Scalable Component Abstractions

Martin Odersky
EPFL
CH-1015 Lausanne

martin.odersky@epfl.ch

ABSTRACT

We identify three programming language abstractions for
the construction of reusable components: abstract type
members, explicit selftypes, and modular mixin composi-
tion. Together, these abstractions enable us to transform
an arbitrary assembly of static program parts with hard ref-
erences between them into a system of reusable components.
The transformation maintains the structure of the original
system. We demonstrate this approach in two case studies,
a subject/observer framework and a compiler front-end.

Categories and Subject Descriptors

D.3.3 [Programming Languages|: Language constructs
and features — Classes and objects; inheritance; modules;
packages; polymorphism; recursion.

General Terms

Languages

Keywords

Components, classes, abstract types, mixins, Scala.

1. INTRODUCTION

True component systems have been an elusive goal of
the software industry. Ideally, software should be assem-
bled from libraries of pre-written components, just as hard-
ware is assembled from pre-fabricated chips or pre-defined
integrated circuits. In reality, large parts of software ap-
plications are often written “from scratch,” so that software
production is still more a craft than an industry.

Components in this sense are simply program parts which
are used in some way by larger parts or whole applications.
Components can take many forms; they can be modules,
classes, libraries, frameworks, processes, or web services.
Their size might range from a couple of lines to hundreds of
thousands of lines. They might be linked with other compo-
nents by a variety of mechanisms, such as aggregation, pa-
rameterization, inheritance, remote invocation, or message

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
OOPSLA'050ctober 16-20, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-031-0/05/0010 ...$5.00.

Matthias Zenger
Google Switzerland GmbH
Freigutstrasse 12
CH-8002 Ziirich

zenger@google.com

passing.

An important requirement for components is that they are
reusable; that is, that they should be applicable in contexts
other than the one in which they have been developed. Gen-
erally, one requires that component reuse should be possible
without modifiying a component’s source code. Such mod-
ifications are undesirable because they have a tendency to
create versioning problems. For instance, a version conflict
might arise between an adaptation of a component in some
client application and a newer version of the original compo-
nent. Often, one goes even further in requiring that compo-
nents are distributed and deployed only in binary form [43].

To enable safe reuse, a component needs to have interfaces
for provided as well as for required services through which
interactions with other components occur. To enable flexible
reuse in new contexts, a component should also minimize
“hard links” to specific other components which it requires
for its functioning.

We argue that, at least to some extent, the lack of progress
in component software is due to shortcomings in the pro-
gramming languages used to define and integrate compo-
nents. Most existing languages offer only limited support
for component abstraction and composition. This holds in
particular for statically typed languages such as Java [16]
and C# [9] in which much of today’s component software
is written. While these languages offer some support for at-
taching interfaces describing the provided services of a com-
ponent, they lack the capability to abstract over the services
that are required. Consequently, most software modules are
written with hard references to required modules. It is then
not possible to reuse a module in a new context that refines
or refactors some of those required modules.

Ideally, it should be possible to lift an arbitrary system of
software components with static data and hard references,
resulting in a system with the same structure, but with nei-
ther static data nor hard references. The result of such a
lifting should create components that are first-class values.
We have identified three programming language abstractions
that enable such liftings.

Abstract type members provide a flexible way to abstract
over concrete types of components. Abstract types
can hide information about internals of a component,
similar to their use in SML signatures. In an object-
oriented framework where classes can be extended
by inheritance, they may also be used as a flexible
means of parameterization (often called family poly-
morphism [11]).

Selftype annotations allow one to attach a programmer-
defined type to this. This turns out to be a convenient
way to express required services of a component at the
level where it connects with other components.

Modular mixin composition provides a flexible way to com-
pose components and component types. Unlike func-
tor applications, mixin compositions can establish re-
cursive references between cooperating components.
No explicit wiring between provided and required ser-
vices is needed. Services are modelled as component
members. Provided and required services are matched
by name and therefore do not have to be associated
explicitly by hand.

All three abstractions have their theoretical foundation in
the vObj calculus [35]. They have been defined and im-
plemented in the programming language Scala. We have
used them extensively in a component-oriented rewrite of
the Scala compiler, with encouraging results.

The three abstractions are scalable, in the sense that they
can describe very small as well as very large components.
Scalability is ensured by the principle that the result of a
composition should have the same fundamental properties
as its constituents. In our case, components correspond to
classes, and the result of a component composition is always
a class again, which might have abstract members and a self-
type annotation, and which might be composed with other
classes using mixin composition. Classes on every level can
create objects (also called “runtime components”) which are
first-class values, and therefore are freely configurable.

Related work

The concept of functor [27, 17, 24] in the module systems
of SML [17] and OCaml [24], provides a way to abstract
over required services in a statically type-checked setting. It
represents an important step towards true component soft-
ware. However, functors still pose severe restrictions when it
comes to structuring components. Recursive references be-
tween separately compiled components are not allowed and
inheritance with dynamic binding is not available.

ML modules, as well as other component formalisms [1,
30, 42, 51] introduce separate layers that distinguish be-
tween components and their constituents. This approach
might have some advantages in that each formalism can be
tailored to its specific needs, and that programmers receive
good syntactic guidance. But it limits scalability of compo-
nent systems. After all, what is a complicated system on one
level might be a simple element on the next level of scale.
For instance, the Scala compiler itself is certainly a non-
trivial system, but it is treated simply as an object when
used as a plugin for the Eclipse [33] programming environ-
ment. Furthermore, different instantiations of the compiler
might exist simultaneously at runtime. For example, one
instantiation might do a project rebuild, while another one
might do a syntax check of a currently edited source file.
Those instantiations of the compiler should have no shared
state, except for the Eclipse runtime environment and the
global file system. In a system where the results of a compo-
sition are not objects or classes, this is very hard to achieve.

Scala’s aim to provide advanced constructs for the ab-
straction and composition of components is shared by sev-
eral other research efforts. From Beta [28] comes the idea

that everything should be nestable, including classes. To
address the problem of expressing nested structures that
span several source files, Beta provides a “fragment sys-
tem” as a mechanism for weaving programs, which is out-
side the language proper. This is similar to what is done in
aspect-oriented programming (indeed, the fragment system
has been used to emulate AOP [23]).

Abstract types in Scala have close resemblances to ab-
stract types of signatures in the module systems of SML and
OCaml, generalizing them to a context of first-class compo-
nents. Abstract types are also very similar to the virtual
types [29] of the Beta and gbeta languages. In fact, virtual
types in Beta can be modelled precisely in Scala by a com-
bination of abstract types and selftype annotations. Virtual
types as found in gbeta are more powerful than either Scala’s
or Beta’s constructions, since they can be inherited as su-
perclasses. This opens up possibilities for advanced forms of
class hierarchy reuse [12], but it makes it very hard to check
for accidental and incompatible overrides. Closely related
are also the delegation layers of Caesar [38, 31|, FamilyJ’s
virtual classes [48] and the work on nested inheritance for
Java [32].

Scala’s design of mixins comes from object-oriented linear
mixins [3], but defines mixin composition in a symmetric
way, similar to what is found in mixin modules [8, 18] or
traits [41]. Jiazzi [30] is an extension of Java that adds a
module mechanism based on units [15], a powerful form of
parametrized modules. Jiazzi supports extensibility idioms
similar to Scala, such as the ability to implement mixins.
Jiazzi is built on top of Java, but its module language is
not integrated with Java and therefore is used more like a
separate language for linking Java code.

OCaml [25] and Moby [13] are both languages that
combine functional and object-oriented programming using
static typing. Unlike Scala, these two languages start with
a rich functional language including a sophisticated module
system and then build on these a comparatively lightweight
mechanism for classes.

The only close analogue to selftype annotations in Scala
is found in OCaml, where the type of self is an extensible
record type which is explicitly given or inferred. This gives
OCaml considerable flexibility in modelling examples that
are otherwise hard to express in statically typed languages.
But the context in which selftypes are used is different in
both languages. Instead of subtyping, OCaml uses a system
of parametric polymorhism with extensible records. The ob-
ject system and module systems in OCaml are kept separate.
Since selftypes are found only in the object system, they play
a lesser role in component abstraction than in Scala.

The rest of this paper is structured as follows. Section 2
introduces Scala’s programming constructs for component
abstraction and composition. Section 3 shows how these
constructs are applied in a type-safe subject/observer frame-
work. Section 4 discusses a larger case study where the Scala
compiler itself was transformed into a system with reusable
components. Section 5 discusses lessons learned from the
case studies. Section 6 concludes.

2. CONSTRUCTS FOR COMPONENT AB-
STRACTION AND COMPOSITION

This section introduces the language constructs of Scala
insofar as they are necessary to understand the cases stud-

scala.Any

<—— Subtype

\g

scala.AnyVal

scala.AnyRef
(java.lang.Object)

scala.ScalaObject

scala.lterable

java.lang.String

scala.Symbol
.. (other Java classes).. .

T

. scala.Ordered
scala.List

scala.Double
/ ’
[scala.Unit
\
N
~ -~
scala.Float scala.Boolean
[
\
\
~ ~
scala.Long scala.Char
’
| T scala.Seq
\ !
N /s
~_ ~
scala.Int —_——Tt——"
s
[
\
N
N
scala.Short
[
\
N ~
= scala.Byte

<\\‘\

... (other Scala classes). ..

N/

scala.AllRef

[

scal

a.All

Figure 1: Standard Scala classes.

ies that follow. Scala fuses object-oriented and functional
programming in a statically typed language. Conceptually,
it builds on a Java-like core, even though its syntax differs.
To this foundation, several extensions are added.

From the object-oriented tradition comes a uniform object
model, where every value is an object and every operation
is a method invocation. From the functional tradition come
the ideas that functions are first-class values, and that some
objects can be decomposed using pattern matching. Both
traditions are merged in the conception of a novel type sys-
tem, where classes can be nested, classes can be aggregated
using mixin composition, and where types are class members
which can be either concrete or abstract.

Scala provides full interoperability with Java. Its pro-
grams are compiled to JVM bytecodes, with the .NET CLR
as an alternative implementation. Figure 1 shows how prim-
itive types and classes of the host environment are integrated
in Scala’s class graph. At the top of this graph is class Any,
which has two subclasses: Class AnyVal, from which all value
types are derived and class AnyRef, from which all reference
types are derived. The latter is identified with the root class
of the host environment (java.lang.Object for the JVM or
System.Object for the CLR). At the bottom of the graph are
class All, which has no instances, and class Al1Ref, which
has the null reference as its only instance. Note that value
classes do not have AllRef as a subclass and consequently
do not have null as an instance. This makes it possible to
map value classes in Scala to the primitive types of the host
environment.

Space does not permit us to present Scala in full in this

paper; for this, the reader is referred elsewhere [34]. In this
section we focus on a description of Scala’s language con-
structs that are targeted to component design and compo-
sition. We concentrate our presentation on Scala 2.0, which
differs in some details from previous versions. The descrip-
tion given here is informal. A theory that formalizes Scala’s
key constructs and proves their soundness is provided by
the vObj calculus [35].

2.1 Abstract Type Members

An important issue in component systems is how to ab-
stract from required services. There are two principal forms
of abstraction in programming languages: parameterization
and abstract members. The first form is typical for func-
tional languages, whereas the second form is typically used
in object-oriented languages. Traditionally, Java supports
parameterization for values, and member abstraction for op-
erations. The more recent Java 5.0 with generics supports
parameterization also for types.

Scala supports both styles of abstraction uniformly for
types as well as values. Both types and values can be pa-
rameters, and both can be abstract members. The rest of
this section gives an introduction to object-oriented abstrac-
tion in Scala and reviews at the same time a large part of its
type system. We defer a discussion of functional type ab-
straction (aka generics) to the appendix, because this aspect
of the language is more conventional and not as fundamental
for composition in the large.

To start with an example, the following class defines cells
of values that can be read and written.

abstract class AbsCell {

type T;

val init: T;

private var value: T = init;

def get: T = value;

def set(x: T): unit = { value = x }
}

The AbsCell class defines neither type nor value parameters.
Instead it has an abstract type member T and an abstract
value member init. Instances of that class can be created
by implementing these abstract members with concrete def-
initions in subclasses. The following program shows how to
do this in Scala using an anonymous class.

val cell = new AbsCell { type T = int; val init =1 }
cell.set(cell.get * 2)

The type of value cell is AbsCell { type T = int }.
Here, the class type AbsCell is augmented by the re-
finement { type T = int }. This makes the type alias
cell.T = int known to code accessing the cell wvalue.
Therefore, operations specific to type T are legal, e.g.
cell.set(cell.get * 2).

Path-dependent types

It is also possible to access objects of type AbsCell without
knowing the concrete binding of its type member. For in-
stance, the following method resets a given cell to its initial
value, independently of its value type.

def reset(c: AbsCell): unit = c.set(c.init);

Why does this work? In the example above, the expression
c.init has type c¢.T, and the method c.set has function
type ¢.T => unit. Since the formal parameter type and the
concrete argument type coincide, the method call is type-
correct.

c.T is an instance of a path-dependent type. In general,
such a type has the form zo. .Tn.t, where n > 0, xg
denotes an immutable value, each subsequent z; denotes
an immutable field of the path prefix xo. .xi—1, and
t denotes a type member of the path zo.z,.

Path-dependent types rely on the immutability of the pre-
fix path. Here is an example where this immutability is
violated.

var flip = false;
def f(): AbsCell = {

flip = !flip;
if (flip) new AbsCell { type T = int; val init =1 }
else new AbsCell { type T = String; val init = "" }

}
f().set(f().get) // illegal!

In this example subsequent calls to £() return cells where
the value type is alternatingly either int or String. The
last statement in the code above is erroneous since it tries
to set an int cell to a String value. The type system does
not admit this statement, because the computed type of
f().get would be £().T. This type is not well-formed, since
the method call £() does not constitute a well-formed path.

Type selection and singleton types

In Java, where classes can also be nested, the type of a nested
class is denoted by prefixing it with the name of the outer
class. In Scala, this type is also expressible, in the form of
Outer#Inner, where Outer is the name of the outer class in
which class Inner is defined. The “#’ operator denotes a
type selection. Note that this is conceptually different from
a path dependent type p.Inner, where the path p denotes a
value, not a type. Consequently, the type expression Outer#t
is not well-formed if ¢ is an abstract type defined in Outer.

In fact, path dependent types can be expanded to type
selections. The path dependent type p.t is taken as a short-
hand for p.type#t. Here, p.type is a singleton type, which
represents just the object denoted by p. Singleton types by
themselves are also useful in other contexts, for instance they
facilitate chaining of method calls. As an example, consider
a class C with a method incr which increments a protected
integer field, and a subclass D of C which adds a decr method
to decrement that field.

class C {

protected var x = 0;

def incr: this.type = { x = x + 1; this }
}
class D extends C {

def decr: this.type = { x
}

X - 1; this }

Then we can chain calls to the incr and decr method, as in
val d = new D; d.incr.decr;

Without the singleton type this.type, this would not have
been possible, since d.incr would be of type C, which does
not have a decr member. In that sense, this.type is similar
to (covariant uses of) Kim Bruce’s mytype construct [5].

Parameter bounds

We now refine the Cell class so that it also provides a
method setMax which sets a cell to the maximum of the
cell’s current value and a given parameter value. We would
like to define setMax so that it works for all cell value types
admitting a comparison operation “<”, which is a method of
class Ordered. For the moment we assume this class is de-
fined as follows (a more refined generic version of this class
is in the standard Scala library).

abstract class Ordered {
type O;
def < (that: 0): boolean;
def <= (that: 0): boolean =
this < that || this == that
}

Class Ordered has a type “0” and a method “<” as abstract
members. A second method, “<=", is defined in terms of
“<”. Note that Scala does not distinguish between operator
names and normal identifiers. Hence, “<” and “<=" are legal
method names. Furthermore, infix operators are treated as
method calls. For identifiers m and operand expressions e,
e2 the expression e; m ez is treated as equivalent to the
method call e;.m(e2). The expression this < that in class
Ordered is thus simply a more convenient way to express the
method call this.<(that).

The new cell class can be defined in a generic way using
bounded type abstraction:

abstract class MaxCell extends AbsCell {
type T <: Ordered { type 0 =T }
def setMax(x: T) = if (get < x) set(x)
}

Here, the type declaration of T is constrained by an up-
per type bound which consists of a class name Ordered and
a refinement { type 0 = T }. The upper bound restricts
the specializations of T in subclasses to those subtypes 7
of Ordered for which the type member 0 of 7 equals T.

Because of this constraint, the “<” method of class Ordered
is guaranteed to be applicable to a receiver and an argu-
ment of type T. The example shows that the bounded type
member may itself appear as part of the bound, i.e. Scala
supports F-bounded polymorphism [6].

2.2 Modular Mixin Composition

After having explained Scala’s constructs for type abstrac-
tion, we now focus on its constructs for class composition.
Mixin class composition in Scala is a fusion of the object-
oriented, linear mixin composition of Bracha [3], and the
more symmetric approaches of mixin modules [8, 18] and
traits [41]. To start with an example, consider the following
abstraction for iterators.

trait AbsIterator {

type T;
def hasNext: boolean;
def next: T;

}

Note the use of the keyword trait instead of class. A trait
is a special form of an abstract class which does not have
any value parameters for its constructor. Traits can be used
in all contexts where other abstract classes appear; however
only traits can be used as mixins (see below).

The Iterator trait is written using an abstract type mem-
ber T which represents the iterator’s element type. One
could alternatively have chosen a generic representation —
in fact that’s what is done in the Scala standard library.

Next, consider a trait which extends Iterator with a
method foreach, which applies a given function to every
element returned by the iterator.

trait RichIterator extends AbsIterator {
def foreach(f: T => unit): unit =
while (hasNext) f(next);
}

The parameter £ has type T => unit, i.e. it is a function
that takes arguments of type T and returns results of the
trivial type unit.

Here is a concrete iterator class, which returns successive
characters of a given string:

class StringIterator(s: String) extends AbsIterator {
type T = char;
private var i = 0;
def hasNext = i < s.length();
def next = { val x = s.charAt(i); i =1+ 1; x }

}

We now would like to combine the functionality of
RichIterator and StringIterator in a single class. With
single inheritance and interfaces alone this is impossible, as
both classes contain member implementations with code.
Therefore, Scala provides a mixin-class composition mecha-
nism which allows programmers to reuse the delta of a class
definition, i.e., all new definitions that are not inherited.
This mechanism makes it possible to combine RichIterator
with StringIterator, as is done in the following test pro-
gram. The program prints a column of all the characters of
a given string.

object Test {
def main(args: Array[String]): unit = {
class Iter extends StringIterator(args(0))
with RichIterator;
val iter = new Iter;
iter foreach System.out.println
}
}

The Iter class in function main is constructed from a
mixin composition of the parents StringIterator and
RichIterator. The first parent is called the superclass of
Iter, whereas the second parent is called a mizin.

Class Linearization

The classes reachable through transitive closure of the direct
inheritance relation from a class C are called the base classes
of C. Because of mixins, the inheritance relationship on
base classes forms in general a directed acyclic graph. A
linearization of this graph is defined as follows.

Definition 2.1 Let
C, with ... with C;.
L(C) is defined as follows:

C be a class with parents
The class linearization of C,

LIC) = {C}FLEC)F ... ¥LIC

Here ¥ denotes concatenation where elements of the right
operand replace identical elements of the left operand:

{a,A}—PB = a,(A—FB) ifa ¢ B
A¥B ifa € B

For instance, the linearization of class Iter is

{ Iter, RichIterator, Stringlterator,
AbsIterator, AnyRef, Any }

The linearization of a class refines the inheritance relation: if
C'is a subclass of D, then C' precedes D in any linearization
where both C and D occur. Definition 2.1 also satisfies the
property that a linearization of a class always contains the
linearization of its direct superclass as a suffix. For instance,
the linearization of StringIterator is

{ StringIterator, AbsIterator, AnyRef, Any } ,

which is a suffix of the linearization of its subclass Iter. The
same is not true for the linearization of mixin classes. It is
also possible that classes of the linearization of a mixin class
appear in different order in the linearization of an inheriting
class, i.e. linearization in Scala is not monotonic [2].

Membership

The Iter class inherits members from both StringIterator
and RichIterator. Generally, a class derived from a mixin
composition C), with ... with C; can define members it-
self and can inherit members from all parent classes. Scala
adopts Java and C#’s conventions for static overloading of
methods. It is thus possible that a class defines and/or in-
herits several methods with the same name!. To decide
whether a defined member of a class C' overrides a member
of a parent class, or whether the two co-exist as overloaded
variants in C, Scala uses the following definition of matching
on members, which is derived from similar concepts in Java

and C#:

Definition 2.2 A member definition M matches a member
definition M’, if M and M’ bind the same name, and one
of following holds.

1. Neither M nor M’ is a method definition.

2. M and M’ define both monomorphic methods with
equal argument types.

3. M and M’ define both polymorphic methods with
equal number of argument types T, T' and equal num-
bers of type parameters 7, £ , say, and T’ = [t /4T.

Member definitions of a class fall into two categories: con-
crete and abstract. There are two rules that determine the
set of members of a class, one for each category:

Definition 2.3 A concrete member of a class C' is any con-
crete definition M in some class C; € L(C'), except if there
is a preceding class C; € £(C) where j < ¢ which defines a
concrete member M’ matching M.

An abstract member of a class C' is any abstract definition
M in some class C; € L(C), except if C' contains already a
concrete member M’ matching M, or if there is a preceding
class C; € L(C) where j < i which defines an abstract
member M’ matching M.

This definition also determines the overriding relationships
between matching members of a class C' and its parents.
First, a concrete definition always overrides an abstract def-
inition. Second, for definitions M and M’ which are both
concrete or both abstract, M overrides M’ if M appears in
a class that precedes (in the linearization of C) the class in
which M’ id defined.

Super calls

Consider the following class of synchronized iterators, which
ensures that its operations are executed in a mutually ex-
clusive way when called concurrently from several threads.

abstract class SyncIterator extends AbsIterator {
abstract override def hasNext: boolean =
synchronized(super.hasNext) ;
abstract override def next: T =
synchronized(super.next) ;

}

'One might disagree with this design choice because of its
complexity, but it is necessary to ensure interoperability, for
instance when inheriting from Java’s Swing libraries.

To obtain rich, synchronized iterators over strings, one uses
a mixin composition involving three classes:

StringIterator(someString) with RichIterator
with SyncIterator

This composition inherits the two members hasNext and next
from the mixin class SyncIterator. Each method wraps a
synchronized application around a call to the corresponding
member of its superclass.

Because RichIterator and StringIterator define different
sets of members, the order in which they appear in a mixin
composition does not matter. In the example above, we
could have equivalently written

StringIterator(someString) with SyncIterator
with RichIterator

There’s a subtlety, however. The class accessed by the super
calls in SyncIterator is not its statically declared superclass
AbsIterator. This would not make sense, as hasNext and
next are abstract in this class. Instead, super accesses the
superclass StringIterator of the mixin composition in which
SyncIterator takes part. In a sense, the superclass in a mixin
composition overrides the statically declared superclasses of
its mixins. It follows that calls to super cannot be stati-
cally resolved when a class is defined; their resolution has
to be deferred to the point where a class is instantiated or
inherited. This is made precise be the following definition.

Definition 2.4 Consider an expression super.M in a base
class C of D. To be type correct, this expression must refer
statically to some member M of a parent class of C. In the
context of D, the same expression then refers to a member
M’ which matches M, and which appears in the first possible
class that follows C in the linearization of D.

Note finally that in a language like Java or C#, the super
calls in class SyncIterator would be illegal, precisely because
they designate abstract members of the static superclass. As
we have seen, Scala allows this construction, but it still has
to make sure that the class is only used in a context where
super calls access members that are concretely defined. This
is enforced by the occurrence of the abstract and override
modifiers in class SyncIterator. An abstract override mod-
ifier pair in a method definition indicates that the method’s
definition is not yet complete because it overrides and uses
an abstract member in a superclass. A class with incomplete
members must be declared abstract itself, and subclasses of
it can be instantiated only once all members overridden by
such incomplete members have been redefined.

Calls to super may be threaded so that they follow the
class linearization (this is a major difference between Scala’s
mixin composition and multiple inheritance schemes). For
example, consider another class similar to SyncIterator
which prints all returned elements on standard output.

abstract class LoggedIterator extends AbsIterator {
abstract override def next: T = {
val x = super.next; System.out.println(x); x
}
}

One can combine synchronized with logged iterators in a
mixin composition:

class Iter2 extends Stringlterator(someString)
with SyncIterator with LoggedIterator;

The linearization of Iter2 is

{ Iter2, LoggedIterator, SyncIterator,
StringIterator, AbsIterator, AnyRef, Any }

Therefore, class Iter2 inherits its next method from class
LoggedIterator, the super.next call in this method refers
to the next method in class SyncIterator, whose super.next
call finally refers to the next method in class StringIterator.

If logging should be included in the synchronization, this
can be achieved by reversing the order of the mixins:

class Iter2 extends StringIterator(someString)
with LoggedIterator with SyncIterator;

In either case, calls to next follow via super the linearization
of class Iter2.

2.3 Selftype Annotations

Each of the operands of a mixin composition
Co with ... with C,, must refer to a class. The mixin
composition mechanism does not allow any C; to refer
to an abstract type. This restriction makes it possible
to statically check for ambiguities and override conflicts
at the point where a class is composed. Scala’s selftype
annotations provide an alternative way of associating a class
with an abstract type. The following example illustrates
this for a generic implementation of directed graphs that
abstracts over its concrete node type:

abstract class Graph {
type Node <: BaseNode;
class BaseNode {
def connectWith(n: Node): Edge =
new Edge(this, n); // illegal!
}
class Edge(from: Node, to: Node) {
def source() = from;
def target() = to;
}
}

The abstract Node type is upper-bounded by BaseNode to ex-
press that we want nodes to support a connectWith method.
This method creates a new instance of class Edge which links
the receiver node with the argument node. Unfortunately,
this code does not compile, because the type of the self ref-
erence this is BaseNode and therefore does not conform to
type Node which is expected by the constructor of class Edge.
Thus, we have to state somehow that the identity of class
BaseNode has to be expressible as type Node. Here is a pos-
sible encoding:

abstract class Graph {
type Node <: BaseNode;
abstract class BaseNode {
def connectWith(n: Node): Edge = new Edge(self, n);
def self: Node;
}
class Edge(from: Node, to: Node) { ... }
}

This version of class BaseNode uses an abstract method self
for expressing its identity as type Node. Concrete subclasses

of Graph have to define a concrete Node class for which it is
possible to implement method self. This is illustrated in
the code for class LabeledGraph.

class LabeledGraph extends Graph {
class Node(label: String) extends BaseNode {
def getLabel: String = label;
def self: Node = this;
}
}

This programming pattern appears quite frequently when
family polymorphism is combined with explicit references
to this. Therefore, Scala supports a mechanism for spec-
ifying the type of this explicitly. Such an explicit selftype
annotation is used in the following version of class Graph:

abstract class Graph {
type Node <: BaseNode;
class BaseNode requires Node {
def connectWith(n: Node): Edge = new Edge(this, n);
}
class Edge(from: Node, to: Node) {
def source() = from;
def target() = to;
}
}

In the declaration
class BaseNode requires Node { ...

Node is called the selftype of class BaseNode. When a selftype
is given, it is taken as the type of this inside the class.
Without a selftype annotation, the type of this is taken as
usual to be the type of the class itself. In class BaseNode, the
selftype is necessary to render the call new Edge(this, n)
type-correct.

Selftypes can be arbitrary; they need not have a relation
with the class being defined. Type soundness is still guaran-
teed, because of two requirements: (1) the selftype of a class
must be a subtype of the selftypes of all its base classes, (2)
when instantiating a class in a new expression, it is checked
that the selftype of the class is a supertype of the type of
the object being created.

Selftypes were first introduced in the rObj calculus,
mainly for technical reasons. We expected initially that they
would not be used very frequently in Scala programs, but
included them anyway since they seemed essential in situa-
tions where family polymorphism is combined with explicit
self references. To our surprise, selftypes turned out to be
the key construct for lifting static systems to component-
based systems. This is further explained in Section 4.

2.4 Service-Oriented Component Model

The presented class abstraction and composition mecha-
nisms form the basis of a service-oriented software compo-
nent model. Software components are units of computation
that provide a well-defined set of services. Typically, a soft-
ware component is not self-contained; i.e., its service im-
plementations rely on a set of required services provided by
other cooperating components.

In our model, software components correspond to classes.
Concrete members of a class represent provided services,
whereas abstract members represent required services.
Component composition is based on mixins, which lets one

create bigger components from smaller ones.

The mixin-class composition mechanism identifies services
with the same name; for instance, an abstract method m can
be implemented by a class C defining a concrete method m
simply by mixing-in C. Thus, the component composition
mechanism automatically associates required with provided
services. Together with the rule that concrete class mem-
bers always override abstract ones, this principle yields re-
cursively pluggable components where component services
do not have to be wired explicitly [50].

This approach simplifies the assembly of large components
with many recursive dependencies. It scales well even in the
presence of many required and provided services, since the
association of the two is automatically inferred by the com-
piler. The most important advantage over traditional black-
box components is that components are extensible entities:
they can evolve by subclassing and overriding. They can
even be used to add new services to other existing compo-
nents, or to upgrade existing services of other components.
Overall, these features enable a smooth incremental software
evolution process [52].

3. CASE STUDY: SUBJECT/OBSERVER

The abstract type concept is particularly well suited for
modeling families of types which vary together covariantly.
This concept has been called family polymorphism [11]. As
an example, consider the publish/subscribe design pattern.
There are two classes of participants — subjects and ob-
servers. Subjects define a method subscribe by which ob-
servers register. They also define a publish method which
notifies all registered observers. Notification is done by
calling a method notify which is defined by all observers.
Typically, publish is called when the state of a subject
changes. There can be several observers associated with
a subject, and an observer might observe several subjects.
The subscribe method takes the identity of the registering
observer as parameter, whereas an observer’s notify method
takes the subject that did the notification as parameter.
Hence, subjects and observers refer to each other in their
method signatures.

All elements of the subject/observer design pattern are
captured in the following system.

abstract class SubjectObserver {
type S <: Subject;
type O <: Observer;
abstract class Subject requires S {
private var observers: List[0] = List();
def subscribe(obs: 0) =
observers = obs :: observers;
def publish =
for (val obs <- observers) obs.notify(this);
}
abstract class Observer {
def notify(sub: S): unit;
}
}

The top-level class SubjectObserver has two member classes:
one for subjects, the other for observers. The Subject class
defines methods subscribe and publish. It maintains a list
of all registered observers in the private variable observers.
The Observer class only declares an abstract method notify.

Note that the Subject and Observer classes do not di-

rectly refer to each other, since such “hard” references would
prevent covariant extensions of these classes in client code.
Instead, SubjectObserver defines two abstract types S and
0 which are bounded by the respective class types Subject
and Observer. The subject and observer classes use these
abstract types to refer to each other.

Note also that class Subject relies on an explicit selftype
annotation, which is necessary to render the method call
obs.notify(this) type-correct.

The mechanism defined in the publish/subscribe pattern
can be used by inheriting from SubjectObserver, defining ap-
plication specific Subject and Observer classes. An example
is the SensorReader object, which defines sensors as subjects
and displays as observers.

object SensorReader extends SubjectObserver {
type S = Sensor;
type O = Display;
abstract class Sensor extends Subject {
val label: String;
var value: double = 0.0;
def changeValue(v: double) = {
value = v;
publish;
}
}
class Display extends Observer {
def println(s: String) = ...
def notify(sub: Sensor) =
println(sub.label + " _has_value_|

+ sub.value);
}
}

An object definition such as the one for SensorReader cre-
ates a singleton class which has as a single instance the de-
fined object. In the SensorReader object, type S is bound to
Sensor whereas type 0 is bound to Display. Hence, the two
formerly abstract types are now defined by overriding defi-
nitions. This “tying the knot” is always necessary when cre-
ating a concrete class instance. On the other hand, it would
also have been possible to define an abstract SensorReader
class which could be refined further by client code. In this
case, the two abstract types would have been overridden
again by abstract type definitions.

abstract class AbsSensorReader extends SubjectObserver {
type S <: Sensor;
type O <: Display;

}

The following program illustrates how the SensorReader ob-
ject is used.

object Test {
import SensorReader._;
val sl = new Sensor { val label = "sensorl" }
val s2 = new Sensor { val label = "sensor2" }
def main(args: Array[String]) = {
val d1 = new Display; val d2 = new Display;
sl.subscribe(dl); sl.subscribe(d?2);
s2.subscribe(dl);
sl.changeValue(2); s2.changeValue(3);

Note the presence of an import clause, which makes the
members of object SensorReader available without prefix to
the code in object Test. Import clauses in Scala are more
general than import clauses in Java. They can be used any-
where, and can import members from any object, not just
from a package.

The Subject/Observer pattern has been studied by sev-
eral groups before. A solution structurally close to ours
but based on virtual types has been sketched by Thorup
[44]. The development in this section shows by example
that Beta’s virtual types can be emulated by a combination
of Scala’s abstract types and explicitly typed self references.
Other approaches to expressing the publish/subscribe pat-
tern are based on a generalization of mytype [4] or on para-
metric polymorphism using OCaml’s row-variables to model
extensible records [40].

4. CASE STUDY: THE SCALA COMPILER

The Scala compiler, scalac, consists of several phases. The
first phase is syntax analysis, implemented by a scanner
and a conventional recursive descent parser. The result of
this phase is an abstract syntax tree. The next phase at-
tributes the syntax tree with symbol and type information.
This is followed by a number of phases that transform the
syntax tree. Most transformations replace some high-level
Scala-specific constructs with lower-level constructs that can
more directly be represented in bytecode. Other transfor-
mations perform optimizations such as inlining or tail call
elimination. Transformations always consume and produce
attributed trees.

All phases after syntax analysis work with a symbol table.
This table itself consists of a number of modules. Some of
these are:

e A module Names that represents symbol names. A
name is represented as an object consisting of an in-
dex and a length, where the index refers to a global
array in which all characters of all names are stored.
A hashmap ensures that names are unique, i.e. that
equal names always are represented by the same ob-
ject.

e A module Symbols that represents symbols correspond-
ing to definitions of entities like classes, methods, vari-
ables, etc. in Scala and Java modules.

e A module Types that represents types.

e A module Definitions that contains globally visible
symbols for definitions that have a special significance
for the Scala compiler. Examples are Scala’s value
classes, the top and bottom classes scala.Any and
scala.All, or the boolean values true and false.

e A module Scopes that represents local scopes and class
sets of class members.

The structure of these modules is highly recursive. For in-
stance, every symbol has a type, and some types also have
a symbol. The Definitions module creates symbols and
types, and is in turn used by certain operations in Types.
References between modules involve member accesses, ob-
ject creations, but also inheritance. For instance, the types
of many symbols are lazily created, so that forward refer-
ences in definitions can be supported and library class and

source files can be loaded on demand. This is achieved by
initializing the types of symbols to special “lazy types” that
replace themselves with a symbol’s true type the first time
the symbol is accessed. Lazy types deal with the dynamics
of compilation instead of the type structure; consequently,
they are defined outside the Types module, even though they
inherit from the Type class.

State of the art

In previously released versions of the Scala compiler, all
modules described above were implemented as top-level
classes (implemented in Java), which contain static members
and data. For instance, the contents of names were stored
in a static array in the Names class. Likewise, global symbols
were stored as static data in the Definitions class. This
technique has the advantage that it supports complex re-
cursive references. But it also has two disadvantages. First,
since all references between classes were hard links, we could
not treat compiler classes as components that can be com-
bined with different other components. This, in effect, pre-
vented piecewise extensions or adaptations of the compiler.
Second, since the compiler worked with mutable static data
structures, it was not re-entrant, i.e. it was not possible to
have several concurrent executions of the compiler in a sin-
gle VM. This was a problem for using the Scala compiler in
an integrated development environment such as Eclipse.

These problems are of course not new. For instance, the
Java compilers javac and JaCo [53] have a structure similar
to the one of scalac. In these compilers, static data struc-
tures and static component references are avoided by using
a design pattern which parameterizes compiler components
with a context. A context is a mapping from component
identifiers to component implementations (objects). A com-
piler component uses the context to get access to cooperat-
ing runtime components.

This approach makes it possible to run several compilers
in one VM simply by creating different contexts with in-
dependent instantiations of the compiler components. On
the other hand, there are several disadvantages. First of all,
a simple solution, like the one used in javac, models con-
texts as maps from names to objects. This approach is sub-
ject to dynamic typing and thus statically unsafe. JaCo’s
Context/Component design pattern uses a combination of
an object repository and an abstract factory to model con-
texts [49, 52]. This pattern provides static type safety, but
is associated with a relatively high protocol overhead. For
instance, JaCo’s 30000 lines of code include 600 lines of code
just for context definitions and more than 1200 lines of code
for object factories, not counting the code within the actual
compiler components that use the contexts and the factories.
Contexts also break encapsulation because they require that
data structures are packaged outside the classes that access
them.

Beyond the protocol overhead, static typing, and encapsu-
lation issues there is always the risk to violate the program-
ming pattern, since there is no way to enforce the design
statically. For instance, if two instances of a compiler are
executed simultaneously, and one name table is allocated per
compiler run, it becomes important that names referring to
different compiler instances are kept distinct. Otherwise a
name might index a table which does not store its charac-
ters but some random characters. This isolation cannot be
guaranteed statically.

class SymbolTable {
class Name { ... }
// name specific operations

class Type { ... }
// subclasses of Type and type specific operations

class Symbol { ... }
// subclasses of Symbol and symbol specific operations

object definitions { // global definitions }

// other elements

Listing 1: scalac’s symbol table structure

Another solution to the problem is to use programming
languages providing constructs for component composition
and abstraction. For instance, functors of the SML module
system [27] can be used to implement component-based sys-
tems where component interactions are not hard-coded. On
the other hand, functors are neither first-class nor higher-
order. Consequently, they cannot be used to create new
compilers from dynamically provided components. Other
module systems, like MzScheme’s Units [15, 14], are expres-
sive enough to allow this, but they are often only dynam-
ically typed, giving no guarantees at compile-time. Typi-
cal component-oriented programming languages like Arch-
Java [1], Jiazzi [30], and ComponentJ [42] are statically
typed and do provide good support for creating and compos-
ing generic software components, but their type systems are
not expressive enough to fully isolate reentrant systems. The
module system of Keris [51] can enforce a strict separation
of multiple reentrant instances of a compiler, but without
support for first-class modules it requires that the number
of simultaneously running compiler instances is known stat-
ically.

A simple reentrant compiler implementation

For the rewrite of the Scala compiler we found another so-
lution, which is type safe, and which uses the language ele-
ments of Scala itself. As a first step towards this solution,
we introduce nesting of classes to express local structure.
A simplified version of the symbol table component of the
scalac compiler — to be refined later — is shown in Listing 1.

Here, classes Name, Symbol, Type, and the object
Definitions are all members of the SymbolTable class. The
whole compiler (which would be structured similarly) can
access definitions in this class by inheriting from it:

class ScalaCompiler extends SymbolTable { ... }

In that way, we arrive at a compiler without static defi-
nitions. The compiler is by design re-entrant, and can be
instantiated like any other class as often as desired. Further-
more, member types of different instantiations are isolated
from each other, which gives a good degree of type safety.
Consider for instance a scenario where two instances c1 and
c2 of the Scala compiler co-exist.

abstract class Types requires (Types with Names
with Symbols
with Definitions) {
class Type { ... }
// subclasses of Type and
// type specific operations
}
abstract class Symbols requires (Symbols with Names
with Types) {
class Symbol { ... }
// subclasses of Symbol and
// symbol specific operations
}
abstract class Definitions requires
(Definitions with Names
with Symbols){
object definitions { ... }
}
abstract class Names {
class Name { ... }
// name specific operations
}
class SymbolTable extends Names
with Types
with Symbols
with Definitions;

class ScalaCompiler extends SymbolTable
with Trees
with ... ;

Listing 2: Symbol table components with required interfaces

val cl = new ScalaCompiler;
val c2 = new ScalaCompiler;

Names created by the c¢1 compiler instance have the path-
dependent type cl.Name, whereas names created by c2 have
type c2.Name. Since these two types are incompatible, a
problematic assignment such as the following would be ruled
out.

cl.definitions.Al1Class.name =
c2.definitions.Al1Class.name // illegal!

Component-based implementation

The code sketched above has a very severe shortcoming: it is
a large monolithic program and thus not really component-
based! Indeed, the whole symbol table code (roughly 4000
lines) is now placed in a single source file. This clearly be-
comes impractical for large programs.

Nevertheless, the previous attempt points the way to a
solution. We need to express a nested structure like the one
above, but with its constituents spread over separate source
files. The problem is how to express cross-file references in
this setting. For instance, in class Symbol one needs to refer
to the corresponding Type class which belongs to the same
compiler instance but which is defined in a different source
file.

There are several possible solutions to this problem. The
solution we have chosen is sketched in Listing 2. It uses an

explicit selftype to express the required services of a compo-
nent.

The Types class contains a class hierarchy rooted in class
Type as well as operations that relate to types. It comes
with an explicit selftype, which is an intersection type of
all classes required by Types. Besides Types itself, these
classes are Names, Symbols, and Definitions. Members of
these classes are thus accessible in class Types. For instance,
one can write this.Symbol or shorter just Symbol for the
Symbol class member of the required Symbols class.

The schema for the other symbol table classes follows the
one for types. In each case, all required classes are listed as
operands of an intersection type in an explicit selftype an-
notation. The whole symbol table class is then simply the
mixin composition of these components. Figure 2 illustrates
this principle. For every component, it shows the provided
classes as well as the classes that are required from other
components. Classes are represented by boxes, object defi-
nitions are represented by ovals. Combining all components
via mixin composition yields a fully self-contained compo-
nent without any required classes. This class represents our
complete instantiatable symbol table abstraction.

The presented scheme is statically type safe, and provides
explicit notation to express required as well as provided
interfaces of a component. It is concise, since no explicit
wiring, for example by means of parameter passing, is nec-
essary. It provides great flexibility for component structur-
ing. In fact it allows to lift arbitrary module structures with
static data and hard references to component systems.

Variants

Granularity of dependency specifications.

The presented scheme is not the only possible solution.
Several variants are possible, which differ in the way re-
quired components are abstracted. For instance, one can be
more concise but less precise in assuming as selftype of each
symbol table component the SymbolTable class itself. E.g.:

class Types requires SymbolTable { ... }

One can also characterize required services in more detail
by using abstract type and value members. E.g:

class Types {

type Symbol <: SymbolInterface;
type Name <: NameInterface;
// other required types

def newValue(name: Name): Symbol;
// other required values

class Type { ... }

}

One can thus narrow required services to arbitrary sets of
component members, whereas previously one could require
components only as a whole. The price to be paid for the
precision is a loss of conciseness, since bounds of abstract
types such as SymbolInterface in the code above have to
be defined explicitly. Furthermore, abstracted types cannot
be inherited, since abstract types in Scala cannot be super-

classes or mixins.

Hierarchical organization of components.

In all variations, the symbol table class itself results from
a mixin composition of all its constituent classes. From a
system view, all symbol table components are defined on the
same level. But it is also possible to define subsystems which
can be nested in other components by means of aggregation.
An example is the parser phase component of scalac:

class ParserPhase extends Lexical with Syntactic {
val compiler: Compiler;

}

Here, the sub-components Lexical and Syntactic are struc-
tured similarly to the symbol table components with self
types expressing required components. The syntactic anal-
ysis phase also needs to access the compiler as a whole, for
instance for reporting errors or for constructing syntax trees.
These accesses are done via a member field compiler, which
is abstract in class ParserPhase. The corresponding inte-
gration of the parser phase object in the scalac compiler is
sketched in the listing below.

class ScalaCompiler extends SymbolTable with Trees {
object parserPhase extends ParserPhase {
val compiler: ScalaCompiler.this.type =
ScalaCompiler.this

}

Class ScalaCompiler defines an instance of class ParserPhase
in which the compiler field is bound to the enclosing
ScalaCompiler instance itself. The type of that field is the
singleton type ScalaCompiler.this.type, which has as the
only member the current instance of ScalaCompiler. The sin-
gleton type annotation is necessary since ParserPhase con-
tains members that refer to types defined in ScalaCompiler.
An example is the type Tree of abstract syntax trees, which
ScalaCompiler inherits from class Trees. To connect the tree
generated by the parser phase with later phases, the type
checker needs to know the type equality

parserPhase.compiler.Tree = Tree

in the context of ScalaCompiler.this. The singleton
type annotation establishes ScalaCompiler.this as an alias
of ScalaCompiler.this.parserPhase.compiler and therefore
validates the above equality.

Component adaptation

The new compiler architecture makes adaptations very easy.
As an example, consider logging. Let’s say we want to log
every creation of a symbol or a type in the Scala compiler.
Logging involves writing information on some output chan-
nel log, of type java.io.PrintStream. The crucial point is
that we want to extend an existing compiler with logging
functionality. To do this, we do not want to modify the
compiler’s source code. Neither do we want to require of
the compiler writer to have pre-planned the logging exten-
sion by providing hooks. Such hooks tend to impair the
clarity of the code since they mix separate concerns in one
class. Instead, we use subclassing to add logging function-
ality to existing classes. E.g.:

Names Types Symbols Definitions
Name | Name | Name
[Type | [Type |
r
\ | Symbol | | Symbol |
' T
1]
-. :
7oy " s
1 1 ’
1 1 7’
. ' ! e
Inheritance L - z
 Mixin composition L’
! // /,
SymbolTable /! . e

Name e
Type |4 -
Symbol |«4-|" -7

definitions)«

\

Required

: Selftype annotation ~ Nested class

Figure 2: Composition of the Scala compiler’s symbol tables.

abstract class LogSymbols extends Symbols {

val log: java.io.PrintStream;

override def newTermSymbol(name: Name): TermSymbol =

{
val x = super.newTermSymbol(name);
log.println("creating_term_symbol " + name);
X

}

// similarly for all other symbol creations.

}

Analogously, one can define a subclass LogTypes of class
Types to log all type creations.

The question then is how to inject the logging behavior
into an existing system. Since the whole Scala compiler is
defined as a single class, this is a straightforward application
of mixin composition:

class LoggedCompiler extends ScalaCompiler
with LogSymbols with LogTypes {
val log: PrintStream = System.out

}

In the mixin composition the new implementation of
newTermSymbol in class LogSymbols overwrites the implemen-
tation of the same method which is defined in class Symbol
and which is inherited by class ScalaCompiler. Conversely,
the abstract members named log in classes LogSymbols and
LogTypes are replaced by the concrete definition of log in
class LoggedCompiler.

This adaptation might seem trivial. But note that in a
classical system architecture with static components and
hard links, it would have been impossible. For such archi-
tectures, aspect-oriented programming [22] proposes an al-
ternative solution, which is based on code rewriting. In fact,
our component architecture can handle some of the scenar-
ios for which AOP has been proposed as the technique of
choice. Other examples besides logging are synchronization,
security checking, or choice of data representation. More
generally, our architecture can handle all before, after, and

around advice on method reception pointcut designators.
These represent only one instance of the pointcut designa-
tors provided by languages such as AspectJ [21]. Therefore,
general AOP is clearly more powerful than our scheme. On
the other hand, our scheme has the advantage that it is
statically typed, and that scope and order of advice can be
precisely controlled using the semantics of mixin composi-
tion.

5. DISCUSSION

We have identified three building blocks for the construc-
tion of reusable components: abstract type members, ex-
plicit selftypes, and symmetric mixin composition. The
three building blocks were formalized in the vObj calculus
and were implemented in Scala. Scala is also the language
in which all programming examples and case studies of this
paper are written. It constitutes thus a concrete experiment
which validates the construction principles presented here in
a range of applications written by many different people.

But Scala is, of course, not the only possible language de-
sign that would enable such constructions. In this section,
we try to generalize from Scala’s concrete setting, in order
to identify what language constructs are essential to achieve
systems of scalable and dynamic components. We assume in
the whole discussion a strongly and statically typed object-
oriented language. The situation is quite different for dy-
namically typed languages, and is different again for func-
tional languages with ML-like module systems.

The first important language construct is class nesting.
Since class nesting is already supported by mainstream lan-
guages, we have omitted it from our discussion so far, but it
is essential nonetheless. It is the primary means for aggrega-
tion and encapsulation. Without it, we could only compose
systems consisting of fields and methods, but not systems
that contain themselves classes. Said otherwise, every class
would have to be either a base-class or mixin of a top-level
system (in which case it would only have one instance per
top-level instantiation), or it would be completely external
to that system (in which case it cannot access anything hid-

den in the system). It would still be possible to construct
component-based systems as discussed by this paper, but
the necessary amount of wiring would be substantial, and
one would have to give up object-oriented encapsulation
principles to a large extent.

The second language construct is some form of mixin or
trait composition or multiple inheritance. Not all details
have to be necessarily done the way they were done in Scala’s
symmetric mixin composition. We only require two funda-
mental properties: First, that mixins or classes can contain
themselves mixins or classes as members. Second, that con-
crete implementations in one mixin or class may replace ab-
stract declarations in another mixin or class, independent
of the order in which the mixins were composed. The lat-
ter property is necessary to implement mutually recursive
dependencies between components.

The third language construct is some means of abstraction
over the required services of a class. Such abstraction has to
apply to all forms of definitions that can occur inside a class.
In particular it must be possible to abstract over classes
as well as methods. We have seen in Scala two means of
abstraction. One worked by abstracting over class members,
the other by abstracting over the type of self. These two
techniques are largely complementary in what they achieve.

Abstraction over class members gives very fine-grained
control over required types and services. Each required en-
tity is named individually, and also can be given a type
(or type-bound in the case of type members) which cap-
tures only what is required from the entity by the contain-
ing class. The entity may then be defined in another class
with a stronger type (or type-bound) than the required one.
In other words, class member abstraction introduces “type-
slack” between the required and provided interfaces for the
same service. This in turn allows us to specify the required
interface of a class with great precision.

Abstraction over class members also supports covariant
specialization. In fact, this is a consequence of the type-
slack it introduces. Covariant specialization is important in
many different situations. One set of situations is character-
ized by the generic “expression problem” example. Here, the
task is to extend systems over a recursive data type by new
data variants as well as by new operations over that data
[45, 37]. Related to this is also the production line problem
where a set of features has to be composed in a modular
way to yield a software product [26]. Family polymorphism
is another instance of covariant specialization. Here, several
types need to be specialized together, as in the subject/ob-
server example of Section 3.

The downside of the precision of class member abstrac-
tion is its verbosity. Listing all required methods, fields,
and types including their types and type bounds can add
significant overhead to a component’s description. Selftype
abstraction is a more concise alternative to member abstrac-
tion. Instead of naming and typing all members individually
one simply attaches a type to this. This is somewhat akin
to the difference between structural and nominal typing.

In fact, selftype abstractions are almost as concise as tra-
ditional references between static components. To see this,
note that import clauses in traditional systems correspond
to summands in a compound selftype in our scheme. Con-
sider for instance a system of three Java classes A, B, and C,
each of which refers to the other two. Assume that all three
classes contain static nested classes. Then class A could im-

port all nested classes in B and C using code like this:

import B.*;
import C.*;
class A { ... }

Classes B and C would be organized similarly.

Translating Java’s static setting into one where compo-
nents can be instantiated multiple times, we obtain the fol-
lowing, slightly more concise Scala code:

class A requires (A with Bwith C) { ... }

Classes B and C are organized similarly. The inter-class ref-
erences in A, B, and C stay exactly the same. In particular,
all nested classes can be accessed without qualification. The
only piece of code that needs to be written in addition is a
definition of a top-level application which contains all three
classes:

class All extends A with B with C;

In the case of static components, the definition of the set
of classes making up an application is implicit — it is the
transitive closure of all classes reachable from the main pro-
gram.

In Scala, there is a second advantage of selftype abstrac-
tion over class member abstraction. This has to do with a
shortcoming of class member abstraction as it is defined in
the language. In fact, Scala allows member abstraction only
over types, but lacks the possibility to abstract over other
aspects of classes. Abstract types can be used as types for
members, but no instances can be created from them, nor
can they be inherited by subclasses. Hence, if some of the
classes defined in a component inherit from some external
class in the component’s required interface, selftype abstrac-
tion is the only available means to express this. The same
holds if a component instantiates objects from an external,
required class using new rather than going through a factory
method.

Lifting the restrictions on class member abstraction would
lead us from abstract types to virtual classes in their full
generality, in the way they are defined in gbeta [10], for
example. This would yield a more expressive language for
flexible component architectures [12]. On the other hand,
the resulting language would have to either avoid or detect
accidental override conflicts between pairs of classes that do
not statically inherit from each other. Neither is easy to
type-check or to implement on standard platforms such as
JVM or the .NET CLR.

6. CONCLUSION

We have presented three building blocks for reusable com-
ponents: abstract type members, explicit selftypes, and
modular mixin composition. Each of these constructs ex-
ists in some form also in other formalisms, but we believe to
be the first to combine them in one language and to have dis-
covered the importance of their combination in building and
composing software components. We have demonstrated
their use in two case studies, a publish /subscribe framework
and the Scala compiler itself. The case studies show that
our language constructs are adequate to lift an arbitrary
assembly of static program parts to a component system
where required interfaces are made explicit and hard links
between components are avoided. The lifting completely

preserves the structure of the original program.

This is not the end of the story, however. The scenario
we have studied was the initial construction of a statically
typed system of components running on a single site. We did
not touch aspects of distribution and dynamic component
discovery, nor did we treat the evolution of a component
system over time. We intend to focus on these topics in
future work.

AcknowledgmentsThe Scala design and implementation
has been a collective effort of many people. Besides the
authors, Philippe Altherr, Vincent Cremet, Iulian Dragos,
Gilles Dubochet, Burak Emir, Sebastian Maneth, Stéphane
Micheloud, Nikolay Mihaylov, Michel Schinz, and Erik Sten-
man have made important contributions. The work was par-
tially supported by grants from the Swiss National Fund un-
der project NFS 21-61825, the Swiss National Competence
Center for Research MICS, Microsoft Research, and the
Hasler Foundation. We also thank Gilad Bracha, Stéphane
Ducasse, Erik Ernst, Nastaran Fatemi, Matthias Felleisen,
Shriram Krishnamurti, Oscar Nierstrasz, Didier Rémy, and
Philip Wadler for useful discussions about the material pre-
sented in this paper.

7. REFERENCES

[1] J. Aldrich, C. Chambers, and D. Notkin. Architectural

reasoning in ArchJava. In Proceedings of the 16th European

Conference on Object-Oriented Programming, Mélaga,

Spain, June 2002.

K. Barrett, B. Cassels, P. Haahr, D. A. Moon, K. Playford,

and P. T. Withington. A monotonic superclass linearization

for dylan. In Proc. OOPSLA, pages 69-82. ACM Press,

Oct. 1996.

[3] G. Bracha and W. Cook. Mixin-Based Inheritance. In
N. Meyrowitz, editor, Proceedings of ECOOP ’90, pages
303-311, Ottawa, Canada, October 1990. ACM Press.

[4] K. B. Bruce, M. Odersky, and P. Wadler. A Statically Safe
Alternative to Virtual Types. Lecture Notes in Computer
Science, 1445, 1998. Proc. ESOP 1998.

[5] K. B. Bruce, A. Schuett, and R. van Gent. PolyTOIL: A
Type-Safe Polymorphic Object-Oriented Language. In
Proceedings of ECOOP ’95, LNCS 952, pages 27-51,
Aarhus, Denmark, August 1995. Springer-Verlag.

[6] P. Canning, W. Cook, W. Hill, W. Olthoff, and J. Mitchell.
F-Bounded Quantification for Object-Oriented
Programming. In Proc. of 4th Int. Conf. on Functional
Programming and Computer Architecture, FPCA’89,
London, pages 273-280, New York, Sep 1989. ACM Pres.

[7] L. Cardelli, S. Martini, J. C. Mitchell, and A. Scedrov. An
Extension of System F with Subtyping. Information and
Computation, 109(1-2):4-56, 1994.

[8] D. Duggan. Mixin modules. In ACM SIGPLAN
International Conference on Functional Programming,
1996.

[9] ECMA. C# Language Specification. Technical Report
Standard ECMA-334, 2nd Edition, European Computer
Manufacturers Association, December 2002.

[10] E. Ernst. gBeta: A language with virtual attributes, block
structure and propagating, dynamic inheritance. PhD
thesis, Department of Computer Science, University of
Aarhus, Denmark, 1999.

[11] E. Ernst. Family polymorphism. In Proceedings of the
European Conference on Object-Oriented Programming,
pages 303-326, Budapest, Hungary, 2001.

[12] E. Ernst. Higher-Order Hierarchies. In L. Cardelli, editor,
Proceedings ECOOP 2008, LNCS 2743, pages 303-329,
Heidelberg, Germany, July 2003. Springer-Verlag.

[13] K. Fisher and J. H. Reppy. The Design of a Class

[2

[14]

[15]

[16]

[17]

(18]

[19]

[20]

21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

(30]

31]

32]

Mechanism for Moby. In SIGPLAN Conference on
Programming Language Design and Implementation, pages
37-49, 1999.

M. Flatt. Programming Languages for Reusable Software
Components. PhD thesis, Rice University, Department of
Computer Science, June 1999.

M. Flatt and M. Felleisen. Units: Cool modules for HOT
languages. In Proceedings of the ACM Conference on
Programming Language Design and Implementation, pages
236—248, 1998.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification. Java Series, Sun Microsystems,
second edition, 2000.

R. Harper and M. Lillibridge. A Type-Theoretic Approach
to Higher-Order Modules with Sharing. In Proc. 21st ACM
Symposium on Principles of Programming Languages,
January 1994.

T. Hirschowitz and X. Leroy. Mixin Modules in a
Call-by-Value Setting. In European Symposium on
Programming, pages 6—20, 2002.

A. Igarashi and M. Viroli. Variant Parametric Types: A
Flexible Subtyping Scheme for Generics. In Proceedings of
the Sizteenth European Conference on Object-Oriented
Programming (ECOOP2002), pages 441-469, June 2002.
M. P. Jones. Using parameterized signatures to express
modular structure. In Proceedings of the 23rd ACM
Symposium on Principles of Programming Languages,
pages 68-78. ACM Press, 1996.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of aspectj. In Proceedings
of ECOOP 2001, Springer LNCS, pages 327-353, 2001.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In Proceedings of the 11th European
Conference on Object-Oriented Programming, pages
220-242, Jyvaskyld, Finland, 1997.

J. L. Knudsen. Aspect-oriented programming in beta using
the fragment system. In Proceedings of the Workshop on
Object-Oriented Technology, Springer LNCS, pages
304-305, 1999.

X. Leroy. Manifest Types, Modules and Separate
Compilation. In Proc. 21st ACM Symposium on Principles
of Programming Languages, pages 109-122, January 1994.
X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and

J. Vouillon. The Objective Caml system release 3.00,
documentation and user’s manual, April 2000.

R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating
support for features in advanced modularization
technologies. In Proceedings of the European Conference on
Object-Oriented Programming, number July in Springer
LNCS, 2005.

D. MacQueen. Modules for Standard ML. In Conference
Record of the 1984 ACM Symposium on Lisp and
Functional Programming, Papers Presented at the
Symposium, August 6-8, 1984, pages 198-207, New York,
August 1984. Association for Computing Machinery.

O. L. Madsen, B. Mgller-Pedersen, and K. Nygaard. Object
Oriented Programming in the BETA Programming
Language. ddison Wesley, June 1993.

O. L. Madsen and B. Moeller-Pedersen. Virtual Classes - A
Powerful Mechanism for Object-Oriented Programming. In
Proc. OOPSLA’89, pages 397-406, October 1989.

S. McDirmid, M. Flatt, and W. Hsieh. Jiazzi: New-age
Components for Old-Fashioned Java. In Proc. of OOPSLA,
October 2001.

M. Mezini and K. Ostermann. Integrating independent
components with on-demand remodularization. In
Proceedings of OOPSLA 02, Sigplan Notices, 37 (11),
pages 52—67, 2002.

N. Nystrom, S. Chong, and A. Myers. Scalable Extensibility
via Nested Inheritance. In Proc. OOPSLA, Oct 2004.

[33] Object Technology International. Eclipse Platform
Technical Overview, Feb. 2003. www.eclipse.org.

[34] M. Odersky and al. An overview of the scala programming
language. Technical Report IC/2004/64, EPFL Lausanne,
Switzerland, 2004.

[35] M. Odersky, V. Cremet, C. Rockl, and M. Zenger. A
nominal theory of objects with dependent types. In Proc.
ECOOP 20083, Springer LNCS 2743, July 2003.

[36] M. Odersky, C. Zenger, and M. Zenger. Colored Local Type
Inference. In Proceedings of the 28th ACM Symposium on
Principles of Programming Languages, pages 41-53,
London, UK, January 2001.

[37] M. Odersky and M. Zenger. Independently extensible
solutions to the expression problem. In Proc. FOOL 12,
Jan. 2005. http://homepages.inf.ed.ac.uk/wadler/fool.

[38] K. Ostermann. Dynamically Composable Collaborations
with Delegation Layers. In Proceedings of the 16th
European Conference on Object-Oriented Programming,
Malaga, Spain, 2002.

[39] B. C. Pierce and D. N. Turner. Local Type Inference. In
Proc. 25th ACM Symposium on Principles of Programming
Languages, pages 252-265, New York, NY, 1998.

[40] D. Rémy and J. Vuillon. On the (un)reality of virtual
types. available from
http://pauillac.inria.fr/remy/work/virtual, Mar. 2000.

[41] N. Scharli, S. Ducasse, O. Nierstrasz, and A. Black. Traits:
Composable Units of Behavior. In Proceedings of the 17th
European Conference on Object-Oriented Programming,
Darmstadt, Germany, June 2003.

[42] J. C. Seco and L. Caires. A basic model of typed
components. In Proceedings of the 14th European
Conference on Object-Oriented Programming, pages
108-128, 2000.

[43] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison Wesley / ACM
Press, New York, 1998. ISBN 0-201-17888-5.

[44] K. K. Thorup. Genericity in java with virtual types. In
Proc. ECOOP 97, LNCS 1241, pages 444-471, June 1997.

[45] M. Torgersen. The expression problem revisited — Four
new solutions using generics. In Proceedings of the 18th
European Conference on Object-Oriented Programming,
Oslo, Norway, June 2004.

[46] M. Torgersen, E. Ernst, and C. P. Hansen. Wild FJ. In
Proc. FOOL 12, Jan. 2005.

[47] M. Torgersen, C. P. Hansen, E. Ernst, P. vod der Ahé,

G. Bracha, and N. Gafter. Adding Wildcards to the Java
Programming Language. In Proceedings SAC 2004, Nicosia,
Cyprus, March 2004.

[48] A. Wittmann. Towards Caesar: Family polymorphism for
Java. Master’s thesis, Technische Universitat Darmstadt,
Fachbereich Informatik, 2003.

[49] M. Zenger. Erweiterbare Ubersetzer. Master’s thesis,
University of Karlsruhe, August 1998.

[50] M. Zenger. Type-Safe Prototype-Based Component
Evolution. In Proceedings of the European Conference on
Object-Oriented Programming, Malaga, Spain, June 2002.

[51] M. Zenger. Keris: Evolving software with extensible
modules. To appear in Journal of Software Maintenance
and Evolution: Research and Practice (Special Issue on
USE), 2004.

[62] M. Zenger. Programming Language Abstractions for
Ezxtensible Software Components. PhD thesis, Department
of Computer Science, EPFL, Lausanne, March 2004.

[63] M. Zenger and M. Odersky. Implementing extensible
compilers. In ECOOP Workshop on Multiparadigm
Programming with Object-Oriented Languages, Budapest,
Hungary, June 2001.

APPENDIX
A. GENERICS IN SCALA

This appendix fills in the other important part of Scala’s type
system, which was omitted from discussion until now. It presents
the design of generics in Scala, contrasts it with the corresponding
constructs in Java, and shows how generics can be encoded by
abstract type members.

Scala uses a rich but fairly standard design for parametric poly-
morphism. Both classes and methods can have type parameters.
Class type parameters can be annotated to be covariant as well as
contravariant, and they can have upper as well as lower bounds.

class GenCell[T](init: T) {
private var value: T = init;
def get: T = value;
def set(x: T): unit = { value = x }

}

def swap[T](x: GenCell[T], y: GenCell[T]): unit = {
val t = x.get; x.set(y.get); y.set(t)

}

def main(args: Array[String]) = {
val x: GenCell[int] = new GenCell[int](1);
val y: GenCell[int] = new GenCell[int](2);
swap[int](x, y)

}

Listing 3: Simple generic classes and methods

As a simple example, Listing 3 defines a generic class of cells
of of values that can be read and written, together with a poly-
morphic function swap, which exchanges the contents of two cells,
as well as a main function which creates two cells of integers and
then swaps their contents.

Type parameters and type arguments are written in square
brackets, e.g.[T], [int]. Scala defines a sophisticated type infer-
ence system which permits to omit actual type arguments. Type
arguments of a method or constructor are inferred from the ex-
pected result type and the argument types by local type inference
[39, 36]. Hence, the body of function main in Listing 3 can also
be written without any type arguments:

val x = new GenCell(1); val y = new GenCell(2); swap(x, V)

Variance

The combination of subtyping and generics in a language raises
the question how they interact. If C' is a type constructor and S is
a subtype of T', does one also have that C[S] is a subtype of C[T]?
Type constructors with this property are called covariant. The
type constructor GenCell should clearly not be covariant; other-
wise one could construct the following program which leads to a
type error at run time.

val x: GenCell[String] = new GenCell[String];
val y: GenCell[Any] = x; // illegal!
y.set(1);

val z: String = y.get

It is the presence of a mutable variable in GenCell which makes
covariance unsound. Indeed, a GenCell[String] is not a special
instance of a GenCell[Any] since there are things one can do with
a GenCell[Any] that one cannot do with a GenCell[String]; set it
to an integer value, for instance.

On the other hand, for immutable data structures, covariance
of constructors is sound and very natural. For instance, an im-
mutable list of integers can be naturally seen as a special case
of a list of Any. There are also cases where contravariance of pa-
rameters is desirable. An example are output channels Chan[T],
with a write operation that takes a parameter of the type param-
eter T. Here one would like to have Chan[S] <: Chan[7'] whenever
T <: S.

Scala allows to declare the variance of the type parameters of
a class using plus or minus signs. A “4” in front of a parameter
name indicates that the constructor is covariant in the parame-

ter, a “—” indicates that it is contravariant, and a missing prefix

indicates that it is non-variant.
For instance, the following trait GenList defines a simple co-
variant list with methods isEmpty, head, and tail.

trait GenList[+T] {
def isEmpty: boolean;
def head: T;
def tail: GenList[T]
}

Scala’s type system ensures that variance annotations are sound
by keeping track of the positions where a type parameter is used.
These positions are classified as covariant for the types of im-
mutable fields and method results, and contravariant for method
argument types and upper type parameter bounds. Type argu-
ments to a non-variant type parameter are always in non-variant
position. The position flips between contra- and co-variant inside
a type argument that corresponds to a contravariant parameter.
The type system enforces that covariant type parameters are only
used in covariant positions, and that contravariant type parame-
ters are only used in contravariant positions.
Here are two implementations of the GenList class:

object Empty extends GenList[All] {

def isEmpty: boolean = true;

def head: All = throw new Error("Empty.head");

def tail: List[All] = throw new Error("Empty.tail");
}

class Cons[+T](x:T, xs:GenList[T]) extends GenList[T] {
def isEmpty: boolean = false;
def head: T = x;
def tail: GenList[T] = xs

}

As is shown in Figure 1, the type All represents the bottom type
of the subtyping relation of Scala (whereas Any is the top). There
are no values of this type, but the type is nevertheless useful, as
shown by the definition of the empty list object, Empty. Because of
co-variance, Empty’s type, GenList[All] is a subtype of GenList[7'],
for any element type 7. Hence, a single object can represent
empty lists for every element type.

Binary methods and lower bounds

So far, we have associated covariance with immutable data struc-
tures. In fact, this is not quite correct, because of binary methods.
For instance, consider adding a prepend method to the GenList
trait. The most natural definition of this method takes an argu-
ment of the list element type:

trait GenList[+T] { ...
def prepend(x: T): GenList[T] = // illegal!
new Cons(x, this)

}

However, this is not type-correct, since now the type parameter T
appears in contravariant position inside trait GenList. Therefore,
it may not be marked as covariant. This is a pity since concep-
tually immutable lists should be covariant in their element type.
The problem can be solved by generalizing prepend using a lower
bound:

trait GenList[+T] { ...
def prepend[S >: T](x: S): GenList[S] = // OK
new Cons(x, this)

}

prepend is now a polymorphic method which takes an argument
of some supertype S of the list element type, T. It returns a list
with elements of that supertype. The new method definition is
legal for covariant lists since lower bounds are classified as co-
variant positions; hence the type parameter T now appears only
covariantly inside trait GenList.

It is possible to combine upper and lower bounds in the decla-
ration of a type parameter. An example is the following method
less of class GenList which compares the receiver list and the
argument list.

trait GenList[+T] { ...
def less[S >: T <: scala.Ordered[S]](that: List[S]) =
Ithat.isEmpty &&
(this.isEmpty ||
this.head < that.head ||
this.head == that.head &&
this.tail less that.tail)
}

The method’s type parameter S is bounded from below by the list
element type T and is also bounded from above by the standard
class scala.Ordered[S]. The lower bound is necessary to maintain
covariance of GenList. The upper bound is needed to ensure that
the list elements can be compared with the < operation.

Comparison with wildcards

Java 5.0 also has a way to annotate variances which is based on
wildcards [47]. The scheme is essentially a refinement of Igarashi
and Viroli’s variant parametric types [19]. Unlike in Scala, an-
notations in Java 5.0 apply to type expressions instead of type
declarations. As an example, covariant generic lists could be ex-
pressed by writing every occurrence of the GenList type to match
the form GenList<? extends 7>. Such a type expression denotes
instances of type GenList where the type argument is an arbitrary
subtype of T'.

Covariant wildcards can be used in every type expression; how-
ever, members where the type variable does not appear in co-
variant position are then “forgotten” in the type. This is nec-
essary for maintaining type soundness. For instance, the type
GenCell<? extends Number> would have just the single member get
of type Number, whereas the set method, in which GenCell’s type
parameter occurs contravariantly, would be forgotten.

In an earlier version of Scala we also experimented with usage-
site variance annotations similar to wildcards. At first-sight, this
scheme is attractive because of its flexibility. A single class might
have covariant as well as non-variant fragments; the user chooses
between the two by placing or omitting wildcards. However, this
increased flexibility comes at price, since it is now the user of a
class instead of its designer who has to make sure that variance
annotations are used consistently. We found that in practice it
was quite difficult to achieve consistency of usage-site type an-
notations, so that type errors were not uncommon. This was
probably partly due to the fact that we used the original system
of Igarashi and Viroli [19]. Java 5.0’s wildcard implementation
adds to this the concept of “capture conversion” [46], which gives
better typing flexibility.

By contrast, declaration-site annotations proved to be a great
help in getting the design of a class right; for instance they provide
excellent guidance on which methods should be generalized with
lower bounds. Furthermore, Scala’s mixin composition (see Sec-
tion 2.2) makes it relatively easy to factor classes into covariant
and non-variant fragments explicitly; in Java’s single inheritance
scheme with interfaces this would be admittedly much more cum-
bersome. For these reasons, later versions of Scala switched from
usage-site to declaration-site variance annotations.

Modeling generics with abstract types

The presence of two type abstraction facilities in one language
raises the question of language complexity — could we have done
with just one formalism? In this section we show that functional
type abstraction can indeed be modeled by object-oriented type
abstraction. The idea of the encoding is as follows.

Assume you have a parameterized class C' with a type parame-
ter ¢ (the encoding generalizes straightforwardly to multiple type
parameters). The encoding has four parts, which affect the class
definition itself, instance creations of the class, base class con-
structor calls, and type instances of the class.

1. The class definition of C' is re-written as follows.

class C {
type t;
/* rest of class */

}

That is, parameters of the original class are modeled as ab-
stract members in the encoded class. If the type parameter
t has lower and/or upper bounds, these carry over to the
abstract type definition in the encoding. The variance of
the type parameter does not carry over; variances influence
instead the formation of types (see Point 4 below).

2. Every instance creation new C'[T'] with type argument T is
rewritten to:

new C { typet =T }

3. If C[T] appears as a superclass constructor, the inheriting
class is augmented with the definition

type t =T

4. Every type C[T] is rewritten to one of the following types
which each augment class C' with a refinement.
C { type t =T} iftis declared non-variant,
C { type t <: T } ift is declared co-variant,
C { type t >: T } iftis declared contra-variant.

This encoding works except for possible name-conflicts. Since
the parameter name becomes a class member in the encoding,
it might clash with other members, including inherited members
generated from parameter names in base classes. These name
conflicts can be avoided by renaming, for instance by tagging
every name with a unique number.

The presence of an encoding from one style of abstraction to
another is nice, since it reduces the conceptual complexity of a
language. In the case of Scala, generics become simply “syntac-
tic sugar” which can be eliminated by an encoding into abstract
types. However, one could ask whether the syntactic sugar is war-
ranted, or whether one could have done with just abstract types,
arriving at a syntactically smaller language. The arguments for
including generics in Scala are two-fold. First, the encoding into
abstract types is not that straightforward to do by hand. Besides
the loss in conciseness, there is also the problem of accidental
name conflicts between abstract type names that emulate type
parameters. Second, generics and abstract types usually serve
distinct roles in Scala programs. Generics are typically used when
one needs just type instantiation, whereas abstract types are typ-
ically used when one needs to refer to the abstract type from
client code. The latter arises in particular in two situations: One
might want to hide the exact definition of a type member from
client code, to obtain a kind of encapsulation known from SML-
style module systems. Or one might want to override the type
covariantly in subclasses to obtain family polymorphism.

Could one also go the other way, encoding abstract types with
generics? It turns out that this is much harder, and that it re-
quires at least a global rewriting of the program. This was shown
by studies in the domain of module systems where both kinds of
abstraction are also available [20]. Furthermore in a system with
bounded polymorphism, this rewriting might entail a quadratic
expansion of type bounds [4]. In fact, these difficulties are not
surprising if one considers the type-theoretic foundations of both
systems. Generics (without F-bounds) are expressible in System
F. [7] whereas abstract types require systems based on depen-
dent types. The latter are generally more expressive than the
former; for instance vObj with its path-dependent types can en-
code Fc..

	Introduction
	Constructs for Component Abstraction and Composition
	Abstract Type Members
	Modular Mixin Composition
	Selftype Annotations
	Service-Oriented Component Model

	Case Study: Subject/Observer
	Case Study: The Scala Compiler
	Discussion
	Conclusion
	REFERENCES -9pt
	Generics in Scala

