Shafi
Goldwasser, Silvio Micali, Ruediger Reischuk, and Eva Tardos. Most of all, we
thank Larry Stockmeyer for many hours of invaluable discussion.

REFERENCES

1. BEAVER, D., AND GOLDWASSER, S. Multiparty computation with faulty majority. In Proceed-
ings of the 30th Symposium on Foundations on Computer Science. IEEE, New York, 1989, pp.
468-473.

2. BEN-OR, M. Another advantage of free choice: Completely asynchronous agreement proto-
cols. In Proceedings of the 2nd Annual ACM Symposium on Principles of Distributed Computing
(Montreal, Que., Canada, Aug. 17-19). ACM, New York, 1983, pp. 27-30.

3. BEN-OR, M., GOLDWASSER, S., AND WIGDERSON, A. Completeness theorems for non-crypto-
graphic fault-tolerant distributed computation. In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing (Chicago, Ill., May 2-4). ACM, New York, 1988, pp. l-10.

4. CHAUM, D., CR~PEAU, C., AND DAMGIRD, I. Multiparty unconditionally secure protocols. In
Proceedings of the 20th Annual ACM Symposium on Theory of Computing (Chicago, Ill., May
2-4). ACM, New York, 1988, pp. 11-19.

5. CHOR, B., GOLDWASSER, S., MICALI, S., AND AWERBUCH, B. Verifiable secret sharing and
achieving simultaneity in the presence of faults. In Proceedings of the 26th Symposium on
Foundations of Computing. IEEE, New York, 1985, pp. 383-395.

6. CHOR, B., AND KUSHILEVITZ, E. A zero-one law for Boolean privacy. In Proceedings of the
2lsf Annual ACM Sympoisum on Theory of Computing (Seattle, Wash., May l-17). ACM,
New York, 1989, pp. 62-72.

7. CLEVE, R. Limits on the security of coin flips when half the processors are faulty. In
Proceedings of the 18th Annual ACM Symposium on Theory of Computing. (Berkeley, Calif.,
May 28-30). ACM, New York, 1986, pp. 364-369.

8. DOLEV, D. The Byzantine Generals strike again. J. Algotithms 3 (1982), 14-30.
9. DOLEV, D., AND DWORK, C. On-the-fly generation of names and communication primitives.

Extended abstract, November 1989.
10. DWORK, C. Strong verifiable secret sharing. In Proceedings of the 4th International Workshop

on Distributed Algotithms. Lecture Notes in Computer Science, vol. 480. Springer-Verlag, New
York, 1990, pp. 213-227.

Pe$ectly Secure Message Transmission 47

11. DWORK, C., PELEG, D., PIPPENGER, N., AND UPFAL, E. Fault tolerance in networks of
bounded degree. SIAM J. Comput. 17, 5 (1988), 975-988.

12. FELDMAN, P. Optimal algorithms for Byzantine agreement. Ph.D. dissertation, Department
of mathematics, MIT, Cambridge, Mass., 1988.

13. FELDMAN, P., AND MICALI, S. Optimal algorithms for Byzantine agreement. Proceedings of
the 20th Annual ACM Symposium on Theory of Computing (Chicago, Ill., May 2-4). ACM, New
York, 1988, pp. 148-161.

14. FISCHER, M., LYNCH, N., AND MERRIIT, M. Easy impossibility proofs for distributed consen-
sus problems. J. D&rib. Comput. 1 (1986), 26-39.

1.5. GALIL, Z., HABER, S., AND YUNG, M. Primitives for designing multiparty protocols from
specifications. Manuscript, 1989.

16. GOLDREICH, O., MICALI, S., AND WIGDERSON, A. How to play ANY mental game. In
Proceedings of 19th Annual ACM Symposium on Theory of Computing (New York, N.Y., May
25-27). ACM, New York, 1987, pp. 218-229.

17. KARLIN, A., AND YAO, A. Probabilistic lower bounds for Byzantine agreement. Manuscript.
18. MCELIECE, R., AND SARWATE, D. On sharing secrets and Reed-Solomon codes. Commun.

ACM 24, 9 (Sept. 1981), 583-584.
19. RABIN, M., AND LEHMANN, D. On the advantages of free choice: A symmetric and fully

distributed solution to the dining philosophers problem. In Proceedings of the Symposium on
Principles of Programming Languages. 1981, pp. 133-138.

20. RABIN, T., AND BEN-OR, M. Verifiable secret sharing and multiparty protocols with honest
majority. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing. (Seattle,
Wash., May 15-17). ACM, New York, 1989, pp. 73-85.

21. SHAMIR, A. How to share a secret. Commun. ACM 22, 6 (June 1979), 612-613.
22. YAO, A. How to generate and exchange secrets. In Proceedings of the 29th Symposium on

Foundations of Computer Science. IEEE, New York, 1986, pp. 162-167.

RECEIVED MAY 1990; REVISED MAY 1991; ACCEPTED JULY 1991

Journal of the Association for Computing Machinery, Vol. 40, No. 1, January 1993.

