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Abstract

Nonlocality is at the heart of quantum information processing. In this paper we investigate

the minimum amount of classical communication required to simulate a nonlocal quantum

measurement. We derive general upper bounds, which in turn translate to systematic

classical simulations of quantum communication protocols.

As a concrete application, we prove that any quantum communication protocol with

shared entanglement for computing a Boolean function can be simulated by a classical

protocol whose cost does not depend on the amount of the shared entanglement. This

implies that if the cost of communication is a constant, quantum and classical protocols, with

shared entanglement and shared coins, respectively, compute the same class of functions.

Yet another application is in the context of simulating quantum correlations using local

hidden variable models augmented with classical communications. We give a constant

cost, approximate simulation of quantum correlations of random variables whose domain

is of a constant size but the dimension of the entanglement and the number of possible

measurements may be arbitrary.

Our upper bounds are expressed in terms of some tensor norms on the measurement

operator. Those norms capture the nonlocality of bipartite operators in their own way and

may be of independent interest and further applications.
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1 Introduction and summary of results

Although Einstein himself made significant contributions to the development of quantum

mechanics, he famously questioned the “completeness” of the theory with a “paradox” that

he formulated with Podolsky and Rosen [19]. Following Bohm [10], the essence of the

paradox is: two “quantum coins” may be correlated in a state that can be schematically

represented as
1√
2

(|Head〉A|Tail〉B − |Tail〉A|Head〉B) .

If each party measures his or her coin, with 1/2 probability, one of the two outcomes would

be observed. However, once a measurement is made by one party, say, Alice, then Bob, the

other party, would always observe the opposite outcome. Hence it appears that what Alice

does locally would affect Bob’s world without any communication.

The Einstein-Podolsky-Rosen (EPR) paradox did not reduce quantum mechanics to

contradictions. Instead, it revealed the essence — quantum entanglement — that underlies

the many counter-intuitive properties and marvelous capabilities of quantum information.

For example, in his far reaching paper [6], John Bell formulated a set of inequalities, referred

to as Bell Inequalities now, that must be satisfied by the correlations produced by any so

called hidden variable classical model but would nevertheless be violated by some quantum

correlations. The latter has been confirmed by several experiments (e.g., [40]). Another

seminal example is the quantum key distribution protocol [7], which has been shown to

be information theoretically secure [28, 29], as a consequence of properties of quantum

entanglement.

Given its importance, quantum entanglement has been the subject of numerous studies

(see, e.g., the books [32, 33]). The focus has been on understanding the inherent quantitative

tradeoffs among various resources involved in the creation and conversion of entangled

states. As entanglement is the result of nonlocal quantum interactions, understanding

various aspects of the nonlocality of quantum operations is also of fundamental importance.

A natural nonlocality measure of a quantum operation is its generating capacity, which is

the maximum entanglement increase that it could create (see e.g., [8]). Another approach,

more from a computational point of view, is to consider the amount of resources, such as

the time in the case of using elementary Hamiltonians, or the number of elementary gates,

required to simulate the operator (e.g., [14, 15]).

In this paper, we take a completely different approach to quantify the nonlocality of

quantum operations, following intuitions from the subject of communication complexity.

We focus on measurement operators, while our approach can be extended to the most

general quantum operations.

Consider the following scenario. Alice and Bob, who live in the classical world, would

like to simulate a quantum event, where a two-outcome quantum measurement Q is applied

to a bipartite system (A,B). Furthermore, Alice knows the classical description of System

A and Bob knows that of System B, and they both know a classical description of Q. Since
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they do not have enough information about the other’s system, they have to communicate to

simulate the measurement. We define the classical communication complexity of Q, denoted

by Com(Q), to be the minimum number of bits that Alice and Bob needs to communicate

in order to produce an output whose distribution approximates the measurement outcome

distribution by a small deviation. We allow Alice and Bob to share unlimited amount of

randomness.

Our main result is to derive a general upper bound on Com(Q) in terms of a certain

operator norm.

Theorem 1.1 (Informally). For any bipartite quantum measurement Q, Com(Q) =

O(‖Q‖2⋄), where ‖Q‖⋄ is the diamond norm of Q.

The diamond norm is originally defined on superoperators, and has been a powerful

tool in the study of quantum interactive proof systems [23] and quantum circuits on mixed

states [2]. We make use a natural mapping from bipartite operators to superoperators to

define norms on the former based on norms on the latter.

The approach in proving Theorem 1.1 can be extended to obtain general upper bounds

on Com(Q) in terms of other operators norms. Those norms belong to so called tensor

norms, i.e., norms ‖ · ‖α that satisfies ‖P‖α ≤ ‖A‖ · ‖B‖, whenever P = A ⊗ B. Tensor

norms have been studied for decades with a great deal of rich concepts and deep results

(see, e.g., [18]). In recent years, they have been applied to quantum information theory to

characterize and quantify the nonlocality of quantum states [36, 37]. The tensor norms that

appear in our upper bounds capture the nonlocality of bipartite operators in their own way,

and may have further applications.

We then show that those general upper bounds in turn have useful applications on quan-

tum communication complexity. Recall that in the setting of communication complexity

[42, 43], Alice and Bob would like to compute a function f(x, y), where x is known to

Alice only, and y to Bob. The communication complexity of f is the minimum amount of

information that Alice and Bob need to exchange in order to compute f correctly for any

input. Communication complexity has been a major research field (see, e.g., the book [27]),

with many problems of rich structures and deep connections to other aspects of complexity

theory.

One central question in quantum communication complexity is how much quantum pro-

tocols may outperform classical ones. Despite much success in finding efficient quantum

protocols [13, 12, 21, 1, 34, 3, 5], many questions remain open. For example, is there

any exponential gap between quantum and classical communication complexity for a to-

tal Boolean function? Our upper bounds on Com(P ) provide a systematic approach for

obtaining a classical simulation of a given quantum protocol.

A concrete application of our result is on the advantage of sharing entanglement in

quantum protocols, a question that has puzzled many researchers [16, 11, 25, 30]. It is

known that sharing entanglement could give a constant additive advantage [16, 11], or save

a half of the communication [17]. However, little is known on the limit of the advantage.
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This is in sharp contrast with the classical case of sharing randomness, where we know that

it can only save at most a logarithmic additive term [31]. If there is a quantum protocol that

exchanges q qubits with m qubits of prior entanglement, then the best classical simulation

we know is exp(Ω(q +m)). This is embarrassingly large, especially when q << m. Using

our upper bound on the classical communication complexity of nonlocal operators, we prove

the following.

Theorem 1.2. If a twoway quantum protocol uses q qubits of communication and m qubits

of share entanglement, then it can be simulated by a classical protocol using exp(O(q))

bits with shared randomness. The simulation does not depend on m. Furthermore, it can

be carried out in the restricted Simultaneous Message Passing (SMP) model with shared

randomness, where Alice and Bob, who share a random string, each sends a single message

to Charlie, who determines the outcome correctly with high probability.

Notice that the exponential dependence on q can not be improved, because of the ex-

istence of an exponential separation of quantum and classical communication complexities

for some partial function, discovered by Raz [34]. As a consequence of the above theorem,

Corollary 1.3. If a communication complexity problem has a constant cost quantum com-

munication protocol with shared entanglement, it also has a constant cost classical protocol

with shared randomness.

It is interesting to contrast the above with a recent result by Yao [44], which is of a

similar type but of the opposite direction.

Theorem 1.4 ([44]). If a communication complexity problem of input size n has a constant

cost classical SMP protocol with shared randomness, it has an O(log n) cost quantum SMP

protocol without shared entanglement.

Combining this result with ours, we have

Corollary 1.5. If a communication complexity problem of input size n has a constant cost

twoway quantum protocol with shared entanglement, it has an O(log n) cost quantum SMP

protocol without shared entanglement.

Yet another application of our classical simulation of quantum measurements is to give

efficient simulations of quantum correlations by the hidden variable model assisted with

classical communication. The scenario is as follows. Suppose Alice and Bob are given an

entangled quantum state. Then each of them, without any communication, applies to their

portion of the state some local measurement not known to the other party. The result is

a correlated joint distribution on both measurement outcomes. There are such correlations

that violate the Bell Inequalities, hence impossible to generate by any reasonable classical

procedure in which Alice and Bob do not communicate.

Decades after Bell’s work, many researchers work on questions of the following type:

what is the minimum amount of classical communication required to simulate a quantum
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correlation? Most of their works focus on the exact simulation and on measuring a constant

number of qubits. We study the approximate and asymptotic simulation of quantum cor-

relations, where the joint random variables take a constant number of possible values but

are nevertheless produced from (the two party) sharing an entangled state of an arbitrary

dimension and applying arbitrary local measurements.

Theorem 1.6 (Informally). In the above scenario, a O
(

ln 1
ǫ/ǫ

2
)

number of classical bits

is sufficient to approximate the quantum correlation with a ǫ statistical distance.

The rest of the paper is organized as follows. We start with the description of a gen-

eral framework for classical simulation of quantum protocols. The cost parameter of this

framework is then optimized in the next section, giving the main theorem. In the section

that follows we give applications of the theorem. Finally we conclude with several open

problems.

2 A simulation framework

Our classical simulation of quantum protocols falls into the following framework. Let p

be the acceptance probability (i.e., the probability of outputting 1) of a given quantum

protocol (which arises either from a communication task or from a bipartite measurement).

We express p = 〈ψA|ψB〉, for two vectors |ψA〉 and |ψB〉 that can be prepared by Alice

and Bob by herself/himself. Note that the lengths of the two vectors may be very large, in

general. Indeed the shorter their lengths are, the better our simulation is.

More precisely, if for some number C, ‖|ψA〉‖ ≤ C and ‖|ψB〉‖ ≤ C, then the following

simulation uses O(C4) bits. Alice and Bob send Charlie ‖|ψA〉‖ and ‖|ψB〉‖, respectively, up
to O(1/C) precision. This requires O(logC) bits. They then proceed to estimate cos θ, for

the angle θ between |ψA〉 and |ψB〉 up to a precision of O(1/C2). The protocol in Kremer,

Nisan and Ron[26], which is based on the following observation of Goemans and Williamson

[20], gives a protocol that accomplishes the latter task using O(C4) bits.

Assume for simplicity that all vectors are real (the complex number case can be easily

reduced to the real case). If |ψ〉 is a random unit vector in the same space of |φA〉 and |φB〉,
then

Prob [sign(〈ψ|ψA〉) 6= sign(〈ψ|ψB〉)] = θ/π. (1)

Hence, in order to estimate cos θ with error term δ, it suffices to estimate θ/π to some error

term O(δ) using the above equality checking of signs. Obviously this can be done by a SMP

protocol, and by a simple application of Chernoff Bound, requires O
(

ln 1
ǫ/δ

2
)

repetitions.

With δ = O(ǫ/C2), this is O
(

C4 ln 1
ǫ/ǫ

2
)

bits.

We note that [41] gives a procedure along the lines of checking equality of signs but

it produces a random ±1 variable whose expectation is precisely cos θ, though this is not

asymptotically advantageous.

We summarize the above discussion as the basis for our future discussions.
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Theorem 2.1 ([26, 20]). Suppose the acceptance probability of a quantum protocol can

be expressed as 〈ψA|ψB〉, where |ψA〉 and |ψB〉 can be prepared by each party individually.

Furthermore, for some number C, ‖|ψA〉‖ ≤ C, and ‖|ψB〉‖ ≤ C. Then there is a classical

SMP protocol with shared coins that uses O
(

C4ln 1
ǫ /ǫ

2
)

bits and whose acceptance probability

deviates from that of the protocol by at most ǫ.

3 A general theorem

In this section, we formally define the classical communication complexity and the diamond

norm of bipartite quantum operators, and derive an upper bound on the former in terms of

the latter. We shall focus on the following case: that the measurement gives two outcomes,

and that the dimensions of the two systems are the same. Our results can be extended

trivially to more general cases.

We use script letters N , M, F , · · · , to denote Hilbert spaces, and L(N ) to denote the

space of operators on N . The identity operator on N is denoted by IN , and the identity

superoperator on L(N ) is denoted by IN .

3.1 Quantum measurement scenarios

LetNA, NB, MA, andMB be Hilbert spaces such that dim(NA) = dim(NB) and dim(MA) =

dim(MB). Let |E〉 ∈ MA ⊗MB , and {Q, I −Q} be a binary-valued POVM on NA ⊗NB.

That is, Q is a positive semidefinite operator on NA ⊗NB with ‖Q‖ ≤ 1.

We define a quantum measurement scenario as a quadruple (Q, |E〉,MA ⊗MB ,NA ⊗
NB) that parameterizes the following quantum event involving three parties Alice, Bob,

and Charlie. Charlie sends Alice and Bob the bipartite quantum state |E〉, upon receiving

which Alice and Bob each applies physically realizable operators RA : L(MA) → L(NA)

and RB : L(MB) → L(NB), respectively, on their portion of |E〉. The choices of RA and

RB are not known to the other party. They send the resulted systems to Charlie, who

finally applies Q on the received state, observing outcome 1 with probability p.

Now suppose Alice and Bob loose their quantum power completely but nevertheless

would like to simulate the above quantum event through classical communications. The

classical descriptions of both Q and |E〉 are known to both of them, so is that of RA to

Alice and that of RB to Bob. For a fixed precision parameter ǫ ∈ [0, 1/2), their goal is to

output 1 with a probability p′ ∈ [p− ǫ, p+ ǫ].

Definition 3.1. Let ǫ ∈ [0, 1/2). The classical communication complexity of Q with preci-

sion ǫ, denoted by Comǫ(Q), is the minimum cost with which any quantum measurement

scenario (Q, |E〉,MA ⊗MB ,NA ⊗ NB) can be simulated with a precision ǫ by a two-way

interactive, public-coin classical communication protocol. If the simulating protocols are

restricted to be Simultaneous Message Passing(SMP) with shared-coins, then call the corre-

sponding minimum cost the classical SMP complexity of Q, written as Com
pub,‖
ǫ (Q). When

ǫ is a universal constant, it may be omitted from the subscript.
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Apparently Comǫ(Q) ≤ Com
pub,‖
ǫ (Q). All Our upper bounds on Comǫ(Q) are proved as

upper bounds on Com
pub,‖
ǫ (Q).

3.2 The diamond norm on bipartite operators

Let N be a Hilbert space and T : L(N ) → L(N ) be a superoperator. The diamond norm

on super operators is defined as (c.f. [24])

‖T‖⋄ def
= inf{‖A‖‖B‖ : trF (A ·B†) = T, A, B ∈ L(N ,N ⊗F)}.

For our application, the following alternative characterization of the diamond norm is more

convenient.

Lemma 3.2 (e.g., [24]). For any superoperator T ,

‖T‖⋄ = min {
√

‖
∑

t

A†
tAt‖ ·

√

‖
∑

t

B†
tBt‖ : At, Bt ∈ L(N ), T =

∑

t

At · B†
t }.

Let NA, NB , and N be Hilbert spaces of the same dimension. We fix an isomorphism

between any two of them. For an operator in one space, we use the same notation for its

images and preimages, under the isomorphisms, in the other spaces.

Let Q ∈ L(NA ⊗ NB) be a bipartite operator and Q =
∑

tAt ⊗ B†
t , for some At ∈

L(NA), and Bt ∈ L(NB). Define a mapping T from bipartite operators on NA ⊗ NB to

superoperators L(N ) → L(N ) by mapping Q 7→ T (Q)
def
=

∑

tAt · B†
t . It can be easily

verified that the mapping is independent of the choice of the decomposition of Q and is

indeed an isomorphism.

Definition 3.3. Let Q ∈ L(NA ⊗NB) be a bipartite operator. The diamond norm of Q,

denoted by ‖Q‖⋄, is ‖Q‖⋄ def
= ‖T (Q)‖⋄.

By Lemma 3.2, for any Q,

‖Q‖⋄ = min{
√

‖
∑

t

A†
tAt‖·

√

‖
∑

t

B†
tBt‖ : At ∈ L(NA), Bt ∈ L(NB), Q =

∑

t

At⊗B†
t }.

Note that if a superoperator T = A · B for some A,B ∈ L(N ), ‖T‖⋄ = ‖A‖ · ‖B‖.
Therefore the diamond norm on bipartite operators is a tensor norm:

Lemma 3.4. If K = A⊗B, ‖K‖⋄ = ‖A‖ · ‖B‖.

A nice property of the superoperator diamond norm is that it is “stable”, i.e., it remains

unchanged when tensored with the identity operator on an additional space [24].

Lemma 3.5. Let N , M, and F be Hilbert spaces, and T : L(N ) → L(M) be a superoper-

ator. Then ‖IF ⊗ T‖⋄ = ‖T‖⋄.
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This stability property is carried over to our diamond norm and is important for our

applications. Let FA, FB , and F be Hilbert spaces of the same dimension, and Q ∈ L(NA⊗
NB). Denote by QFA,FB

the bipartite operator Q⊗ IFA⊗FB
, where the two subsystems are

NA ⊗FA and NB ⊗FB .

Lemma 3.6. For any Q, ‖QFA,FB
‖⋄ = ‖Q‖⋄.

We conclude this subsection by noting that our diamond norm on bipartite operators

appears natural in connection with the following matrix analogy of the Cauchy Schwartz

Inequality.

Theorem 3.7 (Jocić [22]). For any operators At and Bt,

‖
∑

t

At ⊗B†
t ‖ ≤

√

‖
∑

t

At ·A†
t‖ ·

√

‖
∑

t

Bt ·B†
t ‖. (2)

Hence, if ‖Q‖⋄ is precisely the smallest right-hand-side when At and Bt are such that

Q =
∑

tAt ⊗B†
t . Inequality (2) may actually be proved by the same approach that we use

to prove Theorem 3.8 below.

3.3 Upper bounding Compub,‖(Q) by the diamond norm

We now use the diamond norm to derive an upper bound on Com
pub,‖
ǫ (Q). Recall that if

M and N are two Hilbert spaces, an isometric embedding from M to N is a linear map

from M to N with a unit operator norm.

Theorem 3.8. For any quantum measurement scenario (Q, |E〉,MA ⊗MB ,NA ⊗NB),

Compub,‖
ǫ (Q) = O

(

‖Q‖2⋄ · ln
1

ǫ
/ǫ2

)

.

Proof. Without loss of generality, assume that on receiving their portions of |E〉, Alice and

Bob apply an isometric embedding U : MA → NA ⊗ FA, and V : MB → NB ⊗ FB ,

respectively, for some Hilbert spaces FA and FB with an equal dimension. The distribution

resulted from Charlie’s measuring Q on TrFA,FB

(

(U ⊗ V )|E〉〈E|(U ⊗ V )†
)

is the same as

that of Charlie applyingQFA,FB
on the larger state (U⊗V )|E〉〈E|(U⊗V )†. By Lemma 3.6,

‖QFA,FB
‖⋄ = ‖Q‖⋄. Therefore, to prove the theorem we need only to consider isometric

embeddings U : MA → NA and V : MA → NB.

Without loss of generality, we assume that Alice and Bob have agreed on a Schmidt

decomposition |E〉 = ∑

i
√
pi|i〉A⊗|i〉B , for some pi ≥ 0,

∑

i pi = 1, and for an orthonormal

basis {|i〉}. Denote by |iA〉 def
= U |i〉, and |iB〉 def

= V |i〉. Then the message that Charlie

receives is |Ē〉 def
= (U ⊗ V )|E〉 = ∑

i

√
pi|iA〉 ⊗ |iB〉.

Suppose ‖Q‖⋄ is achieved under the decomposition Q =
∑

tAt ⊗ B†
t , with which if

QA
def
=

∑

tA
†
tAt, and, QB

def
=

∑

tB
†
tBt, we have ‖QA‖ = ‖QB‖ = ‖Q‖⋄. With those
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definitions, we have

p = 〈Ē|Q|Ē〉 =
∑

i,j,t

√
pipj 〈iA|At|jA〉 · 〈iB |B†

t |jB〉.

Define two vectors

|ψA〉 =
∑

i,j,t

√
pj 〈jA|A†

t |iA〉 |i, j, t〉, and, (3)

|ψB〉 =
∑

i,j,t

√
pi 〈iB |B†

t |jB〉 |i, j, t〉. (4)

Then p = 〈ψA|ψB〉. Further, with ρA def
=

∑

j pj|jA〉〈jA|,

〈ψA|ψA〉 =
∑

i,j,t

pj |〈jA|A†
t |iA〉|2 = tr(ρAQA) ≤ ‖QA‖ = ‖Q‖⋄.

Similarly, 〈ψB |ψB〉 ≤ ‖QB‖ = ‖Q‖⋄. Therefore, by Theorem 2.1, the measurement

scenario can be approximated by a classical SMP with shared coins to be within an ǫ

precision using O
(

‖Q‖2⋄ln 1
ǫ/ǫ

2
)

bits. ⊓⊔

Remark 3.9. One may improve the above upper bound on Com
pub,‖
ǫ (Q) by a more carefully

chosen |ψA〉 and |ψB〉 in Equation 3 and 4. More specifically, let α ∈ [0, 1], define

|ψα
A〉 =

∑

i,j,t

√

pαi p
1−α
j 〈jA|A†

t |iA〉 |i, j, t〉, and,

|ψα
B〉 =

∑

i,j,t

√

p1−α
i pαj 〈iB |B†

t |jB〉 |i, j, t〉.

One can verify that minimizing ‖|ψA〉‖ · ‖|ψB〉‖ over all decompositions of Q gives rise to a

tensor norm, which we do not know if is stable under tensoring with identity superoperators.

Although we have not found any useful application of an α 6= 0, we cannot rule out the

possibility that a carefully chosen α may give a better bound.

Remark 3.10. In the case that |E〉 is not entangled, the same approach in Theorem 3.8 can

be used to derive a systematic classical simulation. More specifically, in this context we

would like to estimate p = 〈φA ⊗ φB |Q|φA ⊗ φB〉, for a state |φA〉 known to Alice only and

a state |φB〉 known to Bob only. For a decomposition of Q =
∑

tAt ⊗B†
t , we define

|ψA〉 =
∑

t

〈φA|A†
t |φA〉|t〉, and, |ψB〉 =

∑

t

〈φB |B†
t |φB〉|t〉.

Then p = 〈ψA|ψB〉. It can be verified that

‖Q‖⊗ def
= inf{‖ψA‖ · ‖ψB‖ : Q =

∑

t

At ⊗B†
t }

defines a tensor norm and ‖Q‖⊗ ≤ ‖Q‖⋄. This approach gives a constant cost simulation

of the elegant quantum fingerprint protocol of Buhrman, Cleve, Watrous, and de Wolf [12]

for testing equality of two input strings.
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4 Applications

We now apply the above to derive classical upper bounds on quantum communication

complexity.

Quantum SMP with shared entanglement. If the quantum protocol is in the SMP

model with shared entanglement, we immediately have,

Corollary 4.1 (of Theorem 3.8 ). If in a quantum SMP protocol, Charlie applies the

measurement P , then the protocol can be simulated by a classical SMP protocol with shared

coins and using O(‖P‖2⋄) bits.

Twoway interactive quantum communication with shared entanglement. Now

consider the general twoway interactive quantum communication. We need the following

lemma due to Yao [43], and the following formulation is from [35]:

Lemma 4.2 ([43, 35]). Let P be a two-party interactive quantum communication protocol

that uses q qubits. Let HA and HB be the state spaces of Alice and Bob, respectively. For

an input (x, y), denote by |Φx,y〉AB the joint state of Alice, Bob before the protocol starts.

Then there exist linear operators Ah ∈ L(HA), and Bh ∈ L(HB), for each h ∈ {0, 1}q−1,

such that

(a) ‖Ah‖ ≤ 1 and ‖Bh‖ ≤ 1 for all h ∈ {0, 1}q−1;

(b) the acceptance probability of P on input x and y is ‖P |Φx,y〉‖2, where P def
=

∑

h∈{0,1}q−1 Ah⊗
Bh.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let |E〉AB be the shared entanglement, For an n-bit binary string

x, denote by Ux the isometric embedding from C to C
⊗2n that maps c 7→ c|x〉. Let P , Ah,

and Bh be those in Lemma 4.2. Then the quantum protocol gives rise to a measurement

scenario in which the measurement is P †P , the shared entanglement is |E〉, and on an input

pair (x, y), Alice’s private operator is Ux and that of Bob is Uy.

By Theorem 3.8, the acceptance probability can be estimated with O(‖P †P‖2⋄) bits of

communication in the SMP model with shared randomness. Since ‖ · ‖⋄ is a tensor norm,

we have

‖P †P‖⋄ ≤
∑

h,h′

‖
(

(Ah′)†Ah

)

⊗
(

(Bh′)†Bh

)

‖⋄ =
∑

h,h′

‖Ah‖‖Ah′‖‖Bh‖‖Bh′‖ ≤ 22(q−1).

The last inequality is because ‖Ah‖ ≤ 1 and ‖Bh‖ ≤ 1 for all h. Hence the acceptance

probability can be estimated by a classical SMP protocol using exp(O(q)) bits.

Corollary 1.3 follows trivially from the above by setting q to be a constant. Corollary

1.5 follows immediately from Theorem 1.4 and Corollary 1.3 together with the following

observation.
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Lemma 4.3. If a communication complexity problem has a classical twoway protocol with

shared randomness and b bits of cost, it has a classical SMP protocol with shared randomness

and O(b2b/2) bits of communication.

Proof. Fix a twoway protocol for the problem in which Alice sends bA bits and bob sends

bB bits. To simulate this protocol in the SMP model with shared randomness, Alice sends

the referee 2bB strings each of which has bA bits and is consistent with her input and a

string of bB bits interpreted as Bob’s messages. Bob applies the same strategy to sends 2bA

strings of bB bits. The referee is then able to reconstruct a string of b bits, which is precisely

the transcript of communication in the original protocol with the same input and random

string. Hence by outputting the last bit of the reconstructed message, this SMP protocol

achieves the same error probability of the original protocol. The cost of the simulating

protocol is 2bAbB + 2bB bA = O(b2b/2) bits. ⊓⊔

Simulating quantum correlations.

Proof of Theorem 1.6. Let V be the set of possible measurement outcomes. For each local

measurement (a POVM) P , and each v ∈ V , denote by P v the positive operator correspond-

ing to the outcome v. Fix a pair of measurements (PA, PB), and for each pairs of possible

outcome (v, v′), let P v,v′ def
= P v

A ⊗ P v′
B . Then by Lemma 3.4, ‖P v,v′‖⋄ = ‖P v

A‖ · ‖P v′
A ‖ ≤ 1.

Hence by Corollary 4.1, the probability of observing outcome (v, v′) can be calculated to be

within O(ǫ/|V |2) precision by by a classical SMP protocol using O
(

|V |4 ln(|V |2/ǫ)/ǫ2
)

bits.

Hence applying the simulation for all pairs of (v, v′), we can calculate the distribution to

be within ǫ statistical distance using O
(

|V |6 ln(|V |2/ǫ)/ǫ2
)

bits, which is O
(

ln 1
ǫ/ǫ

2
)

when

|V | is a constant.

5 Open Problems

Many new open problems emerge from this study.

Problem 1. Can one improve our upper bounds on Com(P ) and Compub,‖(P ), or charac-

terize them completely?

Problem 2. What is the connection of Com(P ) to other measures of nonlocality, such as

the entanglement capacity, and the minimum number of elementary gates, or the amount

of time for evolving some elementary Hamiltonian, needed to approximate P?

Problem 3. The diamond norm of a superoperator is in essence its operator norm with

respect to the trace norm on operators. This dual characterization is nontrivial yet makes

it much more intuitive. Is there any more intuitive interpretation of our diamond norm on

bipartite operators?

Problem 4. Although the upper bounds by the diamond norm and the other two tensor

norms in Remark 3.9 and Remark 3.10 do not seem to be tight in general, they may be

11



useful for individual problems. Furthermore, they capture nonlocality in their own way.

Hence a better understanding of them would be of interest.

Problem 5. Can our result on removing the entanglement be strengthened to that one

can always use an amount of entanglement linear in size of the messages, with at most a

logarithmic additive term?

Problem 6. Can one prove strong lower bounds in any classical model on any of the

distributed communication problems? Can one prove quantum lower bounds on the SMP

complexity without entanglement on those problems?

Problem 7. Can one extend our simulation of quantum correlations to the case of large

number of measurement outcomes, or prove that no good simulation exists?

6 Acknowledgments

We are indebted to Wei Huang, Amnon Ta-Shma, and the anonymous reviewers for their

valuable suggestions on improving the presentation of this paper.

References

[1] S. Aaronson and A. Ambainis. Quantum search of spatial regions (extended abstract).

In Proceedings of the 44th IEEE Symposium on Foundations of Computer Science

(FOCS), pages 200–209, 2003.

[2] D. Aharonov, A. Kitaev, and N. Nisan. Quantum circuits with mixed states. In Pro-

ceedings of the 31th Annual ACM Symposium on the Theory of Computation (STOC),

pages 20–30, 1998.

[3] A. Ambainis, L. Schulman, A. Ta-Shma, U. Vazirani, and A. Wigderson. The quantum

communication complexity of sampling. SIAM Journal on Computing, 32, 2003.

[4] A. Ambainis. Quantum query algorithms and lower bounds. In Proceedings of Foun-

dations of the Formal Sciences III, September 2001.

[5] Z. Bar-Yossef, T. S. Jayram, and I. Kerenidis. Exponential separation of quantum

and classical one-way communication complexity. In L. Babai, editor, STOC, pages

128–137. ACM, 2004.

[6] J. S. Bell. On the Einstein-Podolsky-Rosen paradox. Physics, 1:195, 1964.

[7] C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and

coin tossing. In Proceedings of IEEE international Conference on Computers, Systems

and Signal Processing, Bangalore, India, page 175, New York, 1984. IEEE Press.

12



[8] C. H. Bennett, A. W. Harrow, D. W. Leung, and J. A. Smolin. On the capacities of

bipartite Hamiltonians and unitary gates, 2002.

[9] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal on Com-

puting, 26(5):1411–1473, Oct. 1997.

[10] D. Bohm. The paradox of Einstein, Rosen, and Podolsky. In Quantum Theory and

Measurement, pages 611–623. Prentice-Hall, 1951.

[11] H. Buhrman, R. Cleve, and W. van Dam. Quantum entanglement and communication

complexity. SIAM J. Comp., 30(6):1829–1841, March 2001.

[12] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf. Quantum fingerprinting. Phys.

Rev. Lett., 87(16):167902, October 2001.

[13] H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs. classical communication and

computation. In Proceedings of the thirtieth annual ACM Symposium on Theory of

Computing (STOC), pages 63–68, New York, NY, USA, 1998. ACM Press.

[14] A. M. Childs, H. L. Haselgrove, and M. A. Nielsen. Lower bounds on the complexity

of simulating quantum gates. Phys. Rev. A, 68:052311–052316, 2003.

[15] A. M. Childs, D. W. Leung, F. Verstraete, and G. Vidal. Asymptotic entanglement

capacity of the Ising and anisotropic Heisenberg interactions. Quantum Information

and Computation, 3:97, 2003.

[16] R. Cleve and H. Buhrman. Substituting quantum entanglement for communication.

Phys. Rev. A, 56:1201, 1997.

[17] R. Cleve, W. van Dam, M. Nielsen, and A. Tapp. Quantum entanglement and the

communication complexity of the inner product function. Lecture Notes in Computer

Science, 1509:61–74, 1999.

[18] A. Defant and K. Floret. Tensor norms and operator ideals, volume 176 of North-

Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1993.

[19] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of reality

be considered complete? Phys. Rev., 47(10):777–780, May 1935.

[20] M. X. Goemans and D. P. Williamson. .879-approximation algorithms for max cut and

max 2sat. In STOC, pages 422–431, 1994.

[21] P. Høyer and R. de Wolf. Improved quantum communication complexity bounds for

disjointness and equality. Lecture Notes in Computer Science, 2285:299–310, 2002.
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