skip to main content
10.1145/1179352.1142005acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article

Locally adapted hierarchical basis preconditioning

Published:01 July 2006Publication History

ABSTRACT

This paper develops locally adapted hierarchical basis functions for effectively preconditioning large optimization problems that arise in computer graphics applications such as tone mapping, gradient-domain blending, colorization, and scattered data interpolation. By looking at the local structure of the coefficient matrix and performing a recursive set of variable eliminations, combined with a simplification of the resulting coarse level problems, we obtain bases better suited for problems with inhomogeneous (spatially varying) data, smoothness, and boundary constraints. Our approach removes the need to heuristically adjust the optimal number of preconditioning levels, significantly outperforms previously proposed approaches, and also maps cleanly onto data-parallel architectures such as modern GPUs.

Skip Supplemental Material Section

Supplemental Material

p1135-szeliski-high.mov

mov

51.9 MB

p1135-szeliski-low.mov

mov

19.2 MB

References

  1. Agarwala, A., et al. 2004. Interactive digital photomontage. ACM Transactions on Graphics 23, 3 (August), 292--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bathe, K.-J., and Wilson, E. L. 1976. Numerical Methods in Finite Element Analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.Google ScholarGoogle Scholar
  3. Bolz, J., et al. 2003. Sparse matrix solvers on the GPU: Conjugate gradients and multigrid. ACM Transactions on Graphics 22, 3 (July), 917--924. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Brand, C. W. 1992. An incomplete factorization preconditioning using repeated red-black ordering. Numer. Math. 61, 433--454.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Briggs, W. L., Henson, V. E., and McCormick, S. F. 2000. A Multigrid Tutorial, second ed. Society for Industrial and Applied Mathematics, Philadelphia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ciarlet Jr., P. 1994. Repeated red-black ordering: a new approach. Numerical Algorithms 7, 295--324.Google ScholarGoogle ScholarCross RefCross Ref
  7. Crowley, J. L., and Stern, R. M. 1984. Fast computation of the difference of low-pass transform. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 2 (March), 212--222.Google ScholarGoogle Scholar
  8. Duff, I. S., Erisman, A. M., and Reid, J. K. 1986. Direct Methods for Sparse Matrices. Clarendon Press, Oxford. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fattal, R., Lischinski, D., and Werman, M. 2002. Gradient domain high dynamic range compression. ACM Transactions on Graphics (TOG) 21, 3, 249--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Feilner, M., et al. 2005. An orthogonal family of quincunx wavelets with continuously adjustable order. IEEE Transactions on Image Processing 14, 4 (April), 499--520. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Golub, G., and Van Loan, C. F. 1996. Matrix Computation, third edition. The John Hopkins University Press, Baltimore and London. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gortler, S. J., and Cohen, M. F. 1995. Hierarchical and variational geometric modeling with wavelets. In Symposium on Interactive 3D Graphics, 35--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gremban, K. D. 1996. Combinatorial Preconditioners for Sparse, Symmetric, Diagonally Dominant Linear Systems. PhD thesis, Carnegie Mellon University. CMU-CS-96-123.Google ScholarGoogle Scholar
  14. Kobbelt, L., and Schröder, P. 1998. A multiresolution framework for variational subdivision. ACM Transactions on Graphics 17, 4 (October), 209--237. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Lai, S.-H., and Vemuri, B. C. 1997. Physically based adaptive preconditioning for early vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 6 (June), 594--607. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Levin, A., Lischinski, D., and Weiss, Y. 2004. Colorization using optimization. ACM Transactions on Graphics 23, 3 (August), 689--694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Levin, A., Zomet, A., Peleg, S., and Weiss, Y. 2004. Seamless image stitching in the gradient domain. In Eighth European Conference on Computer Vision (ECCV 2004), Springer-Verlag, Prague, vol. IV, 377--389.Google ScholarGoogle Scholar
  18. Lischinski, D., Farbman, Z., Uytendaelle, M., and Szeliski, R. 2006. Locally adapted hierarchical basis preconditioning. ACM Transactions on Graphics 25, 3 (August). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Notay, Y., and Amar, Z. O. 1997. A nearly optimal preconditioning based on recursive red-black ordering. Numerical Linear Alg. Appl. 4, 369--391.Google ScholarGoogle ScholarCross RefCross Ref
  20. Pentland, A. P. 1994. Interpolation using wavelet bases. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 4 (April), 410--414. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Pérez, P., Gangnet, M., and Blake, A. 2003. Poisson image editing. ACM Transactions on Graphics 22, 3 (July), 313--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Saad, Y. 2003. Iterative Methods for Sparse Linear Systems, second ed. SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Schröder, P., and Sweldens, W. 1995. Spherical wavelets: Efficiently representing functions on the sphere. In Proceedings of SIGGRAPH 95, Computer Graphics Proceedings, Annual Conference Series, 161--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Sweldens, W. 1997. The lifting scheme: A construction of second generation wavelets. SIAM J. Math. Anal. 29, 2, 511--546. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Szeliski, R. 1990. Fast surface interpolation using hierarchical basis functions. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 6 (June), 513--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Szeliski, R. 2006. Locally adapted hierarchical basis preconditioning. Tech. Rep. MSR-TR-2006-38, Microsoft Research, May.Google ScholarGoogle Scholar
  27. Terzopoulos, D., and Witkin, A. 1988. Physically-based models with rigid and deformable components. IEEE Computer Graphics and Applications 8, 6, 41--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Terzopoulos, D. 1983. Multilevel computational processes for visual surface reconstruction. Computer Vision, Graphics, and Image Processing 24, 52--96.Google ScholarGoogle ScholarCross RefCross Ref
  29. Terzopoulos, D. 1986. Regularization of inverse visual problems involving discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8, 4 (July), 413--424. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Yaou, M.-H., and Chang, W.-T. 1994. Fast surface interpolation using multiresolution wavelets. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 7 (July), 673--689. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Yserentant, H. 1986. On the multi-level splitting of finite element spaces. Numerische Mathematik 49, 379--412. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Zhang, L., et al. 2002. Single view modeling of free-form scenes. Journal of Visualization and Computer Animation 13, 4, 225--235.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Locally adapted hierarchical basis preconditioning

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SIGGRAPH '06: ACM SIGGRAPH 2006 Papers
          July 2006
          742 pages
          ISBN:1595933646
          DOI:10.1145/1179352

          Copyright © 2006 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2006

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • Article

          Acceptance Rates

          SIGGRAPH '06 Paper Acceptance Rate86of474submissions,18%Overall Acceptance Rate1,822of8,601submissions,21%

          Upcoming Conference

          SIGGRAPH '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader