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ABSTRACT

The use of stochastic textures for the visualization of scalar and
vector fields over surfaces is discussed. Current techniques for
texture synthesis are not suitable, because they do not provide
local control, and are not suited for the design of textures. A

new technique, .YprMnoise, is presented that does provide these

features. Spot noise is synthesized by addition of randomly
weighted and positioned spots. Local control of the texture is

realized by variation of the spot, The spot is a useful primitive
for texture design, because, in general, the relations between
features of the spot and features of the texture are straightfor-
ward. Various examples and applications are shown, spot
noise lends itself well for the synthesis of [exture over curved
surfaces, and is therefore an alternative to solid texturing, The
relations of spot noise with a variety of other techniques, such
as random faults, tittering, sparse convolution, and particle sys-
tems, are discussed. It appears that spot noise provides a new
perspective on those techniques.

CR categories and subject descriptors: 1.3.3 [Computer
Graphics]: Picture/image generation; 1.3.7 [Computer Graph-
ics]: Three Dimensional Graphics and Realism - color, shading,
and texture.

Keywords: texture synthesis, scientific visualization, flow visu-
alization, fractals, particle systems.

1 INTRODUCTION

Scalar and vector tields over surfaces have many applications,
ranging from common scalar functions of two variables, used in
many disciplines, to the distribution of pressure and velocity
over a ship hull or the wings of an airplane. The topic of this

paper is the use of texture, loosely defined as the local variation

in visual properties, for the visualization of fields over surfaces.
Tufte [33] has shown that the use of fixed patterns leads to poor
results. A better result can be expected if the texture is based
on a stochastic, rather than a deterministic model. Several
terms are used for such textures: stochastic textures, random
fields, and noises.
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Applications of stochastic texture in scientific visualization are
rare. Krueger [ 16] has used texture to show the differences
between related data sets. In the context of flow visualization it
has been noted [34, 35, 38] that the simulation of particle con-
vection leads to texture. If many particles are used, the indivi-
dual particles cannot be distinguished any more and clouds,
smoke and other typical textures that are well known in experi-
mental flow visualization are perceived. These applications
show that texture is a useful concept for scientific visualization,
but it is not clear how the proposed techniques should be used
for other applications.

[n this paper a more general approach to the design and syn-
thesis of texture for scientific visualization is presented. In sec-
tion 2 the requirements are drawn up, and current techniques for
texture synthesis are discussed. It appears that the techniques
used for the synthesis of realistic textures do not fulfill these
requirements. In section 3 spot noise is introduced. Its syn-
thesis is based on the principle that the random placement of a
small pattern, the spot, over a surface leads to texture. In sec-
tion 4 it is shown that this technique is very appropriate for the
design of textures, because the relations between the features of
the spot and those of the corresponding texture are straightfor-
ward. In section 5 various applications of spot noise are
presented, for data visualization and for image synthesis. In
section 6 spot noise is compared with existing techniques. and
directions for further research are indicated. Finally. in section
7 conclusions are drawn.

2 TEXTURE FOR DATA VISUALIZATION

2.1 Requirements

Figure I shows a data flow diagram of texture synthesis for data
visualization. The parameter vaiues for the texture synthesis pro-
cess are determined in two steps. First, the data are retrieved
that correspond to the texture cmrdinates; second, these data are
converted into parameter values according to a data mapping
specified by a designer. Tbe term de.sigrrer is used here func-
tionality: it can be an expert in visuai communication, but also a
researcher that wants to visualize his data. With this diagram in
mind, the requirements on texture synthesis can easily be
derived. They- fall into two categories; texture generation and
design.

The synthesis technique has to ailow for non-stationary textures
to express the variation in the data. Further. the model has to
allow for a wide range of textures. The aim of realism is
replaced by the aim of expressiveness: it must b-e possible for
the designer to choose a texture that matches with the nature of
the data, and variations in the data must lead to clear variations
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Fig. 1 Data flow diagram texture synthesis for data visualization

in the texture.

The selection of a suitable data mapping is an iterative design
process. The efficiency of this pmeess depends on several
aspects. Obviously, the synthesis of the texture has to be
efficient. Another way to improve efficiency is to use previews,
simplified versions of the final result, during the design phase
[13]. Finally, the number of iterations can be reduced if the
relation between the specification and the resulting texture is
clear to the designer [36]. The closest relation is one-to-one,
but in order to limit the designer’s work we further require that
the specification should be of a suitable level: instead of draw-
ing the texture himself, the designer must be enabled to specify
the features of the texture and their relation with the data on a
higher level.

Summarizing, a synthesis technique is required for non-
stationary textures that cart be specified in a simple, predictable
way. In section 2.2 an overview is presented of the main
current techniques for texture synthesis. In section 2.3 they are
tested against our requirements.

2.2 Texture synthesis

Stochastic textures are realizations of a statistical model. There
is a general consensus, supported by evidence from perception
research [14], that second-order, or pairwise statistics suffice
for the description of textures that can be discriminated by
human observers. Techniques that use the full second-order
statistics [23, 9] are very general and give impressive results
[9]. However, they are also quite involved and have a brute-
force character.

A convenient simplification is the restriction to so-called Gaus-
sian textures. This simplification is similar to the common
simplification for first-order statistics: if a normal or Gaussian

distribution is assumed, the distribution can be fully described
by its mean and variance. Gaussian textures are described by
their autoeorrelation function CJ (~), which is the correlation of
two random samples of ~ at an interval T. For a one-
dimensional stochastic function ~(r) with zero mean it is
defined as

Cf(r)= <f(r)f(f+T)>,

where triangular brackets denote averages over many samples.
C,(0) equals the variance d of ~. If C’f (T) =0, the function ~

is completely uncorrelated for samples at distance r. For com-
mon stochastic functions, Cf (@ approaches O with increasing ~.

A strongly related technique is spectral modeling, which is
based on the use of power spectra. The power spectrum P, ((o)
of a stochastic function ~(t) is
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Pf (0.)) = #i + lFAto) 12,

where F~(tD) is the Fourier transform of a sample of ~ (f ) with
length T. According to the Wiener-Khintchine relation [3], the
autocorrelation function and the power spectrum provide
equivalent information, because they are a Fourier transform
pai~

The standard approach of spectral modeling is to filter white
noise (with a constant power speett-um) with a transfer function
H(w). Voss [27] has used this technique to generate fractal tex-
tures and terrains: noises with power spectra ~ ~. These noises
are generalizations of Brownian motion (~ = 2), and are called
fractal Brownian motions (tBm) [21, 27]. The first simulations
of fBm were based on considering Brownian motion as the
cumulative displacement of a series of independent jumps or
pulses [21 ]. This technique is generalized to surfaces by using
random faults instead of random jumps.

Foutnier, Fussel, and Carpenter [7] use stochastic subdivision to
generate fractal terrains. Lewis [18] has generalized the sto-
chastic subdivision technique for arbitrary power spectra and
autocorrelation functions.

In [17] a technique is described for the synthesis of textures for
digital painting. These textures are the result of weighted addl-
tions of a displaced, windowed texture sample, where the
weights and displacements are chosen randomly. This process
is equivalent to an out-of-order convolution of the sample with a
sparse, white noise, hence it is named sparse convolution.

Perlin [28] generates solid textures through the composition of
non-linear functions. For stochastic textures he defines the
function Noise (x) as a modeling primitive. This function is
band-limited, statistically invariant under translations (stationary)
and statistically invariant under rotations (isotropic). Fractal
textures are modeled as linear combhations of the scaled noise
function:

Noise (2i x)
f(x)=~ L,

k

In a similar way turbulence, marble and a variety of other
natural textures can be modeled.

2.3 Evaluation

The issue of local variation of texture is not mentioned in most
of the literature. An exception is Lewis [18], who states that
local variations of the texture may be effected by varying the
model parameters or by simple postprocessing techniques, rather
than by incorporating these variations in the original model.
Both approaches are used by Musgrave et al. [24] for the syn-
thesis of eroded terrain. His technique for the initial synthesis
of the fractal terrain is based on Perlin’s: the weights for the
Noise function are functions of the altitude. This works well
for isotropic textures, but the implementation of artisotropic tex-
tures with local variations is less straightforward. For instance,
if we want to visualize a 2-D flow veloeity field v(x) with an
artisotropic texture, such that the dominant direction aligns with
the direction of the flow, a natural sohstion would be:

f(x) = Noise (x - (xv) v).

Here the primitive Noise texture is stretched according to the
magnitude and direction of the vebeity. If v(x) is constant, this
gives the desired result, in most other cases, however, it does
not. Other solutions in the same spirit could be devised, but
they all share the same deficit: local deformations of texture
cannot be modeled by global transformations (scaling etc.) of a
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texture.

The direct spectral approach and the random fault technique are
not suitable for local, spatial control. With the other techniques
it is indeed possible to vary the parameters as a function of
space, but the Iiterature does not make clear how this should be
done to realize a desired effect.

This is related to the next point of our evaluation: the design of
textures. As most authors aim at realism, again this issue is not
mentioned often. The examples given in [28] for the construc-
tion of solid textures are based on more or less simplified
models of physical processes. In [23, 9] the second-order statis-
tics are derived by sampling real-world textures, for the genera-
tion of fractal terrains the power spectrum ~-~ is used as a start-
ing point 121, 7, 27].

Let us therefore consider possible ways for a designer to specify
a texture. For spectral modeling three options are available.
First, a designer can enter a sample of the desired texture, from
which the desired parameters are derived, However, it is not
simple to render a suitable texture by hand. Further, the tauto-
logical character of this solution strongly suggests rejecting it.
Second, the designer could enter an autocorrelation function.
Advantages of the autocorrelation function are that the spatial
domain is more familiar to most people than the spectral
domain, and it directly reflects features such as the scale, period
of oscillation, and directional tendencies. Although this is cer-
tainly true if a given autocorrelation function is analyzed, the
design of an autocomelation function, especially in two dimen-
sions, is far less simple. Another severe problem is further that
not every autocomelation function leads to a realizable texture,
because its Fourier transform, the power spectrum, must be non-
negative. As a third approach, the designer could specify the
power spectrum. In [ 17] it is stated that it is possible to acquire
an intuitive feel for the relation between a painted spectrum and
its corresponding texture. The author of that article could reli-
ably paint spectra to simulate some textures, but this might be
different for an arbitrary designer.

Besides the specification of a standard texture, the designer also
has to specify how the texture has to be varied as a function of
the data, which aggravates the problems of the three discussed
options.

As a conclusion, we can state that no current technique for tex-
ture synthesis provides an easy solution that satisfies our
requirements for data visualization. This can be explained from
the difference between the applications. Traditionally, the focus
is on the synthesis of realistic, stationary textures, whereas for
the application discussed here clarity, ease of design, and local
control are the main requirements. In the next sections, a tex-
ture synthesis technique is described that was developed with
those requirements in mind.

3 SPOT NOISE

3.1 Definition

In this section a texture for data visualization is presented: spoi
noise. Spot noise has strong relations with the techniques dis-
cussed in the previous sections. The specific advantages of spot
noise will emerge in practical applications, discussed in section
4 and 5.

Spot noise is the spatial analogue of shot noise. Shot noise [3]
is a special kind of random function that has many applications
in engineering. It is produced by the successive repetition at
random intervals of independent pulses, If each pulse produces
the protile u, h (f –f, ), the resultant function j’(f) is thus

.f(f)=~a, h(r -r,),

where the values t, of the independent variable (e.g. time) form
a random sequence. The power spectrum of ~(f) is directly
related to the energy spectrum

Sh(to) = Ilf(to)lz

of h(f), where H(tD) is the Fourier transform of h(r), if a, has
zero mean, and if on average there are v repetitions per unit
time, then

P, (0) = 1’< u,% Sh((D)
The spatial analogue also has many applications, for instance in
diffraction theory. For the application discussed here, the pulse
h (x) is considered as a spot that is dropped on the plane, hence
we call the noise produced spot noise. The size of a spt is
limited, and usually small compared to the size of the texture
segment to be synthesized. In analogy with shot noise, spot
noise is defined as

j-(x) =~a, h(x-x, )

where x, are random positions on the plane. If on average there
are \ repetitions per unit area then

P,(k) = v<a,2>Sh(k) ,

where k is the two-dimensional frequency vector.

3.2Synthesis

The last relation of 3.1 is valuable for the synthesis of spot
noise. Itstates that the power spectrum of the texture and the
energy spectrum of the spot are the same, except for a scale fac-
tor. So, realizations of spot noise can be constructed in the fre-
quency domain via the multiplication of the Fourier transfomr
H(k) with a scale factor and addition of a ratrdom phase shift
ak to H(k).

The addition of a random phase shift ak is equivalent to muhi-

‘%. The power spectrum of w (x) isplication with W(k)= e
evenly distributed over all frequencies, so w (x) is white noise.
According to the convolution theorem, multiplication in the fre-
quency domain is equivalent to convolution in the spatial
domain, hence spot noise can also be synthesized via convolu-
tion of h (x) with white noise.

An example of white noise is a set of random values on a grid.
Spot noise can therefore be synthesized through the convolution
of a randomly filled grid with the spet. This method can be
compared to the filtering of a very noisy image with the spot as
the filter kernel, a standard technique in digital image processing
[ 10]. In the natural texturing model [ 151 a similar technique is
used to synthesize texture.

Another example of white noise is a Poisson point process: a set
of randomly scaled delta functions a, 5(x, ), randomly distributed
over the plane. Here we close the circle: the convolution of a
Poisson point process with a spot boils down to dropping s~ts
on the plane, which is the original definition of spot noise.
Random faults [21 ] and sparse convolution [ 17] are based on
the same principle.

Variation of the texture for data visualization can be realized via
variation of the spot. This requires a variable spot h@, x),
whose properties are controlled by a set of parameters p. These
parameters are determined via a data mapping m from the data
d(x) that belong to the texture coordinates x. Spot noise for
data visualization can thus be synthesized by using variable
spots:

~(x)= ~u, h(m(d(x, )), X- X,)

311
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A drawback of this method is that the data to be visualized are 
smeared out. At each point several spots that correspond to 
different data values overlap. This is not a problem if the varia- 
tion in the data is small relative to the size of the spot. Another 
solution is to use an alternative definition for variable spot 
noise: 

fCX) = F”ih(m(d(x))9 x-xi) , 

i.e. the texture at a point x is considered as if it is part of a sta- 
tionary texture constructed with identical spots that have the 
properties that correspond to the data at point x. Another 
interpretation is that the spot is used as a (position dependent) 
filter-kernel for a Poisson point process. A possible implemen- 
tation, though not very efficient for large spots, is via Perlin’s 
approach. The preceding discussion reveals how this can be 
done: not via scaling, but via convolution of Noise : 

f(x,y) = ~$z(m@f(x)), x +i, Y +j)Noise(x +i,r+j) . 

As a final remark, the variance of spot noise is given by 

d = v <a;*>jjhz(x)dx 

Note that in general the variance of ai has to be adapted as a 
function of Xi if a constant variance of the texture is desired 
with a varying spot. 

4 SPOT AND TEXTURE 

In the preceding section we saw the strong relation between the 
energy spectrum of the spot and the power spectrum of the tex- 
ture, and hence also between their autocorrelation functions. In 
this section the relation between a spot and the resulting texture 
is discussed from a designer’s point of view. Given a simple 
spot, how are its features, such as size and shape, related to 
features of the texture, such as granularity and isotropy ? This 
will be shown with a number of examples, leading to rules of 
thumb that can be used for texture design. In this section all 
examples of textures are stationary, in the next section the use 
of space-variant spots will be discussed. The images in this 
section are made via addition of a random phase shift to the 
Fourier transform of the spot, followed by an inverse Fourier 
transform and normalization. 

4.1 Size 

A disk is the simplest spot that can be used. Figure 2 shows 
three disks with different radii and the corresponding textures. 
The differences in the textures can be explained from their 
power spectra. In figure 3 the power spectrum sine* of the 
one-dimensional equivalent of a disk, the rectangular pulse, is 
shown. For the graphical display of a random function in the 
spatial domain, a finite band in the frequency domain has to be 
selected, because of limitations in resolution. The display of a 
large sample (narrow pulses) comes down to the selection of a 
band in the low frequencies, whereas the display of a small 
sample (wide pulses) is equivalent to selection of a band in the 
high frequencies. Thus, figure 3 shows that narrow pulses lead 
to white noise. For wide pulses, the right flank is dominant. 
This flank falls off with f-*, which is the same as for Brownian 
motion. If the width of the pulse lies between those extrema, 
the corresponding random function is white noise that has been 
passed through a low-pass filter. 

For two-dimensional signals, i.e. textures, a similar result can be 
derived in the frequency domain. However, a derivation in the 
spatial domain is instructive as well. If small spots are used, 
samples at different locations are uncorrelated, and hence the 
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Fig. 2 Different sizes of spot 

result is white noise. Large spots degenerate to random faults, 
so the result will be fractal. Here the texture is shown as a 
variation in the intensity, which gives a cloud-like result. For 
intermediate size spots these two effects occur simultaneously. 
At a large scale the result is white noise, while details have a 
fractal character. 

i 1 white ,< 1owq-s =: Brown 

log 0 

Fig. 3 Power spectrum rectangular pulse 

For the autocorrelation function of two-level spots (h(x) = 1 or 
0), a simple geometric interpretation can be used: the normal- 
ized autocorrelation K(A) (= C(A) 10~) is equal to the area of 
the overlap of a spot h(x) and a displaced spot h (x-A), divided 
by the area of the spot (fig. 4). In general, if two spots do not 
overlap for a displacement A, then the texture is uncorrelated for 
samples at a distance A. Therefore, the size of the spot deter- 
mines the maximum correlation length or the granularity of the 
texture. 

AA 

A i!Y K-A) = area(AOAAA) area(A 0) 

A0 

Fig. 4 Autocorrelation function for two-level spots 



@ Comwter GraDhics, Volume 25. Number 4. Julv 1991 

4.2 Edges 

We saw that a sharp edge, i.e. a discontinuity at the transition 
from the interior to the exterior of the spot, leads to a fractal 
texture. Figure 5 shows the effect of the use of different types 
of transitions from the interior to the exterior of the spot. 
Besides a disk, a’ cone-shaped spot with a triangular cross- 
section and a spot with a Gaussian cross-section are used. The 
last two spots act as steep low-pass filters. The right flank of 
the power spectrum of a triangular filter falls off with fA, the 
power spectrum of a Gaussian filter falls off exponentially. The 
visual effect is that details below the scale of the spot are 
removed: a smooth texture is generated. Whereas in image pro- 
cessing usually such filters are preferred above the box or pulse 
filter, for texture synthesis this is a matter of taste. The smooth 
textures appear out of focus, whereas textures that result from 
spots with sharp edges affirm the theorem f ructal = natural. 

The difference between the use of a triangular and a Gaussian 
cross-section is small, whereas the difference between the 
smooth and the fractal texture is large. Textures between 
smooth and fractal can be synthesized via the use of spots with 
a trapezoidal cross-section. 

Fig. 5 (a) Disk, (b) cone, (c) Gaussian spot 

4.3 Direction 

The textures presented so far were invariant under rotation, i.e. 
isotropic. A texture will be isotropic if the spot is rotationally 
symmetric, or if each spot is, besides randomly positioned, also 
randomly rotated. The power spectrum P,(k) of the noise f(x) 
that results from the use of a randomly rotated spot h (x , y ) with 
energy spectrum Sh (k ,, k2) is given by 

2n 

1 Pf(k) = v <a;>- 
2x:lkl 

&(Iklcosa, Iklsincc)da. 

If no random rotation is used, the use of straight lines in a spot 
always leads to an anisotropic texture. 

A simple way to generate an anisotropic texture is to scale a 
spot non-proportionally. Figure 6 shows the effect of the use of 
ellipses as opposed to disks. For elongated ellipses the texture 
has a fractal character in the direction of the longest axis, and a 
white noise character in the direction of the shortest axis. The 
effect of scaling the spot is not simply scaling the texture. 
Instead the texture is stretched locally, the large details in the 
texture remain at the same place. 

Fig. 6 Non-proportional scaling 

4.4 Patterns 

Many textures exhibit patterns, i.e. structures are repeated over 
some distance. Such patterns show up in the autocorrelation 
function as oscillations with a decreasing magnitude. Figure 7 
shows that if the spot exhibits some regular pattern, the result- 
ing texture also does. A spot composed of concentric circles 
leads to an isotropic, enamel-like texture, the use of a small 
sample of a grid as a spot leads to a textile-like texture. The 
corresponding autocorrelation functions are easily imaginable if 
the rule shown in fig. 4 is used. 

Such spots have three levels of detail; each level corresponds to 
one feature of the corresponding texture. The global size of the 
spot determines the scale of the white noise component, the 
width and spacing of the lines determine the width and spacing 
of the pattern, and the sharp edges lead to fractal detail. 

Fig. 7 Regular patterns 

4.5 Shape 

The preceding examples show that the shape of the spot 
strongly influences the texture. Some further examples are 
shown in fig. 8. The use of a square leads to a texture with 
strong horizontal and vertical patterns (fig. 8a). If the square is 
distorted into a diamond, the result is easily predictable (fig. 
8b). The relation between the shape and the texture is not 
always so obvious. Fig. 8c shows a spot with the shape of a 
quarter circle. The resulting texture bears a strong resemblance 
with a top-view of a planet surface or lunar landscape (without 
craters). 
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Fig. 8 Different  shapes

4.6 Summary
In this section we have  shown  that  the spot is a useful  primitive
for the design of stationary textures. In general, the ‘relation
between features of the spot and features of the texture is
straightforward:  size - granularity,  edge - detail, rotational
symmetry - isotropy, etc. Further, the spot is also of a suit-
able high  level. Spots can,  for example, be drawn with  a simple
drawing package. The  amount  of input is often minimal,
because for practical  applications  often simple spots suffice.

5 APPLICATIONS

5.1 Scalar  and vector  fields
In this section various applications  of variable  spot noise are
presented. For most images in this section, ellipses  are used as
spots. These ellipses  are rendered via scan-conversion.

Figure 9 shows  four examples of the use of texture for the visu-
alization  of scalar and vector fields. The  colors indicate the
value of a scalar field. A scale from saturated blue (negative)
via grey to saturated red (positive)  is used. The  field was con-
structed by a ELspline approximation  of randomly chosen values
on a rectangular  grid. In fig. 9a the variance of the texture indi-
cates the absolute value. The  type of texture indicates  the sign:
for negative values a x-shaped  spot was used,  for positive
values a +-shaped spot. In fig. 9b the gradients were
emphasized  by scaling the variance of the texture proportional
to the norm  of the gradient. For fig. 9c the scalar field was
interpreted as a stream function W(X ,y ), i.e.:

v, = $ , and 11~  = *

The flow velocity  v was visualized  by using  an ellipse  shaped
spot with  the long axis proportional  to 1~1, the short axis pro-
portional to I/ /VI, and the direction of the longest axis aligned
with  the direction of the flow. For fig. 9d the same  principle
was used,  but here  the scalar field was interpreted as a potential
p(x) y ) that defines a vector field V(X  , y ), i.e.:

v, = i!fE and vY = ik
ax ’ aY

In these examples texture was used to emphasize some aspect or
interpretation of the field in addition to the information provided
by the color. The  power of the textures can be judged  from
figure  IO, where  color is used to visualize  a different  and unre-
lated scalar field. For this example the stream  function texture
(fig. 1Oc)  is the strongest, the global structure of the texture can
easily be discerned in spite of the unrelated colors. With the
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Fig. 9 Color denotes  a scalar field. Texture is used to visualize attri-
butes and interpretations of this field: (a) value. (b) gradients,  (c)
flow, (d) velocity potential.

Fig. 10 Same texture as in fig. 9, color denotes  an unrelated field.

other textures this is harder, but at least  they still enable the
observer  to evaluate the value of the function depicted by the
texture locally.

5.2 Flow  visualization
The  preceding  example shows  how spot noise can be used for
capturing flow in still images. However, animations give a
better impression of dynamic phenomena such as flow. In [38]
a technique is presented for the animation of stationary two-
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Fig. I1 Mapping of isotropic texture leads to distortion

dimensional  flow, based on particles  and cyclic display. The
particles used were  point-shaped and no motion blur was
applied,  so that  the flow was visualized  as a noisy, moving tex-
ture. The  same  technique  can easily be used with spot noise.
Hereto we redefine  the spots  as moving particles. During  a life-
time T, we let each  spot glow up and decay, while it moves
over a small distance. Besides a random position and a random
maximal intensity, each  spot also has a random time at which  it
starts its cycle.

Various shapes  of spots can be used. The  use of circles gives
isotropic textures. If ellipses  are used,  two options are open.  If
the longest axis of the ellipse aligns with the direction of the
flow, the visual effect is that of motion blurred particles.  If the
longest axis of the ellipse  is perpendicular  to the direction  of the
flow, the visual effect is that  of short-crested  waves, perpendicu-
lar to the flow direction.

5.3 Texture  mapping  on parametric  surfaces
The preceding examples were  two-dimensional.  However, in
many cases the data have  to be visualized  over curved surfaces
in space. Typical applications  are found  in computational  fluid
dynamics. This requires the mapping of a texture on a surface.
Texture  mapping was introduced in 1974  by Catmull [2], and
since then  many  techniques and refinements have been
developed. For an overview see [ 121.
Figure I I shows  a problem of standard texture mapping tech-
niques:  the isotropic texture (yellow)  is distorted  when  it is
mapped onto a parametric  surface (orange). The  solid texturing
technique  [25, 281 does not suffer from these artifacts. In sec-
tion 3.2 we have  shown  how spot noise can be generated with
this method.  This technique has some disadvantages  however.
The proposed convolution is not very efficient, and for anima-
tions the texture has to be calculated  anew  for each frame.

An alternative solution, similar  to the one proposed in [20], is
shown  in tigure 12. Here the texture is distorted  in texture
space (u,\ ), so that  when  it is mapped onto the parametric  sur-
face, the resulting texture is stationary in object space (s ,y ,: ).
Spot noise lends  itself  very well to this  kind of local distortions.

Fig. I2 Mapping of distorted texture

Figure I3 shows  a practical application  of the techniques
presented : the visualization  of the flow around  a ship calculated
by the DAWSON package of MARIN 1291.  The colors and the
white contour lines indicate the hydrodynamic  pressure on the
ship hull: red denotes high,  and blue denotes low pressure. The
shape of the ship is visualized  via shading and black equidistant
cross-section  lines. The  technique used for rendering the lines
with constant width  in object space is described in 137).  The
flow velocity  on the hull is visualized  via spot noise. Ellipses
were  used as spots, with the longest axis aligned with the flow
direction, Texture distortion was used to compensate for the
distortion due to the parametrization  of the surface.

5.4 Image synthesis
Figure 14 shows  an application  that  lies in between scientific
visualization  and realistic  image synthesis. It is a frame of an
animation of the dynamics of a ship in sea waves.  For the
modeling of the dynamics  of large ships, only waves with  a
long wavelength (50 m and more) are of interest [4). Further,
the steepness of such waves  is small, compared to shorter
waves.  The straightforward  visualization  of the results of those
simulations  with  flat shading gives disappointing  results. First,
the shape  of the sea surface is hard to grasp, and second, the
sea surface does not look realistic,  which  is important when  the
results are presented to principals.  Both  problems could be
solved with  spot noise.  Here  bump mapping [I] was used for
mapping the texture onto the surface. The  amplitude of the
spots was varied via a tent  function  of time to obtain a turbulent
sea surface.  A risk of polishing scientific results in this way, is
that it can add false information. Therefore, the position of the
spots was fixed, and the size of the spots was chosen such  that
the texture does not interfere with  the results of the simulation.

For the rendering of waves, many  techniques have  been  pro-
posed that  are more accurate and more elaborate  122,  8, 261.
The  simple technique  used here,  however, serves its purpose in
the sense  that  a fairly realistic  result is achieved, and that  the
shape  of the waves is presented more  clearly.
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Fig. 13 Visualization  of velocity  and pressure  on ship hull. Texture  indicates
flow  velocity,  white contour  lines and color indicate pressure,  black lines
are cross-section  lines. Courtesy  data:  H.C. Raven.  MARIN

Figure 15 shows  an application  of space-variant  spot noise that
is not  related to scientific visualization.  First, a low-resolution
letter was drawn with a painting package. Next,  a height field
was constructed by approximation  of the values in the bitmap
with a B-spline surface. Spot noise was used to give the
impression of distorted material. The texture was generated
with  the same  technique as used for fig. 9c, and bump mapping
was used for mapping the texture onto the surface.

The  use of texture in image synthesis  Leads to much  more realis-
tic images, compared to the use of uniform surfaces without
detail. Images such  as fig. 15 suggest that this statement can be
transposed: local variation in texture, as opposed to uniform tex-
ture,  can lead to even  more realistic  results.

6 DISCUSSION

6.1 Relations  with  other work
Throughout this paper, several relations of spot noise with  other
techniques were mentioned. Here they are discussed  in order.

First, spots can be viewed as degenerated  random faults. A
disadvantage  of the use of random faults is its poor efficiency.
If smaller  shapes are used,  this disadvantage  disappears,  but  also
the fractal property at all scales disappears.  However, textures
do not necessarily  have to be fractal to be useful  and interesting.

Second, spots can be viewed as jilter  kernels that are applied to
white noise. A good example  is fig. 8 in (51,  where  the effect

Fig. 14 Visualization  of ship dynamics
Courtesy  data:  R. Dollinga. MARIN

Fig. 15 P.
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of an adaptive filter width on white noise is shown in the con-
text of stochastic sampling. For such applications, the aim is
removal of high frequency noise, so the filter kernels are chosen
from a standard set of rotationally symmetric filter kernels like
the tent, the Gaussian, and the squared cosine. The observation
that the use of a banana-shaped filter leads to lunar landscapes
has not yet been mentioned in image processing literature,

Third, spot noise synthesis can be considered as sparse ctrnvo/u-
tion. In contmst to using a texture sample [17], however, a spot
is used. i.e. a simple geometric pattern. The examples in sec-
tion 4 show that such a simple pattern is easier to use for tex-
ture design than the autocorrelation function and the power
spectrum,

Fourth, spots can be viewed as purricles, or brush strokes, and
spot noise as the result of particle systems [30, 31, 32], or
abstract image representations [11 ]. Although it has been noted
before that the use of many overlapping particles leads to tex-
ture, this has not yet been analyzed in the frequency domain.

Fifth, spot noise can be viewed as an application of Perlin’s
solid fe.!-turing technique [28]. Perlin typically uses scaling of
Noi.w to achieve certain effects, here it has been shown that for
controlled, local variations convolution has to be used. Another
relation between the concepts discussed here and Noise can be
found in [ 19]. Here sparse convolution is used, i.e. convolution
of a filter kernel with a Poisson point process, for the imple-
mentation of Noise itself.

We conclude from the preceding discussion that spot noise can

be considered as J new concept that provides a new perspective
on a series of so far unrelated techniques, and that provides an
elegant basis for their analysis.

6.2Texture for data visualization

The application aimed at for spot noise was texture synthesis for
data visualization. We therefore test spot noise here against the
requirements of section 2. Spot noise does allow easy local con-
trol. and a wide variety of textures can be synthesized. The
specification of a texture by the designer requires few inputs,
and in most cases the relation between his input and the result-
ing texture is straightforward. The synthesis process is reason-
ably efticient. Previews can easily be generated by using few
spots, so that the separate spots can be distinguished. For
images such M tig. 13. the use of previews, where the object of
interest is covered with iconic representations of the texture, is
very useful to establish the data mapping from velocity to spot.

Another point is whether the use of texture for data visualization
itself is a useful concept. The use of texture means that resolu-
tion is sacrificed, i.e. the largest scale of the texture has to be
smaller than the scale of variation in the data. However, in
contrast to the use of color alone, it does allow the display of
vector fields, and has more degrees of freedom. Further, the
examples for flow) visualization show that the resulting images
are suggestive. if not natural and realistic. Thus, texture is prob-
ably more suited for global and qualitative visualization of data
than for detailed and quantitative analysis, and it is more suited
for external presentations than for regular use by researchers.

Spot noise was used here in its simplest form: straightforward
mapping of intensity values. Several techniques can be used to
enhance the results. The mapping of the data to the parameters
of the texture used here was continuous, an alternative is to use
discrete bands or bins. Non-linear transformations of the inten-
sity values of the texture can be applied to achieve special
effects. Examples are squaring the value of texture, clamping,
and the use of the value of the texture as an index in a color
ttible. Finally, besides intensity, also the hue and saturation of

the spots can be varied as a function of the da(a.

6.3 Further work

An approach to gain more insight in the relation between the
shape of the spot and the resulting texture. is to attempt to
derive spots from sampled real-world textures. This step is the
inverse of that from spot to texture. A spot h (x) has to be con-
structed such that its energy spectrum is the same as the power
spectrum of the texture, and such that it corresponds to the
notion of the spot used here, i.e. satisfies some criterion such as
minimal size or minimal variance.

If such a technique can be developed, the application of the spot
might expand from texture design to texture analysis. h is an
open question whether such derived spots provide additional
insight above the autocomelation function and the power spec-
trum.

7 CONCLUSIONS

— Texture is a useful visual primitive for data visualization;

— Spot noise satisfies the requirements for texture for data
visualization: efficient synthesis with local control, and ease
of design:

— Spot noise is an alternative to solid texturing for the syn-
thesis of stochastic textures over curved surfaces;

— Spot noise provides a new perspective on a series of tech-
niques: random faults, filtering, sparse convolution, particle
systems, and solid texturing:

— Spot noise is a hot noise.
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