A Middleware Architecture for Unmanned Aircraft Avionics

Juan Lo6pez, Pablo Royo, Enric Pastor, Cristina Barrado, Eduard Santamaria
Technical University of Catalonia
Avda. del Canal Olimpic s/n
08860 Castelldefels, Spain

{lopez,proyo,enric,cristina,esantama}@ac.upc.edu

ABSTRACT

An Unmanned Aerial Vehicle is a non-piloted airplane de-
signed to operate in dangerous and repetitive situations.
With the advent of UAV’s civil applications, UAVs are emerg-
ing as a valid option in commercial scenarios. If it must be
economically viable, the same platform should implement a
variety of missions with little reconfiguration time and over-
head.

This paper presents a middleware-based architecture spe-
cially suited to operate as a flexible payload and mission
controller in a UAV. The system is composed of low-cost
computing devices connected by network. The functionality
is divided into reusable services distributed over a number of
nodes with a middleware managing their lifecycle and com-
munication. Some research has been done in this area; yet
it is mainly focused on the control domain and in its real-
time operation. Our proposal differs in that we address the
implementation of adaptable and reconfigurable unmanned
missions in low-cost and low-resources hardware.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Software Architectures; J.7
[Computers in Other Systems|: Command and control

General Terms

Middleware Design and Implementation

Keywords

UAV, Avionics, Embedded, Middleware, Service-based, Publish-

Subscribe

1. INTRODUCTION

An Unmanned Aerial Vehicle (UAV) is a non-piloted air-
plane designed to operate in situations in which the utiliza-
tion of a traditional airplane could be dangerous. Nowadays
and after many years of development, UAV’s technology is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Middleware *07, November 26-30, 2007, Newport Beach, California, USA.
Copyright 2007 ACM 978-1-59593-935-7 ...$5.00.

reaching the critical point in which it can be applied in a
civil/commercial scenario.

Basically, an UAV is automatically piloted by an embed-
ded computer called the Flight Computer System (FCS)[15].
This is a system that reads information from a wide vari-
ety of sensors (accelerometers, gyros, GPS receivers, pres-
sure sensors) and drives the UAV mission along a predeter-
mined flight-plan. The airframe also carries some payload
to transform the UAV into a valuable observation platform:
TV or IR cameras, sensors, etc. The information gener-
ated by the payload can be processed on-board or sent to a
ground control station via some communication infrastruc-
ture, such as radio modems or microwave links. Finally,
some intelligent component, the mission controller, orques-
trates all these components and automates the UAV task to
its operator.

Many types of UAVs exist today; however the class of
mini/micro UAVs is emerging as the valid option if this civil
commercialization scenario is kept in mind. This type of
UAV has the same limitations as most embedded systems:
limited space, limited power resources, increasing computa-
tion requirements, complexity of the applications, time to
market requirements, etc. All these stringent requirements
are amplified in civil/commercial applications. In that con-
text, the same platform should be able to implement a large
variety of missions and operate with many types of payload;
all of it with little reconfiguration effort and overhead if the
system has to be economically viable. For this reason we
believe that the effective application of UAVs in civil opera-
tions requires implementing new hardware/software systems
that provide specific support to automatically control the
actual missions to be carried out by the UAV.

|

Di

Figure 1: Unmanned Aircraft Services Architecture.

This paper presents a middleware specially suited to op-
erate as a flexible mission and payload controller in an UAV.

The functionality of the system is divided into a set of reusable
services that can be distributed over the different comput-
ing nodes of the UAV. A middleware manages the lifecy-
cle and the communication between services, operating the
global system as a Distributed Embedded System, as figure
1 shown.

The paper is organized as follows. First, section 2 de-
scribes the previous work in this area. Next, section 3 shows
an overview of the proposed middleware. Section 4 describes
the communication primitives it offers to the services. An
application example is shown in section 5. Finally, section 6
provides some details about the implementation and section
7 concludes the article and shows the future lines of research.

2. PREVIOUS WORK

This section presents previous research in the area of avion-
ics for civil use, in particular in the area of middleware
for this type of embedded systems. For a more general re-
view of middleware refer to [5] which presents the challenges
and available technical solutions of several middleware ap-
proaches for distributed embedded systems. It is a nice and
concise survey on middleware uses on mission-critical dy-
namic domains.

Classical papers on avionics buses [12, 4, 9, 2] are focused
on real-time capabilities, in particular on flight control [9]
and verification [12, 2]. If previous research targeted on the
military domain, nowadays the challenge is civil avionics be-
cause their applications must be easily adaptable and recon-
figurable. Also it is important to base solutions on low-cost
and low-resources hardware. In these applications services
and sensors are a key issue [6, 15, 11, 14, 2]: Their initial
configuration, their description, their verification or their
dynamic reconfiguration are several of the research targets.

Referring to middleware families most of research papers
are based on CORBA Component Model [7, 12, 6, 2, 16].
For example, [12] presents Bogor, a model checking frame-
work that models the semantics of real-time CORBA using
a general complexity checking model. In the case of [6], Ed-
wards et al. present how to automate the configuration of
services in presence of quality of service capabilities. The
testbed is an avionics system with 50 components of the
CORBA Component Model. Finally in [7] Jung et al. im-
plement a heuristic to understand the semantics of mission
asynchronous events.

Another trend is ad-hoc middleware development. For
example, [9] report presents the experience of an open im-
plementation of a middleware for Java applications named
Ovm. [4] presents the work developed under the A3M project.
A novel middleware focused on space applications is devel-
oped. The main interest comes from the requirements met
by the middleware: real-time and dependability. Two pro-
tocols are developed and verified under a real-time OS sim-
ulator. Middleware specially targeted to sensors are [15]
and [14]. In [15], Zhang et al. have developed a middle-
ware to manage large number of wireless sensors with delay
tolerance but power management constraints. Diversity of
sensors, large number of them and the final developed appli-
cation are main target of this middleware. [14] presents the
extension of the Gridkit sensor middleware to cover dynamic
configuration and customization of a large sensor network.

Service oriented architectures (SOA) are getting common
in several domains, for example Web Services [17] in the In-
ternet world and UPnP [1] in the home automation area.

SOA is an architectural style whose goal is to achieve loose
coupling among interacting components or services. Some
middleware proposals [11, 8] have also been influenced by
this architecture. The work in [11] presents an extension
of the FOCUS theory; this is a formalism to describe SOA
services. They compare SOA services against CORBA ob-
jects and show the benefits of the service oriented approach.
Their target application, though, is not in the aeronautics
domain but on the automotive. In [8] it is presented a
novel middleware also based on a service oriented model
with publish/subscribe messaging but with the particular-
ity of adding video processing capabilities. The middleware
is tested on a network of thousands of sensors cameras.

Avionics testbeds are mainly done for general aircraft sys-
tems [12, 6]. Only [9] uses a testbed of flight demonstrations
with a small UAV. Specific avionics buses testbeds are in
[2], which presents the reengineering of a McDonnell Dou-
glas software to be able to reuse the system elements across
platforms and introduce a new software physical architecture
for product line development. Also [7] uses the Boeing Bold
Stroke avionics to enhance the CORBA Component Model
middleware and to study the correlation between events to
detect special situations known as semantic events.

In our approach the middleware is developed for high level
mission design, concentrating efforts in functionality more
than in real-time issues. Like in [16] which shows the advan-
tages of reducing CORBA functionalities (NEST and OEP)
in benefit of efficiency, we believe that a small number of
really useful functionalities are more important and efficient
that large implementations of today middleware. Also [13]
argues that due to the complexity and completeness of many
middleware platforms efficiency may be compromised. The
paper studies several ways to bypass the middleware layer
(or part of it) to improve efficiency.

3. MIDDLEWARE ARCHITECTURE

Middleware-based software systems consist of a network of
cooperating components, in our case the services, which im-
plement the business logic of the application and an integrat-
ing middleware layer that abstracts the execution environ-
ment and implements common functionalities and communi-
cation channels. In this view, the services are semantic units
that behave as producers of data and as a consumers of data
coming from other services. The localization of the other
services is not important because the middleware manages
their discovery. The middleware also handles all the trans-
fer chores: message addressing, data marshaling and demar-
shalling (so subscriber services can be on different platforms
than the publisher service), delivery, flow control, retries,
etc. Any service can be a publisher, subscriber, or both si-
multaneously. This publish-subscribe model virtually elim-
inates complex network programming for distributed appli-
cations.

In our architecture, the middleware takes the form of a
component called service container. The services are ex-
ecuted and managed by a service container that is unique
in each node of the distributed system network. The service
container can manage several services and provides common
functionalities (network access, local message delivery, name
resolution and caching, etc.) to the services it contains. The
key benefit is that services are entirely decoupled. Very little
design time has to be spent on how to handle their mutual
interactions. In particular, the services never need informa-

‘ :Service Container

1
(iService Container:)Gervice Conwina '

UAV Airframe

-,
e ———

Ground Control Station

Figure 2: Middleware Architecture.

tion about the other participating services, including their
existence or locations. The container automatically handles
all aspects of message delivery, without requiring any inter-
vention from the service, including: determining who should
receive the messages, where recipients are located and what
happens if messages cannot be delivered.

As seen in figure 2, the container can communicate ser-
vices installed in the same container or in other service con-
tainer present in the same local network. The protocols
used are designed to maximize the performance by using
the multicast capabilities of the underlying network. The
service container supports mechanisms that go beyond the
basic publish-subscribe model. More concretely, the main
functionalities that provide the service container are:

e Service management: The container is the responsible
of starting and stopping the services it contains. It is
also on charge of watching for their correct operation
and notifying the rest of containers about changes in
the services status.

e Name management: The services are addressed by
name, and the Service Container discovers the real lo-
cation in the network of the named service. This fea-
ture abstracts the programmer from knowing where
the service resides or how to communicate with it. In
case of service malfunctioning, it is also the container
responsibility to notify the other containers in the do-
main and to choose another provider service if it is
available. In this way, the containers are able to clear
and update their caches. From the name management
point of view, the Service Container acts as a proxy
cache for the services it contains.

e Network management and abstraction: The services
do not access the network directly. All their commu-
nication is carried by the service container. This ab-
stracts the network access, allowing the middleware to
be deployed in different networks. Moreover, the con-
tainer hides the bookkeeping related with the manage-
ment of UDP/TCP ports and multicast groups.

e Resource management: Given that each network dis-
tributed node has a unique container, and that all the
services in that node are layered on top of it, the con-
tainer is the right place to centralize the management
of the shared resources of the node: memory, CPU
time, input/output devices that are accessed in exclu-
sive mode, etc. In some cases, for example when the
node is a low-end microcontroller, the service container
can act as a minimal operating system.

Several middleware for embedded systems have been pro-
posed in both the academy and industry. Our proposal is

focused on the network centric low-resources embedded ap-
plications. Most of the existing middleware promotes a dis-
tributed computing paradigm; however our target applica-
tion, UAV avionics, suggests the use of a global data space
approach. In this environment, most communicating com-
ponents are sensors that spread its samples to several con-
trolling components. These components evaluate the data
from several sources and again send control data to many
actuator components.

From the point of view of a distributed application there
are basically three models for information communication:
Point-to-Point, Client-Server and Data Distribution System
(DDS). DDS model arose as a solution of most novel dis-
tributed applications today. It promotes a publish/subscribe
model for sending and receiving data, events, and commands
among the nodes. Nodes that are producing information
publish that information and other nodes can subscribe to
them. The middleware layer takes care of delivering the in-
formation to all subscribers that declare an interest in that
topic. The DDS model has been shown as a very good so-
lution for many-to-many communication frameworks. They
are also very efficient for distributing time-critical informa-
tion.

4. COMMUNICATION PRIMITIVES

For the specific characteristics of a UAV mission, which
may have lots of systems which may interact many-to-many,
the proposed solution is based in the DDS paradigm. Many
DDS frameworks have been already developed, each one con-
tributing with new primitives for such open communication
scenario. In our proposal we implement only the commu-
nication primitives required by a minimalistic distributed
embedded system in order to keep it simple and soft real-
time compliant. The UAV mission and payload control has
been used as a motivating example and guiding application.
This section describes the proposed communication primi-
tives, which have been classified in four types: Variables,
Events, Remote Invocation and File Transmission.

4.1 Variables

As variables, we mean the transmission of structured, and
generally short, information from a service to one or more
additional services of the distributed system. This informa-
tion is sent at regular intervals or each time a substantial
change in its value occurs. This relative caducity of the in-
formation allows to send it in a best-effort way. The system
should be able to tolerate the loss of one or more of these
data transmissions. This communication primitive follows
the publication-subscription paradigm.

A service can provide zero or more variables. Each of
them is composed of a basic type (boolean, integer, float-
ing point real, character string, etc.) or by a composition
(vector, struct or union) of basic types. From the point of
view of the allowed data types in a variable our middleware
is similar to a C-like language. By means of its service con-
tainer, a service announces the availability of its variables.
This way, other services present in the distributed embedded
system can subscribe themselves to one or more of these vari-
ables. From the moment a service subscribes to a variable,
the provider service is responsible for sending it with the
accorded quality of service characteristics. In any case, the
services using this communication primitive should tolerate
the loss of some variable values. If this situation goes on,

the service container will warn of this timeout circumstance
to the affected services.

The provider service can specify the variable validity as
a quality of service parameter. When a variable value is
lost, the subscribed services can receive previous values as
long as they are still valid. In addition, the middleware has
a mechanism that guarantees an initial exact value for the
services that need it. The service container maps this sort
of communication over UDP packets in broadcast or mul-
ticast mode, when the underlying network allows it. This
sort of transmission allows optimizing the bandwidth use
because one packet sent can arrive to multiple nodes in the
distributed embedded system.

4.2 Events

Events are similar to variables in the sense that both work
following the publication-subscription paradigm. The main
difference is that events, opposite to variables, guarantee the
reception of the sent information to all the subscribed ser-
vices. The utility of events is to inform of punctual and im-
portant facts to all the services that care about. Some exam-
ples can be error alarms or warnings, indication of arrival at
specific points of the mission, start of some pre-programmed
actions like taking a photo, etc. Events can contain asso-
ciated information (error codes, current position, etc.) or
have meaning by themselves. When they carry additional
information, data is coded the same way as in the variable
communication primitive. In the case of events, another im-
portant fact that has to be taken into account is latency.
Reservation of time slots in both the processor and the net-
work will ensure this critical constraint. The publisher and
subscriber services interact with each other always using the
service container like in the variable case. Finally, this com-
munication primitive is mapped by the service container over
TCP or over UDP using a mechanism to acknowledge and
resend lost packets. This specific retransmission mechanism
in the application layer is more efficient for event messages
than the generic case provided by the TCP stack.

4.3 Remote invocation

Most middleware implements some way of distributed com-
puting based on the remote procedure call paradigm, for ex-
ample ONC RPC, CORBA or Web Services. However, for
some distributed embedded domains the data publication-
subscription or global data space paradigm seem more ap-
propriate. For this reason we provide a first-class set of
publish-subscribe communication primitives.

Nevertheless, remote invocation is an intuitive way to
model some sort of interactions between services. Some ex-
amples can be the activation and deactivation of actuators,
or calling a service for some form of calculation. Thus, in
addition to variables and events, the services can expose a
set of functions that other services can invoke or call re-
motely. The functions exposed by a service can have an ar-
bitrary number of parameters and optionally a return value.
This communication primitive implements two-way point-
to-point communication between two services; one acts as a
client and the other as server. The client service is always
the initiator of the communication and the server service
location is abstracted by the middleware. However, a dif-
ference from previous communication primitives is that the
client service is not continuously subscribed nor connected
to the server service. Their relation is occasional and delim-

ited by the time the invocation is executed.

During middleware initialization, the services check that
all the functions they need to properly accomplish their task
are provided by one or more services available in the net-
work. Redundancy and fault-tolerance are managed by the
middleware, that can also redirect remote calls to server
services statically or dynamically. Static allocations of the
client-server relationships are useful in critical services where
resources like CPU time or network bandwidth are pre-
allocated. On the other hand, runtime information can be
used to redirect calls to non-critical services to the server
where best performance is expected. For this, load balancing
techniques are used. Upon service failure, if another service
is implementing the same functionality, the middleware will
detect the situation and redirect requests to the redundant
service. This allows the system to continue its mission, al-
though perhaps in a degraded mode. If no service provides
the requested function the middleware will warn the system
to take the programmed emergency procedure.

In some cases, both event and remote invocation primi-
tives can be applied to realize a same functionality. In this
case, in our current implementation, events seem faster than
their function equivalent. This communication primitive is
generally mapped by the service container over TCP, but
UDP plus retransmission at the middleware level can also
be used. This primitive is never mapped over broadcast or
multicast given that is always a point-to-point communica-
tion.

4.4 File-based transmission

In our preliminary prototypes, it has been discovered that
some requirements of the mission are not fulfilled by the
proposed communication primitives. In some cases, there
is the need to transfer with safety continuous media. This
continuous media includes generated photography images,
configuration files or services program code to be uploaded
to the service containers. Some modifications could be done
to the previous primitives to accept this sort of information
transfer. But finally, a specific primitive has been developed
to treat this case, given the huge performance benefits that
can be attained. This primitive is basically used for trans-
ferring long file-structured information from a node to many
others.

This primitive implements a protocol loosely based on
Starburst MFTP [10]. It has three phases: announce, trans-
fer and completion. On the first phase the service publishes
the availability of a resource and the interested services sub-
scribe to it. The file is divided in equally sized chunks and
each participating service know the total size, the number
of chunks and the revision of the file. Revision numbers
identify different versions of the same resource and allow
the services to know when a change happens. During the
transfer phase the publishing service will continuously send
chunks in multicast mode to all the subscribers. Obviously,
the UDP packets can be lost or arrive unordered and then
all the chunks are numbered to receiver being able to recon-
struct the original file. When the publisher service has sent
all the chunks it asks the subscribers for its completion sta-
tus. If a subscriber has all the chunks, it sends an ACK to
the publisher and it removes finished receivers from its sub-
scribers list. In the other case the subscriber sends a NACK
with a compressed list of the chunks it lacks. The publisher
begins a new transfer phase only with the asked chunks and

this process iterates until the subscribers list is empty.
This protocol is designed in a way the phases can overlap
for different subscribers. In fact, when the transfer is on-
going, a new service can subscribe to it and resume at the
current point. At the completion phase it will ask for all the
chunks sent before it was connected to the transfer. Sub-
scribers can also be notified of revision changes to the file
and can decide if they go on with the transfer in progress,
they start a new transfer with the new revision or both.
Obviously, to minimize the overhead, in the case of commu-
nicating services in the same service provider, the transfer is
bypassed by the container as direct access to the resource.

5. APPLICATION EXAMPLE

To check the applicability of this service model, we have
several UAV avionics use cases showing the generic service
reutilization and the flexibility provided by the implemented
communication primitives. Here, we are going to describe a
simple use case but complex enough to use all the primitives.
The proposed scenario in figure 3 is composed by several
services that interact to capture images at specified locations
of the flight and to process them in an on-board FPGA based
system.

process image('image")

A

i Take Photo

Detected

Image store)

store_files(image’)

Legend
Remote
e @0 o, 00
File
Variabl - O—
aiable [0 @ gmiesion

Figure 3: Image processing scenario.

The starting service is the GPS which generates the posi-
tion variable containing the geographic coordinates that are
consumed by the Mission Control and the Ground Station.
The position is a high rate changing data and the consumer
services can lost some values without problem, then the vari-
able primitive for its high efficiency is preferred over the safer
event primitive.

The Ground Station (GS) service represents the station
where the operator checks and controls the UAV operation.
In this simple use case, the ground station basically shows
the subscribed variables and events in a terminal. The Mis-
sion Control (MC) is a service that monitors the status of the
mission and following a provided flight plan orquestrates the
rest of services to autonomously accomplish the mission. In
this case the MC is instructed to take high resolution photos
at specified locations and to process them onboard to detect
specific characteristics on the image. Before arriving the
first location, the MC instructs the camera to prepare itself
to take photos and publish them with the specified name.

The storage service is a generic service that provides stor-
age and retrieval of data by providing access to an inner file
system. It is told to store the photos and the GPS positions
by the MC. At the same time, the video processing module

is told to process the same file resource. All these initial-
ization have remote call semantics, mainly because the MC
consumes the operations provided by the different services.
Later on, the MC will notify the camera with an event each
time the aircraft arrives a position where a photo should be
taken. The multicast file transfer will be then used for effi-
ciently sending the image to the storage and video processing
modules. If the video process detects the pre-programmed
characteristics in the image it can notify the GS and MC.

In this scenario all the services are generic enough to be
reutilized in most of the UAV missions and shows the appli-
cability and usage of all the provided communication prim-
itives.

6. IMPLEMENTATION

In this section we are going to describe briefly some de-
tails of the middleware implementation. Our implementa-
tion follows the PEPt architecture [3] in which presentation,
encoding, protocol and transport subsystems are decoupled
and accept new pluggable subsystems. Presentation pro-
vides the datatypes and APIs available to the service pro-
grammer. Encoding describes the representation of these
data on the wire. Protocol frames the the encoded data
to denote the intent of the message. Protocol subsystem is
also responsible for frame retransmission and other low level
bookeeping tasks. And finally, transport moves the resulting
frames from one node in the network to another.

This subsystem decoupling allows us to test and evaluate
different algorithms and implementations for the same layer
very easily. In figure 4, it is shown the main classes of the
implementation layered on the different PEPt subsystems.

Presentation
[IService [Variable/Event ‘ Call]‘ File]
 C—
- Service -
Encoding Container
ICoder NetSerialization
Code Service
Description
Transport (
Acceptor
|Transport UDPTransport TCPTransport List
Protocol

Figure 4: Class Diagram.

In addition to the PEPt subsystems, our implementation
also have an pluggable scheduler that queues and arranges
event/variable handlers and service calls execution. This
simple approach to scheduling can only support soft real
time, not enough to control applications but adequate for
the applications we are currently focused. In fact, current
scheduler implementation is basically a simple thread pool
with fixed priorities for each named primitive and relaying
in standard system threads.

The current minimalistic prototype is based on Microsoft
C+# and has 36 classes and less than 1500 lines of code. We
are currently doing functional analysis with several avionics
use cases, performance and soft real time compliance will be
tested next. The service model and its communication prim-
itives has demonstrated that are flexible and simple enough

to easily distribute existing UAV applications. For exam-
ple, the telemetry interface with FlightGear simulator has
been done by a person without previous knowledge of the
architecture in only 2 days.

7. CONCLUSIONS

This paper presents a middleware for an UAV avionics
that permits a rapid, efficient and low-cost mission definition
and execution. The paradigm of the presented architecture
is the full distribution of services in the form of net centric
applications. The services are semantic units that behave
as producers of data and as consumers of other data coming
from other services. The localization of the other services
is not important. Data can come from services in the same
physical node or from a physically Ethernet connected node.
The middleware makes transparent the physical distribution
of communications and services. It creates a virtual global
data space based on publication-subscription primitives and
enhances data transfer depending on their semantics.

The presented architecture and middleware are designed
to hide hardware complexity to the applications, being able
to implement a large variety of missions with little recon-
figuration time. The evaluation of the proposal has been
done with the implementation of a prototype solution. The
benefits can be measured in terms of productivity and re-
turn of investment. The development time was shown to
be very short and thus we assume a high productivity for
forthcoming applications that can rely on a model solution.

As a future work we plan to introduce real-time approach
for the critical events and services. For execution schedul-
ing, we plan the introduction of a real time operating system.
At the same time we plan to implement more civil UAV ap-
plications to verify the characteristics of the provided com-
munication tools and concept. Improving efficiency while
ensuring real-time is also a key issue for future versions of
the middleware.

8. ACKNOWLEDGMENTS

This work was supported in part by the Spanish Ministry
of Education (MEC) under Grants TIN2007-63927 and TIN-
2004-07739.

9. REFERENCES

[1] Upnp forum. http://www.upnp.org.

[2] B.S.Doerr and D.C.Sharp. Freeing product line
architectures from execution dependencies. Technical
report, Boeing Report.

[3] H. Carr. PEPt. A minimal RPC architecture. In OTM
2003, Ttaly, Nov 2003.

[4] C.Honvault, M. Roy, P.Gula, J.C.Fabre, G. Lann, and
E.Bornschlegl. Novel generic middleware building
blocks for dependable modular avionics systems.
EDCC 2005, LNCS, 3463:140-153, 2005.

[5] D.C.Schmidt. Middleware for real-time and embedded
systems. Communications of the ACM, pages 4348,
Jun 2002.

[6] G.Edwards, G.Deng, D.C.Schmidt, A.Gorkhale, and
B.Natarajan. Model-driven configuration and
deployment of component middleware
publish /subscribe services. GPCE 2004, LNCS,
3286:337-360, 2004.

[7] G.Jung, J.Hatchiff, and V.P.Ranganath. A correlation
framework for a CORBA component model. FASE
2004, LNCS, 2984:114-159, 2004.

[8] H.Detmold, A.Dick, and K.Falkner. Middleware for
video surveillance networks. In MidSens’06,
Melbourne, 2006.

[9] J.Baker et al. A real-time java virtual machine for
avionics, an experience report. Technical report,
Purdue University, 2006.

[10] K.Robertson, K.Miller, M.White, and A.Tweedly.
Starburst Multicast File Transfer Protocol (MFTP)
Specification. Technical report, Internet Draft,
Internet Engineering Task Force, April 1998.

[11] M.Broy, I.H.Kriiger, and M.Meisinger. A formal model
of services. ACM Transactions on Software
Engineering and Methodology, Feb 2007.

[12] M.Hoosier, M.B.Dwyer, and J.Hatcliff. A case study
in domain-customized model checking for real-time
component software. IsoLA 2004, LNCS,
4313:161-180, 2006.

[13] O.E.Demit, E.Wohlstadter, and S.Tai. An
aspect-oriented approach to bypassing middleware
layers. In ACM AISD’07, Vancouver, 2007.

[14] P.Grace, G.Coulson, G.Blair, B.Porter, and D.Hughes.
Dynamic reconfiguration in sensor middleware. In
ACM MidSens’06, Melbourne, 2006.

[15] P.Zhang, C.M.Sadler, and M.Martonosini. Middleware
for long-term deployment of delay-tolerant sensor
networks. In ACM MidSens’06, Melbourne, Nov 2006.

[16] Venkita Subramonian et al. Fine-grained middleware
composition for the Boeing NEST OEP. In OMG
Workshop on Real-time and Embedded Distributed
Object Systems, July 2002.

[17] W3C. W3c note: Web services architecture.
http://www.w3c.org/TR/ws-arch.

